Download this file

1600 lines (1434 with data), 57.8 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
"""
data generator for feeding data into pytorch models
NOTE
----
In order to avoid potential error in the methods of slicing signals and rr intervals,
one can check using the following code
.. code-block:: python
from cfg import TrainCfg
ds_train = CPSC2021(TrainCfg, task="qrs_detection", training=True)
ds_val = CPSC2021(TrainCfg, task="qrs_detection", training=False)
err_list = []
for idx, seg in enumerate(ds_train.segments):
sig, lb = ds_train[idx]
if sig.shape != (2,6000) or lb.shape != (750, 1):
print("\n"+f"segment {seg} has sig.shape = {sig.shape}, lb.shape = {lb.shape}"+"\n")
err_list.append(seg)
print(f"{idx+1}/{len(ds_train)}", end="\r")
for idx, seg in enumerate(ds_val.segments):
sig, lb = ds_val[idx]
if sig.shape != (2,6000) or lb.shape != (750, 1):
print("\n"+f"segment {seg} has sig.shape = {sig.shape}, lb.shape = {lb.shape}"+"\n")
err_list.append(seg)
print(f"{idx+1}/{len(ds_val)}", end="\r")
for idx, seg in enumerate(err_list):
path = ds_train._get_seg_data_path(seg)
os.remove(path)
path = ds_train._get_seg_ann_path(seg)
os.remove(path)
print(f"{idx+1}/{len(err_list)}", end="\r")
and similarly for the task of `rr_lstm`
"""
import json
import os
import re
import time
from copy import deepcopy
from pathlib import Path
from typing import Dict, List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
from scipy import signal as SS
from scipy.io import loadmat, savemat
from torch.utils.data.dataset import Dataset
from tqdm.auto import tqdm
try:
import torch_ecg # noqa: F401
except ModuleNotFoundError:
import sys
sys.path.insert(0, str(Path(__file__).absolute().parents[2]))
from cfg import ModelCfg, TrainCfg
from torch_ecg._preprocessors import PreprocManager
from torch_ecg.cfg import CFG, DEFAULTS
from torch_ecg.databases import CPSC2021 as CR
from torch_ecg.utils.misc import ReprMixin, get_record_list_recursive3, list_sum, nildent
from torch_ecg.utils.utils_data import generate_weight_mask, mask_to_intervals
from torch_ecg.utils.utils_signal import remove_spikes_naive
if ModelCfg.torch_dtype == torch.float64:
torch.set_default_tensor_type(torch.DoubleTensor)
__all__ = [
"CPSC2021",
]
class CPSC2021(ReprMixin, Dataset):
"""
1. ECGs are preprocessed and stored in one folder
2. preprocessed ECGs are sliced with overlap to generate data and label for different tasks:
the data files stores segments of fixed length of preprocessed ECGs,
the annotation files contain "qrs_mask", and "af_mask"
"""
__DEBUG__ = False
__name__ = "CPSC2021"
def __init__(self, config: CFG, task: str, training: bool = True, lazy: bool = True) -> None:
"""
Parameters
----------
config: dict,
configurations for the Dataset,
ref. `cfg.TrainCfg`
training: bool, default True,
if True, the training set will be loaded, otherwise the test set
lazy: bool, default False,
if True, the data will not be loaded immediately
"""
super().__init__()
self.config = deepcopy(config)
assert self.config.db_dir is not None, "db_dir must be specified"
self.config.db_dir = Path(self.config.db_dir)
self.reader = CR(db_dir=self.config.db_dir)
if self.config.torch_dtype == torch.float64:
self.dtype = np.float64
else:
self.dtype = np.float32
self.allowed_preproc = list(
set(
[
"bandpass",
"baseline_remove",
]
).intersection(set(self.config.keys()))
)
self.training = training
self.lazy = lazy
ppm_config = CFG(random=False)
ppm_config.update(deepcopy(self.config))
ppm_config.pop("normalize")
seg_ppm_config = CFG(random=False)
seg_ppm_config.update(deepcopy(self.config))
seg_ppm_config.pop("bandpass")
self.ppm = PreprocManager.from_config(ppm_config)
self.seg_ppm = PreprocManager.from_config(seg_ppm_config)
# create directories if needed
# preprocess_dir stores pre-processed signals
self.preprocess_dir = self.config.db_dir / "preprocessed"
self.preprocess_dir.mkdir(parents=True, exist_ok=True)
# segments_dir for sliced segments of fixed length
self.segments_base_dir = self.config.db_dir / "segments"
self.segments_base_dir.mkdir(parents=True, exist_ok=True)
self.segment_name_pattern = "S_\\d{1,3}_\\d{1,2}_\\d{7}"
self.segment_ext = "mat"
# rr_dir for sequence of rr intervals of fix length
self.rr_seq_base_dir = self.config.db_dir / "rr_seq"
self.rr_seq_base_dir.mkdir(parents=True, exist_ok=True)
self.rr_seq_name_pattern = "R_\\d{1,3}_\\d{1,2}_\\d{7}"
self.rr_seq_ext = "mat"
self._all_data = None
self._all_labels = None
self._all_masks = None
self.__set_task(task, lazy=self.lazy)
