"""Functions to plot M/EEG data on topo (one axes per channel)."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from copy import deepcopy
from functools import partial
import numpy as np
from scipy import ndimage
from .._fiff.pick import _picks_to_idx, channel_type, pick_types
from ..defaults import _handle_default
from ..utils import Bunch, _check_option, _clean_names, _is_numeric, _to_rgb, fill_doc
from .ui_events import ChannelsSelect, publish, subscribe
from .utils import (
DraggableColorbar,
SelectFromCollection,
_check_cov,
_check_delayed_ssp,
_draw_proj_checkbox,
_plot_masked_image,
_setup_ax_spines,
_setup_vmin_vmax,
add_background_image,
plt_show,
)
@fill_doc
def iter_topography(
info,
layout=None,
on_pick=None,
fig=None,
fig_facecolor="k",
axis_facecolor="k",
axis_spinecolor="k",
layout_scale=None,
legend=False,
select=False,
):
"""Create iterator over channel positions.
This function returns a generator that unpacks into
a series of matplotlib axis objects and data / channel
indices, both corresponding to the sensor positions
of the related layout passed or inferred from the channel info.
Hence, this enables convenient topography plot customization.
Parameters
----------
%(info_not_none)s
layout : instance of mne.channels.Layout | None
The layout to use. If None, layout will be guessed.
on_pick : callable | None
The callback function to be invoked on clicking one
of the axes. Is supposed to instantiate the following
API: ``function(axis, channel_index)``.
fig : matplotlib.figure.Figure | None
The figure object to be considered. If None, a new
figure will be created.
fig_facecolor : color
The figure face color. Defaults to black.
axis_facecolor : color
The axis face color. Defaults to black.
axis_spinecolor : color
The axis spine color. Defaults to black. In other words,
the color of the axis' edge lines.
layout_scale : float | None
Scaling factor for adjusting the relative size of the layout
on the canvas. If None, nothing will be scaled.
legend : bool
If True, an additional axis is created in the bottom right corner
that can be used to, e.g., construct a legend. The index of this
axis will be -1.
select : bool
Whether to enable the lasso-selection tool to enable the user to select
channels. The selected channels will be available in
``fig.lasso.selection``.
.. versionadded:: 1.10.0
Returns
-------
gen : generator
A generator that can be unpacked into:
ax : matplotlib.axis.Axis
The current axis of the topo plot.
ch_dx : int
The related channel index.
"""
return _iter_topography(
info,
layout,
on_pick,
fig,
fig_facecolor,
axis_facecolor,
axis_spinecolor,
layout_scale,
legend=legend,
select=select,
)
def _legend_axis(pos):
"""Add a legend axis to the bottom right."""
import matplotlib.pyplot as plt
left, bottom = pos[:, 0].max(), pos[:, 1].min()
# check if legend axis overlaps a data axis
overlaps = False
for _pos in pos:
h_overlap = _pos[0] <= left <= (_pos[0] + _pos[2])
v_overlap = _pos[1] <= bottom <= (_pos[1] + _pos[3])
if h_overlap and v_overlap:
overlaps = True
break
if overlaps:
left += 1.2 * _pos[2]
wid, hei = pos[-1, 2:]
return plt.axes([left, bottom, wid, hei])
def _iter_topography(
info,
layout,
on_pick,
fig,
fig_facecolor="k",
axis_facecolor="k",
axis_spinecolor="k",
layout_scale=None,
unified=False,
img=False,
axes=None,
legend=False,
select=False,
):
"""Iterate over topography.
Has the same parameters as iter_topography, plus:
unified : bool
If False (default), multiple matplotlib axes will be used.
If True, a single axis will be constructed. The former is
useful for custom plotting, the latter for speed.
"""
from matplotlib import collections
from matplotlib import pyplot as plt
from ..channels.layout import find_layout
if fig is None:
# Don't use constrained layout because we place axes manually
fig = plt.figure(layout=None)
def format_coord_unified(x, y, pos=None, ch_names=None):
"""Update status bar with channel name under cursor."""
# find candidate channels (ones that are down and left from cursor)
pdist = np.array([x, y]) - pos[:, :2]
pind = np.where((pdist >= 0).all(axis=1))[0]
if len(pind) > 0:
# find the closest channel
closest = pind[np.sum(pdist[pind, :] ** 2, axis=1).argmin()]
# check whether we are inside its box
in_box = (pdist[closest, :] < pos[closest, 2:]).all()
else:
in_box = False
return (
f"{ch_names[closest]} (click to magnify)" if in_box else "No channel here"
)
def format_coord_multiaxis(x, y, ch_name=None):
"""Update status bar with channel name under cursor."""
