[074d3d]: / mne / viz / epochs.py

Download this file

1161 lines (1058 with data), 43.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
"""Functions to plot epochs data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from collections import Counter
from copy import deepcopy
import numpy as np
from scipy.ndimage import gaussian_filter1d
from .._fiff.meas_info import create_info
from .._fiff.pick import (
_DATA_CH_TYPES_SPLIT,
_VALID_CHANNEL_TYPES,
_picks_to_idx,
)
from ..defaults import _handle_default
from ..utils import _check_option, fill_doc, legacy, logger, verbose, warn
from ..utils.spectrum import _split_psd_kwargs
from .raw import _setup_channel_selections
from .utils import (
DraggableColorbar,
_check_cov,
_compute_scalings,
_get_channel_plotting_order,
_handle_decim,
_handle_precompute,
_make_combine_callable,
_make_event_color_dict,
_set_title_multiple_electrodes,
_set_window_title,
_setup_cmap,
_setup_vmin_vmax,
_validate_type,
plt_show,
)
@fill_doc
def plot_epochs_image(
epochs,
picks=None,
sigma=0.0,
vmin=None,
vmax=None,
colorbar=True,
order=None,
show=True,
units=None,
scalings=None,
cmap=None,
fig=None,
axes=None,
overlay_times=None,
combine=None,
group_by=None,
evoked=True,
ts_args=None,
title=None,
clear=False,
):
"""Plot Event Related Potential / Fields image.
Parameters
----------
epochs : instance of Epochs
The epochs.
%(picks_good_data)s
``picks`` interacts with ``group_by`` and ``combine`` to determine the
number of figures generated; see Notes.
sigma : float
The standard deviation of a Gaussian smoothing window applied along
the epochs axis of the image. If 0, no smoothing is applied.
Defaults to 0.
vmin : None | float | callable
The min value in the image (and the ER[P/F]). The unit is µV for
EEG channels, fT for magnetometers and fT/cm for gradiometers.
If vmin is None and multiple plots are returned, the limit is
equalized within channel types.
Hint: to specify the lower limit of the data, use
``vmin=lambda data: data.min()``.
vmax : None | float | callable
The max value in the image (and the ER[P/F]). The unit is µV for
EEG channels, fT for magnetometers and fT/cm for gradiometers.
If vmin is None and multiple plots are returned, the limit is
equalized within channel types.
colorbar : bool
Display or not a colorbar.
order : None | array of int | callable
If not ``None``, order is used to reorder the epochs along the y-axis
of the image. If it is an array of :class:`int`, its length should
match the number of good epochs. If it is a callable it should accept
two positional parameters (``times`` and ``data``, where
``data.shape == (len(good_epochs), len(times))``) and return an
:class:`array <numpy.ndarray>` of indices that will sort ``data`` along
its first axis.
show : bool
Show figure if True.
units : dict | None
The units of the channel types used for axes labels. If None,
defaults to ``units=dict(eeg='µV', grad='fT/cm', mag='fT')``.
scalings : dict | None
The scalings of the channel types to be applied for plotting.
If None, defaults to ``scalings=dict(eeg=1e6, grad=1e13, mag=1e15,
eog=1e6)``.
cmap : None | colormap | (colormap, bool) | 'interactive'
Colormap. If tuple, the first value indicates the colormap to use and
the second value is a boolean defining interactivity. In interactive
mode the colors are adjustable by clicking and dragging the colorbar
with left and right mouse button. Left mouse button moves the scale up
and down and right mouse button adjusts the range. Hitting space bar
resets the scale. Up and down arrows can be used to change the
colormap. If 'interactive', translates to ('RdBu_r', True).
If None, "RdBu_r" is used, unless the data is all positive, in which
case "Reds" is used.
fig : Figure | None
:class:`~matplotlib.figure.Figure` instance to draw the image to.
Figure must contain the correct number of axes for drawing the epochs
image, the evoked response, and a colorbar (depending on values of
``evoked`` and ``colorbar``). If ``None`` a new figure is created.
Defaults to ``None``.
axes : list of Axes | dict of list of Axes | None
List of :class:`~matplotlib.axes.Axes` objects in which to draw the
image, evoked response, and colorbar (in that order). Length of list
must be 1, 2, or 3 (depending on values of ``colorbar`` and ``evoked``
parameters). If a :class:`dict`, each entry must be a list of Axes
objects with the same constraints as above. If both ``axes`` and
``group_by`` are dicts, their keys must match. Providing non-``None``
values for both ``fig`` and ``axes`` results in an error. Defaults to
``None``.
overlay_times : array_like, shape (n_epochs,) | None
Times (in seconds) at which to draw a line on the corresponding row of
the image (e.g., a reaction time associated with each epoch). Note that
``overlay_times`` should be ordered to correspond with the
:class:`~mne.Epochs` object (i.e., ``overlay_times[0]`` corresponds to
``epochs[0]``, etc).