def _load_all_data(self) -> None:
""" """
self.__set_task(self.task, lazy=False)
def __set_task(self, task: str, lazy: bool = True) -> None:
"""
Parameters
----------
task: str,
name of the task, can be one of `TrainCfg.tasks`
"""
assert task.lower() in TrainCfg.tasks, f"illegal task \042{task}\042"
if hasattr(self, "task") and self.task == task.lower() and self._all_data is not None and len(self._all_data) > 0:
return
self.task = task.lower()
self.all_classes = self.config[task].classes
self.n_classes = len(self.config[task].classes)
self.lazy = lazy
self.seglen = self.config[task].input_len # alias, for simplicity
split_res = self._train_test_split(
train_ratio=self.config.train_ratio,
force_recompute=False,
)
if self.training:
self.subjects = split_res.train
else:
self.subjects = split_res.test
if self.task in [
"qrs_detection",
"main",
]:
# for qrs detection, or for the main task
self.segments_dirs = CFG()
self.__all_segments = CFG()
self.segments_json = self.segments_base_dir / "segments.json"
self._ls_segments()
self.segments = list_sum([self.__all_segments[subject] for subject in self.subjects])
if self.__DEBUG__:
self.segments = DEFAULTS.RNG_sample(self.segments, int(len(self.segments) * 0.01)).tolist()
if self.training:
DEFAULTS.RNG.shuffle(self.segments)
# preload data
self.fdr = FastDataReader(
self.config,
self.task,
self.seg_ppm,
self.segments_dirs,
self.segments,
self.segment_ext,
)
if self.lazy:
return
self._all_data, self._all_labels, self._all_masks = [], [], []
with tqdm(
range(len(self.fdr)),
desc="Loading data",
unit="records",
dynamic_ncols=True,
mininterval=1.0,
) as pbar:
for idx in pbar:
d, l, m = self.fdr[idx]
self._all_data.append(d)
self._all_labels.append(l)
self._all_masks.append(m)
self._all_data = np.array(self._all_data).astype(self.dtype)
self._all_labels = np.array(self._all_labels).astype(self.dtype)
if self.task == "qrs_detection":
self._all_masks = None
else:
self._all_masks = np.array(self._all_masks).astype(self.dtype)
elif self.task in [
"rr_lstm",
]:
self.rr_seq_dirs = CFG()
self.__all_rr_seq = CFG()
self.rr_seq_json = self.rr_seq_base_dir / "rr_seq.json"
self._ls_rr_seq()
self.rr_seq = list_sum([self.__all_rr_seq[subject] for subject in self.subjects])
if self.__DEBUG__:
self.rr_seq = DEFAULTS.RNG_sample(self.rr_seq, int(len(self.rr_seq) * 0.01)).tolist()
if self.training:
DEFAULTS.RNG.shuffle(self.rr_seq)
# preload data
self.fdr = FastDataReader(
self.config,
self.task,
self.seg_ppm,
self.rr_seq_dirs,
self.rr_seq,
self.rr_seq_ext,
)
if self.lazy:
return
self._all_data, self._all_labels, self._all_masks = [], [], []
with tqdm(
range(len(self.fdr)),
desc="Loading data",
unit="records",
dynamic_ncols=True,
mininterval=1.0,
) as pbar:
for idx in pbar:
d, l, m = self.fdr[idx]
self._all_data.append(d)
self._all_labels.append(l)
self._all_masks.append(m)
self._all_data = np.array(self._all_data).astype(self.dtype)
self._all_labels = np.array(self._all_labels).astype(self.dtype)
self._all_masks = np.array(self._all_masks).astype(self.dtype)
else:
raise NotImplementedError(f"data generator for task \042{self.task}\042 not implemented")
def reset_task(self, task: str, lazy: bool = True) -> None:
""" """
self.__set_task(task, lazy)
def _ls_segments(self) -> None:
"""
list all the segments
"""
for item in ["data", "ann"]:
self.segments_dirs[item] = CFG()
for s in self.reader.all_subjects:
self.segments_dirs[item][s] = self.segments_base_dir / item / s
self.segments_dirs[item][s].mkdir(parents=True, exist_ok=True)
if self.segments_json.is_file():
self.__all_segments = json.loads(self.segments_json.read_text())
return
print(f"please allow the reader a few minutes to collect the segments from {self.segments_base_dir}...")
seg_filename_pattern = f"{self.segment_name_pattern}\\.{self.segment_ext}"
self.__all_segments = CFG(
{
s: get_record_list_recursive3(str(self.segments_dirs.data[s]), seg_filename_pattern)
for s in self.reader.all_subjects
}
)
if all([len(self.__all_segments[s]) > 0 for s in self.reader.all_subjects]):
self.segments_json.write_text(json.dumps(self.__all_segments, ensure_ascii=False))
def _ls_rr_seq(self) -> None:
"""
list all the rr sequences
"""
for s in self.reader.all_subjects:
self.rr_seq_dirs[s] = self.rr_seq_base_dir / s
self.rr_seq_dirs[s].mkdir(parents=True, exist_ok=True)
if self.rr_seq_json.is_file():
self.__all_rr_seq = json.loads(self.rr_seq_json.read_text())
return
print(f"please allow the reader a few minutes to collect the rr sequences from {self.rr_seq_base_dir}...")
