[43a874]: / EEGLearn / train.py

Download this file

356 lines (285 with data), 16.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Yang Wang
## School of Automation, Huazhong University of Science & Technology (HUST)
## wangyang_sky@hust.edu.cn
## Copyright (c) 2018
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#coding:utf-8
import os
import tensorflow as tf
import numpy as np
import scipy.io
import time
import datetime
from utils import reformatInput, load_or_generate_images, iterate_minibatches
from model import build_cnn, build_convpool_conv1d, build_convpool_lstm, build_convpool_mix
timestamp = datetime.datetime.now().strftime('%Y-%m-%d.%H.%M')
log_path = os.path.join("runs", timestamp)
model_type = '1dconv' # ['1dconv', 'maxpool', 'lstm', 'mix', 'cnn']
log_path = log_path + '_' + model_type
batch_size = 32
dropout_rate = 0.5
input_shape = [32, 32, 3] # 1024
nb_class = 4
n_colors = 3
# whether to train cnn first, and load its weight for multi-frame model
reuse_cnn_flag = False
# learning_rate for different models
lrs = {
'cnn': 1e-3,
'1dconv': 1e-4,
'lstm': 1e-4,
'mix': 1e-4,
}
weight_decay = 1e-4
learning_rate = lrs[model_type] / 32 * batch_size
optimizer = tf.train.AdamOptimizer
num_epochs = 60
def train(images, labels, fold, model_type, batch_size, num_epochs, subj_id=0, reuse_cnn=False,
dropout_rate=dropout_rate ,learning_rate_default=1e-3, Optimizer=tf.train.AdamOptimizer, log_path=log_path):
"""
A sample training function which loops over the training set and evaluates the network
on the validation set after each epoch. Evaluates the network on the training set
whenever the
:param images: input images
:param labels: target labels
:param fold: tuple of (train, test) index numbers
:param model_type: model type ('cnn', '1dconv', 'lstm', 'mix')
:param batch_size: batch size for training
:param num_epochs: number of epochs of dataset to go over for training
:param subj_id: the id of fold for storing log and the best model
:param reuse_cnn: whether to train cnn first, and load its weight for multi-frame model
:return: none
"""
with tf.name_scope('Inputs'):
input_var = tf.placeholder(tf.float32, [None, None, 32, 32, n_colors], name='X_inputs')
target_var = tf.placeholder(tf.int64, [None], name='y_inputs')
tf_is_training = tf.placeholder(tf.bool, None, name='is_training')
num_classes = len(np.unique(labels))
(X_train, y_train), (X_val, y_val), (X_test, y_test) = reformatInput(images, labels, fold)
print('Train set label and proportion:\t', np.unique(y_train, return_counts=True))
print('Val set label and proportion:\t', np.unique(y_val, return_counts=True))
print('Test set label and proportion:\t', np.unique(y_test, return_counts=True))
print('The shape of X_trian:\t', X_train.shape)
print('The shape of X_val:\t', X_val.shape)
print('The shape of X_test:\t', X_test.shape)
print("Building model and compiling functions...")
if model_type == '1dconv':
network = build_convpool_conv1d(input_var, num_classes, train=tf_is_training,
dropout_rate=dropout_rate, name='CNN_Conv1d'+'_sbj'+str(subj_id))
elif model_type == 'lstm':
network = build_convpool_lstm(input_var, num_classes, 100, train=tf_is_training,
dropout_rate=dropout_rate, name='CNN_LSTM'+'_sbj'+str(subj_id))
elif model_type == 'mix':
network = build_convpool_mix(input_var, num_classes, 100, train=tf_is_training,
dropout_rate=dropout_rate, name='CNN_Mix'+'_sbj'+str(subj_id))
elif model_type == 'cnn':
with tf.name_scope(name='CNN_layer'+'_fold'+str(subj_id)):
network = build_cnn(input_var) # output shape [None, 4, 4, 128]
convpool_flat = tf.reshape(network, [-1, 4*4*128])
h_fc1_drop1 = tf.layers.dropout(convpool_flat, rate=dropout_rate, training=tf_is_training, name='dropout_1')
h_fc1 = tf.layers.dense(h_fc1_drop1, 256, activation=tf.nn.relu, name='fc_relu_256')
h_fc1_drop2 = tf.layers.dropout(h_fc1, rate=dropout_rate, training=tf_is_training, name='dropout_2')
network = tf.layers.dense(h_fc1_drop2, num_classes, name='fc_softmax')
# the loss function contains the softmax activation
else:
raise ValueError("Model not supported ['1dconv', 'maxpool', 'lstm', 'mix', 'cnn']")
Train_vars = tf.trainable_variables()
prediction = network
with tf.name_scope('Loss'):
l2_loss = tf.add_n([tf.nn.l2_loss(v) for v in Train_vars if 'kernel' in v.name])
ce_loss = tf.losses.sparse_softmax_cross_entropy(labels=target_var, logits=prediction)
_loss = ce_loss + weight_decay*l2_loss
# decay_steps learning rate decay
decay_steps = 3*(len(y_train)//batch_size) # len(X_train)//batch_size the training steps for an epcoh
with tf.name_scope('Optimizer'):
# learning_rate = learning_rate_default * Decay_rate^(global_steps/decay_steps)
global_steps = tf.Variable(0, name="global_step", trainable=False)
learning_rate = tf.train.exponential_decay( # learning rate decay
learning_rate_default, # Base learning rate.
