"""Base classes and functions for 2D browser backends."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import importlib
import inspect
from abc import ABC, abstractmethod
from collections import OrderedDict
from contextlib import contextmanager
from copy import deepcopy
from itertools import cycle
import numpy as np
from .._fiff.pick import _DATA_CH_TYPES_SPLIT
from ..defaults import _handle_default
from ..filter import _iir_filter, _overlap_add_filter
from ..fixes import _compare_version
from ..utils import (
_check_option,
_get_stim_channel,
_validate_type,
get_config,
logger,
set_config,
verbose,
)
from .backends._utils import VALID_BROWSE_BACKENDS
from .utils import _get_color_list, _setup_plot_projector, _show_browser
MNE_BROWSER_BACKEND = None
backend = None
class BrowserParams:
"""Container object for 2D browser parameters."""
def __init__(self, **kwargs):
# default key to close window
self.close_key = "escape"
vars(self).update(**kwargs)
class BrowserBase(ABC):
"""A base class containing for the 2D browser.
This class contains all backend-independent attributes and methods.
"""
def __init__(self, **kwargs):
from ..epochs import BaseEpochs
from ..io import BaseRaw
from ..preprocessing import ICA
self.backend_name = None
self._data = None
self._times = None
self.mne = BrowserParams(**kwargs)
inst = kwargs.get("inst", None)
ica = kwargs.get("ica", None)
# what kind of data are we dealing with?
if isinstance(ica, ICA):
self.mne.instance_type = "ica"
elif isinstance(inst, BaseRaw):
self.mne.instance_type = "raw"
elif isinstance(inst, BaseEpochs):
self.mne.instance_type = "epochs"
else:
raise TypeError(
f"Expected an instance of Raw, Epochs, or ICA, got {type(inst)}."
)
logger.debug(f"Opening {self.mne.instance_type} browser...")
self.mne.ica_type = None
if self.mne.instance_type == "ica":
if isinstance(self.mne.ica_inst, BaseRaw):
self.mne.ica_type = "raw"
elif isinstance(self.mne.ica_inst, BaseEpochs):
self.mne.ica_type = "epochs"
self.mne.is_epochs = "epochs" in (self.mne.instance_type, self.mne.ica_type)
# things that always start the same
self.mne.ch_start = 0
self.mne.projector = None
if hasattr(self.mne, "projs"):
self.mne.projs_active = np.array([p["active"] for p in self.mne.projs])
self.mne.whitened_ch_names = list()
if hasattr(self.mne, "noise_cov"):
self.mne.use_noise_cov = self.mne.noise_cov is not None
# allow up to 10000 zorder levels for annotations
self.mne.zorder = dict(
patch=0,
grid=1,
ann=2,
events=10003,
bads=10004,
data=10005,
mag=10006,
grad=10007,
scalebar=10008,
vline=10009,
)
# additional params for epochs (won't affect raw / ICA)
self.mne.epoch_traces = list()
self.mne.bad_epochs = list()
if inst is not None:
self.mne.sampling_period = np.diff(inst.times[:2])[0] / inst.info["sfreq"]
# annotations
self.mne.annotations = list()
self.mne.hscroll_annotations = list()
self.mne.annotation_segments = list()
self.mne.annotation_texts = list()
self.mne.new_annotation_labels = list()
self.mne.annotation_segment_colors = dict()
self.mne.annotation_hover_line = None
self.mne.draggable_annotations = False
# lines
self.mne.event_lines = list()
self.mne.event_texts = list()
self.mne.vline_visible = False
# decim
self.mne.decim_times = None
self.mne.decim_data = None
# scalings
if hasattr(self.mne, "butterfly"):
self.mne.scale_factor = 0.5 if self.mne.butterfly else 1.0
self.mne.scalebars = dict()
self.mne.scalebar_texts = dict()
# ancillary child figures
self.mne.child_figs = list()
self.mne.fig_help = None
self.mne.fig_proj = None
self.mne.fig_histogram = None
self.mne.fig_selection = None
self.mne.fig_annotation = None
# extra attributes for epochs
if self.mne.is_epochs:
# add epoch boundaries & center epoch numbers between boundaries
self.mne.midpoints = (
np.convolve(self.mne.boundary_times, np.ones(2), mode="valid") / 2
)
# initialize picks and projectors
self._update_picks()
if not self.mne.instance_type == "ica":
self._update_projector()
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# ANNOTATIONS
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def _get_annotation_labels(self):
"""Get the unique labels in the raw object and added in the UI."""
