[d8937e]: / test / test_components / test_outputs.py

Download this file

214 lines (176 with data), 8.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
"""
"""
import numpy as np
import pytest
from torch_ecg.cfg import DEFAULTS
from torch_ecg.components.metrics import ClassificationMetrics, RPeaksDetectionMetrics, WaveDelineationMetrics
from torch_ecg.components.outputs import (
BaseOutput,
ClassificationOutput,
MultiLabelClassificationOutput,
RPeaksDetectionOutput,
SequenceLabellingOutput,
SequenceTaggingOutput,
WaveDelineationOutput,
)
class TestClassificationOutput:
classes = ["AF", "NSR", "SPB"]
batch_size = 32
num_classes = len(classes)
def test_classification_output(self):
prob = DEFAULTS.RNG.random((self.batch_size, self.num_classes))
pred = (prob == prob.max(axis=1, keepdims=True)).astype(int)
output = ClassificationOutput(classes=self.classes, pred=pred, prob=prob)
with pytest.raises(
AssertionError,
match="`labels` or `label` must be stored in the output for computing metrics",
):
output.compute_metrics()
output.label = DEFAULTS.RNG_randint(0, self.num_classes - 1, (self.batch_size,))
metrics = output.compute_metrics()
assert isinstance(metrics, ClassificationMetrics)
prob = DEFAULTS.RNG.random((self.batch_size, self.num_classes))
pred = np.argmax(prob, axis=1)
output = ClassificationOutput(classes=self.classes, pred=pred, prob=prob)
output.label = DEFAULTS.RNG_randint(0, self.num_classes - 1, (self.batch_size,))
metrics = output.compute_metrics()
assert isinstance(metrics, ClassificationMetrics)
def test_append(self):
prob = DEFAULTS.RNG.random((self.batch_size, self.num_classes))
pred = (prob == prob.max(axis=1, keepdims=True)).astype(int)
output = ClassificationOutput(classes=self.classes, pred=pred, prob=prob)
prob = DEFAULTS.RNG.random((self.batch_size, self.num_classes))
pred = (prob == prob.max(axis=1, keepdims=True)).astype(int)
output_1 = ClassificationOutput(classes=self.classes, pred=pred, prob=prob)
prob = DEFAULTS.RNG.random((self.batch_size, self.num_classes))
pred = (prob == prob.max(axis=1, keepdims=True)).astype(int)
output_2 = ClassificationOutput(classes=self.classes, pred=pred, prob=prob)
prob = DEFAULTS.RNG.random((1, self.num_classes))
pred = (prob == prob.max(axis=1, keepdims=True)).astype(int)
output_3 = ClassificationOutput(classes=self.classes, pred=pred, prob=prob)
output.append(output_1)
assert output.pred.shape == (self.batch_size * 2, self.num_classes)
assert output.prob.shape == (self.batch_size * 2, self.num_classes)
output.append([output_2, output_3])
assert output.pred.shape == (self.batch_size * 3 + 1, self.num_classes)
assert output.prob.shape == (self.batch_size * 3 + 1, self.num_classes)
with pytest.raises(AssertionError, match="`values` must be of the same type as `self`"):
output_4 = MultiLabelClassificationOutput(
classes=self.classes,
pred=np.ones((self.batch_size, self.num_classes)),
prob=np.ones((self.batch_size, self.num_classes)),
thr=0.5,
)
output.append(output_4)
with pytest.raises(
AssertionError,
match="the field of ordered sequence `classes` must be the identical",
):
output_5 = ClassificationOutput(
classes=self.classes[::-1],
pred=np.ones((self.batch_size, self.num_classes)),
prob=np.ones((self.batch_size, self.num_classes)),
)
output.append(output_5)
class TestMultiLabelClassificationOutput:
classes = ["AF", "NSR", "SPB"]
batch_size = 32
num_classes = len(classes)
thr = 0.5
def test_multilabel_classification_output(self):
prob = DEFAULTS.RNG.random((self.batch_size, self.num_classes))
pred = (prob > self.thr).astype(int)
