[074d3d]: / mne / viz / _3d.py

Download this file

4303 lines (3904 with data), 148.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
"""Functions to make 3D plots with M/EEG data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from __future__ import annotations # only needed for Python ≤ 3.9
import os
import os.path as op
import warnings
from collections import defaultdict
from collections.abc import Iterable
from dataclasses import dataclass
from functools import partial
from itertools import cycle
from pathlib import Path
import numpy as np
from scipy.spatial import ConvexHull, Delaunay
from scipy.spatial.distance import cdist
from scipy.stats import rankdata
from .._fiff.constants import FIFF
from .._fiff.meas_info import Info, create_info, read_fiducials
from .._fiff.pick import (
_FNIRS_CH_TYPES_SPLIT,
_MEG_CH_TYPES_SPLIT,
channel_type,
pick_info,
pick_types,
)
from .._fiff.tag import _loc_to_coil_trans
from .._freesurfer import (
_check_mri,
_get_head_surface,
_get_skull_surface,
_read_mri_info,
read_freesurfer_lut,
)
from ..defaults import DEFAULTS
from ..fixes import _crop_colorbar, _get_img_fdata
from ..surface import (
_CheckInside,
_DistanceQuery,
_project_onto_surface,
_read_mri_surface,
_reorder_ccw,
get_meg_helmet_surf,
)
from ..transforms import (
Transform,
_angle_between_quats,
_angle_dist_between_rigid,
_ensure_trans,
_find_trans,
_frame_to_str,
_get_trans,
_get_transforms_to_coord_frame,
_print_coord_trans,
apply_trans,
combine_transforms,
read_ras_mni_t,
rot_to_quat,
rotation,
transform_surface_to,
)
from ..utils import (
_check_option,
_check_subject,
_ensure_int,
_import_nibabel,
_pl,
_to_rgb,
_validate_type,
check_version,
fill_doc,
get_config,
get_subjects_dir,
logger,
verbose,
warn,
)
from ._dipole import _check_concat_dipoles, _plot_dipole_3d, _plot_dipole_mri_outlines
from .evoked_field import EvokedField
from .utils import (
_check_time_unit,
_get_cmap,
_get_color_list,
figure_nobar,
plt_show,
)
verbose_dec = verbose
FIDUCIAL_ORDER = (FIFF.FIFFV_POINT_LPA, FIFF.FIFFV_POINT_NASION, FIFF.FIFFV_POINT_RPA)
# XXX: to unify with digitization
def _fiducial_coords(points, coord_frame=None):
"""Generate 3x3 array of fiducial coordinates."""
points = points or [] # None -> list
if coord_frame is not None:
points = [p for p in points if p["coord_frame"] == coord_frame]
points_ = {p["ident"]: p for p in points if p["kind"] == FIFF.FIFFV_POINT_CARDINAL}
if points_:
return np.array([points_[i]["r"] for i in FIDUCIAL_ORDER])
else:
# XXX eventually this should probably live in montage.py
if coord_frame is None or coord_frame == FIFF.FIFFV_COORD_HEAD:
# Try converting CTF HPI coils to fiducials
out = np.empty((3, 3))
out.fill(np.nan)
for p in points:
if p["kind"] == FIFF.FIFFV_POINT_HPI:
if np.isclose(p["r"][1:], 0, atol=1e-6).all():
out[0 if p["r"][0] < 0 else 2] = p["r"]
elif np.isclose(p["r"][::2], 0, atol=1e-6).all():
out[1] = p["r"]
if np.isfinite(out).all():
return out
return np.array([])
@fill_doc
def plot_head_positions(
pos,
mode="traces",
cmap="viridis",
direction="z",
*,
show=True,
destination=None,
info=None,
color="k",
axes=None,
totals=False,
):
"""Plot head positions.
Parameters
----------
pos : ndarray, shape (n_pos, 10) | list of ndarray
The head position data. Can also be a list to treat as a
concatenation of runs.
mode : str
Can be 'traces' (default) to show position and quaternion traces,
or 'field' to show the position as a vector field over time.
cmap : colormap
Colormap to use for the trace plot, default is "viridis".
direction : str
Can be any combination of "x", "y", or "z" (default: "z") to show
directional axes in "field" mode.
show : bool
Show figure if True. Defaults to True.
destination : path-like | array-like, shape (3,) | instance of Transform | None
The destination location for the head. See
:func:`mne.preprocessing.maxwell_filter` for details.
.. versionadded:: 0.16
%(info)s If provided, will be used to show the destination position when
``destination is None``, and for showing the MEG sensors.
.. versionadded:: 0.16
color : color object
The color to use for lines in ``mode == 'traces'`` and quiver
arrows in ``mode == 'field'``.
.. versionadded:: 0.16
axes : array-like, shape (3, 2) or (4, 2)
The matplotlib axes to use.
.. versionadded:: 0.16
.. versionchanged:: 1.8
Added support for making use of this argument when ``mode="field"``.
totals : bool
If True and in traces mode, show the total distance and angle in a fourth row.
.. versionadded:: 1.9
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
import matplotlib.pyplot as plt
from ..chpi import head_pos_to_trans_rot_t
from ..preprocessing.maxwell import _check_destination
_check_option("mode", mode, ["traces", "field"])
_validate_type(totals, bool, "totals")
dest_info = dict(dev_head_t=None) if info is None else info
destination = _check_destination(destination, dest_info, "head")
if destination is not None:
destination = _ensure_trans(destination, "head", "meg") # probably inv
destination = destination["trans"]
if not isinstance(pos, list | tuple):
pos = [pos]
pos = list(pos) # make our own mutable copy
for ii, p in enumerate(pos):
_validate_type(p, np.ndarray, f"pos[{ii}]")
p = np.array(p, float)
if p.ndim != 2 or p.shape[1] != 10:
raise ValueError(
"pos (or each entry in pos if a list) must be "
f"dimension (N, 10), got {p.shape}"
)
if ii > 0: # concatenation
p[:, 0] += pos[ii - 1][-1, 0] - p[0, 0]
pos[ii] = p
borders = np.cumsum([len(pp) for pp in pos])
pos = np.concatenate(pos, axis=0)
trans, rot, t = head_pos_to_trans_rot_t(pos) # also ensures pos is okay
# trans, rot, and t are for dev_head_t, but what we really want
# is head_dev_t (i.e., where the head origin is in device coords)
use_trans = (
np.einsum("ijk,ik->ij", rot[:, :3, :3].transpose([0, 2, 1]), -trans) * 1000
)
use_rot = rot.transpose([0, 2, 1])
use_quats = -pos[:, 1:4] # inverse (like doing rot.T)
surf = rrs = lims = None
if info is not None:
meg_picks = pick_types(info, meg=True, ref_meg=False, exclude=())
if len(meg_picks) > 0:
rrs = 1000 * np.array(
[info["chs"][pick]["loc"][:3] for pick in meg_picks], float
)
if mode == "traces":
lims = np.array((rrs.min(0), rrs.max(0))).T
else: # mode == 'field'
surf = get_meg_helmet_surf(info)
transform_surface_to(surf, "meg", info["dev_head_t"], copy=False)
surf["rr"] *= 1000.0
helmet_color = DEFAULTS["coreg"]["helmet_color"]
if mode == "traces":
want_shape = (3 + int(totals), 2)
if axes is None:
_, axes = plt.subplots(*want_shape, sharex=True, layout="constrained")
else:
axes = np.array(axes)
_check_option("axes.shape", axes.shape, (want_shape,))
fig = axes[0, 0].figure
labels = [["x (mm)", "y (mm)", "z (mm)"], ["$q_1$", "$q_2$", "$q_3$"]]
if totals:
labels[0].append("dist (mm)")
labels[1].append("angle (°)")
for ii, (quat, coord) in enumerate(zip(use_quats.T, use_trans.T)):
axes[ii, 0].plot(t, coord, color, lw=1.0, zorder=3)
axes[ii, 0].set(ylabel=labels[0][ii], xlim=t[[0, -1]])
axes[ii, 1].plot(t, quat, color, lw=1.0, zorder=3)
axes[ii, 1].set(ylabel=labels[1][ii], xlim=t[[0, -1]])
for b in borders[:-1]:
for jj in range(2):
axes[ii, jj].axvline(t[b], color="r")
if totals:
vals = [
np.linalg.norm(use_trans, axis=-1),
np.rad2deg(_angle_between_quats(use_quats)),
]
ii = -1
for ci, val in enumerate(vals):
axes[ii, ci].plot(t, val, color, lw=1.0, zorder=3)
axes[ii, ci].set(ylabel=labels[ci][ii], xlim=t[[0, -1]])
titles = ["Position", "Rotation"]
for ci, title in enumerate(titles):
axes[0, ci].set(title=title)
axes[-1, ci].set(xlabel="Time (s)")
if rrs is not None:
pos_bads = np.any(
[
(use_trans[:, ii] <= lims[ii, 0])
| (use_trans[:, ii] >= lims[ii, 1])
for ii in range(3)
],
axis=0,
)
for ii in range(3):
oidx = list(range(ii)) + list(range(ii + 1, 3))
# knowing it will generally be spherical, we can approximate
# how far away we are along the axis line by taking the
# point to the left and right with the smallest distance
dists = cdist(rrs[:, oidx], use_trans[:, oidx])
left = rrs[:, [ii]] < use_trans[:, ii]
left_dists_all = dists.copy()
left_dists_all[~left] = np.inf
# Don't show negative Z direction
if ii != 2 and np.isfinite(left_dists_all).any():
idx = np.argmin(left_dists_all, axis=0)
left_dists = rrs[idx, ii]
bads = (
~np.isfinite(left_dists_all[idx, np.arange(len(idx))])
| pos_bads
)
left_dists[bads] = np.nan
axes[ii, 0].plot(
t, left_dists, color=helmet_color, ls="-", lw=0.5, zorder=2
)
else:
axes[ii, 0].axhline(
lims[ii][0], color=helmet_color, ls="-", lw=0.5, zorder=2
)
right_dists_all = dists
right_dists_all[left] = np.inf
if np.isfinite(right_dists_all).any():
idx = np.argmin(right_dists_all, axis=0)
right_dists = rrs[idx, ii]
bads = (
~np.isfinite(right_dists_all[idx, np.arange(len(idx))])
| pos_bads
)
right_dists[bads] = np.nan
axes[ii, 0].plot(
t, right_dists, color=helmet_color, ls="-", lw=0.5, zorder=2
)
else:
axes[ii, 0].axhline(
lims[ii][1], color=helmet_color, ls="-", lw=0.5, zorder=2
)
for ii in range(3):
axes[ii, 1].set(ylim=[-1, 1])
if destination is not None:
vals = np.array(
[1000 * destination[:3, 3], rot_to_quat(destination[:3, :3])]
).T.ravel()
for ax, val in zip(axes[:3].ravel(), vals):
ax.axhline(val, color="r", ls=":", zorder=2, lw=1.0)
if totals:
dest_ang, dest_dist = _angle_dist_between_rigid(
destination,
angle_units="deg",
distance_units="mm",
)
axes[-1, 0].axhline(dest_dist, color="r", ls=":", zorder=2, lw=1.0)
axes[-1, 1].axhline(dest_ang, color="r", ls=":", zorder=2, lw=1.0)
else: # mode == 'field':
from matplotlib.colors import Normalize
from mpl_toolkits.mplot3d import Axes3D # noqa: F401, analysis:ignore
from mpl_toolkits.mplot3d.art3d import Line3DCollection
_validate_type(axes, (Axes3D, None), "ax", extra="when mode='field'")
if axes is None:
_, ax = plt.subplots(
1, subplot_kw=dict(projection="3d"), layout="constrained"
)
else:
ax = axes
fig = ax.get_figure()
del axes
# First plot the trajectory as a colormap:
# http://matplotlib.org/examples/pylab_examples/multicolored_line.html
pts = use_trans[:, np.newaxis]
segments = np.concatenate([pts[:-1], pts[1:]], axis=1)
norm = Normalize(t[0], t[-2])
lc = Line3DCollection(segments, cmap=cmap, norm=norm)
lc.set_array(t[:-1])
ax.add_collection(lc)
# now plot the head directions as a quiver
dir_idx = dict(x=0, y=1, z=2)
kwargs = dict(pivot="tail")
for d, length in zip(direction, [5.0, 2.5, 1.0]):
use_dir = use_rot[:, :, dir_idx[d]]
# draws stems, then heads
array = np.concatenate((t, np.repeat(t, 2)))
ax.quiver(
use_trans[:, 0],
use_trans[:, 1],
use_trans[:, 2],
use_dir[:, 0],
use_dir[:, 1],
use_dir[:, 2],
norm=norm,
cmap=cmap,
array=array,
length=length,
**kwargs,
)
if destination is not None:
ax.quiver(
destination[0, 3],
destination[1, 3],
destination[2, 3],
destination[dir_idx[d], 0],
destination[dir_idx[d], 1],
destination[dir_idx[d], 2],
color=color,
length=length,
**kwargs,
)
mins = use_trans.min(0)
maxs = use_trans.max(0)
if surf is not None:
ax.plot_trisurf(
*surf["rr"].T,
triangles=surf["tris"],
color=helmet_color,
alpha=0.1,
shade=False,
)
ax.scatter(*rrs.T, s=1, color=helmet_color)
mins = np.minimum(mins, rrs.min(0))
maxs = np.maximum(maxs, rrs.max(0))
scale = (maxs - mins).max() / 2.0
xlim, ylim, zlim = (maxs + mins)[:, np.newaxis] / 2.0 + [-scale, scale]
ax.set(xlabel="x", ylabel="y", zlabel="z", xlim=xlim, ylim=ylim, zlim=zlim)
_set_aspect_equal(ax)
ax.view_init(30, 45)
plt_show(show)
return fig
def _set_aspect_equal(ax):
# XXX recent MPL throws an error for 3D axis aspect setting, not much
# we can do about it at this point
try:
ax.set_aspect("equal")
except NotImplementedError:
pass
@verbose
def plot_evoked_field(
evoked,
surf_maps,
time=None,
time_label="t = %0.0f ms",
n_jobs=None,
fig=None,
vmax=None,
n_contours=21,
*,
show_density=True,
alpha=None,
interpolation="nearest",
interaction="terrain",
time_viewer="auto",
verbose=None,
):
"""Plot MEG/EEG fields on head surface and helmet in 3D.
