[074d3d]: / mne / viz / tests / test_topomap.py

Download this file

975 lines (836 with data), 34.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from functools import partial
from pathlib import Path
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib.colors import PowerNorm, TwoSlopeNorm
from matplotlib.patches import Circle
from numpy.testing import assert_almost_equal, assert_array_equal, assert_equal
from mne import (
Epochs,
EvokedArray,
Projection,
compute_proj_evoked,
compute_proj_raw,
create_info,
find_layout,
make_fixed_length_events,
pick_types,
read_cov,
read_evokeds,
read_proj,
)
from mne._fiff.compensator import get_current_comp
from mne._fiff.constants import FIFF
from mne._fiff.pick import _picks_to_idx, channel_indices_by_type, pick_info
from mne._fiff.proj import make_eeg_average_ref_proj
from mne.channels import (
find_ch_adjacency,
make_dig_montage,
make_standard_montage,
read_layout,
)
from mne.datasets import testing
from mne.io import RawArray, read_info, read_raw_fif
from mne.preprocessing import (
ICA,
compute_bridged_electrodes,
compute_current_source_density,
)
from mne.time_frequency.tfr import AverageTFR, AverageTFRArray
from mne.viz import plot_evoked_topomap, plot_projs_topomap, topomap
from mne.viz.tests.test_raw import _proj_status
from mne.viz.topomap import (
_get_pos_outlines,
_onselect,
plot_arrowmap,
plot_bridged_electrodes,
plot_ch_adjacency,
plot_psds_topomap,
plot_topomap,
)
from mne.viz.utils import _fake_click, _fake_keypress, _fake_scroll, _find_peaks
data_dir = testing.data_path(download=False)
subjects_dir = data_dir / "subjects"
ecg_fname = data_dir / "MEG" / "sample" / "sample_audvis_ecg-proj.fif"
triux_fname = data_dir / "SSS" / "TRIUX" / "triux_bmlhus_erm_raw.fif"
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
evoked_fname = base_dir / "test-ave.fif"
raw_fname = base_dir / "test_raw.fif"
event_name = base_dir / "test-eve.fif"
ctf_fname = base_dir / "test_ctf_comp_raw.fif"
layout = read_layout("Vectorview-all")
cov_fname = base_dir / "test-cov.fif"
fast_test = dict(res=8, contours=0, sensors=False)
@pytest.mark.parametrize("layout", (None, "constrained"))
def test_plot_topomap_interactive(layout):
"""Test interactive topomap projection plotting."""
evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0]
evoked.pick(picks="mag")
with evoked.info._unlock():
evoked.info["projs"] = []
assert not evoked.proj
evoked.add_proj(compute_proj_evoked(evoked, n_mag=1))
plt.close("all")
fig, ax = plt.subplots(layout=layout)
canvas = fig.canvas
kwargs = dict(
vlim=(-240, 240), times=[0.1], colorbar=False, axes=ax, res=8, time_unit="s"
)
evoked.copy().plot_topomap(proj=False, **kwargs)
canvas.draw()
image_noproj = np.array(canvas.buffer_rgba())
assert len(plt.get_fignums()) == 1
ax.clear()
evoked.copy().plot_topomap(proj=True, **kwargs)
canvas.draw()
image_proj = np.array(canvas.buffer_rgba())
assert not np.array_equal(image_noproj, image_proj)
assert len(plt.get_fignums()) == 1
ax.clear()
fig = evoked.copy().plot_topomap(proj="interactive", **kwargs)
canvas.draw()
image_interactive = np.array(canvas.buffer_rgba())
assert_array_equal(image_noproj, image_interactive)
assert not np.array_equal(image_proj, image_interactive)
assert len(plt.get_fignums()) == 2
proj_fig = plt.figure(plt.get_fignums()[-1])
assert _proj_status(fig, "matplotlib") == [False]
_fake_click(proj_fig, proj_fig.axes[0], [0.5, 0.5], xform="ax")
proj_fig.canvas.draw_idle()
assert _proj_status(fig, "matplotlib") == [True]
canvas.draw()
image_interactive_click = np.array(canvas.buffer_rgba())
corr = np.corrcoef(image_proj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.99 < corr <= 1
corr = np.corrcoef(image_noproj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.85 < corr < 0.9
_fake_click(proj_fig, proj_fig.axes[0], [0.5, 0.5], xform="ax")
canvas.draw()
image_interactive_click = np.array(canvas.buffer_rgba())
corr = np.corrcoef(image_noproj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.99 < corr <= 1
corr = np.corrcoef(image_proj.ravel(), image_interactive_click.ravel())[0, 1]
assert 0.85 < corr < 0.9
@testing.requires_testing_data
def test_plot_projs_topomap():
"""Test plot_projs_topomap."""
