# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from functools import partial
from pathlib import Path
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib.colors import PowerNorm, TwoSlopeNorm
from matplotlib.patches import Circle
from numpy.testing import assert_almost_equal, assert_array_equal, assert_equal
from mne import (
Epochs,
EvokedArray,
Projection,
compute_proj_evoked,
compute_proj_raw,
create_info,
find_layout,
make_fixed_length_events,
pick_types,
read_cov,
read_evokeds,
read_proj,
)
from mne._fiff.compensator import get_current_comp
from mne._fiff.constants import FIFF
from mne._fiff.pick import _picks_to_idx, channel_indices_by_type, pick_info
from mne._fiff.proj import make_eeg_average_ref_proj
from mne.channels import (
find_ch_adjacency,
make_dig_montage,
make_standard_montage,
read_layout,
)
from mne.datasets import testing
from mne.io import RawArray, read_info, read_raw_fif
from mne.preprocessing import (
ICA,
compute_bridged_electrodes,
compute_current_source_density,
)
from mne.time_frequency.tfr import AverageTFR, AverageTFRArray
from mne.viz import plot_evoked_topomap, plot_projs_topomap, topomap
from mne.viz.tests.test_raw import _proj_status
from mne.viz.topomap import (
_get_pos_outlines,
_onselect,
plot_arrowmap,
plot_bridged_electrodes,
plot_ch_adjacency,
plot_psds_topomap,
plot_topomap,
)
from mne.viz.utils import _fake_click, _fake_keypress, _fake_scroll, _find_peaks
data_dir = testing.data_path(download=False)
subjects_dir = data_dir / "subjects"
ecg_fname = data_dir / "MEG" / "sample" / "sample_audvis_ecg-proj.fif"
triux_fname = data_dir / "SSS" / "TRIUX" / "triux_bmlhus_erm_raw.fif"
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
evoked_fname = base_dir / "test-ave.fif"
raw_fname = base_dir / "test_raw.fif"
event_name = base_dir / "test-eve.fif"
ctf_fname = base_dir / "test_ctf_comp_raw.fif"
layout = read_layout("Vectorview-all")
cov_fname = base_dir / "test-cov.fif"
fast_test = dict(res=8, contours=0, sensors=False)
@pytest.mark.parametrize("layout", (None, "constrained"))
def test_plot_topomap_interactive(layout):
"""Test interactive topomap projection plotting."""
evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0]
evoked.pick(picks="mag")
with evoked.info._unlock():
evoked.info["projs"] = []
assert not evoked.proj
evoked.add_proj(compute_proj_evoked(evoked, n_mag=1))
plt.close("all")
fig, ax = plt.subplots(layout=layout)
canvas = fig.canvas
kwargs = dict(
vlim=(-240, 240), times=[0.1], colorbar=False, axes=ax, res=8, time_unit="s"
)
evoked.copy().plot_topomap(proj=False, **kwargs)
canvas.draw()
image_noproj = np.array(canvas.buffer_rgba())
assert len(plt.get_fignums()) == 1
ax.clear()
evoked.copy().plot_topomap(proj=True, **kwargs)
canvas.draw()
image_proj = np.array(canvas.buffer_rgba())
assert not np.array_equal(image_noproj, image_proj)
assert len(plt.get_fignums()) == 1
ax.clear()
fig = evoked.copy().plot_topomap(proj="interactive", **kwargs)
canvas.draw()
image_interactive = np.array(canvas.buffer_rgba())
assert_array_equal(image_noproj, image_interactive)
assert not np.array_equal(image_proj, image_interactive)
assert len(plt.get_fignums()) == 2
proj_fig = plt.figure(plt.get_fignums()[-1])
assert _proj_status(fig, "matplotlib") == [False]
_fake_click(proj_fig, proj_fig.axes[0], [0.5, 0.5], xform="ax")
proj_fig.canvas.draw_idle()
assert _proj_status(fig, "matplotlib") == [True]
canvas.draw()
image_interactive_click = np.array(canvas.buffer_rgba())
corr = np.corrcoef(image_proj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.99 < corr <= 1
corr = np.corrcoef(image_noproj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.85 < corr < 0.9
_fake_click(proj_fig, proj_fig.axes[0], [0.5, 0.5], xform="ax")
canvas.draw()
image_interactive_click = np.array(canvas.buffer_rgba())
corr = np.corrcoef(image_noproj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.99 < corr <= 1
corr = np.corrcoef(image_proj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.85 < corr < 0.9
@testing.requires_testing_data
def test_plot_projs_topomap():
"""Test plot_projs_topomap."""