Parameters
----------
evoked : instance of mne.Evoked
The evoked object.
surf_maps : list
The surface mapping information obtained with make_field_map.
time : float | None
The time point at which the field map shall be displayed. If None,
the average peak latency (across sensor types) is used.
time_label : str | None
How to print info about the time instant visualized.
%(n_jobs)s
fig : Figure3D | mne.viz.Brain | None
If None (default), a new figure will be created, otherwise it will
plot into the given figure.
.. versionadded:: 0.20
.. versionadded:: 1.4
``fig`` can also be a ``Brain`` figure.
vmax : float | dict | None
Maximum intensity. Can be a dictionary with two entries ``"eeg"`` and ``"meg"``
to specify separate values for EEG and MEG fields respectively. Can be
``None`` to use the maximum value of the data.
.. versionadded:: 0.21
.. versionadded:: 1.4
``vmax`` can be a dictionary to specify separate values for EEG and
MEG fields.
n_contours : int
The number of contours.
.. versionadded:: 0.21
show_density : bool
Whether to draw the field density as an overlay on top of the helmet/head
surface. Defaults to ``True``.
.. versionadded:: 1.6
alpha : float | dict | None
Opacity of the meshes (between 0 and 1). Can be a dictionary with two
entries ``"eeg"`` and ``"meg"`` to specify separate values for EEG and
MEG fields respectively. Can be ``None`` to use 1.0 when a single field
map is shown, or ``dict(eeg=1.0, meg=0.5)`` when both field maps are shown.
.. versionadded:: 1.4
%(interpolation_brain_time)s
.. versionadded:: 1.6
%(interaction_scene)s
Defaults to ``'terrain'``.
.. versionadded:: 1.1
time_viewer : bool | str
Display time viewer GUI. Can also be ``"auto"``, which will mean
``True`` if there is more than one time point and ``False`` otherwise.
.. versionadded:: 1.6
%(verbose)s
Returns
-------
fig : Figure3D | mne.viz.EvokedField
Without the time viewer active, the figure is returned. With the time
viewer active, an object is returned that can be used to control
different aspects of the figure.
"""
ef = EvokedField(
evoked,
surf_maps,
time=time,
time_label=time_label,
n_jobs=n_jobs,
fig=fig,
vmax=vmax,
n_contours=n_contours,
alpha=alpha,
show_density=show_density,
interpolation=interpolation,
interaction=interaction,
time_viewer=time_viewer,
verbose=verbose,
)
if ef.time_viewer:
return ef
else:
return ef._renderer.scene()
@verbose
def plot_alignment(
info=None,
trans=None,
subject=None,
subjects_dir=None,
surfaces="auto",
coord_frame="auto",
meg=None,
eeg="original",
fwd=None,
dig=False,
ecog=True,
src=None,
mri_fiducials=False,
bem=None,
seeg=True,
fnirs=True,
show_axes=False,
dbs=True,
fig=None,
interaction="terrain",
sensor_colors=None,
*,
sensor_scales=None,
verbose=None,
):
"""Plot head, sensor, and source space alignment in 3D.
Parameters
----------
%(info)s If None (default), no sensor information will be shown.
%(trans)s "auto" will load trans from the FreeSurfer directory
specified by ``subject`` and ``subjects_dir`` parameters.
.. versionchanged:: 0.19
Support for 'fsaverage' argument.
%(subject)s Can be omitted if ``src`` is provided.
%(subjects_dir)s
surfaces : str | list | dict
Surfaces to plot. Supported values:
* scalp: one of 'head', 'outer_skin' (alias for 'head'),
'head-dense', or 'seghead' (alias for 'head-dense')
* skull: 'outer_skull', 'inner_skull', 'brain' (alias for
'inner_skull')
* brain: one of 'pial', 'white', 'inflated', or 'brain'
(alias for 'pial').
Can be dict to specify alpha values for each surface. Use None
to specify default value. Specified values must be between 0 and 1.
for example::
surfaces=dict(brain=0.4, outer_skull=0.6, head=None)
Defaults to 'auto', which will look for a head surface and plot
it if found.
.. note:: For single layer BEMs it is recommended to use ``'brain'``.
coord_frame : 'auto' | 'head' | 'meg' | 'mri'
The coordinate frame to use. If ``'auto'`` (default), chooses ``'mri'``
if ``trans`` was passed, and ``'head'`` otherwise.
.. versionchanged:: 1.0
Defaults to ``'auto'``.
%(meg)s
%(eeg)s
%(fwd)s
dig : bool | 'fiducials'
If True, plot the digitization points; 'fiducials' to plot fiducial
points only.
%(ecog)s
src : instance of SourceSpaces | None
If not None, also plot the source space points.
mri_fiducials : bool | str | path-like
Plot MRI fiducials (default False). If ``True``, look for a file with
the canonical name (``bem/{subject}-fiducials.fif``). If ``str``,
it can be ``'estimated'`` to use :func:`mne.coreg.get_mni_fiducials`,
otherwise it should provide the full path to the fiducials file.
.. versionadded:: 0.22
Support for ``'estimated'``.
bem : list of dict | instance of ConductorModel | None
Can be either the BEM surfaces (list of dict), a BEM solution or a
sphere model. If None, we first try loading
``'$SUBJECTS_DIR/$SUBJECT/bem/$SUBJECT-$SOURCE.fif'``, and then look
for ``'$SUBJECT*$SOURCE.fif'`` in the same directory. For
``'outer_skin'``, the subjects bem and bem/flash folders are searched.
Defaults to None.
%(seeg)s
%(fnirs)s
.. versionadded:: 0.20
show_axes : bool
If True (default False), coordinate frame axis indicators will be
shown:
* head in pink.
* MRI in gray (if ``trans is not None``).
* MEG in blue (if MEG sensors are present).
.. versionadded:: 0.16
%(dbs)s
fig : Figure3D | None
PyVista scene in which to plot the alignment.
If ``None``, creates a new 600x600 pixel figure with black background.
.. versionadded:: 0.16
%(interaction_scene)s
.. versionadded:: 0.16
.. versionchanged:: 1.0
Defaults to ``'terrain'``.
%(sensor_colors)s
.. versionchanged:: 1.6
Support for passing a ``dict`` was added.
%(sensor_scales)s
.. versionadded:: 1.9
%(verbose)s
Returns
-------
fig : instance of Figure3D
The figure.
See Also
--------
mne.viz.plot_bem
Notes
-----
This function serves the purpose of checking the validity of the many
different steps of source reconstruction:
- Transform matrix (keywords ``trans``, ``meg`` and ``mri_fiducials``),
- BEM surfaces (keywords ``bem`` and ``surfaces``),
- sphere conductor model (keywords ``bem`` and ``surfaces``) and
- source space (keywords ``surfaces`` and ``src``).