projs = read_proj(ecg_fname)
info = read_info(raw_fname)
plot_projs_topomap(projs, info=info, colorbar=True, **fast_test)
_, ax = plt.subplots()
projs[3].plot_topomap(info)
plot_projs_topomap(projs[:1], info, axes=ax, **fast_test) # test axes
triux_info = read_info(triux_fname)
plot_projs_topomap(triux_info["projs"][-1:], triux_info, **fast_test)
plot_projs_topomap(triux_info["projs"][:1], triux_info, **fast_test)
eeg_avg = make_eeg_average_ref_proj(info)
eeg_avg.plot_topomap(info, **fast_test)
# test vlims
for vlim in ("joint", (-1, 1), (None, 0.5), (0.5, None), (None, None)):
plot_projs_topomap(projs[:-1], info, vlim=vlim, colorbar=True)
eeg_proj = make_eeg_average_ref_proj(info)
info_meg = pick_info(info, pick_types(info, meg=True, eeg=False))
with pytest.raises(ValueError, match="Missing channels"):
plot_projs_topomap([eeg_proj], info_meg)
@pytest.mark.parametrize("vlim", ("joint", None))
@pytest.mark.parametrize("meg", ("combined", "separate"))
def test_plot_projs_topomap_joint(meg, vlim, raw):
"""Test that plot_projs_topomap works with joint vlim."""
if vlim is None:
vlim = (None, None)
projs = compute_proj_raw(raw, meg=meg)
fig = plot_projs_topomap(projs, info=raw.info, vlim=vlim, **fast_test)
assert len(fig.axes) == 4 # 2 mag, 2 grad
def test_plot_topomap_animation(capsys):
"""Test topomap plotting."""
# evoked
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
# Test animation
_, anim = evoked.animate_topomap(
ch_type="grad", times=[0, 0.1], butterfly=False, time_unit="s", verbose="debug"
)
anim._func(1) # _animate has to be tested separately on 'Agg' backend.
out, _ = capsys.readouterr()
assert "extrapolation mode local to 0" in out
def test_plot_topomap_animation_csd(capsys):
"""Test topomap plotting of CSD data."""
# evoked
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
evoked_csd = compute_current_source_density(evoked)
# Test animation
_, anim = evoked_csd.animate_topomap(
ch_type="csd", times=[0, 0.1], butterfly=False, time_unit="s", verbose="debug"
)
anim._func(1) # _animate has to be tested separately on 'Agg' backend.
out, _ = capsys.readouterr()
assert "extrapolation mode head to 0" in out
@pytest.mark.filterwarnings("ignore:.*No contour levels.*:UserWarning")
def test_plot_topomap_animation_nirs(fnirs_evoked, capsys):
"""Test topomap plotting for nirs data."""
fig, anim = fnirs_evoked.animate_topomap(ch_type="hbo", verbose="debug")
anim._func(1) # _animate has to be tested separately on 'Agg' backend.
out, _ = capsys.readouterr()
assert "extrapolation mode head to 0" in out
assert len(fig.axes) == 2
def test_plot_evoked_topomap_errors(evoked, monkeypatch):
"""Test error handling for evoked topomap plots."""
# simplify data and set some params to make the test really fast
evoked.pick(["EEG 001", "EEG 002"])
fast_func = partial(evoked.plot_topomap, res=8, contours=0, sensors=False)
fast_func_onetime = partial(fast_func, times=0.1)
# wrong channel type
with pytest.raises(ValueError, match="No channels of type 'mag'"):
fast_func(ch_type="mag")
# bad times
with pytest.raises(ValueError, match="Times should be between 0.0 and"):
fast_func(times=[-100])
with pytest.raises(ValueError, match="times must be 1D, got 2 dimensions"):
fast_func(times=[[0]])
# times / average mismatch
with pytest.raises(ValueError, match="3 time points.*2 periods for aver"):
fast_func([0.05, 0.1, 0.15], ch_type="eeg", average=[0.01, 0.02])
# average
with pytest.raises(ValueError, match="number of seconds.* got -1000.0"):
fast_func_onetime(average=-1e3)
with pytest.raises(TypeError, match="number of seconds.* got type:"):
fast_func_onetime(average="x")
# image_interp
with pytest.raises(RuntimeError, match="`image_interp` must be"):
fast_func_onetime(image_interp="bilinear")
# border
with pytest.raises(TypeError, match="be an instance of numeric or str"):
fast_func_onetime(extrapolate="head", border=[1, 2, 3])
with pytest.raises(ValueError, match="allowed value.*'mean'.*got 'fancy'"):
fast_func_onetime(extrapolate="head", border="fancy")
# projs
with pytest.raises(RuntimeError, match="Projs are already applied."):
fast_func_onetime(proj="interactive")
# too many subplots
with monkeypatch.context() as m: # speed it up by not actually plotting
m.setattr(topomap, "_plot_topomap", lambda *args, **kwargs: (None, None, None))
with pytest.warns(RuntimeWarning, match="More than 25 topomaps plots"):
fast_func([0.1] * 26, colorbar=False)
# missing channel locations
with evoked.info._unlock():
for ch in evoked.info["chs"]:
ch["loc"][:3] = 0.0
with pytest.raises(ValueError, match="points.*doesn't match.*channels."):
evoked.plot_topomap()
with evoked.info._unlock():
evoked.info["dig"] = None
with pytest.raises(RuntimeError, match="No digitization points found."):
evoked.plot_topomap()
@pytest.mark.parametrize(
"units, scalings, expected_unit",
[
(None, None, "µV"),
("foo", None, "foo"),
(None, 7.0, "AU"), # non-default scaling → "AU"
],
)
def test_plot_evoked_topomap_units(evoked, units, scalings, expected_unit):
"""Test that colorbar units respect scalings correctly."""