return f"{ch_name} (click to magnify)"
fig.set_facecolor(fig_facecolor)
if layout is None:
layout = find_layout(info)
if on_pick is not None:
callback = partial(_plot_topo_onpick, show_func=on_pick)
fig.canvas.mpl_connect("button_press_event", callback)
pos = layout.pos.copy()
if layout_scale:
pos[:, :2] *= layout_scale
ch_names = _clean_names(info["ch_names"])
iter_ch = [(x, y) for x, y in enumerate(layout.names) if y in ch_names]
if unified:
if axes is None:
under_ax = plt.axes([0, 0, 1, 1])
under_ax.axis("off")
else:
under_ax = axes
under_ax.format_coord = partial(
format_coord_unified, pos=pos, ch_names=layout.names
)
under_ax.set(xlim=[0, 1], ylim=[0, 1])
axs = list()
shown_ch_names = []
for idx, name in iter_ch:
ch_idx = ch_names.index(name)
shown_ch_names.append(name)
if not unified: # old, slow way
ax = plt.axes(pos[idx])
ax.patch.set_facecolor(axis_facecolor)
for spine in ax.spines.values():
spine.set_color(axis_spinecolor)
if not legend:
ax.set(xticklabels=[], yticklabels=[])
for tick in ax.get_xticklines() + ax.get_yticklines():
tick.set_visible(False)
ax._mne_ch_name = name
ax._mne_ch_idx = ch_idx
ax._mne_ax_face_color = axis_facecolor
ax.format_coord = partial(format_coord_multiaxis, ch_name=name)
yield ax, ch_idx
else:
ax = Bunch(
ax=under_ax,
pos=pos[idx],
data_lines=list(),
_mne_ch_name=name,
_mne_ch_idx=ch_idx,
_mne_ax_face_color=axis_facecolor,
)
axs.append(ax)
if not unified and legend:
ax = _legend_axis(pos)
yield ax, -1
if unified:
under_ax._mne_axs = axs
# Create a PolyCollection for the axis backgrounds
sel_pos = pos[[i[0] for i in iter_ch]]
verts = np.transpose(
[
sel_pos[:, :2],
sel_pos[:, :2] + sel_pos[:, 2:] * [1, 0],
sel_pos[:, :2] + sel_pos[:, 2:],
sel_pos[:, :2] + sel_pos[:, 2:] * [0, 1],
],
[1, 0, 2],
)
if not img: # Not needed for image plots.
collection = collections.PolyCollection(
verts,
facecolor=axis_facecolor,
edgecolor=axis_spinecolor,
linewidth=1.0,
)
under_ax.add_collection(collection)
if select:
# Configure the lasso-selection tool
fig.lasso = SelectFromCollection(
ax=under_ax,
collection=collection,
names=shown_ch_names,
alpha_nonselected=0,
alpha_selected=1,
linewidth_nonselected=0,
linewidth_selected=0.7,
)
def on_select():
publish(fig, ChannelsSelect(ch_names=fig.lasso.selection))
def on_channels_select(event):
selection_inds = np.flatnonzero(
np.isin(shown_ch_names, event.ch_names)
)
fig.lasso.select_many(selection_inds)
fig.lasso.callbacks.append(on_select)
subscribe(fig, "channels_select", on_channels_select)
for ax in axs:
yield ax, ax._mne_ch_idx
def _plot_topo(
info,
times,
show_func,
click_func=None,
layout=None,
vmin=None,
vmax=None,
ylim=None,
colorbar=None,
border="none",
axis_facecolor="k",
fig_facecolor="k",
cmap="RdBu_r",
layout_scale=None,
title=None,
x_label=None,
y_label=None,
font_color="w",
unified=False,
img=False,
axes=None,
select=False,
):
"""Plot on sensor layout."""
import matplotlib.pyplot as plt
if layout.kind == "custom":
layout = deepcopy(layout)
layout.pos[:, :2] -= layout.pos[:, :2].min(0)
layout.pos[:, :2] /= layout.pos[:, :2].max(0)
# prepare callbacks
tmin, tmax = times[0], times[-1]
click_func = show_func if click_func is None else click_func
on_pick = partial(
click_func,
tmin=tmin,
tmax=tmax,
vmin=vmin,
vmax=vmax,
ylim=ylim,
x_label=x_label,
y_label=y_label,
)
if axes is None:
# Don't use constrained layout because we place axes manually
fig = plt.figure(layout=None)
axes = plt.axes([0.015, 0.025, 0.97, 0.95])
axes.set_facecolor(fig_facecolor)
else:
fig = axes.figure
if colorbar:
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin, vmax))
sm.set_array(np.linspace(vmin, vmax))
cb = fig.colorbar(
sm, ax=axes, pad=0.025, fraction=0.075, shrink=0.5, anchor=(-1, 0.5)
)
cb_yticks = plt.getp(cb.ax.axes, "yticklabels")
plt.setp(cb_yticks, color=font_color)
axes.axis("off")
my_topo_plot = _iter_topography(
info,
layout=layout,
on_pick=on_pick,
fig=fig,
layout_scale=layout_scale,
axis_spinecolor=border,
axis_facecolor=axis_facecolor,
fig_facecolor=fig_facecolor,
unified=unified,
img=img,
axes=axes,
select=select,
)
for ax, ch_idx in my_topo_plot:
if layout.kind == "Vectorview-all" and ylim is not None:
ylim_ = ylim.get(channel_type(info, ch_idx))
else:
ylim_ = ylim
show_func(ax, ch_idx, tmin=tmin, tmax=tmax, vmin=vmin, vmax=vmax, ylim=ylim_)
if title is not None:
plt.figtext(0.03, 0.95, title, color=font_color, fontsize=15, va="top")
return fig
def _plot_topo_onpick(event, show_func):
"""Onpick callback that shows a single channel in a new figure."""
