
Predictive Modeling of Smoking Status Using Bio-
Signals:

Leveraging AI and Machine Learning for Improved
Smoking Cessation Strategies

AIM OF PROJECT:
The objective of this study is to develop a machine learning model that utilizes bio-signals
to accurately predict the smoking status of an individual. By leveraging AI and machine
learning techniques, aim to provide a reliable tool for identifying individuals who are
smokers or non-smokers. This predictive model can aid in the development of effective
smoking cessation strategies and interventions, ultimately contributing to improved public
health outcomes. The model will consider various bio-signals, such as physiological,
behavioral, or environmental factors, to achieve accurate and reliable predictions. The goal
is to create a practical and accessible solution that can assist healthcare professionals in
assessing an individual's smoking status and provide personalized recommendations for
smoking cessation.
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1. INTRODUCTION
Smoking is a well-known contributor to a number of health problems and has
a major effect on public health globally. For the purpose of creating
successful smoking cessation methods and interventions, it is essential to
precisely determine each individual's smoking status. Self-reporting, which
can be subjective and unreliable, is frequently used in traditional techniques
of determining smoking status. The use of AI and machine learning
approaches in predicting smoking status using biosignals has attracted
attention as a solution to this problem.

In order to accurately anticipate a person's smoking status, the goal of this
project is to develop a predictive modelling strategy that makes use of AI and
machine learning algorithms. The model intends to provide a trustworthy tool



for healthcare providers to assess smoking status and direct individualised
smoking cessation efforts by analysing bio-signals, including physiological,
behavioural, and environmental aspects.

The project's many phases, including data preprocessing, dataset exploration,
feature selection, algorithm selection, training, assessment, parameter
tweaking, and deployment, will be covered in the report. Each step will be
carefully explained, showing the approaches used and the justification for the
choices made.

A prediction model with high accuracy in predicting smoking status is the
anticipated result of this investigation. The model's usefulness and
accessibility will be emphasised to ensure that healthcare professionals may
use it in practical contexts. The created model can help enhance smoking
cessation tactics and ultimately lessen the harmful effects of smoking on
public health by enabling precise identification of smoking status.

A summary of the report's conclusions, its caveats, and its suggestions for
additional research are included at the end. A list of the cited sources and
pertinent material used in the study is provided in the references section.

2. DATA PREPROCESSING

age height(cm) weight(kg) waist(cm) eyesight(left) eyesight(right) hearing(left) heari

0 35 170 85 97.0 0.9 0.9 1

1 20 175 110 110.0 0.7 0.9 1

2 45 155 65 86.0 0.9 0.9 1

3 45 165 80 94.0 0.8 0.7 1

4 20 165 60 81.0 1.5 0.1 1

... ... ... ... ... ... ... ...

38979 40 165 60 80.0 0.4 0.6 1

38980 45 155 55 75.0 1.5 1.2 1

38981 40 170 105 124.0 0.6 0.5 1

38982 40 160 55 75.0 1.5 1.5 1

38983 55 175 60 81.1 1.0 1.0 1

38984 rows × 23 columns

In [156… # Importing the Library  
import pandas as pd;

In [157… # Reading dataset using pandas library
train_data = pd.read_csv("E:/MA336 - AI and ML/Project_AI/train_dataset.csv")
train_data

Out[157]:



It can be seen there are 22 predictor variables with 38984 observations.Last column smoking
is a response variable.

Description of Each variables in dataset.

age: Age of the individual in 5-year intervals.
height(cm): Height of the individual in centimeters.
weight(kg): Weight of the individual in kilograms.
waist(cm): Waist circumference length of the individual.
eyesight(left): Eyesight measurement of the left eye.
eyesight(right): Eyesight measurement of the right eye.
hearing(left): Hearing measurement of the left ear.
hearing(right): Hearing measurement of the right ear.
systolic: Systolic blood pressure measurement.
relaxation: Diastolic blood pressure measurement.
fasting blood sugar: Fasting blood sugar level.
Cholesterol: Total cholesterol level.
triglyceride: Triglyceride level.
HDL: High-density lipoprotein (HDL) cholesterol level.
LDL: Low-density lipoprotein (LDL) cholesterol level.
hemoglobin: Hemoglobin level in the blood.
Urine protein: Presence of protein in the urine.
serum creatinine: Serum creatinine level.
AST: Level of glutamic oxaloacetic transaminase (AST) enzyme.
ALT: Level of glutamic oxaloacetic transaminase (ALT) enzyme.
Gtp: Level of γ-GTP enzyme.
dental caries: Presence of dental caries (tooth decay).
smoking: Smoking status of the individual (1 for smoker, 0 for non-
smoker).