%(combine_plot_epochs_image)s
group_by : None | dict
Specifies which channels are aggregated into a single figure, with
aggregation method determined by the ``combine`` parameter. If not
``None``, one :class:`~matplotlib.figure.Figure` is made per dict
entry; the dict key will be used as the figure title and the dict
values must be lists of picks (either channel names or integer indices
of ``epochs.ch_names``). For example::
group_by=dict(Left_ROI=[1, 2, 3, 4], Right_ROI=[5, 6, 7, 8])
Note that within a dict entry all channels must have the same type.
``group_by`` interacts with ``picks`` and ``combine`` to determine the
number of figures generated; see Notes. Defaults to ``None``.
evoked : bool
Draw the ER[P/F] below the image or not.
ts_args : None | dict
Arguments passed to a call to `~mne.viz.plot_compare_evokeds` to style
the evoked plot below the image. Defaults to an empty dictionary,
meaning `~mne.viz.plot_compare_evokeds` will be called with default
parameters.
title : None | str
If :class:`str`, will be plotted as figure title. Otherwise, the
title will indicate channel(s) or channel type being plotted. Defaults
to ``None``.
clear : bool
Whether to clear the axes before plotting (if ``fig`` or ``axes`` are
provided). Defaults to ``False``.
Returns
-------
figs : list of Figure
One figure per channel, channel type, or group, depending on values of
``picks``, ``group_by``, and ``combine``. See Notes.
Notes
-----
You can control how channels are aggregated into one figure or plotted in
separate figures through a combination of the ``picks``, ``group_by``, and
``combine`` parameters. If ``group_by`` is a :class:`dict`, the result is
one :class:`~matplotlib.figure.Figure` per dictionary key (for any valid
values of ``picks`` and ``combine``). If ``group_by`` is ``None``, the
number and content of the figures generated depends on the values of
``picks`` and ``combine``, as summarized in this table:
.. cssclass:: table-bordered
.. rst-class:: midvalign
+----------+----------------------------+------------+-------------------+
| group_by | picks | combine | result |
+==========+============================+============+===================+
| | None, int, list of int, | None, | |
| dict | ch_name, list of ch_names, | string, or | 1 figure per |
| | ch_type, list of ch_types | callable | dict key |
+----------+----------------------------+------------+-------------------+
| | None, | None, | |
| | ch_type, | string, or | 1 figure per |
| | list of ch_types | callable | ch_type |
| None +----------------------------+------------+-------------------+
| | int, | None | 1 figure per pick |
| | ch_name, +------------+-------------------+
| | list of int, | string or | 1 figure |
| | list of ch_names | callable | |
+----------+----------------------------+------------+-------------------+
"""
from ..epochs import EpochsArray
_validate_type(group_by, (dict, None), "group_by")
units = _handle_default("units", units)
scalings = _handle_default("scalings", scalings)
if set(units) != set(scalings):
raise ValueError("Scalings and units must have the same keys.")
# is picks a channel type (or None)?
picks, picked_types = _picks_to_idx(epochs.info, picks, return_kind=True)
ch_types = epochs.info.get_channel_types(picks)
# `combine` defaults to 'gfp' unless picks are specific channels and
# there was no group_by passed
combine_given = combine is not None
if combine is None and (group_by is not None or picked_types):
combine = "gfp"
# convert `combine` into callable (if None or str)
combine_func = _make_combine_callable(combine)
# handle ts_args (params for the evoked time series)
ts_args = dict() if ts_args is None else ts_args
manual_ylims = "ylim" in ts_args
if combine is not None:
ts_args["show_sensors"] = False
vlines = [0] if (epochs.times[0] < 0 < epochs.times[-1]) else []
ts_defaults = dict(
colors={"cond": "k"},
title="",
show=False,
truncate_yaxis=False,
truncate_xaxis=False,
vlines=vlines,
legend=False,
)
ts_defaults.update(**ts_args)
ts_args = ts_defaults.copy()
# construct a group_by dict if one wasn't supplied
if group_by is None:
if picked_types:
# one fig per ch_type
group_by = {
ch_type: picks[np.array(ch_types) == ch_type]
for ch_type in set(ch_types)
if ch_type in _DATA_CH_TYPES_SPLIT + ("ref_meg",)
}
elif combine is None:
# one fig per pick
group_by = {epochs.ch_names[pick]: [pick] for pick in picks}
else:
# one fig to rule them all
ch_names = np.array(epochs.ch_names)[picks].tolist()
key = _set_title_multiple_electrodes(None, combine, ch_names)
group_by = {key: picks}
else:
group_by = deepcopy(group_by)
# check for heterogeneous sensor type combinations / "combining" 1 channel
for this_group, these_picks in group_by.items():
this_ch_type = np.array(ch_types)[np.isin(picks, these_picks)]
if len(set(this_ch_type)) > 1:
types = ", ".join(set(this_ch_type))
raise ValueError(
f'Cannot combine sensors of different types; "{this_group}" contains '
f"types {types}."