evoked.pick(["EEG 001", "EEG 002", "EEG 003"])
fig = evoked.plot_topomap(
times=0.1, res=8, contours=0, sensors=False, units=units, scalings=scalings
)
cbar = [ax for ax in fig.axes if hasattr(ax, "_colorbar")]
assert len(cbar) == 1
cbar = cbar[0]
assert cbar.get_title() == expected_unit
@pytest.mark.parametrize("extrapolate", ("box", "local", "head"))
def test_plot_evoked_topomap_extrapolation(evoked, extrapolate):
"""Test topomap extrapolation options."""
evoked.pick(["EEG 001", "EEG 002", "EEG 003"])
evoked.plot_topomap(
times=0.1, extrapolate=extrapolate, res=8, contours=0, sensors=False
)
def test_plot_evoked_topomap_border():
"""Test topomap extrapolation border values."""
# make some fake sensor locations: 25 sensors at distances of 0.2 to 1.0
# in steps of 0.2 in the ±x, ±y, and +z directions
ch_pos = np.array(
[
[
[r, 0, 0], # +x
[-r, 0, 0], # -x
[0, r, 0], # +y
[0, -r, 0], # -y
[0, 0, r], # +z
]
for r in np.linspace(0.2, 1, 5)
]
).reshape(-1, 3)
info = create_info(len(ch_pos), 250, "eeg")
ch_pos_dict = {name: pos for name, pos in zip(info["ch_names"], ch_pos)}
dig = make_dig_montage(ch_pos_dict, coord_frame="head")
info.set_montage(dig)
# simulate data
data = np.full(len(ch_pos), 5)
kwargs = dict(res=15, extrapolate="head", sphere=1, sensors=False)
idx = kwargs["res"] // 2
# when border=0...
img, _ = plot_topomap(data, info, border=0, **kwargs)
img_data = img.get_array().data
# middle pixel should exactly equal sensor data:
assert_equal(img_data[idx, idx], data[0])
# corner pixel should be close(ish) to zero:
assert img_data[0, 0] < 1.5
# when border='mean'...
img, _ = plot_topomap(data, info, border="mean", **kwargs)
img_data = img.get_array().data
# middle pixel should exactly equal sensor data:
assert_equal(img_data[idx, idx], data[0])
# and corner pixel should *also* be very close to sensor data:
assert_almost_equal(img_data[idx, idx], data[0], decimal=9)
@pytest.mark.slowtest
def test_plot_topomap_basic():
"""Test basics of topomap plotting."""