Aim is to find the status of smoking through bio-signals.

Target variable:

When smoking is yes = 1 , When no smoking = 0

In [158… # Basic Dataset information
train_data.info()



<class 'pandas.core.frame.DataFrame'>
RangeIndex: 38984 entries, 0 to 38983
Data columns (total 23 columns):
 #   Column               Non-Null Count  Dtype  
---  ------               --------------  -----  
 0   age                  38984 non-null  int64  
 1   height(cm)           38984 non-null  int64  
 2   weight(kg)           38984 non-null  int64  
 3   waist(cm)            38984 non-null  float64
 4   eyesight(left)       38984 non-null  float64
 5   eyesight(right)      38984 non-null  float64
 6   hearing(left)        38984 non-null  int64  
 7   hearing(right)       38984 non-null  int64  
 8   systolic             38984 non-null  int64  
 9   relaxation           38984 non-null  int64  
 10  fasting blood sugar  38984 non-null  int64  
 11  Cholesterol          38984 non-null  int64  
 12  triglyceride         38984 non-null  int64  
 13  HDL                  38984 non-null  int64  
 14  LDL                  38984 non-null  int64  
 15  hemoglobin           38984 non-null  float64
 16  Urine protein        38984 non-null  int64  
 17  serum creatinine     38984 non-null  float64
 18  AST                  38984 non-null  int64  
 19  ALT                  38984 non-null  int64  
 20  Gtp                  38984 non-null  int64  
 21  dental caries        38984 non-null  int64  
 22  smoking              38984 non-null  int64  
dtypes: float64(5), int64(18)
memory usage: 6.8 MB

Column 'age' has 0 missing values.
Column 'height(cm)' has 0 missing values.
Column 'weight(kg)' has 0 missing values.
Column 'waist(cm)' has 0 missing values.
Column 'eyesight(left)' has 0 missing values.
Column 'eyesight(right)' has 0 missing values.
Column 'hearing(left)' has 0 missing values.
Column 'hearing(right)' has 0 missing values.
Column 'systolic' has 0 missing values.
Column 'relaxation' has 0 missing values.
Column 'fasting blood sugar' has 0 missing values.
Column 'Cholesterol' has 0 missing values.
Column 'triglyceride' has 0 missing values.
Column 'HDL' has 0 missing values.
Column 'LDL' has 0 missing values.
Column 'hemoglobin' has 0 missing values.
Column 'Urine protein' has 0 missing values.
Column 'serum creatinine' has 0 missing values.
Column 'AST' has 0 missing values.
Column 'ALT' has 0 missing values.
Column 'Gtp' has 0 missing values.
Column 'dental caries' has 0 missing values.
Column 'smoking' has 0 missing values.

In [159… #Let create a copy of data set so that original data set is never altered.
train_copy = train_data

In [160… # Check for missing values in each column
missing_values = train_data.isnull().sum()

# Iterate over columns and print the number of missing values
for column, count in missing_values.iteritems():
    print(f"Column '{column}' has {count} missing values.")



Hence the dataset has no missing values in it.

Removing outliers using IQR Method

The IQR method is a robust approach that can be effective in identifying and removing
outliers.

[IQR SELECTED] Number of rows in training data before removing outliers: 38984
[IQR SELECTED] Number of rows in training data after removing outliers: 36528

Removing Duplicates

Number of duplicates: 5159
Number of observations after removing duplicates: 31369

3. DATA EXPLORATION

In [161… from scipy.stats import iqr

# Print the number of rows in the training data before removing outliers
print(f"[IQR SELECTED] Number of rows in training data before removing outliers: {l

# Identify and remove outliers from the training set using IQR method
Q1 = train_copy.quantile(0.25)
Q3 = train_copy.quantile(0.75)
IQR = iqr(train_copy)
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
train_copy = train_copy[(train_copy >= lower_bound) & (train_copy <= upper_bound)]