return sorted(
set(self.mne.inst.annotations.description)
| set(self.mne.new_annotation_labels)
)
def _setup_annotation_colors(self):
"""Set up colors for annotations; init some annotation vars."""
segment_colors = getattr(self.mne, "annotation_segment_colors", dict())
labels = self._get_annotation_labels()
red = "#ff0000"
colors = _get_color_list(remove=("#fa8174", "#d62728", "#ff0000"))
color_cycle = cycle(colors)
for key, color in segment_colors.items():
if color != red and key in labels:
next(color_cycle)
for idx, key in enumerate(labels):
if key.lower().startswith("bad") or key.lower().startswith("edge"):
segment_colors[key] = red
elif key in segment_colors:
continue
else:
segment_colors[key] = next(color_cycle)
self.mne.annotation_segment_colors = segment_colors
# init a couple other annotation-related variables
self.mne.visible_annotations = {label: True for label in labels}
self.mne.show_hide_annotation_checkboxes = None
def _update_annotation_segments(self):
"""Update the array of annotation start/end times."""
from ..annotations import _sync_onset
self.mne.annotation_segments = np.array([])
if len(self.mne.inst.annotations):
annot_start = _sync_onset(self.mne.inst, self.mne.inst.annotations.onset)
durations = self.mne.inst.annotations.duration.copy()
durations[durations < 1 / self.mne.info["sfreq"]] = (
1 / self.mne.info["sfreq"]
)
annot_end = annot_start + durations
self.mne.annotation_segments = np.vstack((annot_start, annot_end)).T
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# PROJECTOR & BADS
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def _update_projector(self):
"""Update the data after projectors (or bads) have changed."""
inds = np.where(self.mne.projs_on)[0] # doesn't include "active" projs
# copy projs from full list (self.mne.projs) to info object
with self.mne.info._unlock():
self.mne.info["projs"] = [deepcopy(self.mne.projs[ix]) for ix in inds]
# compute the projection operator
proj, wh_chs = _setup_plot_projector(
self.mne.info, self.mne.noise_cov, True, self.mne.use_noise_cov
)
self.mne.whitened_ch_names = list(wh_chs)
self.mne.projector = proj
def _toggle_bad_channel(self, idx):
"""Mark/unmark bad channels; `idx` is index of *visible* channels."""
pick = self.mne.picks[idx]
ch_name = self.mne.ch_names[pick]
# add/remove from bads list
bads = self.mne.info["bads"]
marked_bad = ch_name not in bads
if marked_bad:
bads.append(ch_name)
color = self.mne.ch_color_bad
else:
while ch_name in bads: # to make sure duplicates are removed
bads.remove(ch_name)
# Only mpl-backend has ch_colors
if hasattr(self.mne, "ch_colors"):
color = self.mne.ch_colors[idx]
else:
color = None
self.mne.info["bads"] = bads
self._update_projector()
return color, pick, marked_bad
def _toggle_single_channel_annotation(self, ch_pick, annot_idx):
current_ch_names = list(self.mne.inst.annotations.ch_names[annot_idx])
if ch_pick in current_ch_names:
current_ch_names.remove(ch_pick)
else:
current_ch_names.append(ch_pick)
self.mne.inst.annotations.ch_names[annot_idx] = tuple(current_ch_names)
def _toggle_bad_epoch(self, xtime):
epoch_num = self._get_epoch_num_from_time(xtime)
epoch_ix = self.mne.inst.selection.tolist().index(epoch_num)
if epoch_num in self.mne.bad_epochs:
self.mne.bad_epochs.remove(epoch_num)
color = "none"
else:
self.mne.bad_epochs.append(epoch_num)
self.mne.bad_epochs.sort()
color = self.mne.epoch_color_bad
return epoch_ix, color
def _toggle_whitening(self):
if self.mne.noise_cov is not None:
self.mne.use_noise_cov = not self.mne.use_noise_cov
self._update_projector()
self._update_yaxis_labels() # add/remove italics
self._redraw()
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# MANAGE TRACES
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def _update_picks(self):
"""Compute which channel indices to show."""