rr_seq_filename_pattern = f"{self.rr_seq_name_pattern}\\.{self.rr_seq_ext}"
self.__all_rr_seq = CFG(
{s: get_record_list_recursive3(self.rr_seq_dirs[s], rr_seq_filename_pattern) for s in self.reader.all_subjects}
)
if all([len(self.__all_rr_seq[s]) > 0 for s in self.reader.all_subjects]):
self.rr_seq_json.write_text(json.dumps(self.__all_rr_seq, ensure_ascii=False))
@property
def all_segments(self) -> CFG:
if self.task in [
"qrs_detection",
"main",
]:
return self.__all_segments
else:
return CFG()
@property
def all_rr_seq(self) -> CFG:
if self.task.lower() in [
"rr_lstm",
]:
return self.__all_rr_seq
else:
return CFG()
def __len__(self) -> int:
return len(self.fdr)
def __getitem__(self, index: int) -> Tuple[np.ndarray, ...]:
if self.lazy:
if self.task in ["qrs_detection"]:
return self.fdr[index][:2]
else:
return self.fdr[index]
else:
if self.task in ["qrs_detection"]:
return self._all_data[index], self._all_labels[index]
else:
return (
self._all_data[index],
self._all_labels[index],
self._all_masks[index],
)
def _get_seg_data_path(self, seg: str) -> Path:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
fp: Path,
path of the data file of the segment
"""
subject = seg.split("_")[1]
fp = self.segments_dirs.data[subject] / f"{seg}.{self.segment_ext}"
return fp
def _get_seg_ann_path(self, seg: str) -> Path:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
fp: Path,
path of the annotation file of the segment
"""
subject = seg.split("_")[1]
fp = self.segments_dirs.ann[subject] / f"{seg}.{self.segment_ext}"
return fp
def _load_seg_data(self, seg: str) -> np.ndarray:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
seg_data: ndarray,
data of the segment, of shape (2, `self.seglen`)
"""
seg_data_fp = self._get_seg_data_path(seg)
seg_data = loadmat(str(seg_data_fp))["ecg"]
return seg_data
def _load_seg_ann(self, seg: str) -> dict:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
Returns
-------
seg_ann: dict,
annotations of the segment, including
- rpeaks: indices of rpeaks of the segment
- qrs_mask: mask of qrs complexes of the segment
- af_mask: mask of af episodes of the segment
- interval: interval ([start_idx, end_idx]) in the original ECG record of the segment
"""
seg_ann_fp = self._get_seg_ann_path(seg)
seg_ann = {k: v.flatten() for k, v in loadmat(str(seg_ann_fp)).items() if not k.startswith("__")}
return seg_ann
def _load_seg_mask(self, seg: str, task: Optional[str] = None) -> Union[np.ndarray, Dict[str, np.ndarray]]:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
task: str, optional,
if specified, overrides self.task,
else if is "all", then all masks ("qrs_mask", "af_mask", etc.) will be returned
Returns
-------
seg_mask: np.ndarray or dict,
mask(s) of the segment,
of shape (self.seglen, self.n_classes)
"""
seg_mask = {
k: v.reshape((self.seglen, -1))
for k, v in self._load_seg_ann(seg).items()
if k
in [
"qrs_mask",
"af_mask",
]
}
_task = (task or self.task).lower()
if _task == "all":
return seg_mask
if _task in [
"qrs_detection",
]:
seg_mask = seg_mask["qrs_mask"]
elif _task in [
"main",
]:
seg_mask = seg_mask["af_mask"]
return seg_mask
def _load_seg_seq_lab(self, seg: str, reduction: int) -> np.ndarray:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
reduction: int,
reduction (granularity) of length of the model output,
compared to the original signal length
Returns
-------
seq_lab: np.ndarray,
label of the sequence,
of shape (self.seglen//reduction, self.n_classes)
"""
seg_mask = self._load_seg_mask(seg)
seg_len, n_classes = seg_mask.shape
seq_lab = np.stack(
arrays=[
np.mean(
seg_mask[reduction * idx : reduction * (idx + 1)],
axis=0,
keepdims=True,
).astype(int)
for idx in range(seg_len // reduction)
],
axis=0,
).squeeze(axis=1)
return seq_lab
def _get_rr_seq_path(self, seq_name: str) -> Path:
"""
Parameters
----------
seq_name: str,
name of the rr_seq, of pattern like "R_1_1_0000193"
Returns
-------
fp: Path,
path of the annotation file of the rr_seq
"""
subject = seq_name.split("_")[1]
fp = self.rr_seq_dirs[subject] / f"{seq_name}.{self.rr_seq_ext}"
return fp
def _load_rr_seq(self, seq_name: str) -> Dict[str, np.ndarray]:
"""
Parameters
----------
seq_name: str,
name of the rr_seq, of pattern like "R_1_1_0000193"
Returns
-------
rr_seq: dict,
metadata of sequence of rr intervals, including
- rr: the sequence of rr intervals, with units in seconds, of shape (self.seglen, 1)
- label: label of the rr intervals, 0 for normal, 1 for af, of shape (self.seglen, self.n_classes)
- interval: interval of the current rr sequence in the whole rr sequence in the original record
"""
rr_seq_path = self._get_rr_seq_path(seq_name)
rr_seq = {k: v for k, v in loadmat(str(rr_seq_path)).items() if not k.startswith("__")}
rr_seq["rr"] = rr_seq["rr"].reshape((self.seglen, 1))
rr_seq["label"] = rr_seq["label"].reshape((self.seglen, self.n_classes))
rr_seq["interval"] = rr_seq["interval"].flatten()
return rr_seq
def persistence(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
make the dataset persistent w.r.t. the ratios in `self.config`
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
if verbose >= 1:
print(" preprocessing data ".center(110, "#"))
self._preprocess_data(
force_recompute=force_recompute,
verbose=verbose,
)
original_task = self.task
self.__set_task("main", lazy=True)
if verbose >= 1:
print("\n" + " slicing data into segments ".center(110, "#"))
self._slice_data(
force_recompute=force_recompute,
verbose=verbose,
)
self.__set_task("rr_lstm", lazy=True)
if verbose >= 1:
print("\n" + " generating rr sequences ".center(110, "#"))
self._slice_rr_seq(
force_recompute=force_recompute,
verbose=verbose,
)
self.__set_task(original_task, lazy=self.lazy)
def _preprocess_data(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
preprocesses the ecg data in advance for further use,
offline for `self.persistence`
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