# Print the number of rows in the training data after removing outliers
print(f"[IQR SELECTED] Number of rows in training data after removing outliers: {le

In [162… import pandas as pd

# Assuming train_copy is your DataFrame containing the dataset
# Check for duplicates
duplicates = train_copy.duplicated()

# Count the number of duplicates
num_duplicates = duplicates.sum()
print("Number of duplicates:", num_duplicates)

# Remove duplicates from the DataFrame
train_copy = train_copy.drop_duplicates()

# Check the number of observations after removing duplicates
num_observations = len(train_copy)
print("Number of observations after removing duplicates:", num_observations)

In [163… #Descriptive statistics of all predictor variables
# Calculate descriptive statistics
descriptive_stats = train_copy.describe()

# Apply style to the table
styled_table = descriptive_stats.T.style.set_properties(**{
    "font-size": "15px",
    "color": "#000000",
    "border": "1.5px solid black"



  count mean std min 25%

age 31369.000000 44.160318 12.149882 20.000000 40.000000 40

height(cm) 31369.000000 164.505563 9.236820 130.000000 160.000000 165

weight(kg) 31369.000000 65.471166 12.738713 30.000000 55.000000 65

waist(cm) 31369.000000 81.705155 9.233237 54.000000 75.000000 81

eyesight(left) 31369.000000 1.014855 0.503095 0.100000 0.800000 1

eyesight(right) 31369.000000 1.008850 0.494946 0.100000 0.800000 1

hearing(left) 31369.000000 1.024897 0.155814 1.000000 1.000000 1

hearing(right) 31369.000000 1.025758 0.158415 1.000000 1.000000 1

systolic 31369.000000 121.136664 13.569889 71.000000 111.000000 120

relaxation 31369.000000 75.743218 9.593874 40.000000 70.000000 76

fasting blood
sugar 31369.000000 98.004654 16.464372 46.000000 89.000000 95

Cholesterol 31369.000000 195.880806 35.519681 55.000000 171.000000 194

triglyceride 31369.000000 117.028914 57.650741 8.000000 73.000000 104

HDL 31369.000000 57.722560 14.412297 4.000000 47.000000 56

LDL 31369.000000 114.941280 32.910135 1.000000 92.000000 113

hemoglobin 31369.000000 14.572973 1.563132 4.900000 13.500000 14

Urine protein 31369.000000 1.080238 0.383653 1.000000 1.000000 1

serum
creatinine 31369.000000 0.883216 0.217669 0.100000 0.700000 0

AST 31369.000000 24.974625 10.147233 6.000000 19.000000 23

ALT 31369.000000 25.212758 16.668417 1.000000 15.000000 20

Gtp 31369.000000 33.777519 26.767146 3.000000 17.000000 25

dental caries 31369.000000 0.212630 0.409175 0.000000 0.000000 0

smoking 31369.000000 0.349262 0.476744 0.000000 0.000000 0

From the descriptive statistics of the predictor variables in the train_data dataset, we can
derive several insights and interpretations:

})

# Display the styled table
styled_table

Out[163]:



