'''
Training script for ecg classification
'''
from __future__ import print_function
import os
import cv2
import json
import time
import torch
import random
import shutil
import argparse
import numpy as np
import torch.nn as nn
import models as models
import torch.nn.parallel
import torch.optim as optim
import sklearn.metrics as skm
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import matplotlib.pyplot as plt
from tqdm import tqdm
from sklearn.metrics import roc_curve, auc
from utils import Logger, AverageMeter, accuracy, mkdir_p, savefig
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ECG LSTM Training for Physionet2017')
# Datasets
parser.add_argument('-dt', '--dataset', default='phy2017', type=str)
parser.add_argument('-ft', '--transformation', type=str)
parser.add_argument('-d', '--data', default='path to dataset', type=str)
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
# Optimization options
parser.add_argument('--epochs', default=300, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--train-batch', default=300, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--test-batch', default=150, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--drop', '--dropout', default=0, type=float,
metavar='Dropout', help='Dropout ratio')
parser.add_argument('--schedule', type=int, nargs='+', default=[150, 225],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('-c', '--checkpoint', default='checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Architecture
parser.add_argument('--depth', type=int, default=110, help='Model depth.')
parser.add_argument('--block-name', type=str, default='BasicBlock',
help='the building block for Resnet and Preresnet: BasicBlock, Bottleneck (default: '
'Basicblock for ecg)')
parser.add_argument('--cardinality', type=int, default=8, help='Model cardinality (group).')
parser.add_argument('--widen-factor', type=int, default=4, help='Widen factor. 4 -> 64, 8 -> 128, ...')
parser.add_argument('--growthRate', type=int, default=12, help='Growth rate for DenseNet.')
parser.add_argument('--compressionRate', type=int, default=2, help='Compression Rate (theta) for DenseNet.')
# Miscs
parser.add_argument('--manualSeed', type=int, help='manual seed')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', default=False,
help='evaluate model on validation set')
# Device options
parser.add_argument('--gpu-id', default='1', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
# Validate dataset
assert args.dataset == 'phy2017', 'Dataset can only be if not args.evaluate:ecg.'
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
best_acc = 0 # best test accuracy
class Ecg_loader(torch.utils.data.Dataset):
def __init__(self, path, transform):
super(Ecg_loader, self).__init__()
with open(os.path.join(path, 'ecg_labels.json')) as j_file:
json_data = json.load(j_file)
self.idx2name = l2n = {'N':0, 'A':1, 'O':2, '~':3}
self.inputs = []
self.labels = []
self.images = []
self.whole_ecg = []
# i = 0
for subject in tqdm(json_data.keys()):
subject_ecg = [np.expand_dims(np.expand_dims(np.load(os.path.join(path,'ecg', n + '.npy')), axis=0), axis=0) for n in json_data[subject]['x']]
subject_img = [np.expand_dims(cv2.resize(cv2.imread(os.path.join(path, 'ecg', n + '.jpg')),(90,90)).transpose((2, 0, 1)), axis=0) for n in json_data[subject]['x']]
l = l2n[json_data[subject]['y']]
self.inputs.append(np.concatenate(subject_ecg, axis=0))
self.images.append(np.concatenate(subject_img, axis=0))
self.labels.append(np.array(l))
self.whole_ecg.append(np.concatenate(subject_ecg, axis=2))
# if i>1000:
# break
# i+=1
print(len(self.whole_ecg))
def __len__(self):
return len(self.labels)
def __getitem__(self, idx):
x = torch.from_numpy(self.inputs[idx]).float()
xx = torch.from_numpy(self.images[idx]).float()
y = torch.from_numpy(np.array(self.labels[idx])).long()
w = torch.from_numpy(self.whole_ecg[idx]).float()
return (x, xx), y
def evaluate(outputs, labels, label_names=None):
gt = torch.cat(labels, dim=0)
pred = torch.cat(outputs, dim=0)
probs = pred
pred = torch.argmax(pred, dim=1)
acc = torch.div(100*torch.sum((gt == pred).float()), gt.shape[0])
name_dict = {0: 'Normal beat (N)', 1: 'Atrial fibrillation beat (A)', 2: 'Other beat (O)', 3:
'Noisy beat (~)'}
print('accuracy :', acc)
gt = gt.cpu().tolist()
pred = pred.cpu().tolist()
report = skm.classification_report(
gt, pred,
target_names=[name_dict[i] for i in np.unique(gt)],
digits=3)
scores = skm.precision_recall_fscore_support(
gt,
pred,
average=None)
print(report)
print("F1 Average {:3f}".format(np.mean(scores[2][:3])))
fpr = dict()
tpr = dict()
roc_auc = dict()
n_classes = np.unique(gt).shape[0]
oh_gt = np.zeros((len(gt), n_classes))
plt.figure()
colors = ['b', 'g', 'r', 'c']
for i in range(n_classes):
oh_gt[:, gt == i] = 1
fpr[i], tpr[i], _ = roc_curve(gt, probs[:, i].cpu(), pos_label=i)
roc_auc[i] = auc(fpr[i], tpr[i])
lw = 2
plt.plot(fpr[i], tpr[i], color=colors[i],
lw=lw, label=name_dict[i] +' : %0.4f' % roc_auc[i])
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Class-Wise AUC and ROC curve')