for idx, rec in enumerate(self.reader.all_records):
self._preprocess_one_record(
rec=rec,
force_recompute=force_recompute,
verbose=verbose,
)
if verbose >= 1:
print(f"{idx+1}/{len(self.reader.all_records)} records", end="\r")
def _preprocess_one_record(self, rec: str, force_recompute: bool = False, verbose: int = 0) -> None:
"""
preprocesses the ecg data in advance for further use,
offline for `self.persistence`
Parameters
----------
rec: str,
filename of the record
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
suffix = self._get_rec_suffix(self.allowed_preproc)
save_fp = self.preprocess_dir / f"{rec}-{suffix}.{self.segment_ext}"
if (not force_recompute) and save_fp.is_file():
return
# perform pre-process
pps, _ = self.ppm(self.reader.load_data(rec), self.config.fs)
savemat(save_fp, {"ecg": pps}, format="5")
def load_preprocessed_data(self, rec: str) -> np.ndarray:
"""
Parameters
----------
rec: str,
filename of the record
Returns
-------
p_sig: ndarray,
the pre-computed processed ECG
"""
preproc = self.allowed_preproc
suffix = self._get_rec_suffix(preproc)
fp = self.preprocess_dir / f"{rec}-{suffix}.{self.segment_ext}"
if not fp.is_file():
raise FileNotFoundError(f"preprocess(es) \042{preproc}\042 not done for {rec} yet")
p_sig = loadmat(str(fp))["ecg"]
if p_sig.shape[0] != 2:
p_sig = p_sig.T
return p_sig
def _get_rec_suffix(self, operations: List[str]) -> str:
"""
Parameters
----------
operations: list of str,
names of operations to perform (or has performed),
should be sublist of `self.allowed_preproc`
Returns
-------
suffix: str,
suffix of the filename of the preprocessed ecg signal
"""
suffix = "-".join(sorted([item.lower() for item in operations]))
return suffix
def _slice_data(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
slice all records into segments of length `self.seglen`,
and perform data augmentations specified in `self.config`
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
self.__assert_task(
[
"qrs_detection",
"main",
]
)
if force_recompute:
self._clear_cached_segments()
for idx, rec in enumerate(self.reader.all_records):
self._slice_one_record(
rec=rec,
force_recompute=False,
update_segments_json=False,
verbose=verbose,
)
if verbose >= 1:
print(f"{idx+1}/{len(self.reader.all_records)} records", end="\r")
if force_recompute:
with open(self.segments_json, "w") as f:
json.dump(self.__all_segments, f)
def _slice_one_record(
self,
rec: str,
force_recompute: bool = False,
update_segments_json: bool = False,
verbose: int = 0,
) -> None:
"""
slice one record into segments of length `self.seglen`,
and perform data augmentations specified in `self.config`
Parameters
----------
rec: str,
filename of the record
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
update_segments_json: bool, default False,
if both `force_recompute` and `update_segments_json` are True,
the file `self.segments_json` will be updated,
useful when slicing not all records
verbose: int, default 0,
print verbosity
"""
self.__assert_task(
[
"qrs_detection",
"main",
]
)
subject = self.reader.get_subject_id(rec)
rec_segs = [item for item in self.__all_segments[subject] if item.startswith(rec.replace("data", "S"))]
if (not force_recompute) and len(rec_segs) > 0:
return
elif force_recompute:
self._clear_cached_segments([rec])
# data = self.reader.load_data(rec, units="mV")
data = self.load_preprocessed_data(rec)
siglen = data.shape[1]
rpeaks = self.reader.load_rpeaks(rec)
af_mask = self.reader.load_af_episodes(rec, fmt="mask")
forward_len = self.seglen - self.config[self.task].overlap_len
critical_forward_len = self.seglen - self.config[self.task].critical_overlap_len
critical_forward_len = [critical_forward_len // 4, critical_forward_len]
# skip those records that are too short
if siglen < self.seglen:
return
# find critical points
critical_points = np.where(np.diff(af_mask) != 0)[0]
critical_points = [p for p in critical_points if critical_forward_len[1] <= p < siglen - critical_forward_len[1]]
segments = []
# ordinary segments with constant forward_len
for idx in range((siglen - self.seglen) // forward_len + 1):
start_idx = idx * forward_len
new_seg = self.__generate_segment(
rec=rec,
data=data,
start_idx=start_idx,
)
segments.append(new_seg)
# the tail segment
new_seg = self.__generate_segment(
rec=rec,
data=data,
end_idx=siglen,
)
segments.append(new_seg)
# special segments around critical_points with random forward_len in critical_forward_len
for cp in critical_points:
start_idx = max(
0,
cp - self.seglen + DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1]),
)
while start_idx <= min(cp - critical_forward_len[1], siglen - self.seglen):
new_seg = self.__generate_segment(
rec=rec,
data=data,
start_idx=start_idx,
)
segments.append(new_seg)
start_idx += DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1])
# return segments
self.__save_segments(rec, segments, update_segments_json)
def __generate_segment(
self,
rec: str,
data: np.ndarray,
start_idx: Optional[int] = None,
end_idx: Optional[int] = None,
) -> CFG:
"""
generate segment, with possible data augmentation
Parameter
---------
rec: str,
filename of the record
data: ndarray,
the whole of (preprocessed) ECG record
start_idx: int, optional,
start index of the signal of `rec` for generating the segment
end_idx: int, optional,
end index of the signal of `rec` for generating the segment,
if `start_idx` is set, `end_idx` is ignored,
at least one of `start_idx` and `end_idx` should be set
Returns
-------
new_seg: dict,
segments (meta-)data, containing:
- data: values of the segment, with units in mV
- rpeaks: indices of rpeaks of the segment
- qrs_mask: mask of qrs complexes of the segment
- af_mask: mask of af episodes of the segment
- interval: interval ([start_idx, end_idx]) in the original ECG record of the segment
"""
assert not all([start_idx is None, end_idx is None]), "at least one of `start_idx` and `end_idx` should be set"
siglen = data.shape[1]