projs = read_proj(ecg_fname)
info = read_info(raw_fname)
plot_projs_topomap(projs, info=info, colorbar=True, **fast_test)
_, ax = plt.subplots()
projs[3].plot_topomap(info)
plot_projs_topomap(projs[:1], info, axes=ax, **fast_test) # test axes
triux_info = read_info(triux_fname)
plot_projs_topomap(triux_info["projs"][-1:], triux_info, **fast_test)
plot_projs_topomap(triux_info["projs"][:1], triux_info, **fast_test)
eeg_avg = make_eeg_average_ref_proj(info)
eeg_avg.plot_topomap(info, **fast_test)
# test vlims
for vlim in ("joint", (-1, 1), (None, 0.5), (0.5, None), (None, None)):
plot_projs_topomap(projs[:-1], info, vlim=vlim, colorbar=True)
eeg_proj = make_eeg_average_ref_proj(info)
info_meg = pick_info(info, pick_types(info, meg=True, eeg=False))
with pytest.raises(ValueError, match="Missing channels"):
plot_projs_topomap([eeg_proj], info_meg)
@pytest.mark.parametrize("vlim", ("joint", None))
@pytest.mark.parametrize("meg", ("combined", "separate"))
def test_plot_projs_topomap_joint(meg, vlim, raw):
"""Test that plot_projs_topomap works with joint vlim."""
if vlim is None:
vlim = (None, None)
projs = compute_proj_raw(raw, meg=meg)
fig = plot_projs_topomap(projs, info=raw.info, vlim=vlim, **fast_test)
assert len(fig.axes) == 4 # 2 mag, 2 grad
def test_plot_topomap_animation(capsys):
"""Test topomap plotting."""
# evoked
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
# Test animation
_, anim = evoked.animate_topomap(
ch_type="grad", times=[0, 0.1], butterfly=False, time_unit="s", verbose="debug"
)
anim._func(1) # _animate has to be tested separately on 'Agg' backend.
out, _ = capsys.readouterr()
assert "extrapolation mode local to 0" in out
def test_plot_topomap_animation_csd(capsys):
"""Test topomap plotting of CSD data."""
# evoked
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
evoked_csd = compute_current_source_density(evoked)
# Test animation
_, anim = evoked_csd.animate_topomap(
ch_type="csd", times=[0, 0.1], butterfly=False, time_unit="s", verbose="debug"
)
anim._func(1) # _animate has to be tested separately on 'Agg' backend.
out, _ = capsys.readouterr()
assert "extrapolation mode head to 0" in out
@pytest.mark.filterwarnings("ignore:.*No contour levels.*:UserWarning")
def test_plot_topomap_animation_nirs(fnirs_evoked, capsys):
"""Test topomap plotting for nirs data."""
fig, anim = fnirs_evoked.animate_topomap(ch_type="hbo", verbose="debug")
anim._func(1) # _animate has to be tested separately on 'Agg' backend.
out, _ = capsys.readouterr()
assert "extrapolation mode head to 0" in out
assert len(fig.axes) == 2
def test_plot_evoked_topomap_errors(evoked, monkeypatch):
"""Test error handling for evoked topomap plots."""
# simplify data and set some params to make the test really fast
evoked.pick(["EEG 001", "EEG 002"])
fast_func = partial(evoked.plot_topomap, res=8, contours=0, sensors=False)
fast_func_onetime = partial(fast_func, times=0.1)
# wrong channel type
with pytest.raises(ValueError, match="No channels of type 'mag'"):
fast_func(ch_type="mag")
# bad times
with pytest.raises(ValueError, match="Times should be between 0.0 and"):
fast_func(times=[-100])
with pytest.raises(ValueError, match="times must be 1D, got 2 dimensions"):
fast_func(times=[[0]])
# times / average mismatch
with pytest.raises(ValueError, match="3 time points.*2 periods for aver"):
fast_func([0.05, 0.1, 0.15], ch_type="eeg", average=[0.01, 0.02])
# average
with pytest.raises(ValueError, match="number of seconds.* got -1000.0"):
fast_func_onetime(average=-1e3)
with pytest.raises(TypeError, match="number of seconds.* got type:"):
fast_func_onetime(average="x")
# image_interp
with pytest.raises(RuntimeError, match="`image_interp` must be"):
fast_func_onetime(image_interp="bilinear")
# border
with pytest.raises(TypeError, match="be an instance of numeric or str"):
fast_func_onetime(extrapolate="head", border=[1, 2, 3])
with pytest.raises(ValueError, match="allowed value.*'mean'.*got 'fancy'"):
fast_func_onetime(extrapolate="head", border="fancy")
# projs
with pytest.raises(RuntimeError, match="Projs are already applied."):
fast_func_onetime(proj="interactive")
# too many subplots
with monkeypatch.context() as m: # speed it up by not actually plotting
m.setattr(topomap, "_plot_topomap", lambda *args, **kwargs: (None, None, None))
with pytest.warns(RuntimeWarning, match="More than 25 topomaps plots"):
fast_func([0.1] * 26, colorbar=False)
# missing channel locations
with evoked.info._unlock():
for ch in evoked.info["chs"]:
ch["loc"][:3] = 0.0
with pytest.raises(ValueError, match="points.*doesn't match.*channels."):
evoked.plot_topomap()
with evoked.info._unlock():
evoked.info["dig"] = None
with pytest.raises(RuntimeError, match="No digitization points found."):
evoked.plot_topomap()
@pytest.mark.parametrize(
"units, scalings, expected_unit",
[
(None, None, "µV"),
("foo", None, "foo"),
(None, 7.0, "AU"), # non-default scaling → "AU"
],
)
def test_plot_evoked_topomap_units(evoked, units, scalings, expected_unit):
"""Test that colorbar units respect scalings correctly."""
