"""
"""
from pathlib import Path
import numpy as np
from torch_ecg.databases import CINC2021
from torch_ecg.utils._preproc import preprocess_multi_lead_signal, preprocess_single_lead_signal, rpeaks_detect_multi_leads
_SAMPLE_DATA_DIR = Path(__file__).resolve().parents[2] / "sample-data" / "cinc2021"
reader = CINC2021(_SAMPLE_DATA_DIR)
def test_preprocess_multi_lead_signal():
raw_data = reader.load_data(0, leads=["II", "aVR"])
fs = reader.get_fs(0)
data = preprocess_multi_lead_signal(
raw_data,
fs,
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
rpeak_fn="xqrs",
verbose=2,
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert data["rpeaks"].ndim == 1
data = preprocess_multi_lead_signal(
raw_data.T,
fs,
sig_fmt="channel_last",
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert len(data["rpeaks"]) == 0
def test_preprocess_single_lead_signal():
raw_data = reader.load_data(0, leads=["II"]).squeeze()
fs = reader.get_fs(0)
data = preprocess_single_lead_signal(
raw_data,
fs,
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
rpeak_fn="gqrs",
verbose=2,
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert data["rpeaks"].ndim == 1
data = preprocess_single_lead_signal(
raw_data,
fs,
bl_win=[0.2, 0.6],
band_fs=[0.5, 45],
)
assert isinstance(data, dict)
assert data.keys() == {"filtered_ecg", "rpeaks"}
assert data["filtered_ecg"].shape == raw_data.shape
assert len(data["rpeaks"]) == 0
def test_rpeaks_detect_multi_leads():
raw_data = reader.load_data(0, leads=["II", "aVR"])
fs = reader.get_fs(0)
rpeaks = rpeaks_detect_multi_leads(raw_data, fs, rpeak_fn="xqrs", verbose=2)
assert isinstance(rpeaks, np.ndarray)
assert rpeaks.ndim == 1