output = MultiLabelClassificationOutput(classes=self.classes, thr=self.thr, pred=pred, prob=prob)
with pytest.raises(
AssertionError,
match="`labels` or `label` must be stored in the output for computing metrics",
):
output.compute_metrics()
output.label = DEFAULTS.RNG_randint(0, 1, (self.batch_size, self.num_classes))
metrics = output.compute_metrics()
assert isinstance(metrics, ClassificationMetrics)
class TestSequenceTaggingOutput:
classes = ["AF", "NSR", "SPB"]
batch_size = 32
signal_length = 5000
num_classes = len(classes)
def test_sequence_tagging_output(self):
prob = DEFAULTS.RNG.random((self.batch_size, self.signal_length, self.num_classes))
pred = (prob == prob.max(axis=2, keepdims=True)).astype(int)
output = SequenceTaggingOutput(classes=self.classes, pred=pred, prob=prob)
with pytest.raises(
AssertionError,
match="`labels` or `label` must be stored in the output for computing metrics",
):
output.compute_metrics()
tmp = DEFAULTS.RNG.random((self.batch_size, self.signal_length, self.num_classes))
output.label = (tmp == tmp.max(axis=2, keepdims=True)).astype(int)
metrics = output.compute_metrics()
assert isinstance(metrics, ClassificationMetrics)
class TestSequenceLabellingOutput:
classes = ["AF", "NSR", "SPB"]
batch_size = 32
signal_length = 5000
num_classes = len(classes)
def test_sequence_labelling_output(self):
prob = DEFAULTS.RNG.random((self.batch_size, self.signal_length, self.num_classes))
pred = (prob == prob.max(axis=2, keepdims=True)).astype(int)
output = SequenceLabellingOutput(classes=self.classes, pred=pred, prob=prob)
with pytest.raises(
AssertionError,
match="`labels` or `label` must be stored in the output for computing metrics",
):
output.compute_metrics()
tmp = DEFAULTS.RNG.random((self.batch_size, self.signal_length, self.num_classes))
output.label = (tmp == tmp.max(axis=2, keepdims=True)).astype(int)
metrics = output.compute_metrics()
assert isinstance(metrics, ClassificationMetrics)
class TestWaveDelineationOutput:
classes = ["N", "P", "Q"]
batch_size = 32
signal_length = 500
num_leads = 12
num_classes = len(classes)
def test_wave_delineation_output(self):
truth_masks = DEFAULTS.RNG_randint(
0,
self.num_classes - 1,
(self.batch_size, self.num_leads, self.signal_length),
)
pred_probs = DEFAULTS.RNG_randint(0, 1, (self.batch_size, self.signal_length, self.num_classes))
pred_masks = np.argmax(pred_probs, axis=2)
pred_masks = np.repeat(pred_masks[:, np.newaxis, :], self.num_leads, axis=1)
output = WaveDelineationOutput(classes=self.classes, mask=pred_masks, prob=pred_probs)
class_map = {
"pwave": 1,
"qrs": 2,
"twave": 3,
}
with pytest.raises(
AssertionError,
match="`labels` or `label` must be stored in the output for computing metrics",
):
output.compute_metrics(class_map=class_map, fs=500)
output.label = truth_masks
metrics = output.compute_metrics(class_map=class_map, fs=500)
assert isinstance(metrics, WaveDelineationMetrics)
class TestRPeaksDetectionOutput:
batch_size = 2
signal_length = 1000
def test_rpeaks_detection_output(self):
output = RPeaksDetectionOutput(
rpeak_indices=[np.array([200, 700]), np.array([500])],
thr=0.5,
prob=DEFAULTS.RNG.random((self.batch_size, self.signal_length)),
)
with pytest.raises(
AssertionError,
match="`labels` or `label` must be stored in the output for computing metrics",
):
output.compute_metrics(fs=500)
output.label = [np.array([205, 700]), np.array([500, 900])]
metrics = output.compute_metrics(fs=500)
assert isinstance(metrics, RPeaksDetectionMetrics)
def test_base_output():
with pytest.raises(NotImplementedError, match="Subclass must implement method `required_fields`"):
BaseOutput()