Download this file

408 lines (352 with data), 15.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
"""
data generator for feeding data into pytorch models
"""
import json
import time
from copy import deepcopy
from functools import reduce
from pathlib import Path
from random import sample, shuffle
from typing import List, Optional, Sequence, Set, Tuple
import numpy as np
import torch
from torch.utils.data.dataset import Dataset
from tqdm.auto import tqdm
try:
import torch_ecg # noqa: F401
except ModuleNotFoundError:
import sys
sys.path.insert(0, str(Path(__file__).absolute().parents[2]))
from cfg import ModelCfg, TrainCfg
from torch_ecg._preprocessors import PreprocManager
from torch_ecg.cfg import CFG
from torch_ecg.databases import CINC2020 as CR
from torch_ecg.utils.misc import ReprMixin, ensure_siglen, list_sum
from torch_ecg.utils.utils_signal import remove_spikes_naive
if ModelCfg.torch_dtype == torch.float64:
torch.set_default_tensor_type(torch.DoubleTensor)
__all__ = [
"CINC2020",
]
class CINC2020(ReprMixin, Dataset):
""" """
__DEBUG__ = False
__name__ = "CINC2020"
def __init__(self, config: CFG, training: bool = True, lazy: bool = True) -> None:
"""
Parameters
----------
config: dict,
configurations for the Dataset,
ref. `cfg.TrainCfg`
training: bool, default True,
if True, the training set will be loaded, otherwise the test set
lazy: bool, default True,
if True, the data will not be loaded immediately
"""
super().__init__()
self.config = deepcopy(config)
assert self.config.db_dir is not None, "db_dir must be specified"
self.config.db_dir = Path(self.config.db_dir)
self._TRANCHES = self.config.tranche_classes.keys() # ["A", "B", "AB", "E", "F"]
self.reader = CR(db_dir=self.config.db_dir)
self.tranches = self.config.tranches_for_training
self.training = training
if self.config.torch_dtype == torch.float64:
self.dtype = np.float64
else:
self.dtype = np.float32
assert not self.tranches or self.tranches in self._TRANCHES
if self.tranches:
self.all_classes = self.config.tranche_classes[self.tranches]
self.class_weights = self.config.tranche_class_weights[self.tranches]
else:
self.all_classes = self.config.classes
self.class_weights = self.config.class_weights
self.config.all_classes = deepcopy(self.all_classes)
self.n_classes = len(self.all_classes)
# print(f"tranches = {self.tranches}, all_classes = {self.all_classes}")
# print(f"class_weights = {dict_to_str(self.class_weights)}")
cw = np.zeros((len(self.class_weights),), dtype=self.dtype)
for idx, c in enumerate(self.all_classes):
cw[idx] = self.class_weights[c]
self.class_weights = torch.from_numpy(cw.astype(self.dtype)).view(1, self.n_classes)
# validation also goes in batches, hence length has to be fixed
self.siglen = self.config.input_len
self.lazy = lazy
self.records = self._train_test_split(self.config.train_ratio, force_recompute=False)
# TODO: consider using `remove_spikes_naive` to treat these exceptional records
self.records = [r for r in self.records if r not in self.reader.exceptional_records]
if self.__DEBUG__:
self.records = sample(self.records, int(len(self.records) * 0.01))
ppm_config = CFG(random=False)
ppm_config.update(self.config)
self.ppm = PreprocManager.from_config(ppm_config)
# self.ppm.rearrange(["bandpass", "normalize"])
self._signals = np.array([], dtype=self.dtype).reshape(0, len(self.config.leads), self.siglen)
self._labels = np.array([], dtype=self.dtype).reshape(0, self.n_classes)
if not self.lazy:
self._load_all_data()
def _load_all_data(self) -> None:
""" """
fdr = FastDataReader(self.reader, self.records, self.config, self.ppm)
self._signals, self._labels = [], []
with tqdm(
range(len(fdr)),
desc="Loading data",
unit="records",
dynamic_ncols=True,
mininterval=1.0,
) as pbar:
for idx in pbar:
sig, lb = fdr[idx]
self._signals.append(sig)
self._labels.append(lb)
self._signals = np.concatenate(self._signals, axis=0).astype(self.dtype)
self._labels = np.concatenate(self._labels, axis=0)
def _load_one_record(self, rec: str) -> Tuple[np.ndarray, np.ndarray]:
"""
load a record from the database using data reader
NOTE
----
DO NOT USE THIS FUNCTION DIRECTLY for preloading data,
use `FastDataReader` instead
Parameters
----------
rec: str,
the record to load
Returns
-------
values: np.ndarray,
the values of the record
labels: np.ndarray,
the labels of the record
"""
values = self.reader.load_resampled_data(rec, data_format=self.config.data_format, siglen=None)
for idx in range(values.shape[0]):
values[idx] = remove_spikes_naive(values[idx])
values, _ = self.ppm(values, self.config.fs)
values = ensure_siglen(
values,
siglen=self.siglen,
fmt=self.config.data_format,
tolerance=self.config.sig_slice_tol,
).astype(self.dtype)
if values.ndim == 2:
values = values[np.newaxis, ...]
