"""
"""
import argparse
import os
import sys
from copy import deepcopy
from typing import Any, Dict, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from torch.nn.parallel import DataParallel as DP
from torch.nn.parallel import DistributedDataParallel as DDP # noqa: F401
from torch.utils.data import DataLoader, Dataset
try:
import torch_ecg # noqa: F401
except ModuleNotFoundError:
from pathlib import Path
sys.path.insert(0, str(Path(__file__).absolute().parents[2]))
from cfg import ModelCfg, TrainCfg
from dataset import CPSC2019
from metrics import compute_metrics
from model import ECG_SEQ_LAB_NET_CPSC2019, ECG_SUBTRACT_UNET_CPSC2019, ECG_UNET_CPSC2019
from torch_ecg.cfg import CFG, DEFAULTS
from torch_ecg.components.trainer import BaseTrainer
from torch_ecg.utils.misc import str2bool
from torch_ecg.utils.utils_data import mask_to_intervals
from torch_ecg.utils.utils_nn import default_collate_fn as collate_fn
ECG_SEQ_LAB_NET_CPSC2019.__DEBUG__ = False
ECG_UNET_CPSC2019.__DEBUG__ = False
ECG_SUBTRACT_UNET_CPSC2019.__DEBUG__ = False
CPSC2019.__DEBUG__ = False
if ModelCfg.torch_dtype == torch.float64:
torch.set_default_tensor_type(torch.DoubleTensor)
__all__ = [
"CPSC2019Trainer",
]
class CPSC2019Trainer(BaseTrainer):
""" """
__DEBUG__ = True
__name__ = "CPSC2019Trainer"
def __init__(
self,
model: nn.Module,
model_config: dict,
train_config: dict,
device: Optional[torch.device] = None,
lazy: bool = True,
**kwargs: Any,
) -> None:
"""
Parameters
----------
model: Module,
the model to be trained
model_config: dict,
the configuration of the model,
used to keep a record in the checkpoints
train_config: dict,
the configuration of the training,
including configurations for the data loader, for the optimization, etc.
will also be recorded in the checkpoints.
`train_config` should at least contain the following keys:
"monitor": str,
"loss": str,
"n_epochs": int,
"batch_size": int,
"learning_rate": float,
"lr_scheduler": str,
"lr_step_size": int, optional, depending on the scheduler
"lr_gamma": float, optional, depending on the scheduler
"max_lr": float, optional, depending on the scheduler
"optimizer": str,
"decay": float, optional, depending on the optimizer
"momentum": float, optional, depending on the optimizer
device: torch.device, optional,
the device to be used for training
lazy: bool, default True,
whether to initialize the data loader lazily
"""
super().__init__(
model=model,
dataset_cls=CPSC2019,
model_config=model_config,
train_config=train_config,
device=device,
lazy=lazy,
)
def _setup_dataloaders(
self,
train_dataset: Optional[Dataset] = None,
val_dataset: Optional[Dataset] = None,
) -> None:
"""
setup the dataloaders for training and validation
Parameters
----------
train_dataset: Dataset, optional,
the training dataset
val_dataset: Dataset, optional,
the validation dataset
"""
if train_dataset is None:
train_dataset = self.dataset_cls(config=self.train_config, training=True, lazy=False)
if self.train_config.debug:
val_train_dataset = train_dataset
else:
val_train_dataset = None
if val_dataset is None:
val_dataset = self.dataset_cls(config=self.train_config, training=False, lazy=False)
# https://discuss.pytorch.org/t/guidelines-for-assigning-num-workers-to-dataloader/813/4
num_workers = 4
self.train_loader = DataLoader(
dataset=train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
if self.train_config.debug:
self.val_train_loader = DataLoader(
dataset=val_train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
else:
self.val_train_loader = None
self.val_loader = DataLoader(
dataset=val_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
drop_last=False,
collate_fn=collate_fn,
)
def run_one_step(self, *data: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Parameters
----------
data: tuple of Tensors,
the data to be processed for training one step (batch),
should be of the following order:
signals, labels, *extra_tensors
Returns
-------
preds: Tensor,
the predictions of the model for the given data
labels: Tensor,
the labels of the given data
"""
signals, labels = data
signals = signals.to(self.device)
labels = labels.to(self.device)
preds = self.model(signals)