# offline augmentations are done, including strech-or-compress, ...
if self.config.stretch_compress != 0:
sign = DEFAULTS.RNG_sample(self.config.stretch_compress_choices, 1)[0]
if sign != 0:
sc_ratio = self.config.stretch_compress
sc_ratio = 1 + (DEFAULTS.RNG.uniform(sc_ratio / 4, sc_ratio) * sign) / 100
sc_len = int(round(sc_ratio * self.seglen))
if start_idx is not None:
end_idx = start_idx + sc_len
else:
start_idx = end_idx - sc_len
if end_idx > siglen:
end_idx = siglen
start_idx = max(0, end_idx - sc_len)
sc_ratio = (end_idx - start_idx) / self.seglen
aug_seg = data[..., start_idx:end_idx]
aug_seg = SS.resample(x=aug_seg, num=self.seglen, axis=1)
else:
if start_idx is not None:
end_idx = start_idx + self.seglen
if end_idx > siglen:
end_idx = siglen
start_idx = end_idx - self.seglen
else:
start_idx = end_idx - self.seglen
if start_idx < 0:
start_idx = 0
end_idx = self.seglen
# the segment of original signal, with no augmentation
aug_seg = data[..., start_idx:end_idx]
sc_ratio = 1
else:
if start_idx is not None:
end_idx = start_idx + self.seglen
if end_idx > siglen:
end_idx = siglen
start_idx = end_idx - self.seglen
else:
start_idx = end_idx - self.seglen
if start_idx < 0:
start_idx = 0
end_idx = self.seglen
aug_seg = data[..., start_idx:end_idx]
sc_ratio = 1
# adjust rpeaks
seg_rpeaks = self.reader.load_rpeaks(
rec=rec,
sampfrom=start_idx,
sampto=end_idx,
keep_original=False,
)
seg_rpeaks = [
int(round(r / sc_ratio))
for r in seg_rpeaks
if self.config.rpeaks_dist2border <= r < self.seglen - self.config.rpeaks_dist2border
]
# generate qrs_mask from rpeaks
seg_qrs_mask = np.zeros((self.seglen,), dtype=int)
for r in seg_rpeaks:
seg_qrs_mask[r - self.config.qrs_mask_bias : r + self.config.qrs_mask_bias] = 1
# adjust af_intervals
seg_af_intervals = self.reader.load_af_episodes(
rec=rec,
sampfrom=start_idx,
sampto=end_idx,
keep_original=False,
fmt="intervals",
)
seg_af_intervals = [[int(round(itv[0] / sc_ratio)), int(round(itv[1] / sc_ratio))] for itv in seg_af_intervals]
# generate af_mask from af_intervals
seg_af_mask = np.zeros((self.seglen,), dtype=int)
for itv in seg_af_intervals:
seg_af_mask[itv[0] : itv[1]] = 1
new_seg = CFG(
data=aug_seg,
rpeaks=seg_rpeaks,
qrs_mask=seg_qrs_mask,
af_mask=seg_af_mask,
interval=[start_idx, end_idx],
)
return new_seg
def __save_segments(self, rec: str, segments: List[CFG], update_segments_json: bool = False) -> None:
"""
Parameters
----------
rec: str,
filename of the record
segments: list of dict,
list of the segments (meta-)data
update_segments_json: bool, default False,
if True, the file `self.segments_json` will be updated
"""
subject = self.reader.get_subject_id(rec)
ordering = list(range(len(segments)))
DEFAULTS.RNG.shuffle(ordering)
for i, idx in enumerate(ordering):
seg = segments[idx]
filename = f"{rec}_{i:07d}.{self.segment_ext}".replace("data", "S")
data_path = self.segments_dirs.data[subject] / filename
savemat(str(data_path), {"ecg": seg.data})
self.__all_segments[subject].append(Path(filename).with_suffix(""))
ann_path = self.segments_dirs.ann[subject] / filename
savemat(
str(ann_path),
{
k: v
for k, v in seg.items()
if k
not in [
"data",
]
},
)
if update_segments_json:
self.segments_json.write_text(json.dumps(self.__all_segments, ensure_ascii=False))
def _clear_cached_segments(self, recs: Optional[Sequence[str]] = None) -> None:
"""
Parameters
----------
recs: sequence of str, optional
sequence of the records whose segments are to be cleared,
defaults to all records
"""
self.__assert_task(
[
"qrs_detection",
"main",
]
)
if recs is not None:
for rec in recs:
subject = self.reader.get_subject_id(rec)
for item in [
"data",
"ann",
]:
path = str(self.segments_dirs[item][subject])
for f in [n for n in os.listdir(path) if n.endswith(self.segment_ext)]:
if self._get_rec_name(f) == rec:
os.remove(os.path.join(path, f))
self.__all_segments[subject].remove(os.path.splitext(f)[0])
else:
for subject in self.reader.all_subjects:
for item in [
"data",
"ann",
]:
path = str(self.segments_dirs[item][subject])
for f in [n for n in os.listdir(path) if n.endswith(self.segment_ext)]:
os.remove(os.path.join(path, f))
self.__all_segments[subject].remove(os.path.splitext(f)[0])
self.segments = list_sum([self.__all_segments[subject] for subject in self.subjects])
def _slice_rr_seq(self, force_recompute: bool = False, verbose: int = 0) -> None:
"""
slice sequences of rr intervals into fixed length (sub)sequences
Parameters
----------
force_recompute: bool, default False,
if True, recompute regardless of possible existing files
verbose: int, default 0,
print verbosity
"""
self.__assert_task(["rr_lstm"])
if force_recompute:
self._clear_cached_rr_seq()
for idx, rec in enumerate(self.reader.all_records):
self._slice_rr_seq_one_record(
rec=rec,
force_recompute=False,
update_rr_seq_json=False,
verbose=verbose,
)
if verbose >= 1:
print(f"{idx+1}/{len(self.reader.all_records)} records", end="\r")
if force_recompute:
with open(self.rr_seq_json, "w") as f:
json.dump(self.__all_rr_seq, f)
def _slice_rr_seq_one_record(
self,
rec: str,
force_recompute: bool = False,
update_rr_seq_json: bool = False,
verbose: int = 0,
) -> None:
""" """
self.__assert_task(["rr_lstm"])
subject = self.reader.get_subject_id(rec)