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
res = 8
fast_test_noscale = dict(res=res, contours=0, sensors=False)
ev_bad = evoked.copy().pick(picks="eeg")
ev_bad.pick(ev_bad.ch_names[:2])
plt_topomap = partial(ev_bad.plot_topomap, **fast_test)
plt_topomap(times=ev_bad.times[:2] - 1e-6) # auto, plots EEG
evoked.plot_topomap(
[0.1],
ch_type="eeg",
scalings=1,
res=res,
contours=[-100, 0, 100],
time_unit="ms",
)
# test channel placement when only 'grad' are picked:
# ---------------------------------------------------
info_grad = evoked.copy().pick("grad").info
n_grads = len(info_grad["ch_names"])
data = np.random.randn(n_grads)
img, _ = plot_topomap(data, info_grad)
# check that channels are scattered around x == 0
pos = img.axes.collections[-1].get_offsets()
prop_channels_on_the_right = (pos[:, 0] > 0).mean()
assert prop_channels_on_the_right < 0.6
# other:
# ------
plt_topomap = partial(evoked.plot_topomap, **fast_test)
plt.close("all")
axes = [plt.subplot(221), plt.subplot(222)]
plt_topomap(axes=axes, colorbar=False)
plt.close("all")
plt_topomap(times=[-0.1, 0.2])
plt.close("all")
evoked_grad = evoked.copy().crop(0, 0).pick(picks="grad")
mask = np.zeros((204, 1), bool)
mask[[0, 3, 5, 6]] = True
names = []
def proc_names(x):
names.append(x)
return x[4:]
evoked_grad.plot_topomap(
ch_type="grad", times=[0], mask=mask, show_names=proc_names, **fast_test
)
want_names = np.array(evoked_grad.ch_names)[mask.squeeze()].tolist()
assert_equal(
[f"{name[:-1]}x" for name in want_names],
["MEG 011x", "MEG 012x", "MEG 013x", "MEG 014x"],
)
mask = np.zeros_like(evoked.data, dtype=bool)
mask[[1, 5], :] = True
plt_topomap(ch_type="mag", outlines=None)
times = [0.1]
plt_topomap(times, ch_type="grad", mask=mask)
plt_topomap(times, ch_type="planar1")
plt_topomap(times, ch_type="planar2")
plt_topomap(
times, ch_type="grad", mask=mask, show_names=True, mask_params={"marker": "x"}
)
plt.close("all")
p = plt_topomap(
times,
ch_type="grad",
image_interp="cubic",
show_names=lambda x: x.replace("MEG", ""),
)
subplot = [
x
for x in p.get_children()
if any(t in str(type(x)) for t in ("Axes", "Subplot"))
]
assert len(subplot) >= 1, [type(x) for x in p.get_children()]
subplot = subplot[0]
have_all = all(
"MEG" not in x.get_text()
for x in subplot.get_children()
if isinstance(x, matplotlib.text.Text)
)
assert have_all
# Plot array
for ch_type in ("mag", "grad"):
evoked_ = evoked.copy().pick(picks=ch_type)
plot_topomap(evoked_.data[:, 0], evoked_.info, **fast_test_noscale)
# fail with multiple channel types
pytest.raises(ValueError, plot_topomap, evoked.data[0, :], evoked.info)
# Test title
def get_texts(p):
return [
x.get_text()
for x in p.get_children()
if isinstance(x, matplotlib.text.Text)
]
p = plt_topomap(times, ch_type="eeg", average=0.01)
assert_equal(len(get_texts(p)), 0)
plt.close("all")
# Test averaging with a scalar input
averaging_times = [ev_bad.times[0], times[0], ev_bad.times[-1]]
p = plt_topomap(averaging_times, ch_type="eeg", average=0.01)
expected_ax_titles = (
"-0.200 – -0.195 s", # clipped on the left
"0.095 – 0.105 s", # full range
"0.494 – 0.499 s", # clipped on the right
)
for idx, expected_title in enumerate(expected_ax_titles):
assert p.axes[idx].get_title() == expected_title
# Test averaging with an array-like input
averaging_durations = [0.01, 0.02, None]
p = plt_topomap(averaging_times, ch_type="eeg", average=averaging_durations)
expected_ax_titles = (
"-0.200 – -0.195 s", # clipped on the left
"0.090 – 0.110 s", # full range
"0.499 s", # No averaging
)
for idx, expected_title in enumerate(expected_ax_titles):
assert p.axes[idx].get_title() == expected_title
del averaging_times, expected_ax_titles, expected_title
# delaunay triangulation warning
plt_topomap(times, ch_type="mag")
# change to no-proj mode
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0), proj=False)
plt.close("all")
fig1 = evoked.plot_topomap(
"interactive", ch_type="mag", proj="interactive", **fast_test
)