return preds, labels
@torch.no_grad()
def evaluate(self, data_loader: DataLoader) -> Dict[str, float]:
""" """
self.model.eval()
if self.train_config.get("recover_length", False):
reduction = 1
else:
reduction = self.train_config.reduction
all_rpeak_preds = []
all_rpeak_labels = []
for signals, labels in data_loader:
signals = signals.to(device=self.device, dtype=self.dtype)
labels = labels.numpy()
labels = [mask_to_intervals(item, 1) for item in labels] # intervals of qrs complexes
labels = [ # to indices of rpeaks in the original signal sequence
(reduction * np.array([itv[0] + itv[1] for itv in item]) / 2).astype(int) for item in labels
]
labels = [
item[
np.where(
(item >= self.train_config.skip_dist)
& (item < self.train_config.input_len - self.train_config.skip_dist)
)[0]
]
for item in labels
]
all_rpeak_labels += labels
if torch.cuda.is_available():
torch.cuda.synchronize()
model_output = self._model.inference(
signals,
bin_pred_thr=0.5,
duration_thr=4 * 16,
dist_thr=200,
correction=False,
)
all_rpeak_preds += model_output.rpeak_indices
qrs_score = compute_metrics(
rpeaks_truths=all_rpeak_labels,
rpeaks_preds=all_rpeak_preds,
fs=self.train_config.fs,
thr=self.train_config.bias_thr / self.train_config.fs,
)
eval_res = dict(
qrs_score=qrs_score,
)
del all_rpeak_labels, all_rpeak_preds
self.model.train()
return eval_res
@property
def batch_dim(self) -> int:
"""
batch dimension
"""
return 0
@property
def extra_required_train_config_fields(self) -> List[str]:
""" """
return []
@property
def save_prefix(self) -> str:
return f"{self._model.__name__}_{self.model_config.cnn.name}_epoch"
def extra_log_suffix(self) -> str:
return super().extra_log_suffix() + f"_{self.model_config.cnn.name}"
def get_args(**kwargs):
""" """
cfg = deepcopy(kwargs)
parser = argparse.ArgumentParser(
description="Train the Model on CINC2019",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# parser.add_argument(
# "-l", "--learning-rate",
# metavar="LR", type=float, nargs="?", default=0.001,
# help="Learning rate",
# dest="learning_rate")
parser.add_argument(
"-b",
"--batch-size",
type=int,
default=128,
help="the batch size for training",
dest="batch_size",
)
parser.add_argument(
"-m",
"--model-name",
type=str,
default="crnn",
help="name of the model to train, `cnn` or `crnn`",
dest="model_name",
)
parser.add_argument(
"-c",
"--cnn-name",
type=str,
default="multi_scopic",
help="choice of cnn feature extractor",
dest="cnn_name",
)
parser.add_argument(
"-r",
"--rnn-name",
type=str,
default="lstm",
help="choice of rnn structures",
dest="rnn_name",
)
parser.add_argument(
"-a",
"--attn-name",
type=str,
default="se",
help="choice of attention block",
dest="attn_name",
)
parser.add_argument(
"--keep-checkpoint-max",
type=int,
default=50,
help="maximum number of checkpoints to keep. If set 0, all checkpoints will be kept",
dest="keep_checkpoint_max",
)
parser.add_argument(
"--optimizer",
type=str,
default="adam",
help="training optimizer",
dest="train_optimizer",
)
parser.add_argument(
"--debug",
type=str2bool,
default=False,
help="train with more debugging information",
dest="debug",
)
args = vars(parser.parse_args())
cfg.update(args)
return CFG(cfg)
_MODEL_MAP = dict(
seq_lab_crnn=ECG_SEQ_LAB_NET_CPSC2019,
seq_lab_cnn=ECG_SEQ_LAB_NET_CPSC2019,
unet=ECG_UNET_CPSC2019,
subtract_unet=ECG_SUBTRACT_UNET_CPSC2019,
)
if __name__ == "__main__":
train_config = get_args(**TrainCfg)
model_name = f"seq_lab_{train_config.model_name.lower()}"
model_config = deepcopy(ModelCfg[model_name])
model_config.cnn.name = train_config.cnn_name
model_config.rnn.name = train_config.rnn_name
model_config.attn.name = train_config.attn_name
model_cls = _MODEL_MAP[model_name]
model = model_cls(
n_leads=train_config.n_leads,
input_len=train_config.input_len,
config=model_config,
)
if torch.cuda.device_count() > 1:
model = DP(model)
# model = DDP(model)
model.to(device=DEFAULTS.device)
trainer = CPSC2019Trainer(
model=model,
model_config=model_config,
train_config=train_config,
device=DEFAULTS.device,
lazy=False,
)
try:
best_model_state_dict = trainer.train()
except KeyboardInterrupt:
try:
sys.exit(0)
except SystemExit:
os._exit(0)