plt.legend(loc="lower right")
plt.savefig(os.path.join(args.checkpoint, 'roc.png'))
return 0
def main():
global best_acc
start_epoch = args.start_epoch # start from epoch 0 or last checkpoint epoch
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
# Data
print('==> Preparing dataset %s' % args.dataset)
dataloader = Ecg_loader
train_path = args.data
traindir = os.path.join(train_path, 'train')
valdir = os.path.join(train_path, 'val')
if not args.evaluate:
trainset = dataloader(traindir, transform=args.transformation)
testset = dataloader(valdir, transform=args.transformation)
idx2name = testset.idx2name
label_names = idx2name.keys()
num_classes = len(label_names)
if not args.evaluate:
trainloader = data.DataLoader(trainset, batch_size=args.train_batch, shuffle=True, num_workers=args.workers)
testloader = data.DataLoader(testset, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
# Model
print("==> creating model ResNet{}".format(args.depth))
model = models.__dict__['resnet_lstm_phy2017'](
num_classes=num_classes,
depth=args.depth,
block_name=args.block_name,
)
model = torch.nn.DataParallel(model).cuda()
cudnn.benchmark = True
print(' Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# Resume
title = 'ecg-lstm-resnet' + str(args.depth)
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.resume), 'Error: no checkpoint directory found!'
args.checkpoint = os.path.dirname(args.resume)
checkpoint = torch.load(args.resume)
best_acc = checkpoint['best_acc']
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
else:
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss', 'Valid Loss', 'Train Acc.', 'Valid Acc.'])
if args.evaluate:
print('\nEvaluation only')
test_loss, test_acc= test(testloader, model, criterion, start_epoch, use_cuda, label_names=label_names)
print(' Test Loss: %.8f, Test Acc: %.2f' % (test_loss, test_acc))
return
# Train and val
for epoch in range(start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
train_loss, train_acc = train(trainloader, model, criterion, optimizer, epoch, use_cuda)
test_loss, test_acc = test(testloader, model, criterion, epoch, use_cuda, label_names=label_names)
# append logger file
logger.append([state['lr'], train_loss, test_loss, train_acc, test_acc])
# save model
is_best = test_acc > best_acc
best_acc = max(test_acc, best_acc)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'acc': test_acc,
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint=args.checkpoint)
logger.close()
logger.plot()
savefig(os.path.join(args.checkpoint, 'log.eps'))
print('Best acc:')
print(best_acc)
def train(trainloader, model, criterion, optimizer, epoch, use_cuda):
# switch to train mode
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for batch_idx, (inputs, targets) in tqdm(enumerate(trainloader)):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = (inputs[0].cuda(), inputs[1].cuda()), targets.cuda()
inputs, targets = (torch.autograd.Variable(inputs[0]), torch.autograd.Variable(inputs[1])), torch.autograd.Variable(targets)
outputs = model(inputs)
loss = criterion(outputs, targets)
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 4))
if float(torch.__version__[:3]) < 0.5:
losses.update(loss.data[0], inputs[0].size(0))
top1.update(prec1[0], inputs[0].size(0))
top5.update(prec5[0], inputs[0].size(0))
else:
losses.update(loss.data, inputs[0].size(0))
top1.update(prec1, inputs[0].size(0))
top5.update(prec5, inputs[0].size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# evaluate(pred, gt)
return (losses.avg, top1.avg)
def test(testloader, model, criterion, epoch, use_cuda, label_names=None):
global best_acc
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
gt = []
pred = []
for batch_idx, (inputs, targets) in tqdm(enumerate(testloader)):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = (inputs[0].cuda(), inputs[1].cuda()), targets.cuda()
inputs, targets = (torch.autograd.Variable(inputs[0]), torch.autograd.Variable(inputs[1])), torch.autograd.Variable(targets)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record loss
gt.append(targets.data)
pred.append(outputs.data)
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 4))
if float(torch.__version__[:3]) < 0.5:
losses.update(loss.data[0], inputs[0].size(0))
top1.update(prec1[0], inputs[0].size(0))
top5.update(prec5[0], inputs[0].size(0))
else:
losses.update(loss.data, inputs[0].size(0))
top1.update(prec1, inputs[0].size(0))
top5.update(prec5, inputs[0].size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
evaluate(pred, gt, label_names=label_names)
return (losses.avg, top1.avg)
def save_checkpoint(state, is_best, checkpoint='checkpoint', filename='checkpoint.pth.tar'):
filepath = os.path.join(checkpoint, filename)
torch.save(state, filepath)
if is_best:
shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar'))
def adjust_learning_rate(optimizer, epoch):
global state
if epoch in args.schedule:
state['lr'] *= args.gamma
for param_group in optimizer.param_groups:
param_group['lr'] = state['lr']
if __name__ == '__main__':
main()