if self.mne.butterfly and self.mne.ch_selections is not None:
selections_dict = self._make_butterfly_selections_dict()
self.mne.picks = np.concatenate(tuple(selections_dict.values()))
elif self.mne.butterfly:
self.mne.picks = self.mne.ch_order
else:
_slice = slice(self.mne.ch_start, self.mne.ch_start + self.mne.n_channels)
self.mne.picks = self.mne.ch_order[_slice]
self.mne.n_channels = len(self.mne.picks)
assert isinstance(self.mne.picks, np.ndarray)
assert self.mne.picks.dtype.kind == "i"
def _make_butterfly_selections_dict(self):
"""Make an altered copy of the selections dict for butterfly mode."""
selections_dict = deepcopy(self.mne.ch_selections)
# remove potential duplicates
for selection_group in ("Vertex", "Custom"):
selections_dict.pop(selection_group, None)
# if present, remove stim channel from non-misc selection groups
stim_ch = _get_stim_channel(None, self.mne.info, raise_error=False)
if len(stim_ch):
stim_pick = self.mne.ch_names.tolist().index(stim_ch[0])
for _sel, _picks in selections_dict.items():
if _sel != "Misc":
stim_mask = np.isin(_picks, [stim_pick], invert=True)
selections_dict[_sel] = np.array(_picks)[stim_mask]
return selections_dict
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# MANAGE DATA
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
def _get_start_stop(self):
# update time
start_sec = self.mne.t_start - self.mne.first_time
if self.mne.is_epochs:
start, stop = np.round(
np.array([start_sec, start_sec + self.mne.duration])
* self.mne.info["sfreq"]
).astype(int)
else:
# ensure our end time includes the last sample
disp_duration = (
np.ceil(self.mne.duration * self.mne.info["sfreq"])
/ self.mne.info["sfreq"]
)
stop_sec = start_sec + disp_duration
start, stop = self.mne.inst.time_as_index((start_sec, stop_sec))
return start, stop
def _load_data(self, start=None, stop=None):
"""Retrieve the bit of data we need for plotting."""
if "raw" in (self.mne.instance_type, self.mne.ica_type):
if stop is None:
return self.mne.inst[:, start:]
else:
return self.mne.inst[:, start:stop]
else:
# subtract one sample from tstart before searchsorted, to make sure
# we land on the left side of the boundary time (avoid precision
# errors)
ix_start = np.searchsorted(
self.mne.boundary_times, self.mne.t_start - self.mne.sampling_period
)
ix_stop = ix_start + self.mne.n_epochs
item = slice(ix_start, ix_stop)
data = np.concatenate(
self.mne.inst.get_data(item=item, copy=False), axis=-1
)
times = np.arange(start, stop) / self.mne.info["sfreq"]
return data, times
def _apply_filter(self, data, start, stop, picks):
"""Filter (with same defaults as raw.filter())."""
starts, stops = self.mne.filter_bounds
mask = (starts < stop) & (stops > start)
starts = np.maximum(starts[mask], start) - start
stops = np.minimum(stops[mask], stop) - start
for _start, _stop in zip(starts, stops):
_picks = np.where(np.isin(picks, self.mne.picks_data))[0]
if len(_picks) == 0:
break
this_data = data[_picks, _start:_stop]
if isinstance(self.mne.filter_coefs, np.ndarray): # FIR
this_data = _overlap_add_filter(
this_data, self.mne.filter_coefs, copy=False
)
else: # IIR
this_data = _iir_filter(
this_data, self.mne.filter_coefs, None, 1, False
)
data[_picks, _start:_stop] = this_data
def _process_data(self, data, start, stop, picks, thread=None, *, time_slice=None):
"""Update self.mne.data after user interaction."""