)
# now we know they're all the same type...
group_by[this_group] = dict(
picks=these_picks, ch_type=this_ch_type[0], title=title
)
# are they trying to combine a single channel?
if len(these_picks) < 2 and combine_given:
warn(
f'Only one channel in group "{this_group}"; cannot combine by method '
f'"{combine}".'
)
# check for compatible `fig` / `axes`; instantiate figs if needed; add
# fig(s) and axes into group_by
needs_colorbar = colorbar and (axes is not None or fig is not None)
group_by = _validate_fig_and_axes(
fig, axes, group_by, evoked, colorbar=needs_colorbar, clear=clear
)
del fig, axes, needs_colorbar, clear
# prepare images in advance to get consistent vmin/vmax.
# At the same time, create a subsetted epochs object for each group
data = epochs._get_data(on_empty="raise")
vmin_vmax = {ch_type: dict(images=list(), norm=list()) for ch_type in set(ch_types)}
for this_group, this_group_dict in group_by.items():
these_picks = this_group_dict["picks"]
this_ch_type = this_group_dict["ch_type"]
this_ch_info = [epochs.info["chs"][n] for n in these_picks]
these_ch_names = np.array(epochs.info["ch_names"])[these_picks]
this_data = data[:, these_picks]
# create subsetted epochs object
this_info = create_info(
sfreq=epochs.info["sfreq"],
ch_names=list(these_ch_names),
ch_types=[this_ch_type] * len(these_picks),
)
with this_info._unlock():
this_info["chs"] = this_ch_info
this_epochs = EpochsArray(this_data, this_info, tmin=epochs.times[0])
# apply scalings (only to image, not epochs object), combine channels
this_image = combine_func(this_data * scalings[this_ch_type])
# handle `order`. NB: this can potentially yield different orderings
# in each figure!
this_image, _overlay_times = _order_epochs(
this_image, epochs.times, order, overlay_times
)
this_norm = np.all(this_image > 0)
# apply smoothing
if sigma > 0.0:
this_image = gaussian_filter1d(
this_image, sigma=sigma, axis=0, mode="nearest"
)
# update the group_by and vmin_vmax dicts
group_by[this_group].update(
image=this_image, epochs=this_epochs, norm=this_norm
)
vmin_vmax[this_ch_type]["images"].append(this_image)
vmin_vmax[this_ch_type]["norm"].append(this_norm)
# compute overall vmin/vmax for images
for ch_type, this_vmin_vmax_dict in vmin_vmax.items():
image_list = this_vmin_vmax_dict["images"]
image_stack = np.stack(image_list)
norm = all(this_vmin_vmax_dict["norm"])
vmin_vmax[ch_type] = _setup_vmin_vmax(image_stack, vmin, vmax, norm)
del image_stack, vmin, vmax
# prepare to plot
auto_ylims = {ch_type: [0.0, 0.0] for ch_type in set(ch_types)}
# plot
for this_group, this_group_dict in group_by.items():
this_ch_type = this_group_dict["ch_type"]
this_axes_dict = this_group_dict["axes"]
vmin, vmax = vmin_vmax[this_ch_type]
# plot title
if this_group_dict["title"] is None:
title = _handle_default("titles").get(this_group, this_group)
if isinstance(combine, str) and len(title):
_comb = combine.upper() if combine == "gfp" else combine
_comb = "std. dev." if _comb == "std" else _comb
title += f" ({_comb})"
# plot the image
this_fig = _plot_epochs_image(
this_group_dict["image"],
epochs=this_group_dict["epochs"],
picks=picks,
colorbar=colorbar,
vmin=vmin,
vmax=vmax,
cmap=cmap,
style_axes=True,
norm=this_group_dict["norm"],
unit=units[this_ch_type],
ax=this_axes_dict,
show=False,
title=title,
combine=combine,
combine_given=combine_given,
overlay_times=_overlay_times,
evoked=evoked,
ts_args=ts_args,
)
group_by[this_group].update(fig=this_fig)
# detect ylims across figures
if evoked and not manual_ylims:
# ensure get_ylim works properly
this_axes_dict["evoked"].figure.canvas.draw_idle()
this_bot, this_top = this_axes_dict["evoked"].get_ylim()
this_min = min(this_bot, this_top)
this_max = max(this_bot, this_top)
curr_min, curr_max = auto_ylims[ch_type]
auto_ylims[this_ch_type] = [
min(curr_min, this_min),
max(curr_max, this_max),
]
# equalize ylims across figures (does not adjust ticks)
if evoked:
for this_group_dict in group_by.values():
ax = this_group_dict["axes"]["evoked"]
ch_type = this_group_dict["ch_type"]
if not manual_ylims:
args = auto_ylims[ch_type]
if "invert_y" in ts_args:
args = args[::-1]
ax.set_ylim(*args)
plt_show(show)
# impose deterministic order of returned objects
return_order = np.array(sorted(group_by))
are_ch_types = np.isin(return_order, _VALID_CHANNEL_TYPES)
if any(are_ch_types):
return_order = np.concatenate(
(return_order[are_ch_types], return_order[~are_ch_types])
)
return [group_by[group]["fig"] for group in return_order]
def _validate_fig_and_axes(fig, axes, group_by, evoked, colorbar, clear=False):
"""Check user-provided fig/axes compatibility with plot_epochs_image."""