orig_ax = event.inaxes
fig = orig_ax.figure
# If we are doing lasso select, allow it to handle the click instead.
if hasattr(fig, "lasso") and event.key in ["control", "ctrl+shift"]:
return
# make sure that the swipe gesture in OS-X doesn't open many figures
if fig.canvas._key in ["shift", "alt"]:
return
import matplotlib.pyplot as plt
try:
if hasattr(orig_ax, "_mne_axs"): # in unified, single-axes mode
x, y = event.xdata, event.ydata
for ax in orig_ax._mne_axs:
if (
x >= ax.pos[0]
and y >= ax.pos[1]
and x <= ax.pos[0] + ax.pos[2]
and y <= ax.pos[1] + ax.pos[3]
):
orig_ax = ax
break
else:
# no axis found
return
elif not hasattr(orig_ax, "_mne_ch_idx"):
# neither old nor new mode
return
ch_idx = orig_ax._mne_ch_idx
face_color = orig_ax._mne_ax_face_color
fig, ax = plt.subplots(1)
plt.title(orig_ax._mne_ch_name)
ax.set_facecolor(face_color)
# allow custom function to override parameters
show_func(ax, ch_idx)
plt_show(fig=fig)
except Exception as err:
# matplotlib silently ignores exceptions in event handlers,
# so we print
# it here to know what went wrong
print(err)
raise
def _compute_ax_scalings(bn, xlim, ylim):
"""Compute scale factors for a unified plot."""
if isinstance(ylim, dict):
# Take the first (ymin, ymax) entry.
ylim = next(iter(ylim.values()))
pos = bn.pos
bn.x_s = pos[2] / (xlim[1] - xlim[0])
bn.x_t = pos[0] - bn.x_s * xlim[0]
bn.y_s = pos[3] / (ylim[1] - ylim[0])
bn.y_t = pos[1] - bn.y_s * ylim[0]
def _imshow_tfr(
ax,
ch_idx,
tmin,
tmax,
vmin,
vmax,
onselect,
*,
ylim=None,
tfr=None,
freq=None,
x_label=None,
y_label=None,
colorbar=False,
cmap=("RdBu_r", True),
yscale="auto",
mask=None,
mask_style="both",
mask_cmap="Greys",
mask_alpha=0.1,
cnorm=None,
):
"""Show time-frequency map as two-dimensional image."""
from matplotlib.widgets import RectangleSelector
_check_option("yscale", yscale, ["auto", "linear", "log"])
cmap, interactive_cmap = cmap
times = np.linspace(tmin, tmax, num=tfr[ch_idx].shape[1])
img, t_end = _plot_masked_image(
ax,
tfr[ch_idx],
times,
mask,
yvals=freq,
cmap=cmap,
vmin=vmin,
vmax=vmax,
mask_style=mask_style,
mask_alpha=mask_alpha,
mask_cmap=mask_cmap,
yscale=yscale,
cnorm=cnorm,
)
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
if colorbar:
if isinstance(colorbar, DraggableColorbar):
cbar = colorbar.cbar # this happens with multiaxes case
else:
cbar = ax.get_figure().colorbar(mappable=img, ax=ax)
if interactive_cmap:
ax.CB = DraggableColorbar(cbar, img, kind="tfr_image", ch_type=None)
ax.RS = RectangleSelector(ax, onselect=onselect) # reference must be kept
return t_end
def _imshow_tfr_unified(
bn,
ch_idx,
tmin,
tmax,
vmin,
vmax,
onselect,
*,
ylim=None,
tfr=None,
freq=None,
vline=None,
x_label=None,
y_label=None,
colorbar=False,
picker=True,
cmap="RdBu_r",
title=None,
hline=None,
):
"""Show multiple tfrs on topo using a single axes."""