.. versionadded:: 0.15
"""
# Update the backend
from ..bem import ConductorModel, _bem_find_surface, _ensure_bem_surfaces
from ..source_space._source_space import _ensure_src
from .backends.renderer import _get_renderer
meg, eeg, fnirs, warn_meg, sensor_alpha = _handle_sensor_types(meg, eeg, fnirs)
_check_option("interaction", interaction, ["trackball", "terrain"])
info = create_info(1, 1000.0, "misc") if info is None else info
_validate_type(info, "info")
# Handle surfaces:
if surfaces == "auto" and trans is None:
surfaces = list() # if no `trans` can't plot mri surfaces
if isinstance(surfaces, str):
surfaces = [surfaces]
if isinstance(surfaces, dict):
user_alpha = surfaces.copy()
for key, val in user_alpha.items():
_validate_type(key, "str", f"surfaces key {repr(key)}")
_validate_type(val, (None, "numeric"), f"surfaces[{repr(key)}]")
if val is not None:
user_alpha[key] = float(val)
if not 0 <= user_alpha[key] <= 1:
raise ValueError(
f"surfaces[{repr(key)}] ({val}) must be between 0 and 1"
)
else:
user_alpha = {}
surfaces = list(surfaces)
for si, s in enumerate(surfaces):
_validate_type(s, "str", f"surfaces[{si}]")
bem = _ensure_bem_surfaces(bem, extra_allow=(ConductorModel, None))
assert isinstance(bem, ConductorModel) or bem is None
_check_option("coord_frame", coord_frame, ["head", "meg", "mri", "auto"])
if coord_frame == "auto":
coord_frame = "head" if trans is None else "mri"
if src is not None:
src = _ensure_src(src)
src_subject = src._subject
subject = src_subject if subject is None else subject
if src_subject is not None and subject != src_subject:
raise ValueError(
f'subject ("{subject}") did not match the '
f'subject name in src ("{src_subject}")'
)
# configure transforms
if isinstance(trans, str) and trans == "auto":
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
trans = _find_trans(subject, subjects_dir)
trans, trans_type = _get_trans(trans, fro="head", to="mri")
picks = pick_types(
info,
meg=("sensors" in meg),
ref_meg=("ref" in meg),
eeg=(len(eeg) > 0),
ecog=ecog,
seeg=seeg,
dbs=dbs,
fnirs=(len(fnirs) > 0),
)
if trans_type == "identity":
# Some stuff is natively in head coords, others in MRI coords
msg = (
"A head<->mri transformation matrix (trans) is required "
f"to plot {{}} in {coord_frame} coordinates, "
"`trans=None` is not allowed"
)
if fwd is not None:
fwd_frame = _frame_to_str[fwd["coord_frame"]]
if fwd_frame != coord_frame:
raise ValueError(
msg.format(f"a {fwd_frame}-coordinate forward solution")
)
if src is not None:
src_frame = _frame_to_str[src[0]["coord_frame"]]
if src_frame != coord_frame:
raise ValueError(msg.format(f"a {src_frame}-coordinate source space"))
if mri_fiducials is not False and coord_frame != "mri":
raise ValueError(msg.format("mri fiducials"))
# only enforce needing `trans` if there are channels in "head"/"device"
if picks.size and coord_frame == "mri":
raise ValueError(msg.format("sensors"))
# if only plotting sphere model no trans needed
if bem is not None:
if not bem["is_sphere"]:
if coord_frame != "mri":
raise ValueError(msg.format("a BEM"))
elif surfaces not in (["brain"], []): # can only plot these
raise ValueError(msg.format(", ".join(surfaces) + " surfaces"))
elif len(surfaces) > 0 and coord_frame != "mri":
raise ValueError(msg.format(", ".join(surfaces) + " surfaces"))
trans = Transform("head", "mri") # not used so just use identity
# get transforms
head_mri_t = _get_trans(trans, "head", "mri")[0]
to_cf_t = _get_transforms_to_coord_frame(info, head_mri_t, coord_frame=coord_frame)
# Surfaces:
# both the head and helmet will be in MRI coordinates after this
surfs = dict()
# Brain surface:
brain = sorted(set(surfaces) & set(["brain", "pial", "white", "inflated"]))
if len(brain) > 1:
raise ValueError(f"Only one brain surface can be plotted, got {brain}.")
brain = brain[0] if brain else False
if brain is not False:
surfaces.pop(surfaces.index(brain))
if bem is not None and bem["is_sphere"] and brain == "brain":
surfs["lh"] = _bem_find_surface(bem, "brain")
else:
brain = "pial" if brain == "brain" else brain
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
for hemi in ["lh", "rh"]:
brain_fname = subjects_dir / subject / "surf" / f"{hemi}.{brain}"
if not brain_fname.is_file():
raise RuntimeError(
f"No brain surface found for subject {subject}, "
f"expected {brain_fname} to exist"
)
surfs[hemi] = _read_mri_surface(brain_fname)
subjects_dir = str(subjects_dir)
# Head surface:
head_keys = ("auto", "head", "outer_skin", "head-dense", "seghead")
head = [s for s in surfaces if s in head_keys]
if len(head) > 1:
raise ValueError(f"Can only supply one head-like surface name, got {head}")
head = head[0] if head else False
if head is not False:
surfaces.pop(surfaces.index(head))
elif "projected" in eeg:
raise ValueError(
"A head surface is required to project EEG, "
'"head", "outer_skin", "head-dense" or "seghead" '
'must be in surfaces or surfaces must be "auto"'
)
# Skull surface:
skulls = [s for s in surfaces if s in ("outer_skull", "inner_skull")]
for skull_name in skulls:
surfaces.pop(surfaces.index(skull_name))
skull = _get_skull_surface(
skull_name.split("_")[0], subject, subjects_dir, bem=bem
)
skull["name"] = skull_name # set name for alpha
surfs[skull_name] = skull
# we've looked through all of them, raise if some remain
if len(surfaces) > 0:
raise ValueError(f"Unknown surface type{_pl(surfaces)}: {surfaces}")
# set colors and alphas
defaults = DEFAULTS["coreg"]
no_deep = not (dbs or seeg) or pick_types(info, dbs=True, seeg=True).size == 0
max_alpha = 1.0 if no_deep else 0.75
hemi_val = 0.5
if src is None or (brain and any(s["type"] == "surf" for s in src)):
hemi_val = max_alpha
alpha_range = np.linspace(max_alpha / 2.0, 0, 5)[: len(skulls) + 1]
if src is None and brain is False and len(skulls) == 0 and not show_axes:
head_alpha = max_alpha
else:
head_alpha = alpha_range[0]
alphas = dict(lh=hemi_val, rh=hemi_val)
colors = dict(lh=(0.5,) * 3, rh=(0.5,) * 3)
for idx, name in enumerate(skulls):
alphas[name] = alpha_range[idx + 1]
colors[name] = (0.95 - idx * 0.2, 0.85, 0.95 - idx * 0.2)
if brain is not False and brain in user_alpha:
alphas["lh"] = alphas["rh"] = user_alpha.pop(brain)
# replace default alphas with specified user_alpha
for k, v in user_alpha.items():
if v is not None:
alphas[k] = v
if k in head_keys and v is not None:
head_alpha = v
fid_colors = tuple(defaults[f"{key}_color"] for key in ("lpa", "nasion", "rpa"))
# initialize figure
renderer = _get_renderer(
fig,
name=f"Sensor alignment: {subject}",
bgcolor=(0.5, 0.5, 0.5),
size=(800, 800),
)
renderer.set_interaction(interaction)
# plot head
_, _, head_surf = _plot_head_surface(
renderer,
head,
subject,
subjects_dir,
bem,
coord_frame,
to_cf_t,
alpha=head_alpha,
)
# plot helmet
if "helmet" in meg and pick_types(info, meg=True).size > 0:
_, _, src_surf = _plot_helmet(
renderer,
info,
to_cf_t,
head_mri_t,
coord_frame,
alpha=sensor_alpha["meg_helmet"],
)
# plot surfaces
if brain and "lh" not in surfs: # one layer sphere
assert bem["coord_frame"] == FIFF.FIFFV_COORD_HEAD
center = bem["r0"].copy()
center = apply_trans(to_cf_t["head"], center)
renderer.sphere(center, scale=0.01, color=colors["lh"], opacity=alphas["lh"])
if show_axes:
_plot_axes(renderer, info, to_cf_t, head_mri_t)
# plot points
_check_option("dig", dig, (True, False, "fiducials"))
if dig:
if dig is True:
_plot_hpi_coils(renderer, info, to_cf_t)
_plot_head_shape_points(renderer, info, to_cf_t)
_plot_head_fiducials(renderer, info, to_cf_t, fid_colors)
if mri_fiducials:
_plot_mri_fiducials(
renderer, mri_fiducials, subjects_dir, subject, to_cf_t, fid_colors
)
for key, surf in surfs.items():
# Surfs can sometimes be in head coords (e.g., if coming from sphere)
assert isinstance(surf, dict), f"{key}: {type(surf)}"
surf = transform_surface_to(
surf, coord_frame, [to_cf_t["mri"], to_cf_t["head"]], copy=True
)
renderer.surface(
name=key,
surface=surf,
color=colors[key],
opacity=alphas[key],
backface_culling=(key != "helmet"),
)
# plot sensors (NB snapshot_brain_montage relies on the last thing being
# plotted being the sensors, so we need to do this after the surfaces)
if picks.size > 0:
_plot_sensors_3d(
renderer,
info,
to_cf_t,
picks,
meg,
eeg,
fnirs,
warn_meg,
head_surf,
"m",
sensor_alpha=sensor_alpha,
sensor_colors=sensor_colors,
sensor_scales=sensor_scales,
)
if src is not None:
atlas_ids, colors = read_freesurfer_lut()
for ss in src:
src_rr = ss["rr"][ss["inuse"].astype(bool)]
src_nn = ss["nn"][ss["inuse"].astype(bool)]
# update coordinate frame
src_trans = to_cf_t[_frame_to_str[src[0]["coord_frame"]]]
src_rr = apply_trans(src_trans, src_rr)
src_nn = apply_trans(src_trans, src_nn, move=False)
# volume sources
if ss["type"] == "vol":
seg_name = ss.get("seg_name", None)
if seg_name is not None and seg_name in colors:
color = colors[seg_name][:3]
color = tuple(i / 256.0 for i in color)
else:
color = (1.0, 1.0, 0.0)
# surface and discrete sources
else:
color = (1.0, 1.0, 0.0)
if len(src_rr) > 0:
renderer.quiver3d(
x=src_rr[:, 0],
y=src_rr[:, 1],
z=src_rr[:, 2],
u=src_nn[:, 0],
v=src_nn[:, 1],
w=src_nn[:, 2],
color=color,
mode="cylinder",
scale=3e-3,
opacity=0.75,
glyph_height=0.25,
glyph_center=(0.0, 0.0, 0.0),
glyph_resolution=20,
backface_culling=True,
)
if fwd is not None:
_plot_forward(renderer, fwd, to_cf_t[_frame_to_str[fwd["coord_frame"]]])
renderer.set_camera(
azimuth=90, elevation=90, distance=0.6, focalpoint=(0.0, 0.0, 0.0)
)
renderer.show()
return renderer.scene()
def _handle_sensor_types(meg, eeg, fnirs):
"""Handle plotting inputs for sensors types."""
if eeg is True:
eeg = ["original"]
elif eeg is False:
eeg = list()
warn_meg = meg is not None # only warn if the value is explicit
if meg is True:
meg = ["helmet", "sensors", "ref"]
elif meg is None:
meg = ["helmet", "sensors"]
elif meg is False:
meg = list()
if fnirs is True:
fnirs = ["pairs"]
elif fnirs is False:
fnirs = list()
if isinstance(meg, str):
meg = [meg]
if isinstance(eeg, str):
eeg = [eeg]
if isinstance(fnirs, str):
fnirs = [fnirs]
alpha_map = dict(
meg=dict(sensors="meg", helmet="meg_helmet", ref="ref_meg"),
eeg=dict(original="eeg", projected="eegp"),
fnirs=dict(channels="fnirs", pairs="fnirs_pairs"),
)
sensor_alpha = {
key: dict(meg_helmet=0.25, meg=0.25).get(key, 0.8)
for ch_dict in alpha_map.values()
for key in ch_dict.values()
}
for kind, var in zip(("eeg", "meg", "fnirs"), (eeg, meg, fnirs)):
_validate_type(var, (list, tuple, dict), f"{kind}")
for ix, x in enumerate(var):
which = f"{kind} key {ix}" if isinstance(var, dict) else f"{kind}[{ix}]"
_validate_type(x, str, which)
if isinstance(var, dict) and x in alpha_map[kind]:
alpha = var[x]
_validate_type(alpha, "numeric", f"{kind}[{ix}]")
if not 0 <= alpha <= 1:
raise ValueError(
f"{kind}[{ix}] alpha value must be between 0 and 1, got {alpha}"
)
sensor_alpha[alpha_map[kind][x]] = alpha
meg, eeg, fnirs = tuple(meg), tuple(eeg), tuple(fnirs)
for xi, x in enumerate(meg):
_check_option(f"meg[{xi}]", x, ("helmet", "sensors", "ref"))
for xi, x in enumerate(eeg):
_check_option(f"eeg[{xi}]", x, ("original", "projected"))
for xi, x in enumerate(fnirs):
_check_option(f"fnirs[{xi}]", x, ("channels", "pairs", "sources", "detectors"))
# Add these for our True-only options, too -- eventually should support dict.
sensor_alpha.update(
seeg=0.8,
ecog=0.8,
source=sensor_alpha["fnirs"],
detector=sensor_alpha["fnirs"],
)
return meg, eeg, fnirs, warn_meg, sensor_alpha
@verbose
def _ch_pos_in_coord_frame(info, to_cf_t, warn_meg=True, verbose=None):
"""Transform positions from head/device/mri to a coordinate frame."""