from matplotlib.pyplot import Axes, figure, subplot2grid
n_axes = 1 + int(evoked) + int(colorbar)
ax_names = ("image", "evoked", "colorbar")
ax_names = np.array(ax_names)[np.where([True, evoked, colorbar])]
prefix = f"Since evoked={evoked} and colorbar={colorbar}, "
# got both fig and axes
if fig is not None and axes is not None:
raise ValueError(
f'At least one of "fig" or "axes" must be None; got fig={fig}, axes={axes}.'
)
# got fig=None and axes=None: make fig(s) and axes
if fig is None and axes is None:
axes = dict()
colspan = 9 if colorbar else 10
rowspan = 2 if evoked else 3
shape = (3, 10)
for this_group in group_by:
this_fig = figure(layout="constrained")
_set_window_title(this_fig, this_group)
subplot2grid(shape, (0, 0), colspan=colspan, rowspan=rowspan, fig=this_fig)
if evoked:
subplot2grid(shape, (2, 0), colspan=colspan, rowspan=1, fig=this_fig)
if colorbar:
subplot2grid(shape, (0, 9), colspan=1, rowspan=rowspan, fig=this_fig)
axes[this_group] = this_fig.axes
# got a Figure instance
if fig is not None:
# If we're re-plotting into a fig made by a previous call to
# `plot_image`, be forgiving of presence/absence of sensor inset axis.
if len(fig.axes) not in (n_axes, n_axes + 1):
raise ValueError(
f'{prefix}"fig" must contain {n_axes} axes, got {len(fig.axes)}.'
)
if len(list(group_by)) != 1:
raise ValueError(
'When "fig" is not None, "group_by" can only '
"have one group (got {}: {}).".format(
len(group_by), ", ".join(group_by)
)
)
key = list(group_by)[0]
if clear: # necessary if re-plotting into previous figure
_ = [ax.clear() for ax in fig.axes]
if len(fig.axes) > n_axes: # get rid of sensor inset
fig.axes[-1].remove()
_set_window_title(fig, key)
axes = {key: fig.axes}
# got an Axes instance, be forgiving (if evoked and colorbar are False)
if isinstance(axes, Axes):
axes = [axes]
# got an ndarray; be forgiving
if isinstance(axes, np.ndarray):
axes = axes.ravel().tolist()
# got a list of axes, make it a dict
if isinstance(axes, list):
if len(axes) != n_axes:
raise ValueError(
f'{prefix}"axes" must be length {n_axes}, got {len(axes)}.'
)
# for list of axes to work, must be only one group
if len(list(group_by)) != 1:
raise ValueError(
"When axes is a list, can only plot one group "
"(got {} groups: {}).".format(len(group_by), ", ".join(group_by))
)
key = list(group_by)[0]
axes = {key: axes}
# got a dict of lists of axes, make it dict of dicts
if isinstance(axes, dict):
# in theory a user could pass a dict of axes but *NOT* pass a group_by
# dict, but that is forbidden in the docstring so it shouldn't happen.
# The next test could fail in that case because we've constructed a
# group_by dict and the user won't have known what keys we chose.
if set(axes) != set(group_by):
raise ValueError(
f'If "axes" is a dict its keys ({list(axes)}) must match the keys in '
f'"group_by" ({list(group_by)}).'
)
for this_group, this_axes_list in axes.items():
if len(this_axes_list) != n_axes:
raise ValueError(
f'{prefix}each value in "axes" must be a list of {n_axes} axes, got'
f" {len(this_axes_list)}."