_compute_ax_scalings(bn, (tmin, tmax), (freq[0], freq[-1]))
ax = bn.ax
data_lines = bn.data_lines
extent = (
bn.x_t + bn.x_s * tmin,
bn.x_t + bn.x_s * tmax,
bn.y_t + bn.y_s * freq[0],
bn.y_t + bn.y_s * freq[-1],
)
data_lines.append(
ax.imshow(
tfr[ch_idx],
extent=extent,
aspect="auto",
origin="lower",
vmin=vmin,
vmax=vmax,
cmap=cmap,
)
)
data_lines[-1].set_clip_box(_pos_to_bbox(bn.pos, ax))
def _plot_timeseries(
ax,
ch_idx,
tmin,
tmax,
vmin,
vmax,
ylim,
data,
color,
times,
vline=None,
x_label=None,
y_label=None,
colorbar=False,
hline=None,
hvline_color="w",
labels=None,
):
"""Show time series on topo split across multiple axes."""
import matplotlib.pyplot as plt
picker_flag = False
for data_, color_, times_ in zip(data, color, times):
if not picker_flag:
# use large tol for picker so we can click anywhere in the axes
line = ax.plot(times_, data_[ch_idx], color=color_, picker=True)[0]
line.set_pickradius(1e9)
picker_flag = True
else:
ax.plot(times_, data_[ch_idx], color=color_)
def _format_coord(x, y, labels, ax):
"""Create status string based on cursor coordinates."""
# find indices for datasets near cursor (if any)
tdiffs = [np.abs(tvec - x).min() for tvec in times]
nearby = [k for k, tdiff in enumerate(tdiffs) if tdiff < (tmax - tmin) / 100]
xlabel = ax.get_xlabel()
xunit = (
xlabel[xlabel.find("(") + 1 : xlabel.find(")")]
if "(" in xlabel and ")" in xlabel
else "s"
)
timestr = f"{x:6.3f} {xunit}: "
if not nearby:
return f"{timestr} Nothing here"
labels = [""] * len(nearby) if labels is None else labels
nearby_data = [(data[n], labels[n], times[n]) for n in nearby]
ylabel = ax.get_ylabel()
yunit = (
ylabel[ylabel.find("(") + 1 : ylabel.find(")")]
if "(" in ylabel and ")" in ylabel
else ""
)
# try to estimate whether to truncate condition labels
slen = 9 + len(xunit) + sum([12 + len(yunit) + len(label) for label in labels])
bar_width = (ax.figure.get_size_inches() * ax.figure.dpi)[0] / 5.5
# show labels and y values for datasets near cursor
trunc_labels = bar_width < slen
s = timestr
for data_, label, tvec in nearby_data:
idx = np.abs(tvec - x).argmin()
s += f"{data_[ch_idx, idx]:7.2f} {yunit}"
if trunc_labels:
label = label if len(label) <= 10 else f"{label[:6]}..{label[-2:]}"
s += f" [{label}] " if label else " "
return s
ax.format_coord = lambda x, y: _format_coord(x, y, labels=labels, ax=ax)
def _cursor_vline(event):
"""Draw cursor (vertical line)."""
ax = event.inaxes
if not ax:
return
if ax._cursorline is not None:
ax._cursorline.remove()
ax._cursorline = ax.axvline(event.xdata, color=ax._cursorcolor)
ax.figure.canvas.draw()
def _rm_cursor(event):
ax = event.inaxes
if ax._cursorline is not None:
ax._cursorline.remove()
ax._cursorline = None
ax.figure.canvas.draw()
ax._cursorline = None
# choose cursor color based on perceived brightness of background
facecol = _to_rgb(ax.get_facecolor())
face_brightness = np.dot(facecol, [299, 587, 114])
ax._cursorcolor = "white" if face_brightness < 150 else "black"
plt.connect("motion_notify_event", _cursor_vline)
plt.connect("axes_leave_event", _rm_cursor)
ymin, ymax = ax.get_ylim()
# don't pass vline or hline here (this fxn doesn't do hvline_color):
_setup_ax_spines(ax, [], tmin, tmax, ymin, ymax, hline=False)
ax.figure.set_facecolor("k" if hvline_color == "w" else "w")
ax.spines["bottom"].set_color(hvline_color)
ax.spines["left"].set_color(hvline_color)
ax.tick_params(axis="x", colors=hvline_color, which="both")
ax.tick_params(axis="y", colors=hvline_color, which="both")
ax.title.set_color(hvline_color)
ax.xaxis.label.set_color(hvline_color)
ax.yaxis.label.set_color(hvline_color)
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
if isinstance(y_label, list):
ax.set_ylabel(y_label[ch_idx])
else:
ax.set_ylabel(y_label)
if vline is not None:
vline = [vline] if _is_numeric(vline) else vline
for vline_ in vline:
plt.axvline(vline_, color=hvline_color, linewidth=1.0, linestyle="--")
if hline is not None:
hline = [hline] if _is_numeric(hline) else hline
for hline_ in hline:
plt.axhline(hline_, color=hvline_color, linewidth=1.0, zorder=10)
if colorbar:
plt.colorbar()
def _plot_timeseries_unified(
bn,
ch_idx,
tmin,
tmax,
vmin,
vmax,
ylim,
data,
color,
times,
vline=None,
x_label=None,
y_label=None,
colorbar=False,
hline=None,
hvline_color="w",
):
"""Show multiple time series on topo using a single axes."""