# TODO: Clicking the slider creates a *new* image rather than updating
# the data directly. This makes it so that the projection is not applied
# to the correct matplotlib Image object.
# _fake_click(fig1, fig1.axes[1], (0.5, 0.5)) # click slider
data_max = np.max(fig1.axes[0].images[0]._A)
proj_fig = plt.figure(plt.get_fignums()[-1])
assert fig1.mne.proj_checkboxes.get_status() == [False, False, False]
pos = proj_fig.axes[0].texts[0].get_position() + np.array([0.01, 0])
_fake_click(proj_fig, proj_fig.axes[0], pos) # toggle projector
# make sure projector gets toggled
assert fig1.mne.proj_checkboxes.get_status() == [True, False, False]
assert np.max(fig1.axes[0].images[0]._A) != data_max
for ch in evoked.info["chs"]:
if ch["coil_type"] == FIFF.FIFFV_COIL_EEG:
ch["loc"].fill(0)
# Remove extra digitization point, so EEG digitization points
# correspond with the EEG electrodes
del evoked.info["dig"][85]
# Pass custom outlines without patch
eeg_picks = pick_types(evoked.info, meg=False, eeg=True)
pos, outlines = _get_pos_outlines(evoked.info, eeg_picks, 0.1)
evoked.plot_topomap(times, ch_type="eeg", outlines=outlines, **fast_test)
plt.close("all")
# Test interactive cmap
fig = plot_evoked_topomap(
evoked, times=[0.0, 0.1], ch_type="eeg", cmap=("Reds", True), **fast_test
)
_fake_keypress(fig, "up")
_fake_keypress(fig, " ")
_fake_keypress(fig, "down")
cbar = fig.get_axes()[0].CB # Fake dragging with mouse.
ax = cbar.cbar.ax
_fake_click(fig, ax, (0.1, 0.1))
_fake_click(fig, ax, (0.1, 0.2), kind="motion")
_fake_click(fig, ax, (0.1, 0.3), kind="release")
_fake_click(fig, ax, (0.1, 0.1), button=3)
_fake_click(fig, ax, (0.1, 0.2), button=3, kind="motion")
_fake_click(fig, ax, (0.1, 0.3), kind="release")
_fake_scroll(fig, 0.5, 0.5, -0.5) # scroll down
_fake_scroll(fig, 0.5, 0.5, 0.5) # scroll up
plt.close("all")
# Pass custom outlines with patch callable
def patch():
return Circle(
(0.5, 0.4687), radius=0.46, clip_on=True, transform=plt.gca().transAxes
)
outlines["patch"] = patch
plot_evoked_topomap(evoked, times, ch_type="eeg", outlines=outlines, **fast_test)
# Test error messages for invalid pos parameter
n_channels = len(pos)
data = np.ones(n_channels)
pos_1d = np.zeros(n_channels)
pos_3d = np.zeros((n_channels, 2, 2))
pytest.raises(ValueError, plot_topomap, data, pos_1d)
pytest.raises(ValueError, plot_topomap, data, pos_3d)
pytest.raises(ValueError, plot_topomap, data, pos[:3, :])
pos_x = pos[:, :1]
pos_xyz = np.c_[pos, np.zeros(n_channels)[:, np.newaxis]]
pytest.raises(ValueError, plot_topomap, data, pos_x)
pytest.raises(ValueError, plot_topomap, data, pos_xyz)
# An #channels x 4 matrix should work though. In this case (x, y, width,
# height) is assumed.
pos_xywh = np.c_[pos, np.zeros((n_channels, 2))]
plot_topomap(data, pos_xywh)
plt.close("all")
# Test peak finder
axes = [plt.subplot(131), plt.subplot(132)]
evoked.plot_topomap(times="peaks", axes=axes, **fast_test)
plt.close("all")
evoked.data = np.zeros(evoked.data.shape)
evoked.data[50][1] = 1
assert_array_equal(_find_peaks(evoked, 10), evoked.times[1])
evoked.data[80][100] = 1
assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 100]])
evoked.data[2][95] = 2
assert_array_equal(_find_peaks(evoked, 10), evoked.times[[1, 95]])
assert_array_equal(_find_peaks(evoked, 1), evoked.times[95])
# Test excluding bads channels
evoked_grad.info["bads"] += [evoked_grad.info["ch_names"][0]]
orig_bads = evoked_grad.info["bads"]
evoked_grad.plot_topomap(ch_type="grad", times=[0], time_unit="ms")
assert_array_equal(evoked_grad.info["bads"], orig_bads)
def test_plot_psds_topomap_colorbar():
"""Test plot_psds_topomap colorbar option."""
raw = read_raw_fif(raw_fname)
picks = pick_types(raw.info, meg="grad")
info = pick_info(raw.info, picks)
freqs = np.arange(3.0, 9.5)
rng = np.random.default_rng(42)
psd = np.abs(rng.standard_normal((len(picks), len(freqs))))
bands = {"theta": [4, 8]}
plt.close("all")
fig_cbar = plot_psds_topomap(psd, freqs, info, colorbar=True, bands=bands)
assert len(fig_cbar.axes) == 2
fig_nocbar = plot_psds_topomap(psd, freqs, info, colorbar=False, bands=bands)
assert len(fig_nocbar.axes) == 1
def test_plot_tfr_topomap():
"""Test plotting of TFR data."""