Age: The average age of the individuals in the dataset is approximately
44 years, with a standard deviation of 12.06. The minimum and maximum
ages are 20 and 85 years, respectively.
Height and Weight: The average height is around 164.69 cm, with a
standard deviation of 9.19. The average weight is approximately 65.94 kg,
with a standard deviation of 12.90.
Waist Circumference: The average waist circumference is about 82.06 cm,
with a standard deviation of 9.33. The minimum and maximum waist
circumferences are 51 cm and 129 cm, respectively.
Eyesight and Hearing: The average eyesight values for both the left and
right eyes are close to 1, indicating relatively good eyesight. The average
hearing values for both the left and right ears are slightly above 1,
suggesting normal hearing ability.
Blood Pressure: The average systolic blood pressure is 121.48, with a
standard deviation of 13.64. The average relaxation (diastolic) blood
pressure is 75.99, with a standard deviation of 9.66.
Cholesterol Levels: The dataset includes variables such as total
cholesterol, triglyceride levels, HDL cholesterol, and LDL cholesterol. The
mean values and standard deviations provide insights into the
cholesterol distribution within the population.
Hemoglobin: The average hemoglobin level is 14.62, with a standard
deviation of 1.57. Hemoglobin levels can provide insights into the
individual's blood health and oxygen-carrying capacity.
Urine Protein and Serum Creatinine: The average urine protein level is
approximately 1.09, and the average serum creatinine level is around
0.89. These variables are indicators of kidney function and can be useful
in assessing renal health.
AST and ALT: AST and ALT are liver enzyme levels. The mean AST value is
26.20, and the mean ALT value is 27.15. These values can provide insights
into liver health.
Gtp: The average Gtp level is 39.91, with a standard deviation of 49.69.
Elevated Gtp levels can indicate liver dysfunction or damage.
Dental Caries: The average dental caries value is 0.21, indicating a
relatively low prevalence of dental caries in the population.
Smoking: The dataset includes a binary variable for smoking, with a mean
value of 0.37. This indicates that approximately 37% of the individuals in
the dataset are smokers, while the remaining 63% are non-smokers.
These descriptive statistics provide an overview of the distribution and
range of each variable in the dataset, allowing us to identify any potential
outliers, assess the variability of the data, and gain initial insights into the
characteristics of the study population.

In [164… #Data visualisation using pie chart
import matplotlib.pyplot as plt

# Set custom colors
colors = ['#ff9999', '#66b3ff']



As it can be seen above visually and also in descriptive statistics that approximately 37% of
the individuals in the dataset are smokers, while the remaining 63% are non-smokers. This
means there is a class imbalance in dataset.Lets deal with this in training section of this
report.

Correlation Between Smoking and Input Features

# Create the figure and axes
fig, ax = plt.subplots(figsize=[7, 7], facecolor='#f2f2f2')

# Plot the pie chart
explode = [0, 0.15]
labels = train_data["smoking"].value_counts().index
sizes = train_data["smoking"].value_counts().values
ax.pie(sizes, explode=explode, labels=labels, autopct='%1.3f%%', shadow=True, start

# Add a title
ax.set_title("Smoking Percentage")

# Display the pie chart
plt.show()

In [165… import pandas as pd
import matplotlib.pyplot as plt



Based on the correlations between the "smoking" variable and the other input features, here
are some insights and interpretations:

Positive Correlations:

Height (0.394), weight (0.297), waist (0.217), triglyceride (0.232), hemoglobin (0.398), AST
(0.073), ALT (0.151), and Gtp (0.304) show positive correlations with smoking. This suggests
that there might be a tendency for individuals who smoke to have higher values in these
variables. Dental caries (0.109) also shows a positive correlation, indicating a possible
association between smoking and dental caries.

Negative Correlations:

Age (-0.171), HDL (-0.177), LDL (-0.047), and Cholesterol (-0.044) show negative correlations
with smoking. This suggests that smoking might be associated with lower values in these
variables. Urine protein (0.006), eyesight (both left and right) (0.061 and 0.066), hearing

# Assuming your DataFrame is named 'train_copy'
correlations = train_copy.corr()['smoking'].drop('smoking')

# Sort the correlations in descending order
correlations_sorted = correlations.sort_values(ascending=False)

# Plot the correlations
plt.figure(figsize=(10, 6))
correlations_sorted.plot(kind='bar')
plt.xlabel('Input Features')
plt.ylabel('Correlation')
plt.title('Correlation between Smoking and Input Features')
plt.show()



(both left and right) (-0.022 and -0.019), systolic (0.061), relaxation (0.094), fasting blood
sugar (0.081), and serum creatinine (0.218) also show weak correlations with smoking.

As these values are not very close to 1 or -1 ,further analysis and domain knowledge are
necessary to draw meaningful conclusions about the relationship between smoking and
these variables.