)
# NB: next line assumes all axes in each list are in same figure
group_by[this_group]["fig"] = this_axes_list[0].get_figure()
group_by[this_group]["axes"] = {
key: axis for key, axis in zip(ax_names, this_axes_list)
}
return group_by
def _order_epochs(data, times, order=None, overlay_times=None):
"""Sort epochs image data (2D). Helper for plot_epochs_image."""
n_epochs = len(data)
if overlay_times is not None:
if len(overlay_times) != n_epochs:
raise ValueError(
f"size of overlay_times parameter ({len(overlay_times)}) does "
f"not match the number of epochs ({n_epochs})."
)
overlay_times = np.array(overlay_times)
times_min = np.min(overlay_times)
times_max = np.max(overlay_times)
if (times_min < times[0]) or (times_max > times[-1]):
warn(
"Some values in overlay_times fall outside of the epochs "
f"time interval (between {times[0]} s and {times[-1]} s)"
)
if callable(order):
order = order(times, data)
if order is not None:
if len(order) != n_epochs:
raise ValueError(
f"If order is a {type(order).__name__}, its "
f"length ({len(order)}) must match the length of "
f"the data ({n_epochs})."
)
order = np.array(order)
data = data[order]
if overlay_times is not None:
overlay_times = overlay_times[order]
return data, overlay_times
def _plot_epochs_image(
image,
style_axes=True,
epochs=None,
picks=None,
vmin=None,
vmax=None,
colorbar=False,
show=False,
unit=None,
cmap=None,
ax=None,
overlay_times=None,
title=None,
evoked=False,
ts_args=None,
combine=None,
combine_given=False,
norm=False,
):
"""Plot epochs image. Helper function for plot_epochs_image."""
from matplotlib.ticker import AutoLocator
if cmap is None:
cmap = "Reds" if norm else "RdBu_r"
tmin = epochs.times[0]
tmax = epochs.times[-1]
ax_im = ax["image"]
# draw the image
cmap = _setup_cmap(cmap, norm=norm)
n_epochs = len(image)
extent = [tmin, tmax, 0, n_epochs]
im = ax_im.imshow(
image,
vmin=vmin,
vmax=vmax,
cmap=cmap[0],
aspect="auto",
origin="lower",
interpolation="nearest",
extent=extent,
)
# optional things
if style_axes:
ax_im.set_title(title)
ax_im.set_ylabel("Epochs")
if not evoked:
ax_im.set_xlabel("Time (s)")
ax_im.axis("auto")
ax_im.axis("tight")
ax_im.axvline(0, color="k", linewidth=1, linestyle="--")
if overlay_times is not None:
ax_im.plot(overlay_times, 0.5 + np.arange(n_epochs), "k", linewidth=2)
ax_im.set_xlim(tmin, tmax)
# draw the evoked
if evoked:
from .evoked import plot_compare_evokeds
pass_combine = combine if combine_given else None
_picks = [0] if len(picks) == 1 else None # prevent applying GFP
plot_compare_evokeds(
{"cond": list(epochs.iter_evoked(copy=False))},
picks=_picks,
axes=ax["evoked"],
combine=pass_combine,
**ts_args,
)
ax["evoked"].set_xlim(tmin, tmax)
ax["evoked"].lines[0].set_clip_on(True)
ax["evoked"].collections[0].set_clip_on(True)
ax["evoked"].sharex(ax_im)
# fix the axes for proper updating during interactivity
loc = ax_im.xaxis.get_major_locator()
ax["evoked"].xaxis.set_major_locator(loc)
ax["evoked"].yaxis.set_major_locator(AutoLocator())
fig = ax_im.get_figure()
# draw the colorbar
if colorbar:
if "colorbar" in ax: # axes supplied by user
cax = ax["colorbar"]
this_colorbar = cax.figure.colorbar(im, cax=cax)
this_colorbar.ax.set_ylabel(unit, rotation=270, labelpad=12)
else: # we created them
this_colorbar = fig.colorbar(im, ax=ax_im)
this_colorbar.ax.set_title(unit)
if cmap[1]:
ax_im.CB = DraggableColorbar(
this_colorbar, im, kind="epochs_image", ch_type=unit
)
# finish
plt_show(show, fig=fig)
return fig
def plot_drop_log(
drop_log,
threshold=0,
n_max_plot=20,
subject=None,
color="lightgray",
width=0.8,
ignore=("IGNORED",),
show=True,
):
"""Show the channel stats based on a drop_log from Epochs.
Parameters
----------
drop_log : list of list
Epoch drop log from Epochs.drop_log.
threshold : float
The percentage threshold to use to decide whether or not to
plot. Default is zero (always plot).
n_max_plot : int
Maximum number of channels to show stats for.
subject : str | None
The subject name to use in the title of the plot. If ``None``, do not
display a subject name.
.. versionchanged:: 0.23
Added support for ``None``.