evoked.pick(["EEG 001", "EEG 002", "EEG 003"])
fig = evoked.plot_topomap(
times=0.1, res=8, contours=0, sensors=False, units=units, scalings=scalings
)
cbar = [ax for ax in fig.axes if hasattr(ax, "_colorbar")]
assert len(cbar) == 1
cbar = cbar[0]
assert cbar.get_title() == expected_unit
@pytest.mark.parametrize("extrapolate", ("box", "local", "head"))
def test_plot_evoked_topomap_extrapolation(evoked, extrapolate):
"""Test topomap extrapolation options."""
evoked.pick(["EEG 001", "EEG 002", "EEG 003"])
evoked.plot_topomap(
times=0.1, extrapolate=extrapolate, res=8, contours=0, sensors=False
)
def test_plot_evoked_topomap_border():
"""Test topomap extrapolation border values."""
# make some fake sensor locations: 25 sensors at distances of 0.2 to 1.0
# in steps of 0.2 in the ±x, ±y, and +z directions
ch_pos = np.array(
[
[
[r, 0, 0], # +x
[-r, 0, 0], # -x
[0, r, 0], # +y
[0, -r, 0], # -y
[0, 0, r], # +z
]
for r in np.linspace(0.2, 1, 5)
]
).reshape(-1, 3)
info = create_info(len(ch_pos), 250, "eeg")
ch_pos_dict = {name: pos for name, pos in zip(info["ch_names"], ch_pos)}
dig = make_dig_montage(ch_pos_dict, coord_frame="head")
info.set_montage(dig)
# simulate data
data = np.full(len(ch_pos), 5)
kwargs = dict(res=15, extrapolate="head", sphere=1, sensors=False)
idx = kwargs["res"] // 2
# when border=0...
img, _ = plot_topomap(data, info, border=0, **kwargs)
img_data = img.get_array().data
# middle pixel should exactly equal sensor data:
assert_equal(img_data[idx, idx], data[0])
# corner pixel should be close(ish) to zero:
assert img_data[0, 0] < 1.5
# when border='mean'...
img, _ = plot_topomap(data, info, border="mean", **kwargs)
img_data = img.get_array().data
# middle pixel should exactly equal sensor data:
assert_equal(img_data[idx, idx], data[0])
# and corner pixel should *also* be very close to sensor data:
assert_almost_equal(img_data[idx, idx], data[0], decimal=9)
@pytest.mark.slowtest
def test_plot_topomap_basic():
"""Test basics of topomap plotting."""