4. FEATURE SELECTION

Method 1. Random Forest classifier

Implementation of a feature importance analysis using the Random Forest classifier in
scikit-learn.As this method is not sensitive to the scale of features, no scaling is performed
before feature selection

In [166… from sklearn.ensemble import RandomForestClassifier
import numpy as np
import matplotlib.pyplot as plt

X = train_copy.iloc[:, :-1]
y = train_copy.smoking

# Create a Random Forest classifier
rf = RandomForestClassifier(n_estimators=100, random_state=42)

# Fit the model to the data
rf.fit(X, y)

feature_names = X.columns 

# Get feature importance scores
importance_scores = rf.feature_importances_

# Sort features by importance in descending order
feature_importance = sorted(zip(importance_scores, feature_names), reverse=True)

# Reverse the feature importance list to have the most important features at the to
feature_importance.reverse()

# Extract the feature names and importance scores
features = [feature_name for importance, feature_name in feature_importance]
importances = [importance for importance, feature_name in feature_importance]

# Plot the feature importances
plt.figure(figsize=(8, 5))
plt.barh(features, importances)
plt.xlabel('Importance Score')
plt.ylabel('Features')
plt.title('Feature Importances')
plt.show()



Method 2. Lasso regression model classifier

Implementation of a feature importance analysis using the Lasso regression model
classifier in scikit-learn. This method L1 regularization, work better when the features are
on a similar scale.Hence scaling is performed before doing feature selection.

In [99]: from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt

# Create a scaler object
scaler = StandardScaler()

# Scale the features
X_scaled = scaler.fit_transform(train_copy.iloc[:, :-1])

# Create a Lasso model
lasso = Lasso(alpha=0.1)

# Fit the model to the scaled data
lasso.fit(X_scaled, train_copy.smoking)

# Get the coefficients and corresponding feature names
coefficients = lasso.coef_
feature_names = train_copy.columns[:-1]

    # Create a bar plot for feature importance
plt.figure(figsize=(8, 4))
plt.bar(feature_names, coefficients)
plt.xticks(rotation=90)
plt.xlabel('Features')
plt.ylabel('Coefficient')
plt.title('Feature Importance based on Lasso Coefficients')
plt.show()



From Both Model1 and Model2,It can be seen that height(cm), hemoglobin, Gtp are the
most important features for this dataset.

5. MODEL TRAINING

Step1 Standardization process

It is important to standardize features around the center and 0, with a standard deviation of
1, when comparing measurements that have different units. This helps address the issue of
variables being measured on different scales, which can lead to unequal contributions in the
analysis and potential bias. For instance, a variable with a range of 0 to 1000 would
overshadow a variable with a range of 0 to 1 if not standardized. By transforming the data
to comparable scales, can avoid this problem. Common data standardization techniques aim
to equalize the range and/or variability of the data.

Step2 Balancing Dataset

As the dataset is imbalanced, before performing Training dataset needs to be balanced.

Training Set Class before Balance: 
 0    20413
1    10956
Name: smoking, dtype: int64

In [167… scaler = StandardScaler()
scaler.fit(train_copy.iloc[:, :-1])
X_scaled = scaler.transform(train_copy.iloc[:, :-1])

In [168… # Show the classes balance in the training set
print('Training Set Class before Balance: \n', train_copy.smoking.value_counts())



RandomOverSampler is a technique used for handling imbalanced datasets by randomly
oversampling the minority class samples. The sampling_strategy parameter determines the
ratio of the majority class to the minority class after resampling. In this case, "auto" indicates
that the ratio should be automatically determined.

Training Set Class after Balance: 
 1    20413
0    20413
Name: smoking, dtype: int64

Step3 Splitting the dataset as training set and testing set.

Step4 Training Model

With a dataset size of 38,984 rows and 23 columns, and all input features being numeric,
This is a suitable dataset for applying various binary classification models. Here are a few
modeling techniques commonly used for binary classification tasks with numerical input
features:

Logistic Regression: This is a popular and interpretable model that estimates
the probabilities of belonging to each class using a logistic function.

Support Vector Machines (SVM): SVMs aim to find a hyperplane that
maximally separates the data points of different classes in a high-dimensional
space.

Random Forest: This ensemble model consists of multiple decision trees and
can handle both numerical and categorical features. It provides good
predictive performance and feature importance rankings.

Gradient Boosting Algorithms: Models like XGBoost or LightGBM are
gradient boosting algorithms that sequentially train weak classifiers and
combine their predictions to improve overall accuracy.

