[117083]: / EEGLearn / model.py

Download this file

225 lines (190 with data), 12.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
## Created by: Yang Wang
## School of Automation, Huazhong University of Science & Technology (HUST)
## wangyang_sky@hust.edu.cn
## Copyright (c) 2018
##
## This source code is licensed under the MIT-style license found in the
## LICENSE file in the root directory of this source tree
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
#coding:utf-8
import tensorflow as tf
def my_conv2d(inputs, filters, kernel_size, strides=(1, 1), padding='same', activation=None, name=None, reuse=None):
return tf.layers.conv2d(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, activation=activation,
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1), bias_initializer=tf.constant_initializer(0.1), name=name, reuse=reuse)
def build_cnn(input_image=None, image_size=32, n_colors=3, activation_function=tf.nn.relu, reuse=None, name='VGG_NET_CNN'):
# VGG_NET 32 # [samples, W, H, colors]
with tf.variable_scope(name, reuse=reuse):
input_image = tf.reshape(input_image, shape=[-1, image_size, image_size, n_colors], name='Reshape_inputs')
# layer_1 # 4个3*3*32
h_conv1_1 = my_conv2d(input_image, filters=32, kernel_size=(3,3), activation=activation_function, name='conv1_1')
h_conv1_2 = my_conv2d(h_conv1_1, filters=32, kernel_size=(3,3), activation=activation_function, name='conv1_2')
h_conv1_3 = my_conv2d(h_conv1_2, filters=32, kernel_size=(3,3), activation=activation_function, name='conv1_3')
h_conv1_4 = my_conv2d(h_conv1_3, filters=32, kernel_size=(3,3), activation=activation_function, name='conv1_4')
h_pool1 = tf.layers.max_pooling2d(h_conv1_4, pool_size=(2,2), strides=(2,2), padding='same', name='max_pooling_1') # shape is (None, 16, 16, 32)
# layer_2
h_conv2_1 = my_conv2d(h_pool1, filters=64, kernel_size=(3,3), activation=activation_function, name='conv2_1')
h_conv2_2 = my_conv2d(h_conv2_1, filters=64, kernel_size=(3,3), activation=activation_function, name='conv2_2')
h_pool2 = tf.layers.max_pooling2d(h_conv2_2, pool_size=(2,2), strides=(2,2), padding='same', name='max_pooling_2') # shape is (None, 8, 8, 64)
# layer_3
h_conv3_1 = my_conv2d(h_pool2, filters=128, kernel_size=(3,3), activation=activation_function, name='conv3_1')
h_pool3 = tf.layers.max_pooling2d(h_conv3_1, pool_size=(2,2), strides=(2,2), padding='same', name='max_pooling_3') # shape is (None, 4, 4, 128)
return h_pool3
def build_convpool_max(input_image, nb_classes, image_size=32, n_colors=3,
n_timewin=7, dropout_rate=0.5, name='CNN_Max', train=True, reuse=False):
"""
Builds the complete network with maxpooling layer in time.
:param input_image: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param image_size: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
with tf.name_scope(name):
with tf.name_scope('Parallel_CNNs'):
convnets = []
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i==0:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=reuse)
else:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=True)
convnets.append(convnet) # list contains [None, 4, 4, 128]
convnets = tf.stack(convnets) # [n_timewin, nSamples, 4, 4, 128]
convnets = tf.transpose(convnets, [1,0,2,3,4]) # [nSamples, n_timewin, 4, 4, 128]
with tf.variable_scope('Max_pooling_over_flames'):
# convpooling using Max pooling over frames
convnets = tf.reshape(convnets, shape=[ -1, n_timewin, 4*4*128, 1])
convpool = tf.nn.max_pool(convnets, # [nSamples, 1,4*4*128, 1]
ksize=[1, n_timewin, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name='convpool_max')
convpool_flat = tf.reshape(convpool, [-1, 4*4*128])
h_fc1_drop1 = tf.layers.dropout(convpool_flat, rate=dropout_rate, training=train, name='dropout_1')
# input shape [batch, 4*4*128] output shape [batch, 512]
h_fc1 = tf.layers.dense(h_fc1_drop1, 512, activation=tf.nn.relu, name='fc_relu_512')
# dropout
h_fc1_drop2 = tf.layers.dropout(h_fc1, rate=dropout_rate, training=train, name='dropout_2')
# inputshape [batch, 512] output shape [batch, nb_classes] # the loss function contains the softmax activation
prediction = tf.layers.dense(h_fc1_drop2, nb_classes, name='fc_softmax')
return prediction
def build_convpool_conv1d(input_image, nb_classes, image_size=32, n_colors=3,
n_timewin=7, dropout_rate=0.5, name='CNN_Conv1d', train=True, reuse=False):
"""
Builds the complete network with 1D-conv layer to integrate time from sequences of EEG images.
:param input_image: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param image_size: size of the input image (assumes a square input)S
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
with tf.name_scope(name):
with tf.name_scope('Parallel_CNNs'):
convnets = []
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i==0:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=reuse)
else:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=True)
convnets.append(convnet)
convnets = tf.stack(convnets)
convnets = tf.transpose(convnets, [1,0,2,3,4])
with tf.variable_scope('Conv1d_over_flames'):
convnets = tf.reshape(convnets, shape=[ -1, n_timewin, 4*4*128, 1])
convpool = my_conv2d(convnets, filters=64, kernel_size=(3, 4*4*128), strides=(1, 1), padding='valid', activation=tf.nn.relu, name='convpool_conv1d')
with tf.variable_scope('Output_layers'):
convpool_flat = tf.reshape(convpool, [-1, (n_timewin-2)*64])
h_fc1_drop1 = tf.layers.dropout(convpool_flat, rate=dropout_rate, training=train, name='dropout_1')
h_fc1 = tf.layers.dense(h_fc1_drop1, 256, activation=tf.nn.relu, name='fc_relu_256')
h_fc1_drop2 = tf.layers.dropout(h_fc1, rate=dropout_rate, training=train, name='dropout_2')
prediction = tf.layers.dense(h_fc1_drop2, nb_classes, name='fc_softmax')
return prediction
def build_convpool_lstm(input_image, nb_classes, grad_clip=110, image_size=32, n_colors=3,
n_timewin=7, dropout_rate=0.5, num_units=128, batch_size=32, name='CNN_LSTM', train=True, reuse=False):
"""
Builds the complete network with LSTM layer to integrate time from sequences of EEG images.