rec_rr_seq = [item for item in self.__all_rr_seq[subject] if item.startswith(rec.replace("data", "R"))]
if (not force_recompute) and len(rec_rr_seq) > 0:
return
elif force_recompute:
self._clear_cached_rr_seq([rec])
forward_len = self.seglen - self.config[self.task].overlap_len
critical_forward_len = self.seglen - self.config[self.task].critical_overlap_len
critical_forward_len = [critical_forward_len - 2, critical_forward_len]
rpeaks = self.reader.load_rpeaks(rec)
rr = np.diff(rpeaks) / self.config.fs
if len(rr) < self.seglen:
return
af_mask = self.reader.load_af_episodes(rec, fmt="mask")
label_seq = af_mask[rpeaks][:-1]
# find critical points
critical_points = np.where(np.diff(label_seq) != 0)[0]
critical_points = [p for p in critical_points if critical_forward_len[1] <= p < len(rr) - critical_forward_len[1]]
rr_seq = []
# ordinary segments with constant forward_len
for idx in range((len(rr) - self.seglen) // forward_len + 1):
start_idx = idx * forward_len
end_idx = start_idx + self.seglen
new_rr_seq = CFG(
rr=rr[start_idx:end_idx],
label=label_seq[start_idx:end_idx],
interval=[start_idx, end_idx],
)
rr_seq.append(new_rr_seq)
# the tail segment
if end_idx < len(rr):
end_idx = len(rr)
start_idx = end_idx - self.seglen
new_rr_seq = CFG(
rr=rr[start_idx:end_idx],
label=label_seq[start_idx:end_idx],
interval=[start_idx, end_idx],
)
rr_seq.append(new_rr_seq)
# special segments around critical_points with random forward_len in critical_forward_len
for cp in critical_points:
start_idx = max(
0,
cp - self.seglen + DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1]),
)
while start_idx <= min(cp - critical_forward_len[1], len(rr) - self.seglen):
end_idx = start_idx + self.seglen
new_rr_seq = CFG(
rr=rr[start_idx:end_idx],
label=label_seq[start_idx:end_idx],
interval=[start_idx, end_idx],
)
rr_seq.append(new_rr_seq)
start_idx += DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1])
# save rr sequences
ordering = list(range(len(rr_seq)))
DEFAULTS.RNG.shuffle(ordering)
for i, idx in enumerate(ordering):
item = rr_seq[idx]
filename = f"{rec}_{i:07d}.{self.rr_seq_ext}".replace("data", "R")
data_path = self.rr_seq_dirs[subject] / filename
savemat(str(data_path), item)
self.__all_rr_seq[subject].append(Path(filename).with_suffix(""))
if update_rr_seq_json:
self.rr_seq_json.write_text(json.dumps(self.__all_rr_seq, ensure_ascii=False))
def _clear_cached_rr_seq(self, recs: Optional[Sequence[str]] = None) -> None:
"""
Parameters
----------
recs: sequence of str, optional
sequence of the records whose segments are to be cleared,
defaults to all records
"""
self.__assert_task(["rr_lstm"])
if recs is not None:
for rec in recs:
subject = self.reader.get_subject_id(rec)
path = str(self.rr_seq_dirs[subject])
for f in [n for n in os.listdir(path) if n.endswith(self.rr_seq_ext)]:
if self._get_rec_name(f) == rec:
os.remove(os.path.join(path, f))
self.__all_rr_seq[subject].remove(os.path.splitext(f)[0])
else:
for subject in self.reader.all_subjects:
path = str(self.rr_seq_dirs[subject])
for f in [n for n in os.listdir(path) if n.endswith(self.rr_seq_ext)]:
os.remove(os.path.join(path, f))
self.__all_rr_seq[subject].remove(os.path.splitext(f)[0])
self.rr_seq = list_sum([self.__all_rr_seq[subject] for subject in self.subjects])
def _get_rec_name(self, seg_or_rr: str) -> str:
"""
Parameters
----------
seg_or_rr: str,
name of the segment or rr_seq
Returns
-------
rec: str,
name of the record that `seg` was generated from
"""
rec = re.sub("[RS]", "data", os.path.splitext(seg_or_rr)[0])[:-8]
return rec
def _train_test_split(self, train_ratio: float = 0.8, force_recompute: bool = False) -> Dict[str, List[str]]:
"""
do train test split,
it is ensured that both the train and the test set contain all classes
Parameters
----------
train_ratio: float, default 0.8,
ratio of the train set in the whole dataset (or the whole tranche(s))
force_recompute: bool, default False,
if True, force redo the train-test split,
regardless of the existing ones stored in json files
Returns
-------
split_res: dict,
keys are "train" and "test",
values are list of the subjects split for training or validation
"""
start = time.time()
print("\nstart performing train test split...\n")
_train_ratio = int(train_ratio * 100)
_test_ratio = 100 - _train_ratio
assert _train_ratio * _test_ratio > 0
train_file = self.reader.db_dir_base / f"train_ratio_{_train_ratio}.json"
test_file = self.reader.db_dir_base / f"test_ratio_{_test_ratio}.json"
if force_recompute or not all([train_file.is_file(), test_file.is_file()]):
all_subjects = set(self.reader.df_stats.subject_id.tolist())
afp_subjects = set(self.reader.df_stats[self.reader.df_stats.label == "AFp"].subject_id.tolist())
aff_subjects = set(self.reader.df_stats[self.reader.df_stats.label == "AFf"].subject_id.tolist()) - afp_subjects
normal_subjects = all_subjects - afp_subjects - aff_subjects
test_set = (
DEFAULTS.RNG_sample(
list(afp_subjects),
max(1, int(round(len(afp_subjects) * _test_ratio / 100))),
).tolist()
+ DEFAULTS.RNG_sample(
list(aff_subjects),
max(1, int(round(len(aff_subjects) * _test_ratio / 100))),
).tolist()
+ DEFAULTS.RNG_sample(
list(normal_subjects),
max(1, int(round(len(normal_subjects) * _test_ratio / 100))),
).tolist()
)