In [169… from imblearn.over_sampling import RandomOverSampler

In [170… # Create an instance of RandomOverSampler
ros = RandomOverSampler(sampling_strategy="auto", random_state=11)

# Resample the training data
x_rovs, y_rovs = ros.fit_resample(X_scaled, train_copy["smoking"])

In [171… # Show the classes balance in the training set
print('Training Set Class after Balance: \n', y_rovs.value_counts())

In [172… from sklearn.model_selection import train_test_split
import numpy as np

# Set the random seed for reproducibility
random_seed = 42
np.random.seed(random_seed)

# Splitting the dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(x_rovs, y_rovs, test_size=0.2, 



It's a good idea to try out different models and evaluate their performance using
appropriate evaluation metrics like accuracy, precision, recall, and F1 score. Additionally,Lets
consider using techniques like cross-validation to assess the generalization ability of the
models and tune hyperparameters for optimal performance.

6. EVALUATION

In the code below, first initialize the models - Logistic Regression, Support Vector Machines
(SVM), Random Forest, and XGBoost - with their respective parameter settings. Then, iterate
over the models and use the cross_val_score() function to perform cross-validation with 5
folds (cv=5) and evaluate the models based on accuracy (scoring='accuracy'). The mean
accuracy across all cross-validation folds is calculated and printed for each model.

Logistic Regression Cross-Validation Accuracy: 0.7368952847519902
Support Vector Machines Cross-Validation Accuracy: 0.7616962645437845
Random Forest Cross-Validation Accuracy: 0.7847826086956522
XGBoost Cross-Validation Accuracy: 0.78162890385793
Logistic Regression Test Accuracy: 0.7384276267450404
Support Vector Machines Test Accuracy: 0.7647563066372766
Random Forest Test Accuracy: 0.7893705608621112
XGBoost Test Accuracy: 0.7871662992897379

In [140… from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier

# Initialize the models
logreg = LogisticRegression(max_iter=10000, solver='sag')
svm = SVC()
random_forest = RandomForestClassifier(n_estimators=150, max_depth=15, min_samples_
xgb = XGBClassifier()

# Perform cross-validation and evaluate models
models = [logreg, svm, random_forest, xgb]
model_names = ["Logistic Regression", "Support Vector Machines", "Random Forest", 

for model, name in zip(models, model_names):
    scores = cross_val_score(model, X_train, y_train, cv=5, scoring='accuracy')
    mean_accuracy = scores.mean()
    print(f"{name} Cross-Validation Accuracy: {mean_accuracy}")

# Train and evaluate the models on the test set
for model, name in zip(models, model_names):
    model.fit(X_train, y_train)
    test_accuracy = model.score(X_test, y_test)
    print(f"{name} Test Accuracy: {test_accuracy}")

In [144… import pandas as pd

# Define the accuracy values
data = {
    'Model': ['Logistic Regression', 'Support Vector Machines', 'Random Forest', 'X
    'Cross-Validation Accuracy': [0.7368952847519902, 0.7616962645437845, 0.7847826
    'Test Accuracy': [0.7384276267450404, 0.7647563066372766, 0.7893705608621112, 0
}

# Create a DataFrame from the data



Model Cross-Validation Accuracy Test Accuracy

0 Logistic Regression 0.736895 0.738428

1 Support Vector Machines 0.761696 0.764756

2 Random Forest 0.784783 0.789371

3 XGBoost 0.781629 0.787166

From the provided accuracy values,Lets draw several insights about the performance of the
models:

Cross-Validation Accuracy:

Logistic Regression: 0.74 Support Vector Machines: 0.76 Random Forest: 0.784 XGBoost:
0.781 The cross-validation accuracy gives us an estimate of how well the models perform on
unseen data. Based on these values, It can be observed that the Random Forest model has
the highest cross-validation accuracy (0.784), indicating good generalization performance.
The XGBoost model also performs well with a cross-validation accuracy of 0.781. The
Logistic Regression and Support Vector Machines models have lower cross-validation
accuracies, but still show reasonable performance.

Test Accuracy:

Logistic Regression: 0.74 Support Vector Machines: 0.76 Random Forest: 0.789 XGBoost:
0.787 The test accuracy represents the performance of the models on a separate,
independent dataset. It provides a measure of how well the models generalize to unseen
data. From the test accuracy values, It can observed that the Random Forest model achieves
the highest accuracy (0.789), indicating good performance on new data. The Support Vector
Machines and XGBoost models also show competitive test accuracies of 0.76 and 0.787,
respectively. The Logistic Regression model has the lowest test accuracy but still performs
reasonably well at 0.74.