raw = read_raw_fif(raw_fname)
times = np.linspace(-0.1, 0.1, 200)
res = 8
n_freqs = 3
nave = 1
rng = np.random.RandomState(42)
picks = [93, 94, 96, 97, 21, 22, 24, 25, 129, 130, 315, 316, 2, 5, 8, 11]
info = pick_info(raw.info, picks)
data = rng.randn(len(picks), n_freqs, len(times))
# test complex numbers
tfr = AverageTFRArray(
info=info,
data=data * (1 + 1j),
times=times,
freqs=np.arange(n_freqs),
nave=nave,
)
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
# test data with taper dimension (real)
data = np.expand_dims(data, axis=1)
weights = np.random.rand(1, n_freqs)
tfr = AverageTFRArray(
info=info,
data=data,
times=times,
freqs=np.arange(n_freqs),
nave=nave,
weights=weights,
)
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
# test data with taper dimension (complex)
state = tfr.__getstate__()
tfr = AverageTFR(inst=state | dict(data=data * (1 + 1j)))
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
# remove taper dim before proceeding
data = data[:, 0]
# test real numbers
tfr = AverageTFRArray(
info=info, data=data, times=times, freqs=np.arange(n_freqs), nave=nave
)
tfr.plot_topomap(
ch_type="mag", tmin=0.05, tmax=0.150, fmin=0, fmax=10, res=res, contours=0
)
eclick = matplotlib.backend_bases.MouseEvent(
"button_press_event", plt.gcf().canvas, 0, 0, 1
)
eclick.xdata = eclick.ydata = 0.1
eclick.inaxes = plt.gca()
erelease = matplotlib.backend_bases.MouseEvent(
"button_release_event", plt.gcf().canvas, 0.9, 0.9, 1
)
erelease.xdata = 0.3
erelease.ydata = 0.2
pos = np.array([[0.11, 0.11], [0.25, 0.5], [0.0, 0.2], [0.2, 0.39]])
_onselect(eclick, erelease, tfr, pos, "grad", 1, 3, 1, 3, "RdBu_r", list())
_onselect(eclick, erelease, tfr, pos, "mag", 1, 3, 1, 3, "RdBu_r", list())
eclick.xdata = eclick.ydata = 0.0
erelease.xdata = erelease.ydata = 0.9
tfr._onselect(eclick, erelease, None, "mean", None)
plt.close("all")
# test plot_psds_topomap
info = raw.info.copy()
chan_inds = channel_indices_by_type(info)
info = pick_info(info, chan_inds["grad"][:4])
fig, axes = plt.subplots()
freqs = np.arange(3.0, 9.5)
bands = [(4, 8, "Theta")]
psd = np.random.rand(len(info["ch_names"]), freqs.shape[0])
plot_psds_topomap(psd, freqs, info, bands=bands, axes=[axes])
def test_ctf_plotting():
"""Test CTF topomap plotting."""
raw = read_raw_fif(ctf_fname, preload=True)
assert raw.compensation_grade == 3
events = make_fixed_length_events(raw, duration=0.01)
assert len(events) > 10
evoked = Epochs(raw, events, tmin=0, tmax=0.01, baseline=None).average()
assert get_current_comp(evoked.info) == 3
# smoke test that compensation does not matter
evoked.plot_topomap(time_unit="s")
# better test that topomaps can still be used without plotting ref
evoked.pick(picks="meg")
evoked.plot_topomap()
@pytest.mark.slowtest # can be slow on OSX
@testing.requires_testing_data
def test_plot_arrowmap(evoked):
"""Test arrowmap plotting."""
with pytest.raises(ValueError, match="Multiple channel types"):
plot_arrowmap(evoked.data[:, 0], evoked.info)
evoked_eeg = evoked.copy().pick("eeg")
with pytest.raises(ValueError, match="Multiple channel types"):
plot_arrowmap(evoked_eeg.data[:, 0], evoked.info)
evoked_mag = evoked.copy().pick("mag")
evoked_grad = evoked.pick("grad", exclude="bads")
plot_arrowmap(evoked_mag.data[:, 0], info_from=evoked_mag.info)
plot_arrowmap(
evoked_grad.data[:, 0], info_from=evoked_grad.info, info_to=evoked_mag.info
)
@testing.requires_testing_data
def test_plot_topomap_neuromag122():
"""Test topomap plotting."""