# apply projectors
if time_slice is None:
time_slice = slice(None)
if self.mne.projector is not None:
# thread is the loading-thread only available in Qt-backend
if thread:
thread.processText.emit("Applying Projectors...")
data = self.mne.projector @ data
# get only the channels we're displaying
data = data[picks]
# remove DC
if self.mne.remove_dc:
if thread:
thread.processText.emit("Removing DC...")
data -= np.nanmean(data[..., time_slice], axis=1, keepdims=True)
# apply filter
if self.mne.filter_coefs is not None:
if thread:
thread.processText.emit("Apply Filter...")
self._apply_filter(data, start, stop, picks)
data = data[..., time_slice]
# scale the data for display in a 1-vertical-axis-unit slot
if thread:
thread.processText.emit("Scale Data...")
this_names = self.mne.ch_names[picks]
this_types = self.mne.ch_types[picks]
stims = this_types == "stim"
white = np.logical_and(
np.isin(this_names, self.mne.whitened_ch_names),
np.isin(this_names, self.mne.info["bads"], invert=True),
)
norms = np.vectorize(self.mne.scalings.__getitem__)(this_types)
norms[stims] = data[stims].max(axis=-1)
norms[white] = self.mne.scalings["whitened"]
norms[norms == 0] = 1
data /= 2 * norms[:, np.newaxis]
return data
@property
def _has_time_slice(self):
# check that mne-qt-browser is new enough to support time_slice
specs = inspect.getfullargspec(self._process_data)
return "time_slice" in specs.kwonlyargs or specs.varkw
def _update_data(self):
start, stop = self._get_start_stop()
# get the data, with padding if necessary
kwargs = dict()
padlen = None
if isinstance(self.mne.filter_coefs, dict) and self._has_time_slice: # IIR
padlen = self.mne.filter_coefs["padlen"]
use_start = max(0, start - padlen)
use_stop = min(self.mne.n_times, stop + padlen)
# now during filt step, only pad as much as needed
self.mne.filter_coefs["padlen"] = max(
padlen - (use_stop - stop), padlen - (start - use_start)
)
time_slice = slice(start - use_start, start - use_start + (stop - start))
kwargs["time_slice"] = time_slice
else:
use_start, use_stop = start, stop
time_slice = slice(None)
data, times = self._load_data(use_start, use_stop)
assert data.ndim >= 2 and data.shape[-1] == (use_stop - use_start)
# process the data
data = self._process_data(
data, use_start, use_stop, picks=self.mne.picks, **kwargs
)
if padlen is not None:
self.mne.filter_coefs["padlen"] = padlen
times = times[time_slice]
assert data.ndim >= 2 and data.shape[-1] == (stop - start)
# set the data as attributes
self.mne.data = data
self.mne.times = times
def _get_epoch_num_from_time(self, time):
epoch_nums = self.mne.inst.selection
return epoch_nums[np.searchsorted(self.mne.boundary_times[1:], time)]
def _redraw(self, update_data=True, annotations=False):
"""Redraws backend if necessary."""
if update_data:
self._update_data()
self._draw_traces()
if annotations and not self.mne.is_epochs:
self._draw_annotations()
def _close(self, event=None):
"""Handle close events (via keypress or window [x])."""
from matplotlib.pyplot import close
logger.debug(f"Closing {self.mne.instance_type} browser...")
# write out bad epochs (after converting epoch numbers to indices)
if self.mne.instance_type == "epochs":
bad_ixs = np.isin(self.mne.inst.selection, self.mne.bad_epochs).nonzero()[0]
self.mne.inst.drop(bad_ixs)
logger.info(
"The following epochs were marked as bad "
"and are dropped:\n"
f"{self.mne.bad_epochs}"
)
# write bad channels back to instance (don't do this for proj;
# proj checkboxes are for viz only and shouldn't modify the instance)
if self.mne.instance_type in ("raw", "epochs"):
self.mne.inst.info["bads"] = self.mne.info["bads"]
logger.info(f"Channels marked as bad:\n{self.mne.info['bads'] or 'none'}")
# ICA excludes
elif self.mne.instance_type == "ica":
self.mne.ica.exclude = [
self.mne.ica._ica_names.index(ch) for ch in self.mne.info["bads"]
]
# write window size to config
str_size = ",".join([str(i) for i in self._get_size()])
set_config("MNE_BROWSE_RAW_SIZE", str_size, set_env=False)
# Clean up child figures (don't pop(), child figs remove themselves)
while len(self.mne.child_figs):
fig = self.mne.child_figs[-1]
close(fig)
self._close_event(fig)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# CHILD FIGURES
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
@abstractmethod
def _new_child_figure(self, fig_name, **kwargs):
pass
def _create_ch_context_fig(self, idx):
"""Show context figure; idx is index of **visible** channels."""
