[d8937e]: / test / test_components / test_metrics.py

Download this file

241 lines (208 with data), 9.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
"""
"""
import numpy as np
import pytest
from torch_ecg.cfg import DEFAULTS
from torch_ecg.components.metrics import ClassificationMetrics, Metrics, RPeaksDetectionMetrics, WaveDelineationMetrics
from torch_ecg.utils.utils_metrics import (
accuracy,
auc,
cls_to_bin,
f_measure,
precision,
sensitivity,
specificity,
top_n_accuracy,
)
def test_classification_metrics():
cm = ClassificationMetrics()
# binary labels (100 samples, 10 classes, multi-label)
labels = DEFAULTS.RNG_randint(0, 1, (100, 10))
# probability outputs (100 samples, 10 classes, multi-label)
outputs_prob = DEFAULTS.RNG.random((100, 10))
# binarize outputs (100 samples, 10 classes, multi-label)
outputs_bin = DEFAULTS.RNG_randint(0, 1, (100, 10))
# categorical outputs (100 samples, 10 classes)
outputs_cate = DEFAULTS.RNG_randint(0, 9, (100,))
# categorical outputs (100 samples, 10 classes, multi-label)
outputs_cate_multi = [DEFAULTS.RNG_randint(0, 9, (DEFAULTS.RNG_randint(1, 10),)) for _ in range(100)]
cm(labels, outputs_prob)
assert isinstance(cm.accuracy, float)
assert isinstance(cm.precision, float)
assert isinstance(cm.recall, float)
assert isinstance(cm.sensitivity, float)
assert isinstance(cm.hit_rate, float)
assert isinstance(cm.true_positive_rate, float)
assert isinstance(cm.specificity, float)
assert isinstance(cm.selectivity, float)
assert isinstance(cm.true_negative_rate, float)
assert isinstance(cm.positive_predictive_value, float)
assert isinstance(cm.negative_predictive_value, float)
assert isinstance(cm.jaccard_index, float)
assert isinstance(cm.threat_score, float)
assert isinstance(cm.critical_success_index, float)
assert isinstance(cm.phi_coefficient, float)
assert isinstance(cm.matthews_correlation_coefficient, float)
assert isinstance(cm.false_negative_rate, float)
assert isinstance(cm.miss_rate, float)
assert isinstance(cm.false_positive_rate, float)
assert isinstance(cm.fall_out, float)
assert isinstance(cm.false_discovery_rate, float)
assert isinstance(cm.false_omission_rate, float)
assert isinstance(cm.positive_likelihood_ratio, float)
assert isinstance(cm.negative_likelihood_ratio, float)
assert isinstance(cm.prevalence_threshold, float)
assert isinstance(cm.balanced_accuracy, float)
assert isinstance(cm.f1_measure, float)
assert isinstance(cm.fowlkes_mallows_index, float)
assert isinstance(cm.bookmaker_informedness, float)
assert isinstance(cm.markedness, float)
assert isinstance(cm.diagnostic_odds_ratio, float)
assert isinstance(cm.area_under_the_receiver_operater_characteristic_curve, float)
assert isinstance(cm.auroc, float)
assert isinstance(cm.area_under_the_precision_recall_curve, float)
assert isinstance(cm.auprc, float)
assert isinstance(cm.classification_report, dict)
assert cm.extra_metrics == {}
cm.set_macro(False)
assert isinstance(cm.accuracy, np.ndarray)
assert isinstance(cm.precision, np.ndarray)
assert isinstance(cm.recall, np.ndarray)
assert isinstance(cm.sensitivity, np.ndarray)
assert isinstance(cm.hit_rate, np.ndarray)
assert isinstance(cm.true_positive_rate, np.ndarray)
assert isinstance(cm.specificity, np.ndarray)
assert isinstance(cm.selectivity, np.ndarray)
assert isinstance(cm.true_negative_rate, np.ndarray)
assert isinstance(cm.positive_predictive_value, np.ndarray)
assert isinstance(cm.negative_predictive_value, np.ndarray)
assert isinstance(cm.jaccard_index, np.ndarray)
assert isinstance(cm.threat_score, np.ndarray)
assert isinstance(cm.critical_success_index, np.ndarray)
assert isinstance(cm.phi_coefficient, np.ndarray)
assert isinstance(cm.matthews_correlation_coefficient, np.ndarray)
assert isinstance(cm.false_negative_rate, np.ndarray)
assert isinstance(cm.miss_rate, np.ndarray)
assert isinstance(cm.false_positive_rate, np.ndarray)
assert isinstance(cm.fall_out, np.ndarray)
assert isinstance(cm.false_discovery_rate, np.ndarray)
assert isinstance(cm.false_omission_rate, np.ndarray)
assert isinstance(cm.positive_likelihood_ratio, np.ndarray)
assert isinstance(cm.negative_likelihood_ratio, np.ndarray)
assert isinstance(cm.prevalence_threshold, np.ndarray)
assert isinstance(cm.balanced_accuracy, np.ndarray)
assert isinstance(cm.f1_measure, np.ndarray)
assert isinstance(cm.fowlkes_mallows_index, np.ndarray)
assert isinstance(cm.bookmaker_informedness, np.ndarray)
assert isinstance(cm.markedness, np.ndarray)
assert isinstance(cm.diagnostic_odds_ratio, np.ndarray)
