[d8937e]: / test / test_utils / test_preproc.py

Download this file

77 lines (65 with data), 2.2 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
"""
"""
from pathlib import Path
import numpy as np
from torch_ecg.databases import CINC2021
from torch_ecg.utils._preproc import preprocess_multi_lead_signal, preprocess_single_lead_signal, rpeaks_detect_multi_leads
_SAMPLE_DATA_DIR = Path(__file__).resolve().parents[2] / "sample-data" / "cinc2021"
reader = CINC2021(_SAMPLE_DATA_DIR)
def test_preprocess_multi_lead_signal():
raw_data = reader.load_data(0, leads=["II", "aVR"])
fs = reader.get_fs(0)
data = preprocess_multi_lead_signal(
raw_data,
fs,
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
rpeak_fn="xqrs",
verbose=2,
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert data["rpeaks"].ndim == 1
data = preprocess_multi_lead_signal(
raw_data.T,
fs,
sig_fmt="channel_last",
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert len(data["rpeaks"]) == 0
def test_preprocess_single_lead_signal():
raw_data = reader.load_data(0, leads=["II"]).squeeze()
fs = reader.get_fs(0)
data = preprocess_single_lead_signal(
raw_data,
fs,
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
rpeak_fn="gqrs",
verbose=2,
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert data["rpeaks"].ndim == 1
data = preprocess_single_lead_signal(
raw_data,
fs,
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert len(data["rpeaks"]) == 0
def test_rpeaks_detect_multi_leads():
raw_data = reader.load_data(0, leads=["II", "aVR"])
fs = reader.get_fs(0)
rpeaks = rpeaks_detect_multi_leads(raw_data, fs, rpeak_fn="xqrs", verbose=2)
assert isinstance(rpeaks, np.ndarray)
assert rpeaks.ndim == 1