.. versionchanged:: 1.0
Defaults to ``None``.
color : tuple | str
Color to use for the bars.
width : float
Width of the bars.
ignore : list
The drop reasons to ignore.
show : bool
Show figure if True.
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
import matplotlib.pyplot as plt
from ..epochs import _drop_log_stats
percent = _drop_log_stats(drop_log, ignore)
if percent < threshold:
logger.info(
"Percent dropped epochs < supplied threshold; not plotting drop log."
)
return
absolute = len([x for x in drop_log if len(x) if not any(y in ignore for y in x)])
n_epochs_before_drop = len([x for x in drop_log if not any(y in ignore for y in x)])
scores = Counter([ch for d in drop_log for ch in d if ch not in ignore])
ch_names = np.array(list(scores.keys()))
counts = np.array(list(scores.values()))
# init figure, handle easy case (no drops)
fig, ax = plt.subplots(layout="constrained")
title = f"{absolute} of {n_epochs_before_drop} epochs removed ({percent:.1f}%)"
if subject is not None:
title = f"{subject}: {title}"
ax.set_title(title)
if len(ch_names) == 0:
ax.text(0.5, 0.5, "No drops", ha="center", fontsize=14)
return fig
# count epochs that aren't fully caught by `ignore`
n_used = sum([any(ch not in ignore for ch in d) or len(d) == 0 for d in drop_log])
# calc plot values
n_bars = min(n_max_plot, len(ch_names))
x = np.arange(n_bars)
y = 100 * counts / n_used
order = np.flipud(np.argsort(y))
ax.bar(x, y[order[:n_bars]], color=color, width=width, align="center")
ax.set_xticks(x)
ax.set_xticklabels(
ch_names[order[:n_bars]], rotation=45, size=10, horizontalalignment="right"
)
ax.set_ylabel("% of epochs removed")
ax.grid(axis="y")
plt_show(show)
return fig
@fill_doc
def plot_epochs(
epochs,
picks=None,
scalings=None,
n_epochs=20,
n_channels=20,
title=None,
events=False,
event_color=None,
order=None,
show=True,
block=False,
decim="auto",
noise_cov=None,
butterfly=False,
show_scrollbars=True,
show_scalebars=True,
epoch_colors=None,
event_id=None,
group_by="type",
precompute=None,
use_opengl=None,
*,
theme=None,
overview_mode=None,
splash=True,
):
"""Visualize epochs.
Bad epochs can be marked with a left click on top of the epoch. Bad
channels can be selected by clicking the channel name on the left side of
the main axes. Calling this function drops all the selected bad epochs as
well as bad epochs marked beforehand with rejection parameters.
Parameters
----------
epochs : instance of Epochs
The epochs object.
%(picks_good_data)s
%(scalings)s
n_epochs : int
The number of epochs per view. Defaults to 20.
n_channels : int
The number of channels per view. Defaults to 20.
title : str | None
The title of the window. If None, the event names (from
``epochs.event_id``) will be displayed. Defaults to None.
events : bool | array, shape (n_events, 3)
Events to show with vertical bars. You can use `~mne.viz.plot_events`
as a legend for the colors. By default, the coloring scheme is the
same. ``True`` plots ``epochs.events``. Defaults to ``False`` (do not
plot events).
.. warning:: If the epochs have been resampled, the events no longer
align with the data.
.. versionadded:: 0.14.0
.. versionchanged:: 1.6
Passing ``events=None`` was disallowed.
The new equivalent is ``events=False``.
%(event_color)s
Defaults to ``None``.
order : array of str | None
Order in which to plot channel types.
.. versionadded:: 0.18.0
show : bool
Show figure if True. Defaults to True.
block : bool
Whether to halt program execution until the figure is closed.
Useful for rejecting bad trials on the fly by clicking on an epoch.
Defaults to False.
decim : int | 'auto'
Amount to decimate the data during display for speed purposes.
You should only decimate if the data are sufficiently low-passed,
otherwise aliasing can occur. The 'auto' mode (default) uses
the decimation that results in a sampling rate at least three times
larger than ``info['lowpass']`` (e.g., a 40 Hz lowpass will result in
at least a 120 Hz displayed sample rate).
.. versionadded:: 0.15.0
noise_cov : instance of Covariance | str | None
Noise covariance used to whiten the data while plotting.
Whitened data channels are scaled by ``scalings['whitened']``,
and their channel names are shown in italic.
Can be a string to load a covariance from disk.
See also :meth:`mne.Evoked.plot_white` for additional inspection
of noise covariance properties when whitening evoked data.
For data processed with SSS, the effective dependence between
magnetometers and gradiometers may introduce differences in scaling,
consider using :meth:`mne.Evoked.plot_white`.