from ..forward import _create_meg_coils
from ..forward._make_forward import _read_coil_defs
chs = dict(ch_pos=dict(), sources=dict(), detectors=dict())
unknown_chs = list() # prepare for chs with unknown coordinate frame
type_counts = dict()
coilset = _read_coil_defs(verbose=False)
for idx in range(info["nchan"]):
ch_type = channel_type(info, idx)
if ch_type in type_counts:
type_counts[ch_type] += 1
else:
type_counts[ch_type] = 1
type_slices = dict(ch_pos=slice(0, 3))
if ch_type in _FNIRS_CH_TYPES_SPLIT:
# add sensors and detectors too for fNIRS
type_slices.update(sources=slice(3, 6), detectors=slice(6, 9))
for type_name, type_slice in type_slices.items():
if ch_type in _MEG_CH_TYPES_SPLIT + ("ref_meg",):
coil_trans = _loc_to_coil_trans(info["chs"][idx]["loc"])
# Here we prefer accurate geometry in case we need to
# ConvexHull the coil, we want true 3D geometry (and not, for
# example, a straight line / 1D geometry)
this_coil = [info["chs"][idx]]
try:
coil = _create_meg_coils(
this_coil, acc="accurate", coilset=coilset
)[0]
except RuntimeError: # we don't have an accurate one
coil = _create_meg_coils(this_coil, acc="normal", coilset=coilset)[
0
]
# store verts as ch_coord
ch_coord, triangles = _sensor_shape(coil)
ch_coord = apply_trans(coil_trans, ch_coord)
if len(ch_coord) == 0 and warn_meg:
warn(f"MEG sensor {info.ch_names[idx]} not found.")
else:
ch_coord = info["chs"][idx]["loc"][type_slice]
ch_coord_frame = info["chs"][idx]["coord_frame"]
if ch_coord_frame not in (
FIFF.FIFFV_COORD_UNKNOWN,
FIFF.FIFFV_COORD_DEVICE,
FIFF.FIFFV_COORD_HEAD,
FIFF.FIFFV_COORD_MRI,
):
raise RuntimeError(
f"Channel {info.ch_names[idx]} has coordinate frame "
f'{ch_coord_frame}, must be "meg", "head" or "mri".'
)
# set unknown as head first
if ch_coord_frame == FIFF.FIFFV_COORD_UNKNOWN:
unknown_chs.append(info.ch_names[idx])
ch_coord_frame = FIFF.FIFFV_COORD_HEAD
ch_coord = apply_trans(to_cf_t[_frame_to_str[ch_coord_frame]], ch_coord)
if ch_type in _MEG_CH_TYPES_SPLIT + ("ref_meg",):
chs[type_name][info.ch_names[idx]] = (ch_coord, triangles)
else:
chs[type_name][info.ch_names[idx]] = ch_coord
if unknown_chs:
warn(
f'Got coordinate frame "unknown" for {unknown_chs}, assuming '
'"head" coordinates.'
)
logger.info(
"Channel types::\t"
+ ", ".join([f"{ch_type}: {count}" for ch_type, count in type_counts.items()])
)
return chs["ch_pos"], chs["sources"], chs["detectors"]
def _plot_head_surface(
renderer, head, subject, subjects_dir, bem, coord_frame, to_cf_t, alpha, color=None
):
"""Render a head surface in a 3D scene."""
color = DEFAULTS["coreg"]["head_color"] if color is None else color
actor = None
src_surf = dst_surf = None
if head is not False:
src_surf = _get_head_surface(head, subject, subjects_dir, bem=bem)
src_surf = transform_surface_to(
src_surf, coord_frame, [to_cf_t["mri"], to_cf_t["head"]], copy=True
)
actor, dst_surf = renderer.surface(
surface=src_surf, color=color, opacity=alpha, backface_culling=False
)
return actor, dst_surf, src_surf
def _plot_helmet(
renderer,
info,
to_cf_t,
head_mri_t,
coord_frame,
*,
alpha=0.25,
scale=1.0,
):
color = DEFAULTS["coreg"]["helmet_color"]
src_surf = get_meg_helmet_surf(info, head_mri_t)
assert src_surf["coord_frame"] == FIFF.FIFFV_COORD_MRI
if to_cf_t is not None:
src_surf = transform_surface_to(
src_surf, coord_frame, [to_cf_t["mri"], to_cf_t["head"]], copy=True
)
actor, dst_surf = renderer.surface(
surface=src_surf,
color=color,
opacity=alpha,
backface_culling=False,
name="helmet",
)
return actor, dst_surf, src_surf
def _plot_axes(renderer, info, to_cf_t, head_mri_t):
"""Render different axes a 3D scene."""
axes = [(to_cf_t["head"], (0.9, 0.3, 0.3))] # always show head
if not np.allclose(head_mri_t["trans"], np.eye(4)): # Show MRI
axes.append((to_cf_t["mri"], (0.6, 0.6, 0.6)))
if pick_types(info, meg=True).size > 0: # Show MEG
axes.append((to_cf_t["meg"], (0.0, 0.6, 0.6)))
actors = list()
for ax in axes:
x, y, z = np.tile(ax[0]["trans"][:3, 3], 3).reshape((3, 3)).T
u, v, w = ax[0]["trans"][:3, :3]
actor, _ = renderer.sphere(
center=np.column_stack((x[0], y[0], z[0])), color=ax[1], scale=3e-3
)
actors.append(actor)
actor, _ = renderer.quiver3d(
x=x,
y=y,
z=z,
u=u,
v=v,
w=w,
mode="arrow",
scale=2e-2,
color=ax[1],
scale_mode="scalar",
resolution=20,
scalars=[0.33, 0.66, 1.0],
)
actors.append(actor)
return actors
def _plot_head_fiducials(renderer, info, to_cf_t, fid_colors):
defaults = DEFAULTS["coreg"]
car_loc = _fiducial_coords(info["dig"], FIFF.FIFFV_COORD_HEAD)
car_loc = apply_trans(to_cf_t["head"], car_loc)
if len(car_loc) == 0:
warn("Digitization points not found. Cannot plot digitization.")
actors = list()
for color, data in zip(fid_colors, car_loc):
actor, _ = renderer.sphere(
center=data,
color=color,
scale=defaults["dig_fid_scale"],
opacity=defaults["dig_fid_opacity"],
backface_culling=True,
)
actors.append(actor)
return actors
def _plot_mri_fiducials(
renderer, mri_fiducials, subjects_dir, subject, to_cf_t, fid_colors
):
from ..coreg import get_mni_fiducials
defaults = DEFAULTS["coreg"]
if mri_fiducials is True:
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
if subject is None:
raise ValueError(
"Subject needs to be specified to "
"automatically find the fiducials file."
)
mri_fiducials = subjects_dir / subject / "bem" / (subject + "-fiducials.fif")
if isinstance(mri_fiducials, str) and mri_fiducials == "estimated":
mri_fiducials = get_mni_fiducials(subject, subjects_dir)
elif isinstance(mri_fiducials, str | Path | os.PathLike):
mri_fiducials, cf = read_fiducials(mri_fiducials)
if cf != FIFF.FIFFV_COORD_MRI:
raise ValueError("Fiducials are not in MRI space")
if isinstance(mri_fiducials, np.ndarray):
fid_loc = mri_fiducials
else:
fid_loc = _fiducial_coords(mri_fiducials, FIFF.FIFFV_COORD_MRI)
fid_loc = apply_trans(to_cf_t["mri"], fid_loc)
transform = np.eye(4)
transform[:3, :3] = to_cf_t["mri"]["trans"][:3, :3] * defaults["mri_fid_scale"]
# rotate around Z axis 45 deg first
transform = transform @ rotation(0, 0, np.pi / 4)
actors = list()
for color, data in zip(fid_colors, fid_loc):
actor, _ = renderer.quiver3d(
x=data[0],
y=data[1],
z=data[2],
u=1.0,
v=0.0,
w=0.0,
color=color,
mode="oct",
scale=1.0,
opacity=defaults["mri_fid_opacity"],
backface_culling=True,
solid_transform=transform,
)
actors.append(actor)
return actors
def _plot_hpi_coils(
renderer,
info,
to_cf_t,
opacity=0.5,
scale=None,
orient_glyphs=False,
scale_by_distance=False,
surf=None,
check_inside=None,
nearest=None,
):
defaults = DEFAULTS["coreg"]
scale = defaults["hpi_scale"] if scale is None else scale
hpi_loc = np.array(
[
d["r"]
for d in (info["dig"] or [])
if (
d["kind"] == FIFF.FIFFV_POINT_HPI
and d["coord_frame"] == FIFF.FIFFV_COORD_HEAD
)
]
)
hpi_loc = apply_trans(to_cf_t["head"], hpi_loc)
actor, _ = _plot_glyphs(
renderer=renderer,
loc=hpi_loc,
color=defaults["hpi_color"],
scale=scale,
opacity=opacity,
orient_glyphs=orient_glyphs,
scale_by_distance=scale_by_distance,
surf=surf,
backface_culling=True,
check_inside=check_inside,
nearest=nearest,
)
return actor
def _get_nearest(nearest, check_inside, project_to_trans, proj_rr):
idx = nearest.query(proj_rr)[1]
proj_pts = apply_trans(project_to_trans, nearest.data[idx])
proj_nn = apply_trans(project_to_trans, check_inside.surf["nn"][idx], move=False)
return proj_pts, proj_nn
def _orient_glyphs(
pts,
surf,
project_to_surface=False,
mark_inside=False,
check_inside=None,
nearest=None,
):
if check_inside is None:
check_inside = _CheckInside(surf, mode="pyvista")
if nearest is None:
nearest = _DistanceQuery(surf["rr"])
project_to_trans = np.eye(4)
inv_trans = np.linalg.inv(project_to_trans)
proj_rr = apply_trans(inv_trans, pts)
proj_pts, proj_nn = _get_nearest(nearest, check_inside, project_to_trans, proj_rr)
vec = pts - proj_pts # point to the surface
nn = proj_nn
scalars = np.ones(len(pts))
if mark_inside and not project_to_surface:
scalars[:] = ~check_inside(proj_rr)
dist = np.linalg.norm(vec, axis=-1, keepdims=True)
vectors = (250 * dist + 1) * nn
return scalars, vectors, proj_pts
def _plot_glyphs(
renderer,
loc,
color,
scale,
opacity=1,
mode="cylinder",
orient_glyphs=False,
scale_by_distance=False,
project_points=False,
mark_inside=False,
surf=None,
backface_culling=False,
check_inside=None,
nearest=None,
):
from matplotlib.colors import ListedColormap, to_rgba
_validate_type(mark_inside, bool, "mark_inside")
if surf is not None and len(loc) > 0:
defaults = DEFAULTS["coreg"]
scalars, vectors, proj_pts = _orient_glyphs(
loc, surf, project_points, mark_inside, check_inside, nearest
)
if mark_inside:
colormap = ListedColormap([to_rgba("darkslategray"), to_rgba(color)])
color = None
clim = [0, 1]
else:
scalars = None
colormap = None
clim = None
mode = "cylinder" if orient_glyphs else "sphere"
scale_mode = "vector" if scale_by_distance else "none"
x, y, z = proj_pts.T if project_points else loc.T
u, v, w = vectors.T
return renderer.quiver3d(
x,
y,
z,
u,
v,
w,
color=color,
scale=scale,
mode=mode,