import matplotlib.pyplot as plt
if not (ylim and not any(v is None for v in ylim)):
ylim = [min(np.min(d) for d in data), max(np.max(d) for d in data)]
# Translation and scale parameters to take data->under_ax normalized coords
_compute_ax_scalings(bn, (tmin, tmax), ylim)
pos = bn.pos
data_lines = bn.data_lines
ax = bn.ax
for data_, color_, times_ in zip(data, color, times):
data_lines.append(
ax.plot(
bn.x_t + bn.x_s * times_,
bn.y_t + bn.y_s * data_[ch_idx],
linewidth=0.5,
color=color_,
)[0]
)
# Needs to be done afterward for some reason (probable matlotlib bug)
data_lines[-1].set_clip_box(_pos_to_bbox(pos, ax))
if vline:
vline = np.array(vline) * bn.x_s + bn.x_t
ax.vlines(
vline,
pos[1],
pos[1] + pos[3],
color=hvline_color,
linewidth=0.5,
linestyle="--",
)
if hline:
hline = np.array(hline) * bn.y_s + bn.y_t
ax.hlines(hline, pos[0], pos[0] + pos[2], color=hvline_color, linewidth=0.5)
if x_label is not None:
ax.text(
pos[0] + pos[2] / 2.0,
pos[1],
x_label,
horizontalalignment="center",
verticalalignment="top",
)
if y_label is not None:
y_label = y_label[ch_idx] if isinstance(y_label, list) else y_label
ax.text(
pos[0],
pos[1] + pos[3] / 2.0,
y_label,
horizontalignment="right",
verticalalignment="middle",
rotation=90,
)
if colorbar:
plt.colorbar()
def _erfimage_imshow(
ax,
ch_idx,
tmin,
tmax,
vmin,
vmax,
ylim=None,
data=None,
epochs=None,
sigma=None,
order=None,
scalings=None,
vline=None,
x_label=None,
y_label=None,
colorbar=False,
cmap="RdBu_r",
vlim_array=None,
):
"""Plot erfimage on sensor topography."""
import matplotlib.pyplot as plt
this_data = data[:, ch_idx, :]
if vlim_array is not None:
vmin, vmax = vlim_array[ch_idx]
if callable(order):
order = order(epochs.times, this_data)
if order is not None:
this_data = this_data[order]
if sigma > 0.0:
this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)
img = ax.imshow(
this_data,
extent=[tmin, tmax, 0, len(data)],
aspect="auto",
origin="lower",
vmin=vmin,
vmax=vmax,
picker=True,
cmap=cmap,
interpolation="nearest",
)
ax = plt.gca()
if x_label is not None:
ax.set_xlabel(x_label)
if y_label is not None:
ax.set_ylabel(y_label)
if colorbar:
plt.colorbar(mappable=img)
def _erfimage_imshow_unified(
bn,
ch_idx,
tmin,
tmax,
vmin,
vmax,
ylim=None,
data=None,
epochs=None,
sigma=None,
order=None,
scalings=None,
vline=None,
x_label=None,
y_label=None,
colorbar=False,
cmap="RdBu_r",
vlim_array=None,
):
"""Plot erfimage topography using a single axis."""
_compute_ax_scalings(bn, (tmin, tmax), (0, len(epochs.events)))
ax = bn.ax
data_lines = bn.data_lines
extent = (
bn.x_t + bn.x_s * tmin,
bn.x_t + bn.x_s * tmax,
bn.y_t,
bn.y_t + bn.y_s * len(epochs.events),
)
this_data = data[:, ch_idx, :]
vmin, vmax = (None, None) if vlim_array is None else vlim_array[ch_idx]
if callable(order):
order = order(epochs.times, this_data)
if order is not None:
this_data = this_data[order]
if sigma > 0.0:
this_data = ndimage.gaussian_filter1d(this_data, sigma=sigma, axis=0)
data_lines.append(
ax.imshow(
this_data,
extent=extent,
aspect="auto",
origin="lower",
vmin=vmin,
vmax=vmax,
picker=True,
cmap=cmap,
interpolation="nearest",
)
)
def _plot_evoked_topo(
evoked,
layout=None,
layout_scale=0.945,
color=None,
border="none",
ylim=None,
scalings=None,
title=None,
proj=False,
vline=(0.0,),
hline=(0.0,),
fig_facecolor="k",
fig_background=None,
axis_facecolor="k",
font_color="w",
merge_channels=False,
legend=True,
axes=None,
noise_cov=None,
exclude="bads",
select=False,
show=True,
):
"""Plot 2D topography of evoked responses.
Clicking on the plot of an individual sensor opens a new figure showing
the evoked response for the selected sensor.
