[074d3d]: / mne / viz / tests / test_misc.py

Download this file

351 lines (320 with data), 11.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import pytest
from numpy.testing import assert_array_equal
from mne import (
SourceEstimate,
pick_events,
read_cov,
read_dipole,
read_events,
read_evokeds,
read_source_spaces,
)
from mne.chpi import compute_chpi_snr
from mne.datasets import testing
from mne.filter import create_filter
from mne.io import read_raw_fif
from mne.minimum_norm import read_inverse_operator
from mne.time_frequency import CrossSpectralDensity
from mne.utils import _record_warnings
from mne.viz import (
plot_bem,
plot_chpi_snr,
plot_csd,
plot_events,
plot_filter,
plot_snr_estimate,
plot_source_spectrogram,
)
from mne.viz.misc import _handle_event_colors
from mne.viz.utils import _get_color_list
data_path = testing.data_path(download=False)
subjects_dir = data_path / "subjects"
src_fname = subjects_dir / "sample" / "bem" / "sample-oct-6-src.fif"
inv_fname = (
data_path / "MEG" / "sample" / "sample_audvis_trunc-meg-eeg-oct-4-meg-inv.fif"
)
evoked_fname = data_path / "MEG" / "sample" / "sample_audvis-ave.fif"
dip_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc_set1.dip"
chpi_fif_fname = data_path / "SSS" / "test_move_anon_raw.fif"
base_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = base_dir / "test_raw.fif"
cov_fname = base_dir / "test-cov.fif"
event_fname = base_dir / "test-eve.fif"
def _get_raw():
"""Get raw data."""
return read_raw_fif(raw_fname, preload=True)
def _get_events():
"""Get events."""
return read_events(event_fname)
def test_plot_filter():
"""Test filter plotting."""
l_freq, h_freq, sfreq = 2.0, 40.0, 1000.0
data = np.zeros(5000)
freq = [0, 2, 40, 50, 500]
gain = [0, 1, 1, 0, 0]
h = create_filter(data, sfreq, l_freq, h_freq, fir_design="firwin2")
plot_filter(h, sfreq)
plt.close("all")
plot_filter(h, sfreq, freq, gain)
plt.close("all")
iir = create_filter(data, sfreq, l_freq, h_freq, method="iir")
plot_filter(iir, sfreq)
plt.close("all")
iir = create_filter(
data, sfreq, l_freq, h_freq, method="iir", iir_params={"output": "ba"}
)
plot_filter(iir, sfreq, compensate=True)
plt.close("all")
iir = create_filter(
data, sfreq, l_freq, h_freq, method="iir", iir_params={"output": "sos"}
)
plot_filter(iir, sfreq, compensate=True)
plt.close("all")
plot_filter(iir, sfreq, freq, gain)
plt.close("all")
iir_ba = create_filter(
data, sfreq, l_freq, h_freq, method="iir", iir_params=dict(output="ba")
)
plot_filter(iir_ba, sfreq, freq, gain)
plt.close("all")
fig = plot_filter(h, sfreq, freq, gain, fscale="linear")
assert len(fig.axes) == 3
plt.close("all")
fig = plot_filter(h, sfreq, freq, gain, fscale="linear", plot=("time", "delay"))
assert len(fig.axes) == 2
plt.close("all")
fig = plot_filter(
h, sfreq, freq, gain, fscale="linear", plot=["magnitude", "delay"]
)
assert len(fig.axes) == 2
plt.close("all")
fig = plot_filter(h, sfreq, freq, gain, fscale="linear", plot="magnitude")
assert len(fig.axes) == 1
plt.close("all")
fig = plot_filter(h, sfreq, freq, gain, fscale="linear", plot=("magnitude"))
assert len(fig.axes) == 1
plt.close("all")
with pytest.raises(ValueError, match="Invalid value for the .plot"):
plot_filter(h, sfreq, freq, gain, plot=("turtles"))
_, axes = plt.subplots(1)
fig = plot_filter(h, sfreq, freq, gain, plot=("magnitude"), axes=axes)
assert len(fig.axes) == 1
_, axes = plt.subplots(2)
fig = plot_filter(h, sfreq, freq, gain, plot=("magnitude", "delay"), axes=axes)
assert len(fig.axes) == 2
plt.close("all")
_, axes = plt.subplots(1)
with pytest.raises(ValueError, match="Length of axes"):
plot_filter(h, sfreq, freq, gain, plot=("magnitude", "delay"), axes=axes)
def test_plot_cov():
"""Test plotting of covariances."""