Based on these insights, It can concluded that the Random Forest model appears to be the
most promising in terms of both cross-validation and test accuracy.

7. PARAMETER TUNING

To tune hyperparameters, Lets use techniques such as grid search or randomized search in
combination with cross-validation. These techniques involve systematically searching
through different combinations of hyperparameter values and evaluating the model's
performance using cross-validation. As Random Forest accuracy was highest in model
training ,So using parameter tuning to increase its performance and accoracy.

df = pd.DataFrame(data)

# Display the DataFrame
df

Out[144]:

In [130… from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
from imblearn.over_sampling import RandomOverSampler



Best Hyperparameters: {'random_forest__max_depth': None, 'random_forest__min_sampl
es_leaf': 1, 'random_forest__min_samples_split': 2, 'random_forest__n_estimators': 
200}
Best Cross-Validation Score: 0.8164740150642356
Test Accuracy: 0.8269654665686995

Now lets Predict the Target variable output for test data set

from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

# Define the parameter grid for the Random Forest classifier
param_grid = {
    'random_forest__n_estimators': [100, 200, 300],
    'random_forest__max_depth': [None, 5, 10, 15],
    'random_forest__min_samples_split': [2, 5, 10],
    'random_forest__min_samples_leaf': [1, 3, 5]
}

# Initialize the Random Forest classifier
random_forest = RandomForestClassifier()

# Create a pipeline with scaling
pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('random_forest', random_forest)
])

# Perform oversampling on the training data
oversampler = RandomOverSampler(random_state=42)
X_train_oversampled, y_train_oversampled = oversampler.fit_resample(X_train, y_trai

# Perform grid search with cross-validation
grid_search = GridSearchCV(pipeline, param_grid, cv=5, scoring='accuracy', n_jobs=
grid_search.fit(X_train_oversampled, y_train_oversampled)

# Print the best hyperparameters and the corresponding cross-validation score
print("Best Hyperparameters:", grid_search.best_params_)
print("Best Cross-Validation Score:", grid_search.best_score_)

# Evaluate the model on the test set
test_accuracy = grid_search.score(X_test, y_test)
print("Test Accuracy:", test_accuracy)

In [173… # Reading dataset using pandas library
test_data = pd.read_csv("E:/MA336 - AI and ML/Project_AI/test_dataset.csv")
test_data



age height(cm) weight(kg) waist(cm) eyesight(left) eyesight(right) hearing(left) heari

0 40 170 65 75.1 1.0 0.9 1

1 45 170 75 89.0 0.7 1.2 1

2 30 180 90 94.0 1.0 0.8 1

3 60 170 50 73.0 0.5 0.7 1

4 30 170 65 78.0 1.5 1.0 1

... ... ... ... ... ... ... ...

16703 60 165 65 82.0 0.7 1.0 1

16704 60 155 70 93.0 0.8 1.0 1

16705 40 155 50 67.2 0.9 0.8 1

16706 35 165 70 76.1 1.0 1.0 1

16707 25 180 80 87.0 1.2 0.9 1

16708 rows × 22 columns

Random Forest Accuracy: 0.8268430075924565

Out[173]:

In [174… # Random Forest
rf = RandomForestClassifier(n_estimators=200, max_depth=None, min_samples_split=2, 
rf.fit(X_train, y_train)
rf_predictions = rf.predict(X_test)
rf_accuracy = accuracy_score(y_test, rf_predictions)
print("Random Forest Accuracy:", rf_accuracy)

In [182… from sklearn.ensemble import RandomForestClassifier
import numpy as np

# Training data
X_tr = train_data.iloc[:, :-1]
y_tr = train_data.smoking

# Test data
X_test = test_data

# Create a Random Forest classifier
rf = RandomForestClassifier(n_estimators=200, max_depth=None, min_samples_split=2, 

# Train the model
rf.fit(X_tr, y_tr)

# Make predictions on the test data
predictions = rf.predict(X_test)

# Set the number of rows to print
num_rows = 10

# Print the predicted values along with the input features of the test data
for features, prediction in zip(test_data.values[:num_rows], predictions[:num_rows
    print("Input Features:", features)
    print("Predicted Value:", prediction)
    print()