glyph_height=defaults["eegp_height"],
glyph_center=(0.0, -defaults["eegp_height"], 0),
resolution=16,
glyph_resolution=16,
glyph_radius=None,
opacity=opacity,
scale_mode=scale_mode,
scalars=scalars,
colormap=colormap,
clim=clim,
)
else:
return renderer.sphere(
center=loc,
color=color,
scale=scale,
opacity=opacity,
backface_culling=backface_culling,
)
@verbose
def _plot_head_shape_points(
renderer,
info,
to_cf_t,
opacity=0.25,
orient_glyphs=False,
scale_by_distance=False,
mark_inside=False,
surf=None,
mask=None,
check_inside=None,
nearest=None,
verbose=False,
):
defaults = DEFAULTS["coreg"]
ext_loc = np.array(
[
d["r"]
for d in (info["dig"] or [])
if (
d["kind"] == FIFF.FIFFV_POINT_EXTRA
and d["coord_frame"] == FIFF.FIFFV_COORD_HEAD
)
]
)
ext_loc = apply_trans(to_cf_t["head"], ext_loc)
ext_loc = ext_loc[mask] if mask is not None else ext_loc
actor, _ = _plot_glyphs(
renderer=renderer,
loc=ext_loc,
color=defaults["extra_color"],
scale=defaults["extra_scale"],
opacity=opacity,
orient_glyphs=orient_glyphs,
scale_by_distance=scale_by_distance,
mark_inside=mark_inside,
surf=surf,
backface_culling=True,
check_inside=check_inside,
nearest=nearest,
)
return actor
def _plot_forward(renderer, fwd, fwd_trans, fwd_scale=1, scale=1.5e-3, alpha=1):
from ..forward import Forward
_validate_type(fwd, [Forward])
n_dipoles = fwd["source_rr"].shape[0]
fwd_rr = fwd["source_rr"]
if fwd["source_ori"] == FIFF.FIFFV_MNE_FIXED_ORI:
fwd_nn = fwd["source_nn"].reshape(-1, 1, 3)
else:
fwd_nn = fwd["source_nn"].reshape(-1, 3, 3)
# update coordinate frame
fwd_rr = apply_trans(fwd_trans, fwd_rr) * fwd_scale
fwd_nn = apply_trans(fwd_trans, fwd_nn, move=False)
red = (1.0, 0.0, 0.0)
green = (0.0, 1.0, 0.0)
blue = (0.0, 0.0, 1.0)
actors = list()
for ori, color in zip(range(fwd_nn.shape[1]), (red, green, blue)):
actor, _ = renderer.quiver3d(
*fwd_rr.T,
*fwd_nn[:, ori].T,
color=color,
mode="arrow",
scale_mode="scalar",
scalars=np.ones(n_dipoles),
scale=scale,
opacity=alpha,
)
actors.append(actor)
return actors
def _plot_sensors_3d(
renderer,
info,
to_cf_t,
picks,
meg,
eeg,
fnirs,
warn_meg,
head_surf,
units,
sensor_alpha,
orient_glyphs=False,
scale_by_distance=False,
project_points=False,
surf=None,
check_inside=None,
nearest=None,
sensor_colors=None,
sensor_scales=None,
):
"""Render sensors in a 3D scene."""
from matplotlib.colors import to_rgba_array
defaults = DEFAULTS["coreg"]
ch_pos, sources, detectors = _ch_pos_in_coord_frame(
pick_info(info, picks), to_cf_t=to_cf_t, warn_meg=warn_meg
)
actors = defaultdict(lambda: list())
locs = defaultdict(lambda: list())
unit_scalar = 1 if units == "m" else 1e3
for ch_name, ch_coord in ch_pos.items():
ch_type = channel_type(info, info.ch_names.index(ch_name))
# for default picking
if ch_type in _FNIRS_CH_TYPES_SPLIT:
ch_type = "fnirs"
elif ch_type in _MEG_CH_TYPES_SPLIT:
ch_type = "meg"
# only plot sensor locations if channels/original in selection
plot_sensors = True
if ch_type == "fnirs":
if not fnirs or "channels" not in fnirs:
plot_sensors = False
elif ch_type == "eeg":
if not eeg:
plot_sensors = False
elif ch_type == "meg":
if not meg or "sensors" not in meg:
plot_sensors = False
# plot sensors
if isinstance(ch_coord, tuple): # is meg, plot coil
ch_coord = dict(rr=ch_coord[0] * unit_scalar, tris=ch_coord[1])
if plot_sensors:
if ch_type == "eeg":
if "original" in eeg:
locs[ch_type].append(ch_coord)
if "projected" in eeg:
locs["eegp"].append(ch_coord)
else:
locs[ch_type].append(ch_coord)
if ch_name in sources and "sources" in fnirs:
locs["source"].append(sources[ch_name])
if ch_name in detectors and "detectors" in fnirs:
locs["detector"].append(detectors[ch_name])
# Plot these now
if ch_name in sources and ch_name in detectors and "pairs" in fnirs:
actor, _ = renderer.tube( # array of origin and dest points
origin=sources[ch_name][np.newaxis] * unit_scalar,
destination=detectors[ch_name][np.newaxis] * unit_scalar,
radius=0.001 * unit_scalar,
opacity=sensor_alpha["fnirs_pairs"],
)
actors[ch_type].append(actor)
del ch_type
# now actually plot the sensors
extra = ""
types = (dict, None)
if len(locs) == 0:
return
elif len(locs) == 1:
# Upsample from array-like to dict when there is one channel type
extra = "(or array-like since only one sensor type is plotted)"
if sensor_colors is not None and not isinstance(sensor_colors, dict):
sensor_colors = {
list(locs)[0]: to_rgba_array(sensor_colors),
}
if sensor_scales is not None and not isinstance(sensor_scales, dict):
sensor_scales = {
list(locs)[0]: sensor_scales,
}
else:
extra = f"when more than one channel type ({list(locs)}) is plotted"
_validate_type(sensor_colors, types, "sensor_colors", extra=extra)
_validate_type(sensor_scales, types, "sensor_scales", extra=extra)
del extra, types
if sensor_colors is None:
sensor_colors = dict()
if sensor_scales is None:
sensor_scales = dict()
assert isinstance(sensor_colors, dict)
assert isinstance(sensor_scales, dict)
for ch_type, sens_loc in locs.items():
logger.debug(f"Drawing {ch_type} sensors ({len(sens_loc)})")
assert len(sens_loc) # should be guaranteed above
colors = to_rgba_array(sensor_colors.get(ch_type, defaults[ch_type + "_color"]))
scales = np.atleast_1d(
sensor_scales.get(ch_type, defaults[ch_type + "_scale"] * unit_scalar)
)
_check_option(
f"len(sensor_colors[{repr(ch_type)}])",
colors.shape[0],
(len(sens_loc), 1),
)
_check_option(
f"len(sensor_scales[{repr(ch_type)}])",
scales.shape[0],
(len(sens_loc), 1),
)
# Check that the scale is numerical
assert np.issubdtype(scales.dtype, np.number), (
f"scales for {ch_type} must contain only numerical values, "
f"got {scales} instead."
)
this_alpha = sensor_alpha[ch_type]
if isinstance(sens_loc[0], dict): # meg coil
if len(colors) == 1:
colors = [colors[0]] * len(sens_loc)
for surface, color in zip(sens_loc, colors):
actor, _ = renderer.surface(
surface=surface,
color=color[:3],
opacity=this_alpha * color[3],
backface_culling=False, # visible from all sides
)
actors[ch_type].append(actor)
else:
sens_loc = np.array(sens_loc, float)
mask = ~np.isnan(sens_loc).any(axis=1)
if ch_type == "eegp": # special case, need to project
logger.info("Projecting sensors to the head surface")
eegp_loc, eegp_nn = _project_onto_surface(
sens_loc[mask], head_surf, project_rrs=True, return_nn=True
)[2:4]
eegp_loc *= unit_scalar
actor, _ = renderer.quiver3d(
x=eegp_loc[:, 0],
y=eegp_loc[:, 1],
z=eegp_loc[:, 2],
u=eegp_nn[:, 0],
v=eegp_nn[:, 1],
w=eegp_nn[:, 2],
color=colors[0], # TODO: Maybe eventually support multiple
mode="cylinder",
scale=scales[0] * unit_scalar, # TODO: Also someday maybe multiple
opacity=sensor_alpha[ch_type],
glyph_height=defaults["eegp_height"],
glyph_center=(0.0, -defaults["eegp_height"] / 2.0, 0),
glyph_resolution=20,
backface_culling=True,
)
actors["eeg"].append(actor)
elif len(colors) == 1 and len(scales) == 1:
# Single color mode (one actor)
actor, _ = _plot_glyphs(
renderer=renderer,
loc=sens_loc[mask] * unit_scalar,
color=colors[0, :3],
scale=scales[0],
opacity=this_alpha * colors[0, 3],
orient_glyphs=orient_glyphs,
scale_by_distance=scale_by_distance,
project_points=project_points,
surf=surf,
check_inside=check_inside,
nearest=nearest,
)
actors[ch_type].append(actor)
elif len(colors) == len(sens_loc) and len(scales) == 1:
# Multi-color single scale mode (multiple actors)
for loc, color, usable in zip(sens_loc, colors, mask):
if not usable:
continue
actor, _ = _plot_glyphs(
renderer=renderer,
loc=loc * unit_scalar,
color=color[:3],
scale=scales[0],
opacity=this_alpha * color[3],
orient_glyphs=orient_glyphs,
scale_by_distance=scale_by_distance,
project_points=project_points,
surf=surf,
check_inside=check_inside,
nearest=nearest,
)
actors[ch_type].append(actor)
elif len(colors) == 1 and len(scales) == len(sens_loc):
# Multi-scale single color mode (multiple actors)
for loc, scale, usable in zip(sens_loc, scales, mask):
if not usable:
continue
actor, _ = _plot_glyphs(
renderer=renderer,
loc=loc * unit_scalar,
color=colors[0, :3],
scale=scale,
opacity=this_alpha * colors[0, 3],
orient_glyphs=orient_glyphs,
scale_by_distance=scale_by_distance,
project_points=project_points,
surf=surf,
check_inside=check_inside,
nearest=nearest,
)
actors[ch_type].append(actor)
else:
# Multi-color multi-scale mode (multiple actors)
for loc, color, scale, usable in zip(sens_loc, colors, scales, mask):
if not usable:
continue
actor, _ = _plot_glyphs(
renderer=renderer,
loc=loc * unit_scalar,
color=color[:3],
scale=scale,
opacity=this_alpha * color[3],
orient_glyphs=orient_glyphs,
scale_by_distance=scale_by_distance,
project_points=project_points,
surf=surf,
check_inside=check_inside,
nearest=nearest,
)
actors[ch_type].append(actor)
actors = dict(actors) # get rid of defaultdict
return actors
def _make_tris_fan(n_vert):
"""Make tris given a number of vertices of a circle-like obj."""
tris = np.zeros((n_vert - 2, 3), int)
tris[:, 2] = np.arange(2, n_vert)
tris[:, 1] = tris[:, 2] - 1
return tris
def _sensor_shape(coil):
"""Get the sensor shape vertices."""