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
res = 8
fast_test_noscale = dict(res=res, contours=0, sensors=False)
ev_bad = evoked.copy().pick(picks="eeg")
ev_bad.pick(ev_bad.ch_names[:2])
plt_topomap = partial(ev_bad.plot_topomap, **fast_test)
plt_topomap(times=ev_bad.times[:2] - 1e-6) # auto, plots EEG
evoked.plot_topomap(
[0.1],
ch_type="eeg",
scalings=1,
res=res,
contours=[-100, 0, 100],
time_unit="ms",
)
# test channel placement when only 'grad' are picked:
# ---------------------------------------------------
info_grad = evoked.copy().pick("grad").info
n_grads = len(info_grad["ch_names"])
data = np.random.randn(n_grads)
img, _ = plot_topomap(data, info_grad)
# check that channels are scattered around x == 0
pos = img.axes.collections[-1].get_offsets()
prop_channels_on_the_right = (pos[:, 0] > 0).mean()
assert prop_channels_on_the_right < 0.6
# other:
# ------
plt_topomap = partial(evoked.plot_topomap, **fast_test)
plt.close("all")
axes = [plt.subplot(221), plt.subplot(222)]
plt_topomap(axes=axes, colorbar=False)
plt.close("all")
plt_topomap(times=[-0.1, 0.2])
plt.close("all")
evoked_grad = evoked.copy().crop(0, 0).pick(picks="grad")
mask = np.zeros((204, 1), bool)
mask[[0, 3, 5, 6]] = True
names = []
def proc_names(x):
names.append(x)
return x[4:]
evoked_grad.plot_topomap(
ch_type="grad", times=[0], mask=mask, show_names=proc_names, **fast_test
)
want_names = np.array(evoked_grad.ch_names)[mask.squeeze()].tolist()
assert_equal(
[f"{name[:-1]}x" for name in want_names],
["MEG 011x", "MEG 012x", "MEG 013x", "MEG 014x"],
)
mask = np.zeros_like(evoked.data, dtype=bool)
mask[[1, 5], :] = True
plt_topomap(ch_type="mag", outlines=None)
times = [0.1]
plt_topomap(times, ch_type="grad", mask=mask)
plt_topomap(times, ch_type="planar1")
plt_topomap(times, ch_type="planar2")
plt_topomap(
times, ch_type="grad", mask=mask, show_names=True, mask_params={"marker": "x"}
)
plt.close("all")
p = plt_topomap(
times,
ch_type="grad",
image_interp="cubic",
show_names=lambda x: x.replace("MEG", ""),
)
subplot = [
x
for x in p.get_children()
if any(t in str(type(x)) for t in ("Axes", "Subplot"))
]
assert len(subplot) >= 1, [type(x) for x in p.get_children()]
subplot = subplot[0]
have_all = all(
"MEG" not in x.get_text()
for x in subplot.get_children()
if isinstance(x, matplotlib.text.Text)
)
assert have_all
# Plot array
for ch_type in ("mag", "grad"):
evoked_ = evoked.copy().pick(picks=ch_type)
plot_topomap(evoked_.data[:, 0], evoked_.info, **fast_test_noscale)
# fail with multiple channel types
pytest.raises(ValueError, plot_topomap, evoked.data[0, :], evoked.info)
# Test title
def get_texts(p):
return [
x.get_text()
for x in p.get_children()
if isinstance(x, matplotlib.text.Text)
]
p = plt_topomap(times, ch_type="eeg", average=0.01)
assert_equal(len(get_texts(p)), 0)
plt.close("all")
# Test averaging with a scalar input
averaging_times = [ev_bad.times[0], times[0], ev_bad.times[-1]]
p = plt_topomap(averaging_times, ch_type="eeg", average=0.01)
expected_ax_titles = (
"-0.200 – -0.195 s", # clipped on the left
"0.095 – 0.105 s", # full range
"0.494 – 0.499 s", # clipped on the right
)
for idx, expected_title in enumerate(expected_ax_titles):
assert p.axes[idx].get_title() == expected_title
# Test averaging with an array-like input
averaging_durations = [0.01, 0.02, None]
p = plt_topomap(averaging_times, ch_type="eeg", average=averaging_durations)
expected_ax_titles = (
"-0.200 – -0.195 s", # clipped on the left
"0.090 – 0.110 s", # full range
"0.499 s", # No averaging
)
for idx, expected_title in enumerate(expected_ax_titles):
assert p.axes[idx].get_title() == expected_title
del averaging_times, expected_ax_titles, expected_title
# delaunay triangulation warning
plt_topomap(times, ch_type="mag")
# change to no-proj mode
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0), proj=False)
plt.close("all")
fig1 = evoked.plot_topomap(
"interactive", ch_type="mag", proj="interactive", **fast_test
)