labels = self.reader.get_labels(rec, scored_only=True, fmt="a", normalize=True)
labels = np.isin(self.all_classes, labels).astype(self.dtype)[np.newaxis, ...].repeat(values.shape[0], axis=0)
return values, labels
@property
def signals(self) -> np.ndarray:
""" """
return self._signals
@property
def labels(self) -> np.ndarray:
""" """
return self._labels
def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray]:
""" """
return self.signals[index], self.labels[index]
def __len__(self) -> int:
""" """
return len(self._signals)
def _train_test_split(self, train_ratio: float = 0.8, force_recompute: bool = False) -> List[str]:
"""
do train test split,
it is ensured that both the train and the test set contain all classes
Parameters
----------
train_ratio: float, default 0.8,
ratio of the train set in the whole dataset (or the whole tranche(s))
force_recompute: bool, default False,
if True, force redo the train-test split,
regardless of the existing ones stored in json files
Returns
-------
records: list of str,
list of the records split for training or validation
"""
time.sleep(1)
start = time.time()
print("\nstart performing train test split...\n")
time.sleep(1)
_TRANCHES = list("ABEF")
_train_ratio = int(train_ratio * 100)
_test_ratio = 100 - _train_ratio
assert _train_ratio * _test_ratio > 0
ns = "_ns" if len(self.config.special_classes) == 0 else ""
file_suffix = f"_siglen_{self.siglen}{ns}.json"
train_file = self.reader.db_dir_base / f"train_ratio_{_train_ratio}{file_suffix}"
test_file = self.reader.db_dir_base / f"test_ratio_{_test_ratio}{file_suffix}"
if force_recompute or not all([train_file.is_file(), test_file.is_file()]):
tranche_records = {t: [] for t in _TRANCHES}
train_set = {t: [] for t in _TRANCHES}
test_set = {t: [] for t in _TRANCHES}
for t in _TRANCHES:
with tqdm(
self.reader.all_records[t],
total=len(self.reader.all_records[t]),
dynamic_ncols=True,
mininterval=1.0,
) as bar:
for rec in bar:
if rec in self.reader.exceptional_records:
# skip exceptional records
continue
rec_labels = self.reader.get_labels(rec, scored_only=True, fmt="a", normalize=True)
rec_labels = [c for c in rec_labels if c in TrainCfg.tranche_classes[t]]
if len(rec_labels) == 0:
# skip records with no scored class
continue
rec_samples = self.reader.load_resampled_data(rec).shape[1]
if rec_samples < self.siglen:
continue
tranche_records[t].append(rec)
print(f"tranche {t} has {len(tranche_records[t])} valid records for training")
for t in _TRANCHES:
is_valid = False
while not is_valid:
shuffle(tranche_records[t])
split_idx = int(len(tranche_records[t]) * train_ratio)
train_set[t] = tranche_records[t][:split_idx]
test_set[t] = tranche_records[t][split_idx:]
is_valid = self._check_train_test_split_validity(
train_set[t], test_set[t], set(TrainCfg.tranche_classes[t])
)
train_file.write_text(json.dumps(train_set, ensure_ascii=False))
test_file.write_text(json.dumps(test_set, ensure_ascii=False))
else:
train_set = json.loads(train_file.read_text())
test_set = json.loads(test_file.read_text())
_tranches = list(self.tranches or "ABEF")
if self.training:
records = list_sum([train_set[k] for k in _tranches])
else:
records = list_sum([test_set[k] for k in _tranches])
return records
def _check_train_test_split_validity(self, train_set: List[str], test_set: List[str], all_classes: Set[str]) -> bool:
"""
the train-test split is valid iff
records in both `train_set` and `test` contain all classes in `all_classes`
Parameters
----------
train_set: list of str,
list of the records in the train set
test_set: list of str,