try:
from scipy.spatial import QhullError
except ImportError: # scipy < 1.8
from scipy.spatial.qhull import QhullError
id_ = coil["type"] & 0xFFFF
z_value = 0
# Square figure eight
if id_ in (
FIFF.FIFFV_COIL_NM_122,
FIFF.FIFFV_COIL_VV_PLANAR_W,
FIFF.FIFFV_COIL_VV_PLANAR_T1,
FIFF.FIFFV_COIL_VV_PLANAR_T2,
):
# wound by right hand rule such that +x side is "up" (+z)
long_side = coil["size"] # length of long side (meters)
offset = 0.0025 # offset of the center portion of planar grad coil
rrs = np.array(
[
[offset, -long_side / 2.0],
[long_side / 2.0, -long_side / 2.0],
[long_side / 2.0, long_side / 2.0],
[offset, long_side / 2.0],
[-offset, -long_side / 2.0],
[-long_side / 2.0, -long_side / 2.0],
[-long_side / 2.0, long_side / 2.0],
[-offset, long_side / 2.0],
]
)
tris = np.concatenate(
(_make_tris_fan(4), _make_tris_fan(4)[:, ::-1] + 4), axis=0
)
# Offset for visibility (using heuristic for sanely named Neuromag coils)
z_value = 0.001 * (1 + coil["chname"].endswith("2"))
# Square
elif id_ in (
FIFF.FIFFV_COIL_POINT_MAGNETOMETER,
FIFF.FIFFV_COIL_VV_MAG_T1,
FIFF.FIFFV_COIL_VV_MAG_T2,
FIFF.FIFFV_COIL_VV_MAG_T3,
FIFF.FIFFV_COIL_KIT_REF_MAG,
):
# square magnetometer (potentially point-type)
size = 0.001 if id_ == 2000 else (coil["size"] / 2.0)
rrs = np.array([[-1.0, 1.0], [1.0, 1.0], [1.0, -1.0], [-1.0, -1.0]]) * size
tris = _make_tris_fan(4)
# Circle
elif id_ in (
FIFF.FIFFV_COIL_MAGNES_MAG,
FIFF.FIFFV_COIL_MAGNES_REF_MAG,
FIFF.FIFFV_COIL_CTF_REF_MAG,
FIFF.FIFFV_COIL_BABY_MAG,
FIFF.FIFFV_COIL_BABY_REF_MAG,
FIFF.FIFFV_COIL_ARTEMIS123_REF_MAG,
):
n_pts = 15 # number of points for circle
circle = np.exp(2j * np.pi * np.arange(n_pts) / float(n_pts))
circle = np.concatenate(([0.0], circle))
circle *= coil["size"] / 2.0 # radius of coil
rrs = np.array([circle.real, circle.imag]).T
tris = _make_tris_fan(n_pts + 1)
# Circle
elif id_ in (
FIFF.FIFFV_COIL_MAGNES_GRAD,
FIFF.FIFFV_COIL_CTF_GRAD,
FIFF.FIFFV_COIL_CTF_REF_GRAD,
FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD,
FIFF.FIFFV_COIL_MAGNES_REF_GRAD,
FIFF.FIFFV_COIL_MAGNES_OFFDIAG_REF_GRAD,
FIFF.FIFFV_COIL_KIT_GRAD,
FIFF.FIFFV_COIL_BABY_GRAD,
FIFF.FIFFV_COIL_ARTEMIS123_GRAD,
FIFF.FIFFV_COIL_ARTEMIS123_REF_GRAD,
):
# round coil 1st order (off-diagonal) gradiometer
baseline = coil["base"] if id_ in (5004, 4005) else 0.0
n_pts = 16 # number of points for circle
# This time, go all the way around circle to close it fully
circle = np.exp(2j * np.pi * np.arange(-1, n_pts) / float(n_pts - 1))
circle[0] = 0 # center pt for triangulation
circle *= coil["size"] / 2.0
rrs = np.array(
[ # first, second coil
np.concatenate(
[circle.real + baseline / 2.0, circle.real - baseline / 2.0]
),
np.concatenate([circle.imag, -circle.imag]),
]
).T
tris = np.concatenate(
[_make_tris_fan(n_pts + 1), _make_tris_fan(n_pts + 1) + n_pts + 1]
)
else:
# 3D convex hull (will fail for 2D geometry)
rrs = coil["rmag_orig"].copy()
try:
tris = _reorder_ccw(rrs, ConvexHull(rrs).simplices)
except QhullError: # 2D geometry likely
logger.debug("Falling back to planar geometry")
u, _, _ = np.linalg.svd(rrs.T, full_matrices=False)
u[:, 2] = 0
rr_rot = rrs @ u
tris = Delaunay(rr_rot[:, :2]).simplices
tris = np.concatenate((tris, tris[:, ::-1]))
z_value = None
# Go from (x,y) -> (x,y,z)
if z_value is not None:
rrs = np.pad(rrs, ((0, 0), (0, 1)), mode="constant", constant_values=z_value)
assert rrs.ndim == 2 and rrs.shape[1] == 3
return rrs, tris
def _process_clim(clim, colormap, transparent, data=0.0, allow_pos_lims=True):
"""Convert colormap/clim options to dict.
This fills in any "auto" entries properly such that round-trip
calling gives the same results.
"""
# Based on type of limits specified, get cmap control points
from matplotlib.colors import Colormap
_validate_type(colormap, (str, Colormap), "colormap")
data = np.asarray(data)
if isinstance(colormap, str):
if colormap == "auto":
if clim == "auto":
if allow_pos_lims and (data < 0).any():
colormap = "mne"
else:
colormap = "hot"
else:
if "lims" in clim:
colormap = "hot"
else: # 'pos_lims' in clim
colormap = "mne"
colormap = _get_cmap(colormap)
assert isinstance(colormap, Colormap)
diverging_maps = [
"PiYG",
"PRGn",
"BrBG",
"PuOr",
"RdGy",
"RdBu",
"RdYlBu",
"RdYlGn",
"Spectral",
"coolwarm",
"bwr",
"seismic",
]
diverging_maps += [d + "_r" for d in diverging_maps]
diverging_maps += ["mne", "mne_analyze"]
if clim == "auto":
# this is merely a heuristic!
if allow_pos_lims and colormap.name in diverging_maps:
key = "pos_lims"
else:
key = "lims"
clim = {"kind": "percent", key: [96, 97.5, 99.95]}
if not isinstance(clim, dict):
raise ValueError(f'"clim" must be "auto" or dict, got {clim}')
if ("lims" in clim) + ("pos_lims" in clim) != 1:
raise ValueError(
f"Exactly one of lims and pos_lims must be specified in clim, got {clim}"
)
if "pos_lims" in clim and not allow_pos_lims:
raise ValueError('Cannot use "pos_lims" for clim, use "lims" instead')
diverging = "pos_lims" in clim
ctrl_pts = np.array(clim["pos_lims" if diverging else "lims"], float)
ctrl_pts = np.array(ctrl_pts, float)
if ctrl_pts.shape != (3,):
raise ValueError(f"clim has shape {ctrl_pts.shape}, it must be (3,)")
if (np.diff(ctrl_pts) < 0).any():
raise ValueError(
f"colormap limits must be monotonically increasing, got {ctrl_pts}"
)
clim_kind = clim.get("kind", "percent")
_check_option("clim['kind']", clim_kind, ["value", "values", "percent"])
if clim_kind == "percent":
perc_data = np.abs(data) if diverging else data
ctrl_pts = np.percentile(perc_data, ctrl_pts)
logger.info(f"Using control points {ctrl_pts}")
assert len(ctrl_pts) == 3
clim = dict(kind="value")
clim["pos_lims" if diverging else "lims"] = ctrl_pts
mapdata = dict(clim=clim, colormap=colormap, transparent=transparent)
return mapdata
def _separate_map(mapdata):
"""Help plotters that cannot handle limit equality."""
diverging = "pos_lims" in mapdata["clim"]
key = "pos_lims" if diverging else "lims"
ctrl_pts = np.array(mapdata["clim"][key])
assert ctrl_pts.shape == (3,)
if len(set(ctrl_pts)) == 1: # three points match
if ctrl_pts[0] == 0: # all are zero
warn("All data were zero")
ctrl_pts = np.arange(3, dtype=float)
else:
ctrl_pts *= [0.0, 0.5, 1] # all nonzero pts == max
elif len(set(ctrl_pts)) == 2: # two points match
# if points one and two are identical, add a tiny bit to the
# control point two; if points two and three are identical,
# subtract a tiny bit from point two.
bump = 1e-5 if ctrl_pts[0] == ctrl_pts[1] else -1e-5
ctrl_pts[1] = ctrl_pts[0] + bump * (ctrl_pts[2] - ctrl_pts[0])
mapdata["clim"][key] = ctrl_pts
def _linearize_map(mapdata):
from matplotlib.colors import ListedColormap
diverging = "pos_lims" in mapdata["clim"]
scale_pts = mapdata["clim"]["pos_lims" if diverging else "lims"]
if diverging:
lims = [-scale_pts[2], scale_pts[2]]
ctrl_norm = (
np.concatenate(
[-scale_pts[::-1] / scale_pts[2], [0], scale_pts / scale_pts[2]]
)
/ 2
+ 0.5
)
linear_norm = [0, 0.25, 0.5, 0.5, 0.5, 0.75, 1]
trans_norm = [1, 1, 0, 0, 0, 1, 1]
else:
lims = [scale_pts[0], scale_pts[2]]
range_ = scale_pts[2] - scale_pts[0]
mid = (scale_pts[1] - scale_pts[0]) / range_ if range_ > 0 else 0.5
ctrl_norm = [0, mid, 1]
linear_norm = [0, 0.5, 1]
trans_norm = [0, 1, 1]
# do the piecewise linear transformation
interp_to = np.linspace(0, 1, 256)
colormap = np.array(
mapdata["colormap"](np.interp(interp_to, ctrl_norm, linear_norm))
)
if mapdata["transparent"]:
colormap[:, 3] = np.interp(interp_to, ctrl_norm, trans_norm)
lims = np.array([lims[0], np.mean(lims), lims[1]])
colormap = ListedColormap(colormap)
return colormap, lims
def _get_map_ticks(mapdata):
diverging = "pos_lims" in mapdata["clim"]
ticks = mapdata["clim"]["pos_lims" if diverging else "lims"]
delta = 1e-2 * (ticks[2] - ticks[0])
if ticks[1] <= ticks[0] + delta: # Only two worth showing
ticks = ticks[::2]
if ticks[1] <= ticks[0] + delta: # Actually only one
ticks = ticks[::2]
if diverging:
idx = int(ticks[0] == 0)
ticks = list(-np.array(ticks[idx:])[::-1]) + [0] + list(ticks[idx:])
return np.array(ticks)
def _handle_time(time_label, time_unit, times):
"""Handle time label string and units."""