global_steps,
decay_steps,
0.95, # Decay rate.
staircase=True)
optimizer = Optimizer(learning_rate) # GradientDescentOptimizer AdamOptimizer
train_op = optimizer.minimize(_loss, global_step=global_steps, var_list=Train_vars)
with tf.name_scope('Accuracy'):
prediction = tf.argmax(prediction, axis=1)
correct_prediction = tf.equal(prediction, target_var)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
# Output directory for models and summaries
# choose different path for different model and subject
out_dir = os.path.abspath(os.path.join(os.path.curdir, log_path, (model_type+'_'+str(subj_id)) ))
print("Writing to {}\n".format(out_dir))
# Summaries for loss, accuracy and learning_rate
loss_summary = tf.summary.scalar('loss', _loss)
acc_summary = tf.summary.scalar('train_acc', accuracy)
lr_summary = tf.summary.scalar('learning_rate', learning_rate)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, acc_summary, lr_summary])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, tf.get_default_graph())
# Dev summaries
dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, tf.get_default_graph())
# Test summaries
test_summary_op = tf.summary.merge([loss_summary, acc_summary])
test_summary_dir = os.path.join(out_dir, "summaries", "test")
test_summary_writer = tf.summary.FileWriter(test_summary_dir, tf.get_default_graph())
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, model_type)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
if model_type != 'cnn' and reuse_cnn:
# saver for reuse the CNN weight
reuse_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='VGG_NET_CNN')
original_saver = tf.train.Saver(reuse_vars) # Pass the variables as a list
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
print("Starting training...")
total_start_time = time.time()
best_validation_accu = 0
init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
with tf.Session() as sess:
sess.run(init_op)
if model_type != 'cnn' and reuse_cnn:
cnn_model_path = os.path.abspath(
os.path.join(
os.path.curdir, log_path, ('cnn_'+str(subj_id)), 'checkpoints' ))
cnn_model_path = tf.train.latest_checkpoint(cnn_model_path)
print('-'*20)
print('Load cnn model weight for multi-frame model from {}'.format(cnn_model_path))
original_saver.restore(sess, cnn_model_path)
stop_count = 0 # count for earlystopping
for epoch in range(num_epochs):
print('-'*50)
# Train set
train_err = train_acc = train_batches = 0
start_time = time.time()
for batch in iterate_minibatches(X_train, y_train, batch_size, shuffle=False):
inputs, targets = batch
summary, _, pred, loss, acc = sess.run([train_summary_op, train_op, prediction, _loss, accuracy],
{input_var: inputs, target_var: targets, tf_is_training: True})
train_acc += acc
train_err += loss
train_batches += 1
train_summary_writer.add_summary(summary, sess.run(global_steps))
av_train_err = train_err / train_batches
av_train_acc = train_acc / train_batches
# Val set
summary, pred, av_val_err, av_val_acc = sess.run([dev_summary_op, prediction, _loss, accuracy],
{input_var: X_val, target_var: y_val, tf_is_training: False})
dev_summary_writer.add_summary(summary, sess.run(global_steps))
print("Epoch {} of {} took {:.3f}s".format(
epoch + 1, num_epochs, time.time() - start_time))
fmt_str = "Train \tEpoch [{:d}/{:d}] train_Loss: {:.4f}\ttrain_Acc: {:.2f}"
print_str = fmt_str.format(epoch + 1, num_epochs, av_train_err, av_train_acc*100)
print(print_str)
fmt_str = "Val \tEpoch [{:d}/{:d}] val_Loss: {:.4f}\tval_Acc: {:.2f}"
print_str = fmt_str.format(epoch + 1, num_epochs, av_val_err, av_val_acc*100)
print(print_str)
# Test set
summary, pred, av_test_err, av_test_acc = sess.run([test_summary_op, prediction, _loss, accuracy],
{input_var: X_test, target_var: y_test, tf_is_training: False})
test_summary_writer.add_summary(summary, sess.run(global_steps))
fmt_str = "Test \tEpoch [{:d}/{:d}] test_Loss: {:.4f}\ttest_Acc: {:.2f}"
print_str = fmt_str.format(epoch + 1, num_epochs, av_test_err, av_test_acc*100)
print(print_str)
if av_val_acc > best_validation_accu: # early_stoping
stop_count = 0