inst = self.mne.instance_type
pick = self.mne.picks[idx]
if inst == "raw":
fig = self._create_ch_location_fig(pick)
elif inst == "ica":
fig = self._create_ica_properties_fig(pick)
else:
fig = self._create_epoch_image_fig(pick)
return fig
def _create_ch_location_fig(self, pick):
"""Show channel location figure."""
from .utils import _channel_type_prettyprint, plot_sensors
ch_name = self.mne.ch_names[pick]
ch_type = self.mne.ch_types[pick]
if ch_type not in _DATA_CH_TYPES_SPLIT:
return
# create figure and axes
title = f"Location of {ch_name}"
fig = self._new_child_figure(figsize=(4, 4), fig_name=None, window_title=title)
fig.suptitle(title)
ax = fig.add_subplot(111)
title = f"{ch_name} position ({_channel_type_prettyprint[ch_type]})"
_ = plot_sensors(
self.mne.info,
ch_type=ch_type,
axes=ax,
title=title,
kind="select",
show=False,
)
# highlight desired channel & disable interactivity
fig.lasso.selection_inds = np.isin(fig.lasso.names, [ch_name])
fig.lasso.disconnect()
fig.lasso.alpha_nonselected = 0.3
fig.lasso.linewidth_selected = 3
fig.lasso.style_objects()
return fig
def _create_ica_properties_fig(self, idx):
"""Show ICA properties for the selected component."""
from mne.viz.ica import (
_create_properties_layout,
_fast_plot_ica_properties,
_prepare_data_ica_properties,
)
ch_name = self.mne.ch_names[idx]
if ch_name not in self.mne.ica._ica_names: # for EOG chans: do nothing
return
pick = self.mne.ica._ica_names.index(ch_name)
title = f"{ch_name} properties"
fig = self._new_child_figure(figsize=(7, 6), fig_name=None, window_title=title)
fig.suptitle(title)
fig, axes = _create_properties_layout(fig=fig)
if not hasattr(self.mne, "data_ica_properties"):
# Precompute epoch sources only once
self.mne.data_ica_properties = _prepare_data_ica_properties(
self.mne.ica_inst, self.mne.ica
)
_fast_plot_ica_properties(
self.mne.ica,
self.mne.ica_inst,
picks=pick,
axes=axes,
psd_args=self.mne.psd_args,
precomputed_data=self.mne.data_ica_properties,
show=False,
)
return fig
def _create_epoch_image_fig(self, pick):
"""Show epochs image for the selected channel."""
from matplotlib.gridspec import GridSpec
from mne.viz import plot_epochs_image
ch_name = self.mne.ch_names[pick]
title = f"Epochs image ({ch_name})"
fig = self._new_child_figure(figsize=(6, 4), fig_name=None, window_title=title)
fig.suptitle = title
gs = GridSpec(nrows=3, ncols=10, figure=fig)
fig.add_subplot(gs[:2, :9])
fig.add_subplot(gs[2, :9])
fig.add_subplot(gs[:2, 9])
plot_epochs_image(self.mne.inst, picks=pick, fig=fig, show=False)
return fig
def _create_epoch_histogram(self):
"""Create peak-to-peak histogram of channel amplitudes."""