_validate_type(time_label, (None, str, "callable"), "time_label")
if time_label == "auto":
if times is not None and len(times) > 1:
if time_unit == "s":
time_label = "time=%0.3fs"
elif time_unit == "ms":
time_label = "time=%0.1fms"
else:
time_label = None
# convert to callable
if isinstance(time_label, str):
time_label_fmt = time_label
def time_label(x):
try:
return time_label_fmt % x
except Exception:
return time_label # in case it's static
assert time_label is None or callable(time_label)
if times is not None:
_, times = _check_time_unit(time_unit, times)
return time_label, times
def _key_pressed_slider(event, params):
"""Handle key presses for time_viewer slider."""
step = 1
if event.key.startswith("ctrl"):
step = 5
event.key = event.key.split("+")[-1]
if event.key not in ["left", "right"]:
return
time_viewer = event.canvas.figure
value = time_viewer.slider.val
times = params["stc"].times
if params["time_unit"] == "ms":
times = times * 1000.0
time_idx = np.argmin(np.abs(times - value))
if event.key == "left":
time_idx = np.max((0, time_idx - step))
elif event.key == "right":
time_idx = np.min((len(times) - 1, time_idx + step))
this_time = times[time_idx]
time_viewer.slider.set_val(this_time)
def _smooth_plot(this_time, params, *, draw=True):
"""Smooth source estimate data and plot with mpl."""
from ..morph import _hemi_morph
ax = params["ax"]
stc = params["stc"]
ax.clear()
times = stc.times
scaler = 1000.0 if params["time_unit"] == "ms" else 1.0
if this_time is None:
time_idx = 0
else:
time_idx = np.argmin(np.abs(times - this_time / scaler))
if params["hemi_idx"] == 0:
data = stc.data[: len(stc.vertices[0]), time_idx : time_idx + 1]
else:
data = stc.data[len(stc.vertices[0]) :, time_idx : time_idx + 1]
morph = _hemi_morph(
params["tris"],
params["inuse"],
params["vertices"],
params["smoothing_steps"],
maps=None,
warn=True,
)
array_plot = morph @ data
range_ = params["scale_pts"][2] - params["scale_pts"][0]
colors = (array_plot - params["scale_pts"][0]) / range_
faces = params["faces"]
greymap = params["greymap"]
cmap = params["cmap"]
polyc = ax.plot_trisurf(
*params["coords"].T, triangles=faces, antialiased=False, vmin=0, vmax=1
)
color_ave = np.mean(colors[faces], axis=1).flatten()
curv_ave = np.mean(params["curv"][faces], axis=1).flatten()
colors = cmap(color_ave)
# alpha blend
colors[:, :3] *= colors[:, [3]]
colors[:, :3] += greymap(curv_ave)[:, :3] * (1.0 - colors[:, [3]])
colors[:, 3] = 1.0
polyc.set_facecolor(colors)
if params["time_label"] is not None:
ax.set_title(
params["time_label"](
times[time_idx] * scaler,
),
color="w",
)
_set_aspect_equal(ax)
ax.axis("off")
ax.set(xlim=[-80, 80], ylim=(-80, 80), zlim=[-80, 80])
if draw:
ax.figure.canvas.draw()
def _plot_mpl_stc(
stc,
subject=None,
surface="inflated",
hemi="lh",
colormap="auto",
time_label="auto",
smoothing_steps=10,
subjects_dir=None,
views="lat",
clim="auto",
figure=None,
initial_time=None,
time_unit="s",
background="black",
spacing="oct6",
time_viewer=False,
colorbar=True,
transparent=True,
):
"""Plot source estimate using mpl."""
import matplotlib.pyplot as plt
import nibabel as nib
from matplotlib.widgets import Slider
from mpl_toolkits.mplot3d import Axes3D
from ..morph import _get_subject_sphere_tris
from ..source_space._source_space import _check_spacing, _create_surf_spacing
_check_option("hemi", hemi, ("lh", "rh"), extra="when using matplotlib")
lh_kwargs = {
"lat": {"elev": 0, "azim": 180},
"med": {"elev": 0, "azim": 0},
"ros": {"elev": 0, "azim": 90},
"cau": {"elev": 0, "azim": -90},
"dor": {"elev": 90, "azim": -90},
"ven": {"elev": -90, "azim": -90},
"fro": {"elev": 0, "azim": 106.739},
"par": {"elev": 30, "azim": -120},
}
rh_kwargs = {
"lat": {"elev": 0, "azim": 0},
"med": {"elev": 0, "azim": 180},
"ros": {"elev": 0, "azim": 90},
"cau": {"elev": 0, "azim": -90},
"dor": {"elev": 90, "azim": -90},
"ven": {"elev": -90, "azim": -90},
"fro": {"elev": 16.739, "azim": 60},
"par": {"elev": 30, "azim": -60},
}
time_viewer = False if time_viewer == "auto" else time_viewer
kwargs = dict(lh=lh_kwargs, rh=rh_kwargs)
views = "lat" if views == "auto" else views
_check_option("views", views, sorted(lh_kwargs.keys()))
mapdata = _process_clim(clim, colormap, transparent, stc.data)
_separate_map(mapdata)
colormap, scale_pts = _linearize_map(mapdata)
del transparent, mapdata
time_label, times = _handle_time(time_label, time_unit, stc.times)
# don't use constrained layout because Axes3D does not play well with it
fig = plt.figure(figsize=(6, 6), layout=None) if figure is None else figure
try:
ax = Axes3D(fig, auto_add_to_figure=False)
except Exception: # old mpl
ax = Axes3D(fig)
else:
fig.add_axes(ax)
hemi_idx = 0 if hemi == "lh" else 1
surf = subjects_dir / subject / "surf" / f"{hemi}.{surface}"
if spacing == "all":
coords, faces = nib.freesurfer.read_geometry(surf)
inuse = slice(None)
else:
stype, sval, ico_surf, src_type_str = _check_spacing(spacing)
surf = _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir)
inuse = surf["vertno"]
faces = surf["use_tris"]
coords = surf["rr"][inuse]
shape = faces.shape
faces = rankdata(faces, "dense").reshape(shape) - 1
faces = np.round(faces).astype(int) # should really be int-like anyway
del surf
vertices = stc.vertices[hemi_idx]
n_verts = len(vertices)
tris = _get_subject_sphere_tris(subject, subjects_dir)[hemi_idx]
cmap = _get_cmap(colormap)
greymap = _get_cmap("Greys")
curv = nib.freesurfer.read_morph_data(
subjects_dir / subject / "surf" / f"{hemi}.curv"
)[inuse]
curv = np.clip(np.array(curv > 0, np.int64), 0.33, 0.66)
params = dict(
ax=ax,
stc=stc,
coords=coords,
faces=faces,
hemi_idx=hemi_idx,
vertices=vertices,
tris=tris,
smoothing_steps=smoothing_steps,
n_verts=n_verts,
inuse=inuse,
cmap=cmap,
curv=curv,
scale_pts=scale_pts,
greymap=greymap,
time_label=time_label,
time_unit=time_unit,
)
_smooth_plot(initial_time, params, draw=False)
ax.view_init(**kwargs[hemi][views])
try:
ax.set_facecolor(background)
except AttributeError:
ax.set_axis_bgcolor(background)
if time_viewer:
time_viewer = figure_nobar(figsize=(4.5, 0.25))
fig.time_viewer = time_viewer
ax_time = plt.axes()
if initial_time is None:
initial_time = 0
slider = Slider(
ax=ax_time,
label="Time",
valmin=times[0],
valmax=times[-1],
valinit=initial_time,
)
time_viewer.slider = slider
callback_slider = partial(_smooth_plot, params=params)
slider.on_changed(callback_slider)
callback_key = partial(_key_pressed_slider, params=params)
time_viewer.canvas.mpl_connect("key_press_event", callback_key)
fig.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0)
# add colorbar
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
sm = plt.cm.ScalarMappable(
cmap=cmap, norm=plt.Normalize(scale_pts[0], scale_pts[2])
)
cax = inset_axes(ax, width="80%", height="5%", loc=8, borderpad=3.0)
plt.setp(plt.getp(cax, "xticklabels"), color="w")
sm.set_array(np.linspace(scale_pts[0], scale_pts[2], 256))
if colorbar:
cb = plt.colorbar(sm, cax=cax, orientation="horizontal")
cb_yticks = plt.getp(cax, "yticklabels")
plt.setp(cb_yticks, color="w")
cax.tick_params(labelsize=16)
cb.ax.set_facecolor("0.5")
cax.set(xlim=(scale_pts[0], scale_pts[2]))
plt_show(True)
return fig
def link_brains(brains, time=True, camera=False, colorbar=True, picking=False):
"""Plot multiple SourceEstimate objects with PyVista.
Parameters
----------
brains : list, tuple or np.ndarray
The collection of brains to plot.
time : bool
If True, link the time controllers. Defaults to True.
camera : bool
If True, link the camera controls. Defaults to False.
colorbar : bool
If True, link the colorbar controllers. Defaults to True.
picking : bool
If True, link the vertices picked with the mouse. Defaults to False.
"""
from .backends.renderer import _get_3d_backend
if _get_3d_backend() != "pyvistaqt":
raise NotImplementedError(
f"Expected 3d backend is pyvistaqt but {_get_3d_backend()} was given."
)
from ._brain import Brain, _LinkViewer
if not isinstance(brains, Iterable):
brains = [brains]
if len(brains) == 0:
raise ValueError("The collection of brains is empty.")
for brain in brains:
if not isinstance(brain, Brain):
raise TypeError(f"Expected type is Brain but {type(brain)} was given.")
# enable time viewer if necessary
brain.setup_time_viewer()
subjects = [brain._subject for brain in brains]
if subjects.count(subjects[0]) != len(subjects):
raise RuntimeError("Cannot link brains from different subjects.")
# link brains properties
_LinkViewer(
brains=brains,
time=time,
camera=camera,
colorbar=colorbar,
picking=picking,
)
def _check_volume(stc, src, surface, backend_name):
from ..source_estimate import _BaseMixedSourceEstimate, _BaseSurfaceSourceEstimate
from ..source_space import SourceSpaces
if isinstance(stc, _BaseSurfaceSourceEstimate):
return False
else:
_validate_type(
src,
SourceSpaces,
"src",
"src when stc is a mixed or volume source estimate",
)
if isinstance(stc, _BaseMixedSourceEstimate):
# When showing subvolumes, surfaces that preserve geometry must
# be used (i.e., no inflated)
_check_option(
"surface",
surface,
("white", "pial"),
extra="when plotting a mixed source estimate",
)
return True
@verbose
def plot_source_estimates(
stc,
subject=None,
surface="inflated",
hemi="lh",
colormap="auto",
time_label="auto",
smoothing_steps=10,
transparent=True,
alpha=1.0,
time_viewer="auto",
*,
subjects_dir=None,
figure=None,
views="auto",
colorbar=True,
clim="auto",
cortex="classic",
size=800,
background="black",
foreground=None,
initial_time=None,
time_unit="s",
backend="auto",
spacing="oct6",
title=None,
show_traces="auto",
src=None,
volume_options=1.0,
view_layout="vertical",
add_data_kwargs=None,
brain_kwargs=None,
verbose=None,
):
"""Plot SourceEstimate.
Parameters
----------
stc : SourceEstimate
The source estimates to plot.
%(subject_none)s
If ``None``, ``stc.subject`` will be used.
surface : str
The type of surface (inflated, white etc.).
hemi : str
Hemisphere id (ie ``'lh'``, ``'rh'``, ``'both'``, or ``'split'``). In
the case of ``'both'``, both hemispheres are shown in the same window.
In the case of ``'split'`` hemispheres are displayed side-by-side
in different viewing panes.
%(colormap)s
The default ('auto') uses ``'hot'`` for one-sided data and
'mne' for two-sided data.
%(time_label)s
smoothing_steps : int
The amount of smoothing.
%(transparent)s
alpha : float
Alpha value to apply globally to the overlay. Has no effect with mpl
backend.
time_viewer : bool | str
Display time viewer GUI. Can also be 'auto', which will mean True
for the PyVista backend and False otherwise.