.. versionadded:: 0.16.0
butterfly : bool
Whether to directly call the butterfly view.
.. versionadded:: 0.18.0
%(show_scrollbars)s
%(show_scalebars)s
.. versionadded:: 0.24.0
epoch_colors : list of (n_epochs) list (of n_channels) | None
Colors to use for individual epochs. If None, use default colors.
event_id : bool | dict
Determines to label the event markers on the plot. If ``True``, uses
``epochs.event_id``. If ``False``, uses integer event codes instead of IDs.
If a ``dict`` is passed, uses its *keys* as event labels on the plot for
entries whose *values* are integer codes for events being drawn. Ignored if
``events=False``.
.. versionadded:: 0.20
%(group_by_browse)s
%(precompute)s
%(use_opengl)s
%(theme_pg)s
.. versionadded:: 1.0
%(overview_mode)s
.. versionadded:: 1.1
%(splash)s
.. versionadded:: 1.6
Returns
-------
%(browser)s
Notes
-----
The arrow keys (up/down/left/right) can be used to navigate between
channels and epochs and the scaling can be adjusted with - and + (or =)
keys, but this depends on the backend matplotlib is configured to use
(e.g., mpl.use(``TkAgg``) should work). Full screen mode can be toggled
with f11 key. The amount of epochs and channels per view can be adjusted
with home/end and page down/page up keys. ``h`` key plots a histogram of
peak-to-peak values along with the used rejection thresholds. Butterfly
plot can be toggled with ``b`` key. Left mouse click adds a vertical line
to the plot. Click 'help' button at bottom left corner of the plotter to
view all the options.
%(notes_2d_backend)s
.. versionadded:: 0.10.0
"""
from ._figure import _get_browser
epochs._handle_empty("raise", "plot")
epochs.drop_bad()
info = epochs.info.copy()
sfreq = info["sfreq"]
projs = info["projs"]
projs_on = np.full_like(projs, epochs.proj, dtype=bool)
if not epochs.proj:
with info._unlock():
info["projs"] = list()
# handle defaults / check arg validity
color = _handle_default("color", None)
scalings = _compute_scalings(scalings, epochs)
scalings = _handle_default("scalings_plot_raw", scalings)
if scalings["whitened"] == "auto":
scalings["whitened"] = 1.0
units = _handle_default("units", None)
unit_scalings = _handle_default("scalings", None)
decim, picks_data = _handle_decim(epochs.info.copy(), decim, None)
noise_cov = _check_cov(noise_cov, epochs.info)
_check_option("group_by", group_by, ("selection", "position", "original", "type"))
# handle event labels
_validate_type(event_id, (bool, dict, None), "event_id")
if not event_id: # False or None
event_id = dict()
else:
# make our own copy of the dict
event_id = dict() if event_id is True else event_id.copy() # to dict
# TODO: when min py=3.9, change to `epochs.event_id | event_id` (maybe).
# Passed-in event_id should take precedence, i.e., not replace existing
# keys *or* repeat existing values. For example, if epochs.event_id has
# a=1 and passed-in event_id has f=1, the second takes precedence.
event_values = set(event_id.values())
event_id.update(
(k, v)
for k, v in epochs.event_id.items()
if k not in event_id and v not in event_values
)
event_id_rev = {v: k for k, v in event_id.items()}
# validate epoch_colors
_validate_type(epoch_colors, (list, None), "epoch_colors")
if epoch_colors is not None:
if len(epoch_colors) != len(epochs.events):
msg = (
"epoch_colors must have length equal to the number of "
f"epochs ({len(epochs)}); got length {len(epoch_colors)}."
)
raise ValueError(msg)
for ix, this_colors in enumerate(epoch_colors):
_validate_type(this_colors, list, f"epoch_colors[{ix}]")
if len(this_colors) != len(epochs.ch_names):
msg = (
f"epoch colors for epoch {ix} has length "
f"{len(this_colors)}, expected {len(epochs.ch_names)}."
)
raise ValueError(msg)
# handle time dimension
n_epochs = min(n_epochs, len(epochs))
n_times = len(epochs) * len(epochs.times)
duration = n_epochs * len(epochs.times) / sfreq
# NB: this includes start and end of data:
boundary_times = np.arange(len(epochs) + 1) * len(epochs.times) / sfreq
# events
_validate_type(events, (bool, np.ndarray), "events")
if events is False:
event_nums = None
event_times = None
else: # True or ndarray
if events is True: # use epochs.events
events = epochs.events
event_nums = events[:, 2]
event_samps = events[:, 0]
epoch_n_samps = len(epochs.times)
# handle overlapping epochs (each event may show up in multiple places)
boundaries = epochs.events[:, [0]] + np.array([-1, 1]) * epochs.time_as_index(
[0, epochs.tmax]
)
in_bounds = np.logical_and(
boundaries[:, [0]] <= event_samps, event_samps < boundaries[:, [1]]
)
event_ixs = [np.nonzero(a)[0] for a in in_bounds.T]
warned = False
event_times = list()
event_numbers = list()
for samp, num, _ixs in zip(event_samps, event_nums, event_ixs):
relevant_epoch_events = epochs.events[:, 0][_ixs]
if len(relevant_epoch_events) > 1 and not warned:
logger.info(
"You seem to have overlapping epochs. Some event "
"lines may be duplicated in the plot."