evoked = read_evokeds(evoked_fname, "Left Auditory", baseline=(None, 0))
evoked.pick(picks="grad")
evoked.pick(evoked.ch_names[:122])
ch_names = [f"MEG {k:03}" for k in range(1, 123)]
for c in evoked.info["chs"]:
c["coil_type"] = FIFF.FIFFV_COIL_NM_122
evoked.rename_channels(
{c_old: c_new for (c_old, c_new) in zip(evoked.ch_names, ch_names)}
)
layout = find_layout(evoked.info)
assert layout.kind.startswith("Neuromag_122")
evoked.plot_topomap(times=[0.1], **fast_test)
proj = Projection(
active=False,
desc="test",
kind=1,
data=dict(
nrow=1,
ncol=122,
row_names=None,
col_names=evoked.ch_names,
data=np.ones(122),
),
explained_var=0.5,
)
plot_projs_topomap([proj], evoked.info, **fast_test)
def test_plot_topomap_bads():
"""Test plotting topomap with bad channels (gh-7213)."""
data = np.random.RandomState(0).randn(3, 1000)
raw = RawArray(data, create_info(3, 1000.0, "eeg"))
ch_pos_dict = {name: pos for name, pos in zip(raw.ch_names, np.eye(3))}
raw.info.set_montage(make_dig_montage(ch_pos_dict, coord_frame="head"))
for count in range(3):
raw.info["bads"] = raw.ch_names[:count]
raw.info._check_consistency()
plot_topomap(data[:, 0], raw.info)
def test_plot_topomap_channel_distance():
"""
Test topomap plotting with spread out channels (gh-9511, gh-9526).
Test topomap plotting when the distance between channels is greater than
the head radius.
"""
ch_names = ["TP9", "AF7", "AF8", "TP10"]
info = create_info(ch_names, 100, ch_types="eeg")
evoked = EvokedArray(np.random.randn(4, 10) * 1e-6, info)
ten_five = make_standard_montage("standard_1005")
evoked.set_montage(ten_five)
evoked.plot_topomap(sphere=0.05, res=8)
def test_plot_topomap_bads_grad():
"""Test plotting topomap with bad gradiometer channels (gh-8802)."""
data = np.random.RandomState(0).randn(203)
info = read_info(evoked_fname)
info["bads"] = ["MEG 2242"]
picks = pick_types(info, meg="grad")
info = pick_info(info, picks)
assert len(info["chs"]) == 203
plot_topomap(data, info, res=8)
def test_plot_topomap_nirs_overlap(fnirs_epochs):
"""Test plotting nirs topomap with overlapping channels (gh-7414)."""
fig = fnirs_epochs["A"].average(picks="hbo").plot_topomap()
assert len(fig.axes) == 5
def test_plot_topomap_nirs_ica(fnirs_epochs):
"""Test plotting nirs ica topomap."""
pytest.importorskip("sklearn")
fnirs_epochs = fnirs_epochs.load_data().pick(picks="hbo")
fnirs_epochs = fnirs_epochs.pick(picks=range(30))
# fake high-pass filtering and hide the fact that the epochs were
# baseline corrected
with fnirs_epochs.info._unlock():
fnirs_epochs.info["highpass"] = 1.0
fnirs_epochs.baseline = None
ica = ICA().fit(fnirs_epochs)
fig = ica.plot_components()
assert len(fig[0].axes) == 20
def test_plot_cov_topomap():
"""Test plotting a covariance topomap."""
cov = read_cov(cov_fname)
info = read_info(evoked_fname)
cov.plot_topomap(info)
cov.plot_topomap(info, noise_cov=cov)
def test_plot_topomap_cnorm():
"""Test colormap normalization."""
rng = np.random.default_rng(42)
v = rng.uniform(low=-1, high=2.5, size=64)
v[:3] = [-1, 0, 2.5]
montage = make_standard_montage("biosemi64")
info = create_info(montage.ch_names, 256, "eeg").set_montage("biosemi64")
cnorm = TwoSlopeNorm(vmin=-1, vcenter=0, vmax=2.5)
# pass only cnorm, no vmin/vmax
plot_topomap(v, info, cnorm=cnorm)
# pass cnorm and vmin
with pytest.warns(RuntimeWarning, match="implicitly defines vmin=-1"):
plot_topomap(v, info, vlim=(-10, None), cnorm=cnorm)
# pass cnorm and vmax
with pytest.warns(RuntimeWarning, match="implicitly defines .* vmax=2.5"):
plot_topomap(v, info, vlim=(None, 10), cnorm=cnorm)
# try another subclass of mpl.colors.Normalize
plot_topomap(v, info, cnorm=PowerNorm(0.5))
def test_plot_bridged_electrodes():
"""Test plotting of bridged electrodes."""