Parameters
----------
evoked : list of Evoked | Evoked
The evoked response to plot.
layout : instance of Layout | None
Layout instance specifying sensor positions (does not need to
be specified for Neuromag data). If possible, the correct layout is
inferred from the data.
layout_scale : float
Scaling factor for adjusting the relative size of the layout
on the canvas.
color : list of color objects | color object | None
Everything matplotlib accepts to specify colors. If not list-like,
the color specified will be repeated. If None, colors are
automatically drawn.
border : str
Matplotlib borders style to be used for each sensor plot.
ylim : dict | None
ylim for plots (after scaling has been applied). The value
determines the upper and lower subplot limits. e.g.
ylim = dict(eeg=[-20, 20]). Valid keys are eeg, mag, grad. If None,
the ylim parameter for each channel type is determined by the minimum
and maximum peak.
scalings : dict | None
The scalings of the channel types to be applied for plotting. If None,`
defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
title : str
Title of the figure.
proj : bool | 'interactive'
If true SSP projections are applied before display. If 'interactive',
a check box for reversible selection of SSP projection vectors will
be shown.
vline : list of floats | None
The values at which to show a vertical line.
hline : list of floats | None
The values at which to show a horizontal line.
fig_facecolor : color
The figure face color. Defaults to black.
fig_background : None | array
A background image for the figure. This must be a valid input to
`matplotlib.pyplot.imshow`. Defaults to None.
axis_facecolor : color
The face color to be used for each sensor plot. Defaults to black.
font_color : color
The color of text in the colorbar and title. Defaults to white.
merge_channels : bool
Whether to use RMS value of gradiometer pairs. Only works for Neuromag
data. Defaults to False.
legend : bool | int | string | tuple
If True, create a legend based on evoked.comment. If False, disable the
legend. Otherwise, the legend is created and the parameter value is
passed as the location parameter to the matplotlib legend call. It can
be an integer (e.g. 0 corresponds to upper right corner of the plot),
a string (e.g. 'upper right'), or a tuple (x, y coordinates of the
lower left corner of the legend in the axes coordinate system).
See matplotlib documentation for more details.
axes : instance of matplotlib Axes | None
Axes to plot into. If None, axes will be created.
noise_cov : instance of Covariance | str | None
Noise covariance used to whiten the data while plotting.
Whitened data channels names are shown in italic.
Can be a string to load a covariance from disk.
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the
bad channels are excluded. By default, exclude is set to 'bads'.
select : bool
Whether to enable the lasso-selection tool to enable the user to select
channels. The selected channels will be available in
``fig.lasso.selection``.
show : bool
Show figure if True.
.. versionadded:: 0.16.0
Returns
-------
fig : instance of matplotlib.figure.Figure
Images of evoked responses at sensor locations
"""
import matplotlib.pyplot as plt
from ..channels.layout import _merge_ch_data, _pair_grad_sensors, find_layout
from ..cov import whiten_evoked
if type(evoked) not in (tuple, list):
evoked = [evoked]
noise_cov = _check_cov(noise_cov, evoked[0].info)
if noise_cov is not None:
evoked = [whiten_evoked(e, noise_cov) for e in evoked]
else:
evoked = [e.copy() for e in evoked]
info = evoked[0].info
ch_names = evoked[0].ch_names
scalings = _handle_default("scalings", scalings)
if not all(e.ch_names == ch_names for e in evoked):
raise ValueError("All evoked.picks must be the same")
ch_names = _clean_names(ch_names)
if merge_channels:
picks = _pair_grad_sensors(info, topomap_coords=False, exclude=exclude)
chs = list()
for pick in picks[::2]:
ch = info["chs"][pick]
ch["ch_name"] = ch["ch_name"][:-1] + "X"
chs.append(ch)
with info._unlock(update_redundant=True, check_after=True):
info["chs"] = chs
info["bads"] = list() # Bads handled by pair_grad_sensors
new_picks = list()
for e in evoked:
data, _ = _merge_ch_data(e.data[picks], "grad", [])
if noise_cov is None:
data *= scalings["grad"]
e.data = data
new_picks.append(range(len(data)))
picks = new_picks
types_used = ["grad"]
unit = _handle_default("units")["grad"] if noise_cov is None else "NA"
y_label = f"RMS amplitude ({unit})"
if layout is None:
layout = find_layout(info, exclude=exclude)
else:
layout = layout.pick(
"all",
exclude=_picks_to_idx(
info,
exclude if exclude != "bads" else info["bads"],
exclude=(),
allow_empty=True,
),
)
if not merge_channels:
# XXX. at the moment we are committed to 1- / 2-sensor-types layouts
chs_in_layout = [ch_name for ch_name in ch_names if ch_name in layout.names]
types_used = [channel_type(info, ch_names.index(ch)) for ch in chs_in_layout]
# Using dict conversion to remove duplicates
types_used = list(dict.fromkeys(types_used))
# remove possible reference meg channels
types_used = [
types_used for types_used in types_used if types_used != "ref_meg"
]
# one check for all vendors
is_meg = len([x for x in types_used if x in ["mag", "grad"]]) > 0
is_nirs = (
len(
[
x
for x in types_used
if x in ("hbo", "hbr", "fnirs_cw_amplitude", "fnirs_od")
]
)
> 0
)
if is_meg:
picks = [
pick_types(info, meg=kk, ref_meg=False, exclude=exclude)
for kk in types_used
]
elif is_nirs:
picks = [
pick_types(info, fnirs=kk, ref_meg=False, exclude=exclude)
for kk in types_used
]
else:
types_used_kwargs = {t: True for t in types_used}
picks = [pick_types(info, meg=False, exclude=exclude, **types_used_kwargs)]
assert isinstance(picks, list) and len(types_used) == len(picks)
if noise_cov is None:
for e in evoked:
for pick, ch_type in zip(picks, types_used):
e.data[pick] *= scalings[ch_type]
if proj is True and all(e.proj is not True for e in evoked):
evoked = [e.apply_proj() for e in evoked]
elif proj == "interactive": # let it fail early.