raw = _get_raw()
cov = read_cov(cov_fname)
with pytest.warns(RuntimeWarning, match="projection"):
fig1, fig2 = cov.plot(raw.info, proj=True, exclude=raw.ch_names[6:])
# test complex numbers
cov["data"] = cov.data * (1 + 1j)
fig1, fig2 = cov.plot(raw.info)
@testing.requires_testing_data
def test_plot_bem():
"""Test plotting of BEM contours."""
pytest.importorskip("nibabel")
with pytest.raises(OSError, match="MRI file .* not found"):
plot_bem(subject="bad-subject", subjects_dir=subjects_dir)
with pytest.raises(ValueError, match="Invalid value for the 'orientation"):
plot_bem(subject="sample", subjects_dir=subjects_dir, orientation="bad-ori")
with pytest.raises(ValueError, match="sorted 1D array"):
plot_bem(subject="sample", subjects_dir=subjects_dir, slices=[0, 500])
fig = plot_bem(
subject="sample",
subjects_dir=subjects_dir,
orientation="sagittal",
slices=[25, 50],
)
assert len(fig.axes) == 2
assert len(fig.axes[0].collections) == 3 # 3 BEM surfaces ...
fig = plot_bem(
subject="sample",
subjects_dir=subjects_dir,
orientation="coronal",
brain_surfaces="white",
)
assert len(fig.axes[0].collections) == 5 # 3 BEM surfaces + 2 hemis
fig = plot_bem(
subject="sample",
subjects_dir=subjects_dir,
orientation="coronal",
slices=[25, 50],
src=src_fname,
)
assert len(fig.axes[0].collections) == 4 # 3 BEM surfaces + 1 src contour
with pytest.raises(ValueError, match="MRI coordinates, got head"):
plot_bem(subject="sample", subjects_dir=subjects_dir, src=inv_fname)
def test_event_colors():
"""Test color assignment."""
events = pick_events(_get_events(), include=[1, 2])
unique_events = set(events[:, 2])
# make sure defaults work
colors = _handle_event_colors(None, unique_events, dict())
default_colors = _get_color_list()
assert colors[1] == default_colors[0]
# make sure custom color overrides default
colors = _handle_event_colors(
color_dict=dict(foo="k", bar="#facade"),
unique_events=unique_events,
event_id=dict(foo=1, bar=2),
)
assert colors[1] == "k"
assert colors[2] == "#facade"
def test_plot_events():
"""Test plotting events."""
event_labels = {"aud_l": 1, "aud_r": 2, "vis_l": 3, "vis_r": 4}
color = {1: "green", 2: "yellow", 3: "red", 4: "c"}
raw = _get_raw()
events = _get_events()
fig = plot_events(events, raw.info["sfreq"], raw.first_samp)
assert fig.axes[0].get_legend() is not None # legend even with no event_id
plot_events(events, raw.info["sfreq"], raw.first_samp, equal_spacing=False)
# Test plotting events without sfreq
plot_events(events, first_samp=raw.first_samp)
with pytest.warns(RuntimeWarning, match="will be ignored"):
fig = plot_events(
events, raw.info["sfreq"], raw.first_samp, event_id=event_labels
)
assert fig.axes[0].get_legend() is not None
with pytest.warns(RuntimeWarning, match="Color was not assigned"):
plot_events(events, raw.info["sfreq"], raw.first_samp, color=color)
with (
_record_warnings(),
pytest.warns(RuntimeWarning, match=r"vent \d+ missing from event_id"),
):
plot_events(
events,
raw.info["sfreq"],
raw.first_samp,
event_id=event_labels,
color=color,
)
multimatch = r"event \d+ missing from event_id|in the color dict but is"
with _record_warnings(), pytest.warns(RuntimeWarning, match=multimatch):
plot_events(
events,
raw.info["sfreq"],
raw.first_samp,