list of the records in the test set
all_classes: set of str,
the set of all classes for training
Returns
-------
is_valid: bool,
the split is valid or not
"""
def add(a, b):
return a + b
train_classes = set(reduce(add, [self.reader.get_labels(rec, fmt="a") for rec in train_set]))
train_classes.intersection_update(all_classes)
test_classes = set(reduce(add, [self.reader.get_labels(rec, fmt="a") for rec in test_set]))
test_classes.intersection_update(all_classes)
is_valid = len(all_classes) == len(train_classes) == len(test_classes)
print(
f"all_classes = {all_classes}\ntrain_classes = {train_classes}\ntest_classes = {test_classes}\nis_valid = {is_valid}"
)
return is_valid
def persistence(self) -> None:
"""
make the dataset persistent w.r.t. the tranches and the ratios in `self.config`
"""
prev_state = self.__data_aug
_TRANCHES = "ABEF"
if self.training:
ratio = int(self.config.train_ratio * 100)
else:
ratio = 100 - int(self.config.train_ratio * 100)
fn_suffix = f"tranches_{self.tranches or _TRANCHES}_ratio_{ratio}"
if self.config.bandpass is not None:
bp_low = max(0, self.config.bandpass[0])
bp_high = min(self.config.bandpass[1], self.config.fs // 2)
fn_suffix = fn_suffix + f"_bp_{bp_low:.1f}_{bp_high:.1f}"
fn_suffix = fn_suffix + f"_siglen_{self.siglen}"
X, y = [], []
with tqdm(
range(self.__len__()),
total=self.__len__(),
dynamic_ncols=True,
mininterval=1.0,
) as bar:
for idx in bar:
values, labels = self.__getitem__(idx)
X.append(values)
y.append(labels)
X, y = np.array(X), np.array(y)
print(f"X.shape = {X.shape}, y.shape = {y.shape}")
filename = f"{'train' if self.training else 'test'}_X_{fn_suffix}.npy"
np.save(self.reader.db_dir_base / filename, X)
print(f"X saved to {filename}")
filename = f"{'train' if self.training else 'test'}_y_{fn_suffix}.npy"
np.save(self.reader.db_dir_base / filename, y)
print(f"y saved to {filename}")
self.__data_aug = prev_state
def _check_nan(self) -> None:
"""
during training, sometimes nan values are encountered,
which ruins the whole training process
"""
for idx, (values, labels) in self:
if np.isnan(values).any():
print(f"values of {self.records[idx]} have nan values")
if np.isnan(labels).any():
print(f"labels of {self.records[idx]} have nan values")
def extra_repr_keys(self) -> List[str]:
return [
"training",
"tranches",
"reader",
]
class FastDataReader(ReprMixin, Dataset):
""" """
def __init__(
self,
reader: CR,
records: Sequence[str],
config: CFG,
ppm: Optional[PreprocManager] = None,
) -> None:
""" """
self.reader = reader
self.records = records
self.config = config
self.ppm = ppm
if self.config.torch_dtype == torch.float64:
self.dtype = np.float64
else:
self.dtype = np.float32
def __len__(self) -> int:
""" """
return len(self.records)
def __getitem__(self, index: int) -> Tuple[np.ndarray, np.ndarray]:
""" """
rec = self.records[index]
values = self.reader.load_resampled_data(rec, data_format=self.config.data_format, siglen=None)
for idx in range(values.shape[0]):
values[idx] = remove_spikes_naive(values[idx])
if self.ppm:
values, _ = self.ppm(values, self.config.fs)
values = ensure_siglen(
values,
siglen=self.config.input_len,
fmt=self.config.data_format,
tolerance=self.config.sig_slice_tol,
).astype(self.dtype)
if values.ndim == 2:
values = values[np.newaxis, ...]
labels = self.reader.get_labels(rec, scored_only=True, fmt="a", normalize=True)
labels = np.isin(self.config.all_classes, labels).astype(self.dtype)[np.newaxis, ...].repeat(values.shape[0], axis=0)
return values, labels
def extra_repr_keys(self) -> List[str]:
return [
"reader",
"ppm",
]