epochs = self.mne.inst
data = OrderedDict()
ptp = np.ptp(epochs.get_data(copy=False), axis=2)
for ch_type in ("eeg", "mag", "grad"):
if ch_type in epochs:
data[ch_type] = ptp.T[self.mne.ch_types == ch_type].ravel()
units = _handle_default("units")
titles = _handle_default("titles")
colors = _handle_default("color")
scalings = _handle_default("scalings")
title = "Histogram of peak-to-peak amplitudes"
figsize = (4, 1 + 1.5 * len(data))
fig = self._new_child_figure(
figsize=figsize, fig_name="fig_histogram", window_title=title
)
for ix, (_ch_type, _data) in enumerate(data.items()):
ax = fig.add_subplot(len(data), 1, ix + 1)
ax.set(title=titles[_ch_type], xlabel=units[_ch_type], ylabel="Count")
# set histogram bin range based on rejection thresholds
reject = None
_range = None
if epochs.reject is not None and _ch_type in epochs.reject:
reject = epochs.reject[_ch_type] * scalings[_ch_type]
_range = (0.0, reject * 1.1)
# plot it
ax.hist(
_data * scalings[_ch_type],
bins=100,
color=colors[_ch_type],
range=_range,
)
if reject is not None:
ax.plot((reject, reject), (0, ax.get_ylim()[1]), color="r")
# finalize
fig.suptitle(title, y=0.99)
self.mne.fig_histogram = fig
return fig
def _close_event(self, fig):
"""Look at _close_event in mne.fixes.py for why this exists."""
pass
def fake_keypress(self, key, fig=None): # noqa: D400
"""Pass a fake keypress to the figure.
Parameters
----------
key : str
The key to fake (e.g., ``'a'``).
fig : instance of Figure
The figure to pass the keypress to.
"""
return self._fake_keypress(key, fig=fig)
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# TEST METHODS
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
@abstractmethod
def _get_size(self):
pass
@abstractmethod
def _fake_keypress(self, key, fig):
pass
@abstractmethod
def _fake_click(self, point, fig, axis, xform, button, kind):
pass
@abstractmethod
def _click_ch_name(self, ch_index, button):
pass
@abstractmethod
def _resize_by_factor(self, factor):
pass
@abstractmethod
def _get_ticklabels(self, orientation):
pass
@abstractmethod
def _update_yaxis_labels(self):
pass
def _load_backend(backend_name):
global backend
if backend_name == "matplotlib":
backend = importlib.import_module(name="._mpl_figure", package="mne.viz")
else:
from mne_qt_browser import _pg_figure as backend
logger.info(f"Using {backend_name} as 2D backend.")
return backend
def _get_browser(show, block, **kwargs):
"""Instantiate a new MNE browse-style figure."""
from .utils import _get_figsize_from_config
figsize = kwargs.setdefault("figsize", _get_figsize_from_config())
if figsize is None or np.any(np.array(figsize) < 8):
kwargs["figsize"] = (8, 8)
kwargs["splash"] = kwargs.get("splash", True) and show
if kwargs.get("theme", None) is None:
kwargs["theme"] = get_config("MNE_BROWSER_THEME", "auto")
if kwargs.get("overview_mode", None) is None:
kwargs["overview_mode"] = get_config("MNE_BROWSER_OVERVIEW_MODE", "channels")
# Initialize browser backend
backend_name = get_browser_backend()
# Check mne-qt-browser compatibility
if backend_name == "qt":
import mne_qt_browser
from ..epochs import BaseEpochs
is_ica = kwargs.get("ica", False)
is_epochs = isinstance(kwargs.get("inst", False), BaseEpochs)
not_compat = _compare_version(mne_qt_browser.__version__, "<", "0.2.0")
inst_str = "ICA" if is_ica else "Epochs"
if not_compat and (is_ica or is_epochs):
logger.info(
f'You set the browser-backend to "qt" but your'
f" current version {mne_qt_browser.__version__}"
f" of mne-qt-browser is too low for {inst_str}."
f"Update with pip or conda."
f"Defaults to matplotlib."