Input Features: [ 40.  170.   65.   75.1   1.    0.9   1.    1.  120.   70.  102.  
225.
 260.   41.  132.   15.7   1.    0.8  24.   26.   32.    0. ]
Predicted Value: 1

Input Features: [ 45.  170.   75.   89.    0.7   1.2   1.    1.  100.   67.   96.  
258.
 345.   49.  140.   15.7   1.    1.1  26.   28.  138.    0. ]
Predicted Value: 1

Input Features: [ 30.  180.   90.   94.    1.    0.8   1.    1.  115.   72.   88.  
177.
 103.   53.  103.   13.5   1.    1.   19.   29.   30.    0. ]
Predicted Value: 0

Input Features: [ 60.  170.   50.   73.    0.5   0.7   1.    1.  118.   78.   86.  
187.
  70.   65.  108.   14.1   1.    1.3  31.   28.   33.    0. ]
Predicted Value: 0

Input Features: [ 30.  170.   65.   78.    1.5   1.    1.    1.  110.   70.   87.  
190.
 210.   45.  103.   14.7   1.    0.8  21.   21.   19.    0. ]
Predicted Value: 0

Input Features: [ 55.  175.   60.   75.    1.    1.    1.    1.  100.   64.   93.  
186.
  80.   86.   84.   15.4   3.    1.   39.   20.   35.    0. ]
Predicted Value: 1

Input Features: [ 40.  160.   55.   69.    1.5   1.5   1.    1.  112.   78.   90.  
177.
  68.   78.   85.   12.4   1.    0.5  15.    9.   14.    0. ]
Predicted Value: 0

Input Features: [ 55.  175.   60.   80.    1.2   1.5   1.    1.  137.   89.   80.  
199.
  35.   68.  124.   16.    1.    1.1  23.   19.   17.    0. ]
Predicted Value: 1

Input Features: [ 55.  160.   50.   68.    0.8   0.5   1.    1.  137.   87.   90.  
176.
  36.   67.  102.   13.6   1.    0.7  15.   14.   13.    0. ]
Predicted Value: 0

Input Features: [ 75.  145.   50.   81.    0.5   0.5   2.    2.  148.   86.  121.  
192.
 109.   81.   89.   14.    1.    0.6  28.   24.   17.    1. ]
Predicted Value: 0

From above it can be seen preicted values for each observation. Only 10 rows are printed to
reduce scrolling pages. By increasing num_rows , more predictions can be seen.

Results

The developed predictive model underwent rigorous evaluation, validation,
and parameter tuning. Employed various machine learning algorithms,
including Logistic Regression, Support Vector Machines, Random Forest, and
XGBoost, to predict smoking status based on bio-signals. Through cross-
validation, obtained reliable estimates of the models' performance on unseen



data. The Random Forest model initially demonstrated the highest accuracy,
but through parameter tuning using techniques such as grid search, further
optimized its performance.

After fine-tuning the hyperparameters, the Random Forest model achieved
even higher accuracy. The best hyperparameters for the model were found to
be 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, and
'n_estimators': 200. With these optimized hyperparameters, the model
achieved a cross-validation accuracy of 81.6% and a test accuracy of 82.7%.

The parameter tuning process played a crucial role in improving the model's
performance by finding the optimal combination of hyperparameters. By fine-
tuning the Random Forest model, were able to enhance its predictive power,
resulting in higher accuracy and improved reliability for identifying smoking
status based on bio-signals.

8. CONCLUSIONS

In conclusion, study successfully developed a machine learning model that utilizes bio-
signals to predict an individual's smoking status. The integration of AI and machine learning
techniques, coupled with parameter tuning, has significantly enhanced the model's
performance and accuracy. The Random Forest model, after careful hyperparameter
optimization, emerged as the most promising model, achieving a cross-validation accuracy
of 81.6% and a test accuracy of 82.7%. These results demonstrate the effectiveness of
predictive model in accurately identifying smoking status and provide valuable insights for
healthcare professionals in assessing and addressing smoking behaviors. By leveraging bio-
signals and advanced machine learning techniques, contribute to the development of
reliable tools for smoking cessation strategies, ultimately leading to improved public health
outcomes and a reduction in the harmful effects of smoking
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