:param input_image: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param grad_clip: the gradient messages are clipped to the given value during
the backward pass.
:param image_size: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:param num_units: number of units in the LSTMCell
:return: a pointer to the output of last layer
"""
with tf.name_scope(name):
with tf.name_scope('Parallel_CNNs'):
convnets = []
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i==0:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=reuse)
else:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=True)
convnets.append(convnet)
convnets = tf.stack(convnets)
convnets = tf.transpose(convnets, [1,0,2,3,4]) # 调换轴 shape: (nSamples, n_timewin, 4, 4, 128)
with tf.variable_scope('LSTM_layer'):
# (nSamples, n_timewin, 4, 4, 128) ==> (nSamples, n_timewin, 4*4*128)
convnets = tf.reshape(convnets, shape=[-1, n_timewin, 4*4*128], name='Reshape_for_lstm')
#lstm cell inputs:[batchs, time_steps, 4*4*128]
with tf.variable_scope('LSTM_Cell'):
lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=num_units, forget_bias=1.0, state_is_tuple=True)
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, convnets, dtype=tf.float32, time_major=False)
# outputs.shape is (batch_size, time_steps, num_units)
outputs = tf.transpose(outputs, [1,0,2]) # (time_steps, batch_size, num_units)
outputs = outputs[-1]
with tf.variable_scope('Output_layers'):
h_fc1_drop1 = tf.layers.dropout(outputs, rate=dropout_rate, training=train, name='dropout_1')
h_fc1 = tf.layers.dense(h_fc1_drop1, 256, activation=tf.nn.relu, name='fc_relu_256')
h_fc1_drop2 = tf.layers.dropout(h_fc1, rate=dropout_rate, training=train, name='dropout_2')
prediction = tf.layers.dense(h_fc1_drop2, nb_classes, name='fc_softmax')
return prediction
def build_convpool_mix(input_image, nb_classes, grad_clip=110, image_size=32, n_colors=3,
n_timewin=7, dropout_rate=0.5, num_units=128, batch_size=32, name='CNN_Mix', train=True, reuse=False):
"""
Builds the complete network with LSTM and 1D-conv layers combined
:param input_image: list of EEG images (one image per time window)
:param nb_classes: number of classes
:param grad_clip: the gradient messages are clipped to the given value during
the backward pass.
:param imsize: size of the input image (assumes a square input)
:param n_colors: number of color channels in the image
:param n_timewin: number of time windows in the snippet
:return: a pointer to the output of last layer
"""
with tf.name_scope(name):
with tf.name_scope('Parallel_CNNs'):
convnets = []
# Build 7 parallel CNNs with shared weights
for i in range(n_timewin):
if i==0:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=reuse)
else:
convnet = build_cnn(input_image[i],image_size=image_size,n_colors=n_colors, reuse=True)
convnets.append(convnet)
convnets = tf.stack(convnets)
convnets = tf.transpose(convnets, [1,0,2,3,4])
with tf.variable_scope('Conv1d_over_flames'):
convpool = tf.reshape(convnets, shape=[ -1, n_timewin, 4*4*128, 1])
convpool = my_conv2d(convpool, filters=64, kernel_size=(3, 4*4*128), strides=(1, 1), padding='valid', activation=tf.nn.relu, name='convpool_conv1d')
conv1d_out = tf.reshape(convpool, [-1, (n_timewin-2)*64])
with tf.variable_scope('LSTM_layer'):
# (nSamples, n_timewin, 4, 4, 128) ==> (nSamples, n_timewin, 4*4*128)
convnets = tf.reshape(convnets, shape=[-1, n_timewin, 4*4*128], name='Reshape_for_lstm')
#lstm cell inputs:[batchs, time_steps, 4*4*128]
with tf.variable_scope('LSTM_Cell'):
lstm_cell = tf.contrib.rnn.BasicLSTMCell(num_units=num_units, forget_bias=1.0, state_is_tuple=True)
outputs, final_state = tf.nn.dynamic_rnn(lstm_cell, convnets, dtype=tf.float32, time_major=False)
# outputs.shape is (batch_size, time_steps, num_units)
outputs = tf.transpose(outputs, [1,0,2])
lstm_out = outputs[-1]
with tf.variable_scope('Output_layers'):
dense_in = tf.concat((conv1d_out, lstm_out), axis=1, name='concat_conv1d_lstm') # shape [batch, (n_timewin-2)*64+num_units]
h_fc1_drop1 = tf.layers.dropout(dense_in, rate=dropout_rate, training=train, name='dropout_1')
h_fc1 = tf.layers.dense(h_fc1_drop1, 512, activation=tf.nn.relu, name='fc_relu_512')
h_fc1_drop2 = tf.layers.dropout(h_fc1, rate=dropout_rate, training=train, name='dropout_2')
prediction = tf.layers.dense(h_fc1_drop2, nb_classes, name='fc_softmax')
return prediction