[d8937e]: / test / test_databases / test_ltafdb.py

Download this file

133 lines (107 with data), 5.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
"""
TestLTAFDB: accomplished
subsampling: accomplished
"""
import re
import shutil
from pathlib import Path
import numpy as np
import pytest
from torch_ecg.databases import LTAFDB, BeatAnn, DataBaseInfo
from torch_ecg.utils.download import PHYSIONET_DB_VERSION_PATTERN
from torch_ecg.utils.utils_interval import validate_interval
###############################################################################
# set paths
_CWD = Path(__file__).absolute().parents[2] / "tmp" / "test-db" / "ltafdb"
try:
shutil.rmtree(_CWD)
except FileNotFoundError:
pass
_CWD.mkdir(parents=True, exist_ok=True)
###############################################################################
with pytest.warns(RuntimeWarning):
reader = LTAFDB(_CWD)
if len(reader) == 0:
reader.download()
class TestLTAFDB:
def test_len(self):
assert len(reader) == 84
def test_subsample(self):
ss_ratio = 0.3
reader_ss = LTAFDB(_CWD, subsample=ss_ratio, verbose=0)
assert len(reader_ss) == pytest.approx(len(reader) * ss_ratio, abs=1)
ss_ratio = 0.1 / len(reader)
reader_ss = LTAFDB(_CWD, subsample=ss_ratio)
assert len(reader_ss) == 1
with pytest.raises(AssertionError, match="`subsample` must be in \\(0, 1\\], but got `.+`"):
LTAFDB(_CWD, subsample=0.0)
with pytest.raises(AssertionError, match="`subsample` must be in \\(0, 1\\], but got `.+`"):
LTAFDB(_CWD, subsample=1.01)
with pytest.raises(AssertionError, match="`subsample` must be in \\(0, 1\\], but got `.+`"):
LTAFDB(_CWD, subsample=-0.1)
def test_load_data(self):
rec = 0
data = reader.load_data(rec)
assert data.ndim == 2
data = reader.load_data(rec, leads=0, data_format="flat")
assert data.ndim == 1
data = reader.load_data(rec, leads=[0], data_format="flat", sampfrom=1000, sampto=2000)
assert data.shape == (1000,)
data = reader.load_data(rec)
data, data_fs = reader.load_data(rec, fs=100, return_fs=True)
assert data_fs == 100
def test_load_ann(self):
ann = reader.load_ann(0)
assert isinstance(ann, dict) and ann.keys() == {"beat", "rhythm"}
assert isinstance(ann["beat"], list) and all(isinstance(a, BeatAnn) for a in ann["beat"])
assert isinstance(ann["rhythm"], dict) and ann["rhythm"].keys() <= reader.rhythm_types_map.keys()
for v in ann["rhythm"].values():
assert isinstance(v, list) and all(validate_interval(i)[0] for i in v)
ann = reader.load_ann(0, sampfrom=1000, sampto=9000, keep_original=True)
assert isinstance(ann, dict) and ann.keys() == {"beat", "rhythm"}
ann = reader.load_ann(0, rhythm_format="mask", beat_format="dict")
assert isinstance(ann, dict) and ann.keys() == {"beat", "rhythm"}
assert isinstance(ann["beat"], dict) and ann["beat"].keys() <= set(reader.beat_types)
for v in ann["beat"].values():
assert isinstance(v, np.ndarray) and v.ndim == 1
assert isinstance(ann["rhythm"], np.ndarray) and ann["rhythm"].ndim == 1
data = reader.load_data(0, leads=[0], data_format="flat")
assert ann["rhythm"].shape == data.shape
def test_load_rhythm_ann(self):
rhythm_ann = reader.load_rhythm_ann(0)
assert isinstance(rhythm_ann, dict) and rhythm_ann.keys() <= reader.rhythm_types_map.keys()
for v in rhythm_ann.values():
assert isinstance(v, list) and all(validate_interval(i)[0] for i in v)
rhythm_ann = reader.load_rhythm_ann(0, sampfrom=1000, sampto=9000, keep_original=True)
assert isinstance(rhythm_ann, dict)
rhythm_ann = reader.load_rhythm_ann(0, rhythm_format="mask")
assert isinstance(rhythm_ann, np.ndarray) and rhythm_ann.ndim == 1
data = reader.load_data(0, leads=[0], data_format="flat")
assert rhythm_ann.shape == data.shape
def test_load_beat_ann(self):
beat_ann = reader.load_beat_ann(0)
assert isinstance(beat_ann, list) and all(isinstance(a, BeatAnn) for a in beat_ann)
beat_ann = reader.load_beat_ann(0, sampfrom=1000, sampto=9000, keep_original=True)
assert isinstance(beat_ann, list)
beat_ann = reader.load_beat_ann(0, beat_format="dict")
assert isinstance(beat_ann, dict) and beat_ann.keys() <= set(reader.beat_types)
for v in beat_ann.values():
assert isinstance(v, np.ndarray) and v.ndim == 1
def test_load_rpeak_indices(self):
rpeak_indices = reader.load_rpeak_indices(0)
assert isinstance(rpeak_indices, np.ndarray) and rpeak_indices.ndim == 1
rpeak_indices = reader.load_rpeak_indices(0, sampfrom=1000, sampto=9000, keep_original=True)
assert isinstance(rpeak_indices, np.ndarray) and rpeak_indices.ndim == 1
rpeak_indices_1 = reader.load_rpeak_indices(0, sampfrom=1000, sampto=9000, keep_original=False)
assert isinstance(rpeak_indices_1, np.ndarray) and rpeak_indices_1.ndim == 1
assert np.all(rpeak_indices_1 == rpeak_indices - 1000)
def test_meta_data(self):
assert isinstance(reader.version, str) and re.match(PHYSIONET_DB_VERSION_PATTERN, reader.version)
assert isinstance(reader.webpage, str) and len(reader.webpage) > 0
assert reader.get_citation() is None # printed
assert isinstance(reader.database_info, DataBaseInfo)
def test_plot(self):
reader.plot(0, leads=0, ticks_granularity=2, sampfrom=1000, sampto=3000)
reader.plot(0, ticks_granularity=0, sampfrom=1000, sampto=3000)
data = reader.load_data(0, sampfrom=1000, sampto=3000)
reader.plot(0, data=data, ticks_granularity=1)