[074d3d]: / mne / viz / tests / test_3d_mpl.py

Download this file

209 lines (195 with data), 7.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
import numpy as np
import pytest
from mne import (
SourceEstimate,
VolSourceEstimate,
VolVectorSourceEstimate,
compute_covariance,
compute_source_morph,
make_fixed_length_epochs,
make_forward_solution,
read_bem_solution,
read_forward_solution,
read_trans,
setup_volume_source_space,
)
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.utils import _record_warnings, catch_logging
from mne.viz import plot_volume_source_estimates
from mne.viz.utils import _fake_click, _fake_keypress
data_dir = testing.data_path(download=False)
subjects_dir = data_dir / "subjects"
fwd_fname = data_dir / "MEG" / "sample" / "sample_audvis_trunc-meg-vol-7-fwd.fif"
@pytest.mark.slowtest # can be slow on OSX
@testing.requires_testing_data
@pytest.mark.parametrize(
"mode, stype, init_t, want_t, init_p, want_p, bg_img",
[
("glass_brain", "s", None, 2, None, (-30.9, 18.4, 56.7), None),
("stat_map", "vec", 1, 1, None, (15.7, 16.0, -6.3), None),
("glass_brain", "vec", None, 1, (10, -10, 20), (6.6, -9.0, 19.9), None),
("stat_map", "s", 1, 1, (-10, 5, 10), (-12.3, 2.0, 7.7), "brain.mgz"),
],
)
def test_plot_volume_source_estimates_basic(
mode, stype, init_t, want_t, init_p, want_p, bg_img
):
"""Test interactive plotting of volume source estimates."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
pytest.importorskip("nilearn")
forward = read_forward_solution(fwd_fname)
sample_src = forward["src"]
if init_p is not None:
init_p = np.array(init_p) / 1000.0
vertices = [s["vertno"] for s in sample_src]
n_verts = sum(len(v) for v in vertices)
n_time = 2
data = np.random.RandomState(0).rand(n_verts, n_time)
if stype == "vec":
stc = VolVectorSourceEstimate(
np.tile(data[:, np.newaxis], (1, 3, 1)), vertices, 1, 1
)
else:
assert stype == "s"
stc = VolSourceEstimate(data, vertices, 1, 1)
# sometimes get scalars/index warning
with _record_warnings():
with catch_logging(verbose="debug") as log:
fig = stc.plot(
sample_src,
subject="sample",
subjects_dir=subjects_dir,
mode=mode,
initial_time=init_t,
initial_pos=init_p,
bg_img=bg_img,
verbose=True,
)
log = log.getvalue()
want_str = f"t = {want_t:0.3f} s"
assert want_str in log, (want_str, init_t)
want_str = f"({want_p[0]:0.1f}, {want_p[1]:0.1f}, {want_p[2]:0.1f}) mm"
assert want_str in log, (want_str, init_p)
for ax_idx in [0, 2, 3, 4]:
_fake_click(fig, fig.axes[ax_idx], (0.3, 0.5))
_fake_keypress(fig, "left")
_fake_keypress(fig, "shift+right")
if bg_img is not None:
with pytest.raises(FileNotFoundError, match="MRI file .* not found"):
stc.plot(
sample_src,
subject="sample",
subjects_dir=subjects_dir,
mode="stat_map",
bg_img="junk.mgz",
)
use_ax = None
for ax in fig.axes:
if ax.get_xlabel().startswith("Time"):
use_ax = ax
break
assert use_ax is not None
label = use_ax.get_legend().get_texts()[0].get_text()
assert re.match("[0-9]*", label) is not None, label
@pytest.mark.slowtest # can be slow on OSX
@testing.requires_testing_data
def test_plot_volume_source_estimates_morph():
"""Test interactive plotting of volume source estimates with morph."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
pytest.importorskip("nilearn")
forward = read_forward_solution(fwd_fname)
sample_src = forward["src"]
vertices = [s["vertno"] for s in sample_src]
n_verts = sum(len(v) for v in vertices)
n_time = 2
data = np.random.RandomState(0).rand(n_verts, n_time)
stc = VolSourceEstimate(data, vertices, 1, 1)
sample_src[0]["subject_his_id"] = "sample" # old src
morph = compute_source_morph(
sample_src, "sample", "fsaverage", zooms=5, subjects_dir=subjects_dir
)
initial_pos = (-0.05, -0.01, -0.006)
# sometimes get scalars/index warning
with _record_warnings():
with catch_logging() as log:
stc.plot(
morph,
subjects_dir=subjects_dir,
mode="glass_brain",
initial_pos=initial_pos,
verbose=True,
)
log = log.getvalue()
assert "t = 1.000 s" in log
assert "(-52.0, -8.0, -7.0) mm" in log
with pytest.raises(ValueError, match="Allowed values are"):
stc.plot(sample_src, "sample", subjects_dir, mode="abcd")
vertices.append([])
surface_stc = SourceEstimate(data, vertices, 1, 1)
with pytest.raises(TypeError, match="an instance of VolSourceEstimate"):
plot_volume_source_estimates(surface_stc, sample_src, "sample", subjects_dir)
with pytest.raises(ValueError, match="Negative colormap limits"):
stc.plot(
sample_src, "sample", subjects_dir, clim=dict(lims=[-1, 2, 3], kind="value")
)
@testing.requires_testing_data
def test_plot_volume_source_estimates_on_vol_labels():
"""Test plot of source estimate on srcs setup on 2 labels."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
pytest.importorskip("nilearn")
raw = read_raw_fif(
data_dir / "MEG" / "sample" / "sample_audvis_trunc_raw.fif", preload=False
)
raw.pick("meg").crop(0, 10)
raw.pick(raw.ch_names[::2]).del_proj().load_data()
epochs = make_fixed_length_epochs(raw, preload=True).apply_baseline((None, None))
evoked = epochs.average()
subject = "sample"
bem = read_bem_solution(
subjects_dir / f"{subject}" / "bem" / "sample-320-bem-sol.fif"
)
pos = 25.0 # spacing in mm
volume_label = [
"Right-Cerebral-Cortex",
"Left-Cerebral-Cortex",
]
src = setup_volume_source_space(
subject,
subjects_dir=subjects_dir,
pos=pos,
mri=subjects_dir / subject / "mri" / "aseg.mgz",
bem=bem,
volume_label=volume_label,
add_interpolator=False,
)
trans = read_trans(data_dir / "MEG" / "sample" / "sample_audvis_trunc-trans.fif")
fwd = make_forward_solution(
evoked.info,
trans,
src,
bem,
meg=True,
eeg=False,
mindist=0,
n_jobs=1,
)
cov = compute_covariance(
epochs,
tmin=None,
tmax=None,
method="empirical",
)
inverse_operator = make_inverse_operator(evoked.info, fwd, cov, loose=1, depth=0.8)
stc = apply_inverse(
evoked, inverse_operator, 1.0 / 3**2, method="sLORETA", pick_ori=None
)
stc.plot(src, subject, subjects_dir, initial_time=0.03)