rng = np.random.default_rng(42)
montage = make_standard_montage("biosemi64")
info = create_info(montage.ch_names, 256, "eeg").set_montage("biosemi64")
bridged_idx = [(0, 1), (2, 3)]
n_epochs = 10
ed_matrix = np.zeros((n_epochs, len(info.ch_names), len(info.ch_names))) * np.nan
triu_idx = np.triu_indices(len(info.ch_names), 1)
for i in range(n_epochs):
ed_matrix[i][triu_idx] = rng.random() + rng.random(triu_idx[0].size)
fig = plot_bridged_electrodes(
info,
bridged_idx,
ed_matrix,
topomap_args=dict(names=info.ch_names, vlim=(None, 1)),
)
# two bridged lines plus head outlines
assert len(fig.axes[0].lines) == 6
# test with sphere="eeglab"
fig = plot_bridged_electrodes(
info,
bridged_idx,
ed_matrix,
topomap_args=dict(names=info.ch_names, sphere="eeglab", vlim=(None, 1)),
)
with pytest.raises(RuntimeError, match="Expected"):
plot_bridged_electrodes(info, bridged_idx, np.zeros((5, 6, 7)))
# test with multiple channel types
raw = read_raw_fif(raw_fname, preload=True)
picks = _picks_to_idx(raw.info, "eeg")
raw._data[picks[0]] = raw._data[picks[1]] # artificially bridge electrodes
bridged_idx, ed_matrix = compute_bridged_electrodes(raw)
plot_bridged_electrodes(raw.info, bridged_idx, ed_matrix)
def test_plot_ch_adjacency():
"""Test plotting of adjacency matrix."""
xyz_pos = np.array(
[
[-0.1, 0.1, 0.1],
[0.1, 0.1, 0.1],
[0.0, 0.0, 0.12],
[-0.1, -0.1, 0.1],
[0.1, -0.1, 0.1],
]
)
info = create_info(list("abcde"), 23, ch_types="eeg")
montage = make_dig_montage(
ch_pos={ch: pos for ch, pos in zip(info.ch_names, xyz_pos)}, coord_frame="head"
)
info.set_montage(montage)
# construct adjacency
adj_sparse, ch_names = find_ch_adjacency(info, "eeg")
# plot adjacency
fig = plot_ch_adjacency(info, adj_sparse, ch_names, kind="2d", edit=True)
# find channel positions
collection = fig.axes[0].collections[0]
pos = collection.get_offsets().data
# get adjacency lines
lines = fig.axes[0].lines[4:] # (first four lines are head outlines)
# make sure lines match adjacency relations in the matrix
for line in lines:
x, y = line.get_data()
ch_idx = [
np.where((pos == [[x[ix], y[ix]]]).all(axis=1))[0][0] for ix in range(2)
]
assert adj_sparse[ch_idx[0], ch_idx[1]]
# make sure additional point is generated after clicking a channel
_fake_click(fig, fig.axes[0], pos[0], xform="data")
collections = fig.axes[0].collections
assert len(collections) == 2
# make sure the point is green
green = matplotlib.colors.to_rgba("tab:green")
assert (collections[1].get_facecolor() == green).all()
# make sure adjacency entry is modified after second click on another node
assert adj_sparse[0, 1]
assert adj_sparse[1, 0]
n_lines_before = len(lines)
_fake_click(fig, fig.axes[0], pos[1], xform="data")
assert not adj_sparse[0, 1]
assert not adj_sparse[1, 0]
# and there is one line less
lines = fig.axes[0].lines[4:]
n_lines_after = len(lines)
assert n_lines_after == n_lines_before - 1
# make sure there is still one green point ...
collections = fig.axes[0].collections
assert len(collections) == 2
assert (collections[1].get_facecolor() == green).all()
# ... but its at a different location
point_pos = collections[1].get_offsets().data
assert (point_pos == pos[1]).all()
# check that clicking again removes the green selection point
_fake_click(fig, fig.axes[0], pos[1], xform="data")
collections = fig.axes[0].collections
assert len(collections) == 1
# clicking the points again adds a green line
_fake_click(fig, fig.axes[0], pos[1], xform="data")
_fake_click(fig, fig.axes[0], pos[0], xform="data")
lines = fig.axes[0].lines[4:]
assert len(lines) == n_lines_after + 1
assert lines[-1].get_color() == "tab:green"
# smoke test for 3d option
adj = adj_sparse.toarray()
fig = plot_ch_adjacency(info, adj, ch_names, kind="3d")
# test errors
# -----------
# number of channels in the adjacency matrix and info must match
msg = (
"``adjacency`` must have the same number of rows as the number of "
"channels in ``info``"
)
with pytest.raises(ValueError, match=msg):
plot_ch_adjacency(info, adj_sparse, ch_names[:3], kind="2d")
# edition mode only available for 2d plot
msg = "Editing a 3d adjacency plot is not supported."
with pytest.raises(ValueError, match=msg):
plot_ch_adjacency(info, adj, ch_names, kind="3d", edit=True)