event_id={"aud_l": 1},
color=color,
)
extra_id = {"missing": 111}
with pytest.raises(ValueError, match="from event_id is not present in"):
plot_events(events, raw.info["sfreq"], raw.first_samp, event_id=extra_id)
with pytest.raises(RuntimeError, match="No usable event IDs"):
plot_events(
events,
raw.info["sfreq"],
raw.first_samp,
event_id=extra_id,
on_missing="ignore",
)
extra_id = {"aud_l": 1, "missing": 111}
with (
_record_warnings(),
pytest.warns(RuntimeWarning, match="from event_id is not present in"),
):
plot_events(
events,
raw.info["sfreq"],
raw.first_samp,
event_id=extra_id,
on_missing="warn",
)
with _record_warnings(), pytest.warns(RuntimeWarning, match="event 2 missing"):
plot_events(
events,
raw.info["sfreq"],
raw.first_samp,
event_id=extra_id,
on_missing="ignore",
)
events = events[events[:, 2] == 1]
assert len(events) > 0
plot_events(
events,
raw.info["sfreq"],
raw.first_samp,
event_id=extra_id,
on_missing="ignore",
)
with pytest.raises(ValueError, match="No events"):
plot_events(np.empty((0, 3)))
@testing.requires_testing_data
def test_plot_source_spectrogram():
"""Test plotting of source spectrogram."""
sample_src = read_source_spaces(
subjects_dir / "sample" / "bem" / "sample-oct-6-src.fif"
)
# dense version
vertices = [s["vertno"] for s in sample_src]
n_times = 5
n_verts = sum(len(v) for v in vertices)
stc_data = np.ones((n_verts, n_times))
stc = SourceEstimate(stc_data, vertices, 1, 1)
plot_source_spectrogram([stc, stc], [[1, 2], [3, 4]])
pytest.raises(ValueError, plot_source_spectrogram, [], [])
pytest.raises(
ValueError, plot_source_spectrogram, [stc, stc], [[1, 2], [3, 4]], tmin=0
)
pytest.raises(
ValueError, plot_source_spectrogram, [stc, stc], [[1, 2], [3, 4]], tmax=7
)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_plot_snr():
"""Test plotting SNR estimate."""
inv = read_inverse_operator(inv_fname)
evoked = read_evokeds(evoked_fname, baseline=(None, 0))[0]
plot_snr_estimate(evoked, inv)
@testing.requires_testing_data
def test_plot_dipole_amplitudes():
"""Test plotting dipole amplitudes."""
dipoles = read_dipole(dip_fname)
dipoles.plot_amplitudes(show=False)
def test_plot_csd():
"""Test plotting of CSD matrices."""
csd = CrossSpectralDensity(
[1, 2, 3],
["CH1", "CH2"],
frequencies=[(10, 20)],
n_fft=1,
tmin=0,
tmax=1,
)
plot_csd(csd, mode="csd") # Plot cross-spectral density
plot_csd(csd, mode="coh") # Plot coherence
@pytest.mark.slowtest # Slow on Azure
@testing.requires_testing_data
def test_plot_chpi_snr():
"""Test plotting cHPI SNRs."""
raw = read_raw_fif(chpi_fif_fname, allow_maxshield="yes")
result = compute_chpi_snr(raw)
# test figure creation
fig = plot_chpi_snr(result)
assert len(fig.axes) == len(result) - 2
assert len(fig.axes[0].lines) == len(result["freqs"])
assert len(fig.legends) == 1
texts = [entry.get_text() for entry in fig.legends[0].get_texts()]
assert len(texts) == len(result["freqs"])
freqs = [float(text.split()[0]) for text in texts]
assert_array_equal(freqs, result["freqs"])
# test user-passed axes
_, axs = plt.subplots(2, 3)
_ = plot_chpi_snr(result, axes=axs.ravel())
# test error
_, axs = plt.subplots(5)
with pytest.raises(ValueError, match="a list of 6 axes, got length 5"):
_ = plot_chpi_snr(result, axes=axs.ravel())