train_set = list(all_subjects - set(test_set))
DEFAULTS.RNG.shuffle(test_set)
DEFAULTS.RNG.shuffle(train_set)
train_file.write_text(json.dumps(train_set, ensure_ascii=False))
test_file.write_text(json.dumps(test_set, ensure_ascii=False))
print(
nildent(
f"""
train set saved to \n\042{str(train_file)}\042
test set saved to \n\042{str(test_file)}\042
"""
)
)
else:
train_set = json.loads(train_file.read_text())
test_set = json.loads(test_file.read_text())
print(f"train test split finished in {(time.time()-start)/60:.2f} minutes")
split_res = CFG(
{
"train": train_set,
"test": test_set,
}
)
return split_res
def __assert_task(self, tasks: List[str]) -> None:
""" """
assert (
self.task in tasks
), f"DO NOT call this method when the current task is {self.task}. Switch task using `reset_task`"
def plot_seg(self, seg: str, ticks_granularity: int = 0) -> None:
"""
Parameters
----------
seg: str,
name of the segment, of pattern like "S_1_1_0000193"
ticks_granularity: int, default 0,
the granularity to plot axis ticks, the higher the more,
0 (no ticks) --> 1 (major ticks) --> 2 (major + minor ticks)
"""
seg_data = self._load_seg_data(seg)
print(f"seg_data.shape = {seg_data.shape}")
seg_ann = self._load_seg_ann(seg)
seg_ann["af_episodes"] = mask_to_intervals(seg_ann["af_mask"], vals=1)
print(f"seg_ann = {seg_ann}")
rec_name = self._get_rec_name(seg)
self.reader.plot(
rec=rec_name, # unnecessary indeed
data=seg_data,
ann=seg_ann,
ticks_granularity=ticks_granularity,
)
def extra_repr_keys(self) -> List[str]:
return [
"training",
"task",
"reader",
]
class FastDataReader(ReprMixin, Dataset):
""" """
def __init__(
self,
config: CFG,
task: str,
seg_ppm: PreprocManager,
file_dirs: dict,
files: List[str],
file_ext: str,
) -> None:
""" """
self.config = config
self.task = task
self.seg_ppm = seg_ppm
self.file_dirs = file_dirs
self.files = files
self.file_ext = file_ext
self.seglen = self.config[self.task].input_len
self.n_classes = len(self.config[task].classes)
self._seg_keys = {
"qrs_detection": "qrs_mask",
"main": "af_mask",
}
def __getitem__(self, index: int) -> Tuple[np.ndarray, ...]:
""" """
if self.task in [
"qrs_detection",
"main",
]:
seg_name = self.files[index]
subject = seg_name.split("_")[1]
seg_data_fp = self.file_dirs.data[subject] / f"{seg_name}.{self.file_ext}"
seg_data = loadmat(str(seg_data_fp))["ecg"]
for idx in range(seg_data.shape[0]):
seg_data[idx] = remove_spikes_naive(seg_data[idx])
seg_ann_fp = self.file_dirs.ann[subject] / f"{seg_name}.{self.file_ext}"
seg_label = loadmat(str(seg_ann_fp))[self._seg_keys[self.task]].reshape((self.seglen, -1))
if self.config[self.task].reduction > 1:
reduction = self.config[self.task].reduction
seg_len, n_classes = seg_label.shape
seg_label = np.stack(
arrays=[
np.mean(
seg_data[reduction * idx : reduction * (idx + 1)],
axis=0,
keepdims=True,
).astype(int)
for idx in range(seg_len // reduction)
],
axis=0,
).squeeze(axis=1)
seg_data, _ = self.seg_ppm(seg_data, self.config.fs)
if self.task == "main":
weight_mask = generate_weight_mask(
target_mask=seg_label.squeeze(-1),
fg_weight=2,
fs=self.config.fs,
reduction=self.config[self.task].reduction,
radius=0.8,
boundary_weight=5,
)[..., np.newaxis]
return seg_data, seg_label, weight_mask
return seg_data, seg_label, None
elif self.task in [
"rr_lstm",
]:
seq_name = self.files[index]
subject = seq_name.split("_")[1]
rr_seq_path = self.file_dirs[subject] / f"{seq_name}.{self.file_ext}"
rr_seq = loadmat(str(rr_seq_path))
rr_seq["rr"] = rr_seq["rr"].reshape((self.seglen, 1))
rr_seq["label"] = rr_seq["label"].reshape((self.seglen, self.n_classes))
weight_mask = generate_weight_mask(
target_mask=rr_seq["label"].squeeze(-1),
fg_weight=2,
fs=1 / 0.8,
reduction=1,
radius=2,
boundary_weight=5,
)[..., np.newaxis]
return rr_seq["rr"], rr_seq["label"], weight_mask
else:
raise NotImplementedError(f"data generator for task \042{self.task}\042 not implemented")
def __len__(self) -> int:
""" """
return len(self.files)
def extra_repr_keys(self) -> List[str]:
return [
"task",
"reader",
"ppm",
]
class StandaloneSegmentSlicer(ReprMixin, Dataset):
""" """
def __init__(
self,
reader: CR,
config: CFG,
task: str,
seg_ppm: PreprocManager,
allowed_preproc: List[str],
segment_ext: str,
preprocess_dir: str,
) -> None:
""" """
self.reader = reader
self.config = config
self.seg_ppm = seg_ppm
if self.config.torch_dtype == torch.float64:
self.dtype = np.float64
else:
self.dtype = np.float32
self.task = task
self.seglen = self.config[self.task].input_len
self.allowed_preproc = allowed_preproc
self.segment_ext = segment_ext
self.preprocess_dir = preprocess_dir
def __len__(self) -> int:
""" """
return len(self.reader.all_records)
def __getitem__(self, index: int) -> np.ndarray:
""" """
rec = self.reader.all_records[index]
data = self.load_preprocessed_data(rec)
siglen = data.shape[1]
rpeaks = self.reader.load_rpeaks(rec)
af_mask = self.reader.load_af_episodes(rec, fmt="mask")
forward_len = self.seglen - self.config[self.task].overlap_len
critical_forward_len = self.seglen - self.config[self.task].critical_overlap_len
critical_forward_len = [critical_forward_len // 4, critical_forward_len]
# skip those records that are too short
if siglen < self.seglen:
return
# find critical points
critical_points = np.where(np.diff(af_mask) != 0)[0]