assert isinstance(cm.area_under_the_receiver_operater_characteristic_curve, np.ndarray)
assert isinstance(cm.auroc, np.ndarray)
assert isinstance(cm.area_under_the_precision_recall_curve, np.ndarray)
assert isinstance(cm.auprc, np.ndarray)
with pytest.warns(RuntimeWarning, match="`outputs` is probably binary or categorical, AUC may be incorrect"):
cm(labels, outputs_bin)
with pytest.warns(RuntimeWarning, match="`outputs` is probably binary or categorical, AUC may be incorrect"):
cm(labels, outputs_cate)
with pytest.warns(RuntimeWarning, match="`outputs` is probably binary or categorical, AUC may be incorrect"):
cm(labels, outputs_cate_multi)
assert str(cm) == repr(cm)
def test_rpeaks_detection_metrics():
rdm = RPeaksDetectionMetrics()
labels = [np.array([500, 1000])]
outputs = [np.array([500, 700, 1000])] # a false positive at 700
rdm(labels, outputs, fs=500)
assert rdm.qrs_score == pytest.approx(0.7)
assert rdm.extra_metrics == {}
assert str(rdm) == repr(rdm)
def test_wave_delineation_metrics():
wdm = WaveDelineationMetrics()
truth_masks = DEFAULTS.RNG_randint(0, 3, (1, 1, 5000))
pred_masks = DEFAULTS.RNG_randint(0, 3, (1, 1, 5000))
class_map = {
"pwave": 1,
"qrs": 2,
"twave": 3,
}
wdm(truth_masks, pred_masks, class_map, fs=500)
assert isinstance(wdm.sensitivity, float)
assert isinstance(wdm.precision, float)
assert isinstance(wdm.f1_score, float)
assert isinstance(wdm.mean_error, float)
assert isinstance(wdm.standard_deviation, float)
assert isinstance(wdm.jaccard_index, float)
wdm.set_macro(False)
assert isinstance(wdm.sensitivity, dict)
assert isinstance(wdm.precision, dict)
assert isinstance(wdm.f1_score, dict)
assert isinstance(wdm.mean_error, dict)
assert isinstance(wdm.standard_deviation, dict)
assert isinstance(wdm.jaccard_index, dict)
assert wdm.extra_metrics == {}
assert str(wdm) == repr(wdm)
def test_base_metrics():
with pytest.raises(TypeError, match="Can't instantiate abstract class"):
Metrics()
def test_metric_functions():
# 100 samples, 10 classes
labels = DEFAULTS.RNG_randint(0, 9, (100))
outputs = DEFAULTS.RNG.uniform(0, 1, (100, 10))
# NOTE: for random outputs, some metrics may encounter 0 / 0 division
# e.g. sensitivity = TP / (TP + FN), if TP = 0, FN = 0, then sensitivity = 0 / 0
# this case is handled by the fillna parameter in the metrics functions,
# whose default value is 0.0
acc = top_n_accuracy(labels, outputs, 3)
assert isinstance(acc, float)
assert 0 <= acc <= 1
acc = top_n_accuracy(labels, outputs, [1, 3, 5])
assert isinstance(acc, dict)
assert acc.keys() == {"top_1_acc", "top_3_acc", "top_5_acc"}
assert all([0 <= v <= 1 for v in acc.values()]), acc.values()
macro_score, scores = f_measure(labels, outputs, fillna=True)
assert isinstance(macro_score, float)
assert isinstance(scores, np.ndarray)
assert scores.shape == (10,)
assert 0 <= macro_score <= 1
assert all([0 <= v <= 1 for v in scores]), scores
macro_score, scores = precision(labels, outputs)
assert isinstance(macro_score, float)
assert isinstance(scores, np.ndarray)
assert scores.shape == (10,)
assert 0 <= macro_score <= 1
assert all([0 <= v <= 1 for v in scores]), scores
macro_score, scores = sensitivity(labels, outputs)
assert isinstance(macro_score, float)
assert isinstance(scores, np.ndarray)
assert scores.shape == (10,)
assert 0 <= macro_score <= 1
assert all([0 <= v <= 1 for v in scores]), scores
macro_score, scores = specificity(labels, outputs)
assert isinstance(macro_score, float)
assert isinstance(scores, np.ndarray)
assert scores.shape == (10,)
assert 0 <= macro_score <= 1
assert all([0 <= v <= 1 for v in scores]), scores
macro_score, scores = accuracy(labels, outputs)
assert isinstance(macro_score, float)
assert isinstance(scores, np.ndarray)
assert scores.shape == (10,)
assert 0 <= macro_score <= 1
assert all([0 <= v <= 1 for v in scores]), scores
macro_auroc, macro_auprc, auroc, auprc = auc(labels, outputs)
assert isinstance(macro_auroc, float)
assert isinstance(macro_auprc, float)
assert isinstance(auroc, np.ndarray)
assert isinstance(auprc, np.ndarray)
assert auroc.shape == (10,)
assert auprc.shape == (10,)
assert 0 <= macro_auroc <= 1
assert 0 <= macro_auprc <= 1
assert all([0 <= v <= 1 for v in auroc]), auroc
assert all([0 <= v <= 1 for v in auprc]), auprc
with pytest.raises(
ValueError,
match="outputs must be of shape \\(n_samples, n_classes\\) to compute AUC",
):
auc(labels, outputs[:, 0])
with pytest.warns(DeprecationWarning, match="`cls_to_bin` is deprecated, use `one_hot_pair` instead"):
cls_to_bin(labels, outputs)