--- a +++ b/README.md @@ -0,0 +1,62 @@ +# multimodule-ecg-classification + +RESEARCH-PAPER:{ + + TITLE: "Multi-module Recurrent Convolutional Neural Network with Transformer Encoder for ECG Arrhythmia Classification", + + CITE: "https://ieeexplore.ieee.org/abstract/document/9508527", + + YEAR: 2021, + + CONFERENCE: "IEEE EMBS", + + AUTHORS: ["Duc Le^", + "Vidhiwar Singh Rathour^", + "Sang Truong", + "Quan Mai^, + Patel Brijesh; + Ngan Le"], + ^: Equal Contribution} + + + +DIRECTORY-TREE:{ + + data: "Directory: Datasets for training are stored here.", + + utils: "Directory: Utility based files", + + examples: {"Directory: github/awni/ecg/":[ + "Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network"]}, + + models:{ "Directory: DNN Models": { + resnet_cnn.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, CNN, Word2Vec", + resnet_lstm_phy2017.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, LSTM, CNN", + resnet_lstm.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, LSTM, CNN", + resnet_w2v.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, LSTM, CNN, Word2Vec", + resnet_lstm_mitbih.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, LSTM, CNN, Word2Vec, Attention AYN"}}, + + ecg_cnn.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, CNN, Resnet", + ecg_w2v.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, Word2Vec, Resnet", + ecg_lstm.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, LSTM, CNN, LSTM", + ecg_phy2017.py:"Python: Pytorch implememntation of Multimodal-ecg-classification, LSTM, CNN", + ecg_mitbih.py: "Python: Pytorch implememntation of Multimodal-ecg-classification, LSTM, CNN, Word2Vec, Attention AYN", + transform_data.ipynb: "Jupyter Notebook: Python implementation for Data Generation, and Preprocessing"} + +HOW-TO-USE:{ + + Uno: "Make sure the required libraries (Torch, Panda, Tqdm, ... etc.,). are installed", + Dos: : "Use the examples directory to download and preprocess data.", + Tres: "Follow transform_data.ipyn to get data ready for training.", + Cuatro: "Run python ecg_###.py to train on training data, and validate on validation data", + Cinco: "By default results are saved in checkpoints directory"} + +IMAGES:{ + + [](https://postimg.cc/vxGrbb8K) + [](https://postimg.cc/34xrTq5B)} + + +# EOF + +