eraly_stoping_epoch = epoch
best_validation_accu = av_val_acc
test_acc_val = av_test_acc
saver.save(sess, checkpoint_prefix, global_step=sess.run(global_steps))
else:
stop_count += 1
if stop_count >= 10: # stop training if val_acc dose not imporve for over 10 epochs
break
train_batches = train_acc = 0
for batch in iterate_minibatches(X_train, y_train, batch_size, shuffle=False):
inputs, targets = batch
acc = sess.run(accuracy, {input_var: X_train, target_var: y_train, tf_is_training: False})
train_acc += acc
train_batches += 1
last_train_acc = train_acc / train_batches
last_val_acc = av_val_acc
last_test_acc = av_test_acc
print('-'*50)
print('Time in total:', time.time()-total_start_time)
print("Best validation accuracy:\t\t{:.2f} %".format(best_validation_accu * 100))
print("Test accuracy when got the best validation accuracy:\t\t{:.2f} %".format(test_acc_val * 100))
print('-'*50)
print("Last train accuracy:\t\t{:.2f} %".format(last_train_acc * 100))
print("Last validation accuracy:\t\t{:.2f} %".format(last_val_acc * 100))
print("Last test accuracy:\t\t\t\t{:.2f} %".format(last_test_acc * 100))
print('Early Stopping at epoch: {}'.format(eraly_stoping_epoch+1))
train_summary_writer.close()
dev_summary_writer.close()
test_summary_writer.close()
return [last_train_acc, best_validation_accu, test_acc_val, last_val_acc, last_test_acc]
def train_all_model(num_epochs=3000):
nums_subject = 13
# Leave-Subject-Out cross validation
subj_nums = np.squeeze(scipy.io.loadmat('../SampleData/trials_subNums.mat')['subjectNum'])
fold_pairs = []
for i in np.unique(subj_nums):
ts = subj_nums == i
tr = np.squeeze(np.nonzero(np.bitwise_not(ts)))
ts = np.squeeze(np.nonzero(ts))
np.random.shuffle(tr)
np.random.shuffle(ts)
fold_pairs.append((tr, ts))
images_average, images_timewin, labels = load_or_generate_images(
file_path='../SampleData/', average_image=3)
print('*'*200)
acc_buf = []
for subj_id in range(nums_subject):
print('-'*100)
if model_type == 'cnn':
print('The subjects', subj_id, '\t\t Training the ' + 'cnn' + ' Model...')
acc_temp = train(images_average, labels, fold_pairs[subj_id], 'cnn',
batch_size=batch_size, num_epochs=num_epochs, subj_id=subj_id,
learning_rate_default=lrs['cnn'], Optimizer=optimizer, log_path=log_path)
acc_buf.append(acc_temp)
tf.reset_default_graph()
print('Done!')
else:
# whether to train cnn first, and load its weight for multi-frame model
if reuse_cnn_flag is True:
print('The subjects', subj_id, '\t\t Training the ' + 'cnn' + ' Model...')
acc_temp = train(images_average, labels, fold_pairs[subj_id], 'cnn',
batch_size=batch_size, num_epochs=num_epochs, subj_id=subj_id,
learning_rate_default=lrs['cnn'], Optimizer=optimizer, log_path=log_path)
# acc_buf.append(acc_temp)
tf.reset_default_graph()
print('Done!')
print('The subjects', subj_id, '\t\t Training the ' + model_type + ' Model...')
print('Load the CNN model weight for backbone...')
acc_temp = train(images_timewin, labels, fold_pairs[subj_id], model_type,
batch_size=batch_size, num_epochs=num_epochs, subj_id=subj_id, reuse_cnn=reuse_cnn_flag,
learning_rate_default=learning_rate, Optimizer=optimizer, log_path=log_path)
acc_buf.append(acc_temp)
tf.reset_default_graph()
print('Done!')
# return
print('All folds for {} are done!'.format(model_type))
acc_buf = (np.array(acc_buf)).T
acc_mean = np.mean(acc_buf, axis=1).reshape(-1, 1)
acc_buf = np.concatenate([acc_buf, acc_mean], axis=1)
# the last column is the mean of current row
print('Last_train_acc:\t', acc_buf[0], '\tmean :', np.mean(acc_buf[0][-1]))
print('Best_val_acc:\t', acc_buf[1], '\tmean :', np.mean(acc_buf[1][-1]))
print('Earlystopping_test_acc:\t', acc_buf[2], '\tmean :', np.mean(acc_buf[2][-1]))
print('Last_val_acc:\t', acc_buf[3], '\tmean :', np.mean(acc_buf[3][-1]))
print('Last_test_acc:\t', acc_buf[4], '\tmean :', np.mean(acc_buf[4][-1]))
np.savetxt('./Accuracy_{}.csv'.format(model_type), acc_buf, fmt='%.4f', delimiter=',')
if __name__ == '__main__':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
np.random.seed(2018)
tf.set_random_seed(2018)
train_all_model(num_epochs=num_epochs)