# TODO: Clicking the slider creates a *new* image rather than updating
# the data directly. This makes it so that the projection is not applied
# to the correct matplotlib Image object.
# _fake_click(fig1, fig1.axes[1], (0.5, 0.5)) # click slider
data_max = np.max(fig1.axes[0].images[0]._A)
proj_fig = plt.figure(plt.get_fignums()[-1])
assert fig1.mne.proj_checkboxes.get_status() == [False, False, False]
pos = proj_fig.axes[0].texts[0].get_position() + np.array([0.01, 0])
_fake_click(proj_fig, proj_fig.axes[0], pos) # toggle projector
# make sure projector gets toggled
assert fig1.mne.proj_checkboxes.get_status() == [True, False, False]
assert np.max(fig1.axes[0].images[0]._A) != data_max
for ch in evoked.info["chs"]:
if ch["coil_type"] == FIFF.FIFFV_COIL_EEG:
ch["loc"].fill(0)
# Remove extra digitization point, so EEG digitization points
# correspond with the EEG electrodes
del evoked.info["dig"][85]
# Pass custom outlines without patch
eeg_picks = pick_types(evoked.info, meg=False, eeg=True)
pos, outlines = _get_pos_outlines(evoked.info, eeg_picks, 0.1)
evoked.plot_topomap(times, ch_type="eeg", outlines=outlines, **fast_test)
plt.close("all")
# Test interactive cmap
fig = plot_evoked_topomap(
evoked, times=[0.0, 0.1], ch_type="eeg", cmap=("Reds", True), **fast_test
)
_fake_keypress(fig, "up")
_fake_keypress(fig, " ")
_fake_keypress(fig, "down")
cbar = fig.get_axes()[0].CB # Fake dragging with mouse.
ax = cbar.cbar.ax
_fake_click(fig, ax, (0.1, 0.1))
_fake_click(fig, ax, (0.1, 0.2), kind="motion")
_fake_click(fig, ax, (0.1, 0.3), kind="release")
_fake_click(fig, ax, (0.1, 0.1), button=3)
_fake_click(fig, ax, (0.1, 0.2), button=3, kind="motion")
_fake_click(fig, ax, (0.1, 0.3), kind="release")
_fake_scroll(fig, 0.5, 0.5, -0.5) # scroll down
_fake_scroll(fig, 0.5, 0.5, 0.5) # scroll up
plt.close("all")
# Pass custom outlines with patch callable
def patch():
return Circle(
(0.5, 0.4687), radius=0.46, clip_on=True, transform=plt.gca().transAxes
)
outlines["patch"] = patch
plot_evoked_topomap(evoked, times, ch_type="eeg", outlines=outlines, **fast_test)
# Test error messages for invalid pos parameter
n_channels = len(pos)
data = np.ones(n_channels)
pos_1d = np.zeros(n_channels)
pos_3d = np.zeros((n_channels, 2, 2))
pytest.raises(ValueError, plot_topomap, data, pos_1d)
pytest.raises(ValueError, plot_topomap, data, pos_3d)
pytest.raises(ValueError, plot_topomap, data, pos[:3, :])
pos_x = pos[:, :1]
pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]]
pytest.raises(ValueError, plot_topomap, data, pos_x)
pytest.raises(ValueError, plot_topomap, data, pos_xyz)
# An #channels x 4 matrix should work though. In this case (x, y, width,
# height) is assumed.
pos_xywh = np.c_[pos, np.zeros((n_channels, 2))]
plot_topomap(data, pos_xywh)
plt.close("all")
# Test peak finder
axes = [plt.subplot(131), plt.subplot(132)]
evoked.plot_topomap(times="peaks", axes=axes, **fast_test)
plt.close("all")
evoked.data = np.zeros(evoked.data.shape)
evoked.data[50][1] = 1
assert_array_equal(_find_peaks(evoked, 10), evoked.times[1])
evoked.data[80][100] = 1
assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]])
evoked.data[2][95] = 2
assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]])
assert_array_equal(_find_peaks(evoked, 1), evoked.times[95])
# Test excluding bads channels
evoked_grad.info["bads"] += [evoked_grad.info["ch_names"][0]]
orig_bads = evoked_grad.info["bads"]
evoked_grad.plot_topomap(ch_type="grad", times=[0], time_unit="ms")
assert_array_equal(evoked_grad.info["bads"], orig_bads)
def test_plot_psds_topomap_colorbar():
"""Test plot_psds_topomap colorbar option."""
raw = read_raw_fif(raw_fname)
picks = pick_types(raw.info, meg="grad")
info = pick_info(raw.info, picks)
freqs = np.arange(3.0, 9.5)
rng = np.random.default_rng(42)
psd = np.abs(rng.standard_normal((len(picks), len(freqs))))
bands = {"theta": [4, 8]}
plt.close("all")
fig_cbar = plot_psds_topomap(psd, freqs, info, colorbar=True, bands=bands)
assert len(fig_cbar.axes) == 2
fig_nocbar = plot_psds_topomap(psd, freqs, info, colorbar=False, bands=bands)
assert len(fig_nocbar.axes) == 1
def test_plot_tfr_topomap():
"""Test plotting of TFR data."""