)
with use_browser_backend("matplotlib"):
# Initialize Browser
fig = backend._init_browser(**kwargs)
_show_browser(show=show, block=block, fig=fig)
return fig
# Initialize Browser
fig = backend._init_browser(**kwargs)
_show_browser(show=show, block=block, fig=fig)
return fig
def _check_browser_backend_name(backend_name):
_validate_type(backend_name, str, "backend_name")
backend_name = backend_name.lower()
backend_name = "qt" if backend_name == "pyqtgraph" else backend_name
_check_option("backend_name", backend_name, VALID_BROWSE_BACKENDS)
return backend_name
@verbose
def set_browser_backend(backend_name, verbose=None):
"""Set the 2D browser backend for MNE.
The backend will be set as specified and operations will use
that backend.
Parameters
----------
backend_name : str
The 2D browser backend to select. See Notes for the capabilities
of each backend (``'qt'``, ``'matplotlib'``). The ``'qt'`` browser
requires `mne-qt-browser
<https://github.com/mne-tools/mne-qt-browser>`__.
%(verbose)s
Returns
-------
old_backend_name : str | None
The old backend that was in use.
Notes
-----
This table shows the capabilities of each backend ("✓" for full support,
and "-" for partial support):
.. table::
:widths: auto
+--------------------------------------+------------+----+
| **2D browser function:** | matplotlib | qt |
+======================================+============+====+
| :func:`plot_raw` | ✓ | ✓ |
+--------------------------------------+------------+----+
| :func:`plot_epochs` | ✓ | ✓ |
+--------------------------------------+------------+----+
| :func:`plot_ica_sources` | ✓ | ✓ |
+--------------------------------------+------------+----+
+--------------------------------------+------------+----+
| **Feature:** |
+--------------------------------------+------------+----+
| Show Events | ✓ | ✓ |
+--------------------------------------+------------+----+
| Add/Edit/Remove Annotations | ✓ | ✓ |
+--------------------------------------+------------+----+
| Toggle Projections | ✓ | ✓ |
+--------------------------------------+------------+----+
| Butterfly Mode | ✓ | ✓ |
+--------------------------------------+------------+----+
| Selection Mode | ✓ | ✓ |
+--------------------------------------+------------+----+
| Smooth Scrolling | | ✓ |
+--------------------------------------+------------+----+
| Overview-Bar (with Z-Score-Mode) | | ✓ |
+--------------------------------------+------------+----+
.. versionadded:: 0.24
"""
global MNE_BROWSER_BACKEND
old_backend_name = MNE_BROWSER_BACKEND
backend_name = _check_browser_backend_name(backend_name)
if MNE_BROWSER_BACKEND != backend_name:
_load_backend(backend_name)
MNE_BROWSER_BACKEND = backend_name
return old_backend_name
def _init_browser_backend():
global MNE_BROWSER_BACKEND
# check if MNE_BROWSER_BACKEND is not None and valid or get it from config
loaded_backend = MNE_BROWSER_BACKEND or get_config(
key="MNE_BROWSER_BACKEND", default=None
)
if loaded_backend is not None:
set_browser_backend(loaded_backend)
return MNE_BROWSER_BACKEND
else:
errors = dict()
# Try import of valid browser backends
for name in VALID_BROWSE_BACKENDS:
try:
_load_backend(name)
except ImportError as exc:
errors[name] = str(exc)
else:
MNE_BROWSER_BACKEND = name
break
else:
raise RuntimeError(
"Could not load any valid 2D backend:\n"
+ "\n".join(f"{key}: {val}" for key, val in errors.items())
)
return MNE_BROWSER_BACKEND
def get_browser_backend():
"""Return the 2D backend currently used.
Returns
-------
backend_used : str | None
The 2D browser backend currently in use. If no backend is found,
returns ``None``.
"""
try:
backend_name = _init_browser_backend()
except RuntimeError as exc:
backend_name = None
logger.info(str(exc))
return backend_name
@contextmanager
def use_browser_backend(backend_name):
"""Create a 2D browser visualization context using the designated backend.
See :func:`mne.viz.set_browser_backend` for more details on the available
2D browser backends and their capabilities.
Parameters
----------
backend_name : {'qt', 'matplotlib'}
The 2D browser backend to use in the context.
"""
old_backend = set_browser_backend(backend_name)
try:
yield backend
finally:
if old_backend is not None:
try:
set_browser_backend(old_backend)
except Exception:
pass