|
a |
|
b/pyeeg/hurst.py |
|
|
1 |
import numpy |
|
|
2 |
|
|
|
3 |
|
|
|
4 |
def hurst(X): |
|
|
5 |
""" Compute the Hurst exponent of X. If the output H=0.5,the behavior |
|
|
6 |
of the time-series is similar to random walk. If H<0.5, the time-series |
|
|
7 |
cover less "distance" than a random walk, vice verse. |
|
|
8 |
|
|
|
9 |
Parameters |
|
|
10 |
---------- |
|
|
11 |
|
|
|
12 |
X |
|
|
13 |
|
|
|
14 |
list |
|
|
15 |
|
|
|
16 |
a time series |
|
|
17 |
|
|
|
18 |
Returns |
|
|
19 |
------- |
|
|
20 |
H |
|
|
21 |
|
|
|
22 |
float |
|
|
23 |
|
|
|
24 |
Hurst exponent |
|
|
25 |
|
|
|
26 |
Notes |
|
|
27 |
-------- |
|
|
28 |
Author of this function is Xin Liu |
|
|
29 |
|
|
|
30 |
Examples |
|
|
31 |
-------- |
|
|
32 |
|
|
|
33 |
>>> import pyeeg |
|
|
34 |
>>> from numpy.random import randn |
|
|
35 |
>>> a = randn(4096) |
|
|
36 |
>>> pyeeg.hurst(a) |
|
|
37 |
0.5057444 |
|
|
38 |
|
|
|
39 |
""" |
|
|
40 |
X = numpy.array(X) |
|
|
41 |
N = X.size |
|
|
42 |
T = numpy.arange(1, N + 1) |
|
|
43 |
Y = numpy.cumsum(X) |
|
|
44 |
Ave_T = Y / T |
|
|
45 |
|
|
|
46 |
S_T = numpy.zeros(N) |
|
|
47 |
R_T = numpy.zeros(N) |
|
|
48 |
|
|
|
49 |
for i in range(N): |
|
|
50 |
S_T[i] = numpy.std(X[:i + 1]) |
|
|
51 |
X_T = Y - T * Ave_T[i] |
|
|
52 |
R_T[i] = numpy.ptp(X_T[:i + 1]) |
|
|
53 |
|
|
|
54 |
R_S = R_T / S_T |
|
|
55 |
R_S = numpy.log(R_S)[1:] |
|
|
56 |
n = numpy.log(T)[1:] |
|
|
57 |
A = numpy.column_stack((n, numpy.ones(n.size))) |
|
|
58 |
[m, c] = numpy.linalg.lstsq(A, R_S)[0] |
|
|
59 |
H = m |
|
|
60 |
return H |