raw = read_raw_fif(raw_fname)
times = np.linspace(-0.1, 0.1, 200)
res = 8
n_freqs = 3
nave = 1
rng = np.random.RandomState(42)
picks = [93, 94, 96, 97, 21, 22, 24, 25, 129, 130, 315, 316, 2, 5, 8, 11]
info = pick_info(raw.info, picks)
data = rng.randn(len(picks), n_freqs, len(times))
# test complex numbers
tfr = AverageTFRArray(
info=info,
data=data * (1 + 1j),
times=times,
freqs=np.arange(n_freqs),
nave=nave,
)
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
# test data with taper dimension (real)
data = np.expand_dims(data, axis=1)
weights = np.random.rand(1, n_freqs)
tfr = AverageTFRArray(
info=info,
data=data,
times=times,
freqs=np.arange(n_freqs),
nave=nave,
weights=weights,
)
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
# test data with taper dimension (complex)
state = tfr.__getstate__()
tfr = AverageTFR(inst=state | dict(data=data * (1 + 1j)))
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
# remove taper dim before proceeding
data = data[:, 0]
# test real numbers
tfr = AverageTFRArray(
info=info, data=data, times=times, freqs=np.arange(n_freqs), nave=nave
)
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
eclick = matplotlib.backend_bases.MouseEvent(
"button_press_event", plt.gcf().canvas, 0, 0, 1
)
eclick.xdata = eclick.ydata = 0.1
eclick.inaxes = plt.gca()
erelease = matplotlib.backend_bases.MouseEvent(
"button_release_event", plt.gcf().canvas, 0.9, 0.9, 1
)
erelease.xdata = 0.3
erelease.ydata = 0.2
pos = np.array([[0.11, 0.11], [0.25, 0.5], [0.0, 0.2], [0.2, 0.39]])
_onselect(eclick, erelease, tfr, pos, "grad", 1, 3, 1, 3, "RdBu_r", list())
_onselect(eclick, erelease, tfr, pos, "mag", 1, 3, 1, 3, "RdBu_r", list())
eclick.xdata = eclick.ydata = 0.0
erelease.xdata = erelease.ydata = 0.9
tfr._onselect(eclick, erelease, None, "mean", None)
plt.close("all")
# test plot_psds_topomap
info = raw.info.copy()
chan_inds = channel_indices_by_type(info)
info = pick_info(info, chan_inds["grad"][:4])
fig, axes = plt.subplots()
freqs = np.arange(3.0, 9.5)
bands = [(4, 8, "Theta")]
psd = np.random.rand(len(info["ch_names"]), freqs.shape[0])
plot_psds_topomap(psd, freqs, info, bands=bands, axes=[axes])
def test_ctf_plotting():
"""Test CTF topomap plotting."""
raw = read_raw_fif(ctf_fname, preload=True)
assert raw.compensation_grade == 3
events = make_fixed_length_events(raw, duration=0.01)
assert len(events) > 10
evoked = Epochs(raw, events, tmin=0, tmax=0.01, baseline=None).average()
assert get_current_comp(evoked.info) == 3
# smoke test that compensation does not matter
evoked.plot_topomap(time_unit="s")
# better test that topomaps can still be used without plotting ref
evoked.pick(picks="meg")
evoked.plot_topomap()
@pytest.mark.slowtest # can be slow on OSX
@testing.requires_testing_data
def test_plot_arrowmap(evoked):
"""Test arrowmap plotting."""
with pytest.raises(ValueError, match="Multiple channel types"):
plot_arrowmap(evoked.data[:, 0], evoked.info)
evoked_eeg = evoked.copy().pick("eeg")
with pytest.raises(ValueError, match="Multiple channel types"):
plot_arrowmap(evoked_eeg.data[:, 0], evoked.info)
evoked_mag = evoked.copy().pick("mag")
evoked_grad = evoked.pick("grad", exclude="bads")
plot_arrowmap(evoked_mag.data[:, 0], info_from=evoked_mag.info)
plot_arrowmap(
evoked_grad.data[:, 0], info_from=evoked_grad.info, info_to=evoked_mag.info
)
@testing.requires_testing_data
def test_plot_topomap_neuromag122():
"""Test topomap plotting."""