for e in evoked:
_check_delayed_ssp(e)
# Y labels for picked plots must be reconstructed
y_label = list()
for ch_idx in range(len(chs_in_layout)):
if noise_cov is None:
unit = _handle_default("units")[channel_type(info, ch_idx)]
else:
unit = "NA"
y_label.append(f"Amplitude ({unit})")
if ylim is None:
# find minima and maxima over all evoked data for each channel pick
ylim_ = dict()
for ch_type, p in zip(types_used, picks):
ylim_[ch_type] = [
min([e.data[p].min() for e in evoked]),
max([e.data[p].max() for e in evoked]),
]
elif isinstance(ylim, dict):
ylim_ = _handle_default("ylim", ylim)
ylim_ = {kk: ylim_[kk] for kk in types_used}
else:
raise TypeError(f"ylim must be None or a dict. Got {type(ylim)}.")
data = [e.data for e in evoked]
comments = [e.comment for e in evoked]
times = [e.times for e in evoked]
show_func = partial(
_plot_timeseries_unified,
data=data,
color=color,
times=times,
vline=vline,
hline=hline,
hvline_color=font_color,
)
click_func = partial(
_plot_timeseries,
data=data,
color=color,
times=times,
vline=vline,
hline=hline,
hvline_color=font_color,
labels=comments,
)
time_min = min([t[0] for t in times])
time_max = max([t[-1] for t in times])
fig = _plot_topo(
info=info,
times=[time_min, time_max],
show_func=show_func,
click_func=click_func,
layout=layout,
colorbar=False,
ylim=ylim_,
cmap=None,
layout_scale=layout_scale,
border=border,
fig_facecolor=fig_facecolor,
font_color=font_color,
axis_facecolor=axis_facecolor,
title=title,
x_label="Time (s)",
y_label=y_label,
unified=True,
axes=axes,
select=select,
)
add_background_image(fig, fig_background)
if legend is not False:
legend_loc = 0 if legend is True else legend
labels = [e.comment if e.comment else "Unknown" for e in evoked]
if select:
handles = fig.axes[0].lines[1 : len(evoked) + 1]
else:
handles = fig.axes[0].lines[: len(evoked)]
legend = plt.legend(
labels=labels, handles=handles, loc=legend_loc, prop={"size": 10}
)
legend.get_frame().set_facecolor(axis_facecolor)
txts = legend.get_texts()
for txt, col in zip(txts, color):
txt.set_color(col)
if proj == "interactive":
for e in evoked:
_check_delayed_ssp(e)
params = dict(
evokeds=evoked,
times=times,
plot_update_proj_callback=_plot_update_evoked_topo_proj,
projs=evoked[0].info["projs"],
fig=fig,
)
_draw_proj_checkbox(None, params)
plt_show(show)
return fig
def _plot_update_evoked_topo_proj(params, bools):
"""Update topo sensor plots."""
evokeds = [e.copy() for e in params["evokeds"]]
fig = params["fig"]
projs = [proj for proj, b in zip(params["projs"], bools) if b]
params["proj_bools"] = bools
for e in evokeds:
e.add_proj(projs, remove_existing=True)
e.apply_proj()
# make sure to only modify the time courses, not the ticks
for ax in fig.axes[0]._mne_axs:
for line, evoked in zip(ax.data_lines, evokeds):
line.set_ydata(ax.y_t + ax.y_s * evoked.data[ax._mne_ch_idx])
fig.canvas.draw()
def plot_topo_image_epochs(
epochs,
layout=None,
sigma=0.0,
vmin=None,
vmax=None,
colorbar=None,
order=None,
cmap="RdBu_r",
layout_scale=0.95,
title=None,
scalings=None,
border="none",
fig_facecolor="k",
fig_background=None,
font_color="w",
select=False,
show=True,
):
"""Plot Event Related Potential / Fields image on topographies.