critical_points = [p for p in critical_points if critical_forward_len[1] <= p < siglen - critical_forward_len[1]]
segments = []
# ordinary segments with constant forward_len
for idx in range((siglen - self.seglen) // forward_len + 1):
start_idx = idx * forward_len
new_seg = self.__generate_segment(
rec=rec,
data=data,
start_idx=start_idx,
)
segments.append(new_seg)
# the tail segment
new_seg = self.__generate_segment(
rec=rec,
data=data,
end_idx=siglen,
)
segments.append(new_seg)
# special segments around critical_points with random forward_len in critical_forward_len
for cp in critical_points:
start_idx = max(
0,
cp - self.seglen + DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1]),
)
while start_idx <= min(cp - critical_forward_len[1], siglen - self.seglen):
new_seg = self.__generate_segment(
rec=rec,
data=data,
start_idx=start_idx,
)
segments.append(new_seg)
start_idx += DEFAULTS.RNG_randint(critical_forward_len[0], critical_forward_len[1])
return segments
def __generate_segment(
self,
rec: str,
data: np.ndarray,
start_idx: Optional[int] = None,
end_idx: Optional[int] = None,
) -> CFG:
"""
generate segment, with possible data augmentation
Parameter
---------
rec: str,
filename of the record
data: ndarray,
the whole of (preprocessed) ECG record
start_idx: int, optional,
start index of the signal of `rec` for generating the segment
end_idx: int, optional,
end index of the signal of `rec` for generating the segment,
if `start_idx` is set, `end_idx` is ignored,
at least one of `start_idx` and `end_idx` should be set
Returns
-------
new_seg: dict,
segments (meta-)data, containing:
- data: values of the segment, with units in mV
- rpeaks: indices of rpeaks of the segment
- qrs_mask: mask of qrs complexes of the segment
- af_mask: mask of af episodes of the segment
- interval: interval ([start_idx, end_idx]) in the original ECG record of the segment
"""
assert not all([start_idx is None, end_idx is None]), "at least one of `start_idx` and `end_idx` should be set"
siglen = data.shape[1]
# offline augmentations are done, including strech-or-compress, ...
if self.config.stretch_compress != 0:
sign = DEFAULTS.RNG_sample(self.config.stretch_compress_choices, 1)[0]
if sign != 0:
sc_ratio = self.config.stretch_compress
sc_ratio = 1 + (DEFAULTS.RNG.uniform(sc_ratio / 4, sc_ratio) * sign) / 100
sc_len = int(round(sc_ratio * self.seglen))
if start_idx is not None:
end_idx = start_idx + sc_len
else:
start_idx = end_idx - sc_len
if end_idx > siglen:
end_idx = siglen
start_idx = max(0, end_idx - sc_len)
sc_ratio = (end_idx - start_idx) / self.seglen
aug_seg = data[..., start_idx:end_idx]
aug_seg = SS.resample(x=aug_seg, num=self.seglen, axis=1)
else:
if start_idx is not None:
end_idx = start_idx + self.seglen
if end_idx > siglen:
end_idx = siglen
start_idx = end_idx - self.seglen
else:
start_idx = end_idx - self.seglen
if start_idx < 0:
start_idx = 0
end_idx = self.seglen
# the segment of original signal, with no augmentation
aug_seg = data[..., start_idx:end_idx]
sc_ratio = 1
else:
if start_idx is not None:
end_idx = start_idx + self.seglen
if end_idx > siglen:
end_idx = siglen
start_idx = end_idx - self.seglen
else:
start_idx = end_idx - self.seglen
if start_idx < 0:
start_idx = 0
end_idx = self.seglen
aug_seg = data[..., start_idx:end_idx]
sc_ratio = 1
# adjust rpeaks
seg_rpeaks = self.reader.load_rpeaks(
rec=rec,
sampfrom=start_idx,
sampto=end_idx,
keep_original=False,
)
seg_rpeaks = [
int(round(r / sc_ratio))
for r in seg_rpeaks
if self.config.rpeaks_dist2border <= r < self.seglen - self.config.rpeaks_dist2border
]
# generate qrs_mask from rpeaks
seg_qrs_mask = np.zeros((self.seglen,), dtype=int)
for r in seg_rpeaks:
seg_qrs_mask[r - self.config.qrs_mask_bias : r + self.config.qrs_mask_bias] = 1
# adjust af_intervals
seg_af_intervals = self.reader.load_af_episodes(
rec=rec,
sampfrom=start_idx,
sampto=end_idx,
keep_original=False,
fmt="intervals",
)
seg_af_intervals = [[int(round(itv[0] / sc_ratio)), int(round(itv[1] / sc_ratio))] for itv in seg_af_intervals]
# generate af_mask from af_intervals
seg_af_mask = np.zeros((self.seglen,), dtype=int)
for itv in seg_af_intervals:
seg_af_mask[itv[0] : itv[1]] = 1
new_seg = CFG(
data=aug_seg,
rpeaks=seg_rpeaks,
qrs_mask=seg_qrs_mask,
af_mask=seg_af_mask,
interval=[start_idx, end_idx],
)
return new_seg
def load_preprocessed_data(self, rec: str) -> np.ndarray:
"""
Parameters
----------
rec: str,
filename of the record
Returns
-------
p_sig: ndarray,
the pre-computed processed ECG
"""
preproc = self.allowed_preproc
suffix = _get_rec_suffix(preproc)
fp = self.preprocess_dir / f"{rec}-{suffix}.{self.segment_ext}"
if not fp.exists():
raise FileNotFoundError(f"preprocess(es) \042{preproc}\042 not done for {rec} yet")
p_sig = loadmat(fp)["ecg"]
if p_sig.shape[0] != 2:
p_sig = p_sig.T
return p_sig
def extra_repr_keys(self) -> List[str]:
return [
"task",
"reader",
"seg_ppm",
]
def _get_rec_suffix(operations: List[str]) -> str:
"""
Parameters
----------
operations: list of str,
names of operations to perform (or has performed),
Returns
-------
suffix: str,
suffix of the filename of the preprocessed ecg signal
"""
suffix = "-".join(sorted([item.lower() for item in operations]))
return suffix