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
evoked.pick(picks="grad")
evoked.pick(evoked.ch_names[:122])
ch_names = [f"MEG {k:03}" for k in range(1, 123)]
for c in evoked.info["chs"]:
c["coil_type"] = FIFF.FIFFV_COIL_NM_122
evoked.rename_channels(
{c_old: c_new for (c_old, c_new) in zip(evoked.ch_names, ch_names)}
)
layout = find_layout(evoked.info)
assert layout.kind.startswith("Neuromag_122")
evoked.plot_topomap(times=[0.1], **fast_test)
proj = Projection(
active=False,
desc="test",
kind=1,
data=dict(
nrow=1,
ncol=122,
row_names=None,
col_names=evoked.ch_names,
data=np.ones(122),
),
explained_var=0.5,
)
plot_projs_topomap([proj], evoked.info, **fast_test)
def test_plot_topomap_bads():
"""Test plotting topomap with bad channels (gh-7213)."""
data = np.random.RandomState(0).randn(3, 1000)
raw = RawArray(data, create_info(3, 1000.0, "eeg"))
ch_pos_dict = {name: pos for name, pos in zip(raw.ch_names, np.eye(3))}
raw.info.set_montage(make_dig_montage(ch_pos_dict, coord_frame="head"))
for count in range(3):
raw.info["bads"] = raw.ch_names[:count]
raw.info._check_consistency()
plot_topomap(data[:, 0], raw.info)
def test_plot_topomap_channel_distance():
"""
Test topomap plotting with spread out channels (gh-9511, gh-9526).
Test topomap plotting when the distance between channels is greater than
the head radius.
"""
ch_names = ["TP9", "AF7", "AF8", "TP10"]
info = create_info(ch_names, 100, ch_types="eeg")
evoked = EvokedArray(np.random.randn(4, 10) * 1e-6, info)
ten_five = make_standard_montage("standard_1005")
evoked.set_montage(ten_five)
evoked.plot_topomap(sphere=0.05, res=8)
def test_plot_topomap_bads_grad():
"""Test plotting topomap with bad gradiometer channels (gh-8802)."""
data = np.random.RandomState(0).randn(203)
info = read_info(evoked_fname)
info["bads"] = ["MEG 2242"]
picks = pick_types(info, meg="grad")
info = pick_info(info, picks)
assert len(info["chs"]) == 203
plot_topomap(data, info, res=8)
def test_plot_topomap_nirs_overlap(fnirs_epochs):
"""Test plotting nirs topomap with overlapping channels (gh-7414)."""
fig = fnirs_epochs["A"].average(picks="hbo").plot_topomap()
assert len(fig.axes) == 5
def test_plot_topomap_nirs_ica(fnirs_epochs):
"""Test plotting nirs ica topomap."""
pytest.importorskip("sklearn")
fnirs_epochs = fnirs_epochs.load_data().pick(picks="hbo")
fnirs_epochs = fnirs_epochs.pick(picks=range(30))
# fake high-pass filtering and hide the fact that the epochs were
# baseline corrected
with fnirs_epochs.info._unlock():
fnirs_epochs.info["highpass"] = 1.0
fnirs_epochs.baseline = None
ica = ICA().fit(fnirs_epochs)
fig = ica.plot_components()
assert len(fig[0].axes) == 20
def test_plot_cov_topomap():
"""Test plotting a covariance topomap."""
cov = read_cov(cov_fname)
info = read_info(evoked_fname)
cov.plot_topomap(info)
cov.plot_topomap(info, noise_cov=cov)
def test_plot_topomap_cnorm():
"""Test colormap normalization."""
rng = np.random.default_rng(42)
v = rng.uniform(low=-1, high=2.5, size=64)
v[:3] = [-1, 0, 2.5]
montage = make_standard_montage("biosemi64")
info = create_info(montage.ch_names, 256, "eeg").set_montage("biosemi64")
cnorm = TwoSlopeNorm(vmin=-1, vcenter=0, vmax=2.5)
# pass only cnorm, no vmin/vmax
plot_topomap(v, info, cnorm=cnorm)
# pass cnorm and vmin
with pytest.warns(RuntimeWarning, match="implicitly defines vmin=-1"):
plot_topomap(v, info, vlim=(-10, None), cnorm=cnorm)
# pass cnorm and vmax
with pytest.warns(RuntimeWarning, match="implicitly defines .* vmax=2.5"):
plot_topomap(v, info, vlim=(None, 10), cnorm=cnorm)
# try another subclass of mpl.colors.Normalize
plot_topomap(v, info, cnorm=PowerNorm(0.5))
def test_plot_bridged_electrodes():
"""Test plotting of bridged electrodes."""