)
warned = True
offsets = samp - relevant_epoch_events + epochs.time_as_index(0)
this_event_times = (_ixs * epoch_n_samps + offsets) / sfreq
event_times.extend(this_event_times)
event_numbers.extend([num] * len(_ixs))
event_nums = np.array(event_numbers)
event_times = np.array(event_times)
event_color_dict = _make_event_color_dict(event_color, events, event_id)
# determine trace order
picks = _picks_to_idx(info, picks)
n_channels = min(n_channels, len(picks))
ch_names = np.array(epochs.ch_names)
ch_types = np.array(epochs.get_channel_types())
order = _get_channel_plotting_order(order, ch_types, picks)
selections = None
if group_by in ("selection", "position"):
selections = _setup_channel_selections(epochs, group_by, order)
order = np.concatenate(list(selections.values()))
default_selection = list(selections)[0]
n_channels = len(selections[default_selection])
# generate window title
if title is None:
title = epochs._get_name(count="total", sep="•", ms=None)
if title is None or len(title) == 0:
title = "Epochs"
elif not isinstance(title, str):
raise TypeError(f"title must be None or a string, got a {type(title)}")
precompute = _handle_precompute(precompute)
params = dict(
inst=epochs,
info=info,
n_epochs=n_epochs,
# channels and channel order
ch_names=ch_names,
ch_types=ch_types,
ch_order=order,
picks=order[:n_channels],
n_channels=n_channels,
picks_data=picks_data,
group_by=group_by,
ch_selections=selections,
# time
t_start=0,
duration=duration,
n_times=n_times,
first_time=0,
time_format="float",
decim=decim,
boundary_times=boundary_times,
# events
event_id_rev=event_id_rev,
event_color_dict=event_color_dict,
event_nums=event_nums,
event_times=event_times,
# preprocessing
projs=projs,
projs_on=projs_on,
apply_proj=epochs.proj,
remove_dc=True,
filter_coefs=None,
filter_bounds=None,
noise_cov=noise_cov,
use_noise_cov=noise_cov is not None,
# scalings
scalings=scalings,
units=units,
unit_scalings=unit_scalings,
# colors
ch_color_bad="lightgray",
ch_color_dict=color,
epoch_color_bad=(1, 0, 0),
epoch_colors=epoch_colors,
# display
butterfly=butterfly,
clipping=None,
scrollbars_visible=show_scrollbars,
scalebars_visible=show_scalebars,
window_title=title,
xlabel="Epoch number",
# pyqtgraph-specific
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
splash=splash,
)
fig = _get_browser(show=show, block=block, **params)
return fig
@legacy(alt="Epochs.compute_psd().plot()")
@verbose
def plot_epochs_psd(
epochs,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
proj=False,
bandwidth=None,
adaptive=False,
low_bias=True,
normalization="length",
picks=None,
ax=None,
color="black",
xscale="linear",
area_mode="std",
area_alpha=0.33,
dB=True,
estimate="power",
show=True,
n_jobs=None,
average=False,
line_alpha=None,
spatial_colors=True,
sphere=None,
exclude="bads",
verbose=None,
):
"""%(plot_psd_doc)s.
Parameters
----------
epochs : instance of Epochs
The epochs object.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(proj_psd)s
bandwidth : float
The bandwidth of the multi taper windowing function in Hz. The default
value is a window half-bandwidth of 4.
adaptive : bool
Use adaptive weights to combine the tapered spectra into PSD
(slow, use n_jobs >> 1 to speed up computation).
low_bias : bool
Only use tapers with more than 90%% spectral concentration within
bandwidth.
%(normalization)s
%(picks_good_data_noref)s
%(ax_plot_psd)s
%(color_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(show)s
%(n_jobs)s
%(average_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad channels
are excluded. Pass an empty list to plot all channels (including
channels marked "bad", if any).
.. versionadded:: 0.24.0
%(verbose)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_*_psd_func)s
"""
from ..time_frequency import Spectrum
init_kw, plot_kw = _split_psd_kwargs(plot_fun=Spectrum.plot)
return epochs.compute_psd(**init_kw).plot(**plot_kw)