Parameters
----------
epochs : instance of :class:`~mne.Epochs`
The epochs.
layout : instance of Layout
System specific sensor positions.
sigma : float
The standard deviation of the Gaussian smoothing to apply along
the epoch axis to apply in the image. If 0., no smoothing is applied.
vmin : float
The min value in the image. The unit is µV for EEG channels,
fT for magnetometers and fT/cm for gradiometers.
vmax : float
The max value in the image. The unit is µV for EEG channels,
fT for magnetometers and fT/cm for gradiometers.
colorbar : bool | None
Whether to display a colorbar or not. If ``None`` a colorbar will be
shown only if all channels are of the same type. Defaults to ``None``.
order : None | array of int | callable
If not None, order is used to reorder the epochs on the y-axis
of the image. If it's an array of int it should be of length
the number of good epochs. If it's a callable the arguments
passed are the times vector and the data as 2d array
(data.shape[1] == len(times)).
cmap : colormap
Colors to be mapped to the values.
layout_scale : float
Scaling factor for adjusting the relative size of the layout
on the canvas.
title : str
Title of the figure.
scalings : dict | None
The scalings of the channel types to be applied for plotting. If
``None``, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
border : str
Matplotlib borders style to be used for each sensor plot.
fig_facecolor : color
The figure face color. Defaults to black.
fig_background : None | array
A background image for the figure. This must be a valid input to
:func:`matplotlib.pyplot.imshow`. Defaults to ``None``.
font_color : color
The color of tick labels in the colorbar. Defaults to white.
select : bool
Whether to enable the lasso-selection tool to enable the user to select
channels. The selected channels will be available in
``fig.lasso.selection``.
.. versionadded:: 1.10.0
show : bool
Whether to show the figure. Defaults to ``True``.
Returns
-------
fig : instance of :class:`matplotlib.figure.Figure`
Figure distributing one image per channel across sensor topography.
Notes
-----
In an interactive Python session, this plot will be interactive; clicking
on a channel image will pop open a larger view of the image; this image
will always have a colorbar even when the topo plot does not (because it
shows multiple sensor types).
"""
from ..channels.layout import find_layout
scalings = _handle_default("scalings", scalings)
# make a copy because we discard non-data channels and scale the data
epochs = epochs.copy().load_data()
# use layout to subset channels present in epochs object
if layout is None:
layout = find_layout(epochs.info)
ch_names = set(layout.names) & set(epochs.ch_names)
idxs = [epochs.ch_names.index(ch_name) for ch_name in ch_names]
epochs = epochs.pick(idxs)
# get lists of channel type & scale coefficient
ch_types = epochs.get_channel_types()
scale_coeffs = [scalings.get(ch_type, 1) for ch_type in ch_types]
# scale the data
epochs._data *= np.array(scale_coeffs)[:, np.newaxis]
data = epochs.get_data(copy=False)
# get vlims for each channel type
vlim_dict = dict()
for ch_type in set(ch_types):
this_data = data[:, np.where(np.array(ch_types) == ch_type)]
vlim_dict[ch_type] = _setup_vmin_vmax(this_data, vmin, vmax)
vlim_array = np.array([vlim_dict[ch_type] for ch_type in ch_types])
# only show colorbar if we have a single channel type
if colorbar is None:
colorbar = len(set(ch_types)) == 1
# if colorbar=True, we know we have only 1 channel type so all entries
# in vlim_array are the same, just take the first one
if colorbar and vmin is None and vmax is None:
vmin, vmax = vlim_array[0]
show_func = partial(
_erfimage_imshow_unified,
scalings=scale_coeffs,
order=order,
data=data,
epochs=epochs,
sigma=sigma,
cmap=cmap,
vlim_array=vlim_array,
)
erf_imshow = partial(
_erfimage_imshow,
scalings=scale_coeffs,
order=order,
data=data,
epochs=epochs,
sigma=sigma,
cmap=cmap,
vlim_array=vlim_array,
colorbar=True,
)
fig = _plot_topo(
info=epochs.info,
times=epochs.times,
click_func=erf_imshow,
show_func=show_func,
layout=layout,
colorbar=colorbar,
vmin=vmin,
vmax=vmax,
cmap=cmap,
layout_scale=layout_scale,
title=title,
fig_facecolor=fig_facecolor,
font_color=font_color,
border=border,
x_label="Time (s)",
y_label="Epoch",
unified=True,
img=True,
select=select,
)
add_background_image(fig, fig_background)
plt_show(show)
return fig
def _pos_to_bbox(pos, ax):
"""Convert layout position to bbox."""
import matplotlib.transforms as mtransforms
return mtransforms.TransformedBbox(
mtransforms.Bbox.from_bounds(*pos),
ax.transAxes,
)