rng = np.random.default_rng(42)
montage = make_standard_montage("biosemi64")
info = create_info(montage.ch_names, 256, "eeg").set_montage("biosemi64")
bridged_idx = [(0, 1), (2, 3)]
n_epochs = 10
ed_matrix = np.zeros((n_epochs, len(info.ch_names), len(info.ch_names))) * np.nan
triu_idx = np.triu_indices(len(info.ch_names), 1)
for i in range(n_epochs):
ed_matrix[i][triu_idx] = rng.random() + rng.random(triu_idx[0].size)
fig = plot_bridged_electrodes(
info,
bridged_idx,
ed_matrix,
topomap_args=dict(names=info.ch_names, vlim=(None, 1)),
)
# two bridged lines plus head outlines
assert len(fig.axes[0].lines) == 6
# test with sphere="eeglab"
fig = plot_bridged_electrodes(
info,
bridged_idx,
ed_matrix,
topomap_args=dict(names=info.ch_names, sphere="eeglab", vlim=(None, 1)),
)
with pytest.raises(RuntimeError, match="Expected"):
plot_bridged_electrodes(info, bridged_idx, np.zeros((5, 6, 7)))
# test with multiple channel types
raw = read_raw_fif(raw_fname, preload=True)
picks = _picks_to_idx(raw.info, "eeg")
raw._data[picks[0]] = raw._data[picks[1]] # artificially bridge electrodes
bridged_idx, ed_matrix = compute_bridged_electrodes(raw)
plot_bridged_electrodes(raw.info, bridged_idx, ed_matrix)
def test_plot_ch_adjacency():
"""Test plotting of adjacency matrix."""
xyz_pos = np.array(
[
[-0.1, 0.1, 0.1],
[0.1, 0.1, 0.1],
[0.0, 0.0, 0.12],
[-0.1, -0.1, 0.1],
[0.1, -0.1, 0.1],
]
)
info = create_info(list("abcde"), 23, ch_types="eeg")
montage = make_dig_montage(
ch_pos={ch: pos for ch, pos in zip(info.ch_names, xyz_pos)}, coord_frame="head"
)
info.set_montage(montage)
# construct adjacency
adj_sparse, ch_names = find_ch_adjacency(info, "eeg")
# plot adjacency
fig = plot_ch_adjacency(info, adj_sparse, ch_names, kind="2d", edit=True)
# find channel positions
collection = fig.axes[0].collections[0]
pos = collection.get_offsets().data
# get adjacency lines
lines = fig.axes[0].lines[4:] # (first four lines are head outlines)
# make sure lines match adjacency relations in the matrix
for line in lines:
x, y = line.get_data()
ch_idx = [
np.where((pos == [[x[ix], y[ix]]]).all(axis=1))[0][0] for ix in range(2)
]
assert adj_sparse[ch_idx[0], ch_idx[1]]
# make sure additional point is generated after clicking a channel
_fake_click(fig, fig.axes[0], pos[0], xform="data")
collections = fig.axes[0].collections
assert len(collections) == 2
# make sure the point is green
green = matplotlib.colors.to_rgba("tab:green")
assert (collections[1].get_facecolor() == green).all()
# make sure adjacency entry is modified after second click on another node
assert adj_sparse[0, 1]
assert adj_sparse[1, 0]
n_lines_before = len(lines)
_fake_click(fig, fig.axes[0], pos[1], xform="data")
assert not adj_sparse[0, 1]
assert not adj_sparse[1, 0]
# and there is one line less
lines = fig.axes[0].lines[4:]
n_lines_after = len(lines)
assert n_lines_after == n_lines_before - 1
# make sure there is still one green point ...
collections = fig.axes[0].collections
assert len(collections) == 2
assert (collections[1].get_facecolor() == green).all()
# ... but its at a different location
point_pos = collections[1].get_offsets().data
assert (point_pos == pos[1]).all()
# check that clicking again removes the green selection point
_fake_click(fig, fig.axes[0], pos[1], xform="data")
collections = fig.axes[0].collections
assert len(collections) == 1
# clicking the points again adds a green line
_fake_click(fig, fig.axes[0], pos[1], xform="data")
_fake_click(fig, fig.axes[0], pos[0], xform="data")
lines = fig.axes[0].lines[4:]
assert len(lines) == n_lines_after + 1
assert lines[-1].get_color() == "tab:green"
# smoke test for 3d option
adj = adj_sparse.toarray()
fig = plot_ch_adjacency(info, adj, ch_names, kind="3d")
# test errors
# -----------
# number of channels in the adjacency matrix and info must match
msg = (
"``adjacency`` must have the same number of rows as the number of "
"channels in ``info``"
)
with pytest.raises(ValueError, match=msg):
plot_ch_adjacency(info, adj_sparse, ch_names[:3], kind="2d")
# edition mode only available for 2d plot
msg = "Editing a 3d adjacency plot is not supported."
with pytest.raises(ValueError, match=msg):
plot_ch_adjacency(info, adj, ch_names, kind="3d", edit=True)