.. versionchanged:: 0.20.0
"auto" mode added.
%(subjects_dir)s
figure : instance of Figure3D | instance of matplotlib.figure.Figure | list | int | None
If None, a new figure will be created. If multiple views or a
split view is requested, this must be a list of the appropriate
length. If int is provided it will be used to identify the PyVista
figure by it's id or create a new figure with the given id. If an
instance of matplotlib figure, mpl backend is used for plotting.
%(views)s
When plotting a standard SourceEstimate (not volume, mixed, or vector)
and using the PyVista backend, ``views='flat'`` is also supported to
plot cortex as a flatmap.
Using multiple views (list) is not supported by the matplotlib backend.
.. versionchanged:: 0.21.0
Support for flatmaps.
colorbar : bool
If True, display colorbar on scene.
%(clim)s
cortex : str | tuple
Specifies how binarized curvature values are rendered.
Either the name of a preset Brain cortex colorscheme (one of
``'classic'``, ``'bone'``, ``'low_contrast'``, or ``'high_contrast'``),
or the name of a colormap, or a tuple with values
``(colormap, min, max, reverse)`` to fully specify the curvature
colors. Has no effect with the matplotlib backend.
size : float or tuple of float
The size of the window, in pixels. can be one number to specify
a square window, or the (width, height) of a rectangular window.
Has no effect with mpl backend.
background : matplotlib color
Color of the background of the display window.
foreground : matplotlib color | None
Color of the foreground of the display window. Has no effect with mpl
backend. None will choose white or black based on the background color.
initial_time : float | None
The time to display on the plot initially. ``None`` to display the
first time sample (default).
time_unit : ``'s'`` | ``'ms'``
Whether time is represented in seconds ("s", default) or
milliseconds ("ms").
backend : ``'auto'`` | ``'pyvistaqt'`` | ``'matplotlib'``
Which backend to use. If ``'auto'`` (default), tries to plot with
pyvistaqt, but resorts to matplotlib if no 3d backend is available.
.. versionadded:: 0.15.0
spacing : str
Only affects the matplotlib backend.
The spacing to use for the source space. Can be ``'ico#'`` for a
recursively subdivided icosahedron, ``'oct#'`` for a recursively
subdivided octahedron, or ``'all'`` for all points. In general, you can
speed up the plotting by selecting a sparser source space.
Defaults to 'oct6'.
.. versionadded:: 0.15.0
%(title_stc)s
.. versionadded:: 0.17.0
%(show_traces)s
%(src_volume_options)s
%(view_layout)s
%(add_data_kwargs)s
%(brain_kwargs)s
%(verbose)s
Returns
-------
figure : instance of mne.viz.Brain | matplotlib.figure.Figure
An instance of :class:`mne.viz.Brain` or matplotlib figure.
Notes
-----
Flatmaps are available by default for ``fsaverage`` but not for other
subjects reconstructed by FreeSurfer. We recommend using
:func:`mne.compute_source_morph` to morph source estimates to ``fsaverage``
for flatmap plotting. If you want to construct your own flatmap for a given
subject, these links might help:
- https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferOccipitalFlattenedPatch
- https://openwetware.org/wiki/Beauchamp:FreeSurfer
""" # noqa: E501
from ..source_estimate import _BaseSourceEstimate, _check_stc_src
from .backends.renderer import _get_3d_backend, use_3d_backend
_check_stc_src(stc, src)
_validate_type(stc, _BaseSourceEstimate, "stc", "source estimate")
subjects_dir = get_subjects_dir(subjects_dir=subjects_dir, raise_error=True)
subject = _check_subject(stc.subject, subject)
_check_option("backend", backend, ["auto", "matplotlib", "pyvistaqt", "notebook"])
plot_mpl = backend == "matplotlib"
if not plot_mpl:
if backend == "auto":
try:
backend = _get_3d_backend()
except (ImportError, ModuleNotFoundError):
warn("No 3D backend found. Resorting to matplotlib 3d.")
plot_mpl = True
kwargs = dict(
subject=subject,
surface=surface,
hemi=hemi,
colormap=colormap,
time_label=time_label,
smoothing_steps=smoothing_steps,
subjects_dir=subjects_dir,
views=views,
clim=clim,
figure=figure,
initial_time=initial_time,
time_unit=time_unit,
background=background,
time_viewer=time_viewer,
colorbar=colorbar,
transparent=transparent,
)
if plot_mpl:
return _plot_mpl_stc(stc, spacing=spacing, **kwargs)
else:
with use_3d_backend(backend):
return _plot_stc(
stc,
overlay_alpha=alpha,
brain_alpha=alpha,
vector_alpha=alpha,
cortex=cortex,
foreground=foreground,
size=size,
scale_factor=None,
show_traces=show_traces,
src=src,
volume_options=volume_options,
view_layout=view_layout,
add_data_kwargs=add_data_kwargs,
brain_kwargs=brain_kwargs,
title=title,
**kwargs,
)
def _plot_stc(
stc,
subject,
surface,
hemi,
colormap,
time_label,
smoothing_steps,
subjects_dir,
views,
clim,
figure,
initial_time,
time_unit,
background,
time_viewer,
colorbar,
transparent,
brain_alpha,
overlay_alpha,
vector_alpha,
cortex,
foreground,
size,
scale_factor,
show_traces,
src,
volume_options,
view_layout,
add_data_kwargs,
brain_kwargs,
title,
):
from ..source_estimate import _BaseVolSourceEstimate
from .backends.renderer import _get_3d_backend, get_brain_class
vec = stc._data_ndim == 3
subjects_dir = str(get_subjects_dir(subjects_dir=subjects_dir, raise_error=True))
subject = _check_subject(stc.subject, subject)
backend = _get_3d_backend()
del _get_3d_backend
Brain = get_brain_class()
views = _check_views(surface, views, hemi, stc, backend)
_check_option("hemi", hemi, ["lh", "rh", "split", "both"])
_check_option("view_layout", view_layout, ("vertical", "horizontal"))
time_label, times = _handle_time(time_label, time_unit, stc.times)
show_traces, time_viewer = _check_st_tv(show_traces, time_viewer, times)
# convert control points to locations in colormap
use = stc.magnitude().data if vec else stc.data
mapdata = _process_clim(clim, colormap, transparent, use, allow_pos_lims=not vec)
volume = _check_volume(stc, src, surface, backend)
# XXX we should not need to do this for PyVista, the plotter should be
# smart enough to do this separation in the cmap-to-ctab conversion
_separate_map(mapdata)
colormap = mapdata["colormap"]
diverging = "pos_lims" in mapdata["clim"]
scale_pts = mapdata["clim"]["pos_lims" if diverging else "lims"]
transparent = mapdata["transparent"]
del mapdata
if hemi in ["both", "split"]:
hemis = ["lh", "rh"]
else:
hemis = [hemi]
if overlay_alpha is None:
overlay_alpha = brain_alpha
if overlay_alpha == 0:
smoothing_steps = 1 # Disable smoothing to save time.
sub_info = subject if len(hemis) > 1 else f"{subject} - {hemis[0]}"
title = title if title is not None else sub_info
kwargs = {
"subject": subject,
"hemi": hemi,
"surf": surface,
"title": title,
"cortex": cortex,
"size": size,
"background": background,
"foreground": foreground,
"figure": figure,
"subjects_dir": subjects_dir,
"views": views,
"alpha": brain_alpha,
}
if brain_kwargs is not None:
kwargs.update(brain_kwargs)
kwargs["show"] = False
kwargs["view_layout"] = view_layout
with warnings.catch_warnings(record=True): # traits warnings
brain = Brain(**kwargs)
del kwargs
if scale_factor is None:
# Configure the glyphs scale directly
width = np.mean(
[
np.ptp(brain.geo[hemi].coords[:, 1])
for hemi in hemis
if hemi in brain.geo
]
)
scale_factor = 0.025 * width / scale_pts[-1]
if transparent is None:
transparent = True
center = 0.0 if diverging else None
kwargs = {
"array": stc,
"colormap": colormap,
"smoothing_steps": smoothing_steps,
"time": times,
"time_label": time_label,
"alpha": overlay_alpha,
"colorbar": colorbar,
"vector_alpha": vector_alpha,
"scale_factor": scale_factor,
"initial_time": initial_time,
"transparent": transparent,
"center": center,
"fmin": scale_pts[0],
"fmid": scale_pts[1],
"fmax": scale_pts[2],
"clim": clim,
"src": src,
"volume_options": volume_options,
"verbose": None,
}
if add_data_kwargs is not None:
kwargs.update(add_data_kwargs)
for hemi in hemis:
if isinstance(stc, _BaseVolSourceEstimate): # no surf data
break
vertices = stc.vertices[0 if hemi == "lh" else 1]
if len(vertices) == 0: # no surf data for the given hemi
continue # no data
use_kwargs = kwargs.copy()
use_kwargs.update(hemi=hemi)
with warnings.catch_warnings(record=True): # traits warnings
brain.add_data(**use_kwargs)
if volume:
use_kwargs = kwargs.copy()
use_kwargs.update(hemi="vol")
brain.add_data(**use_kwargs)
del kwargs
if time_viewer:
brain.setup_time_viewer(time_viewer=time_viewer, show_traces=show_traces)
else:
brain.show()
return brain
def _check_st_tv(show_traces, time_viewer, times):
# time_viewer and show_traces
_check_option("time_viewer", time_viewer, (True, False, "auto"))
_validate_type(show_traces, (str, bool, "numeric"), "show_traces")
if isinstance(show_traces, str):
_check_option(
"show_traces",
show_traces,
("auto", "separate", "vertex", "label"),
extra="when a string",
)
if time_viewer == "auto":
time_viewer = True
if show_traces == "auto":
show_traces = time_viewer and times is not None and len(times) > 1
if show_traces and not time_viewer:
raise ValueError("show_traces cannot be used when time_viewer=False")
return show_traces, time_viewer
def _glass_brain_crosshairs(params, x, y, z):
for ax, a, b in (
(params["ax_y"], x, z),
(params["ax_x"], y, z),
(params["ax_z"], x, y),
):
ax.axvline(a, color="0.75")
ax.axhline(b, color="0.75")
def _cut_coords_to_ijk(cut_coords, img):
ijk = apply_trans(np.linalg.inv(img.affine), cut_coords)
ijk = np.round(ijk).astype(int)
logger.debug(f"{cut_coords} -> {ijk}")
np.clip(ijk, 0, np.array(img.shape[:3]) - 1, out=ijk)
return ijk
def _ijk_to_cut_coords(ijk, img):
return apply_trans(img.affine, ijk)
def _load_subject_mri(mri, stc, subject, subjects_dir, name):
import nibabel as nib
from nibabel.spatialimages import SpatialImage
_validate_type(mri, ("path-like", SpatialImage), name)
if isinstance(mri, str):
subject = _check_subject(stc.subject, subject)
mri = nib.load(_check_mri(mri, subject, subjects_dir))
return mri
_AX_NAME = dict(x="X (sagittal)", y="Y (coronal)", z="Z (axial)")
def _click_to_cut_coords(event, params):
"""Get voxel coordinates from mouse click."""
import nibabel as nib
if event.inaxes is params["ax_x"]:
ax = "x"
x = params["ax_z"].lines[0].get_xdata()[0]
y, z = event.xdata, event.ydata
elif event.inaxes is params["ax_y"]:
ax = "y"
y = params["ax_x"].lines[0].get_xdata()[0]
x, z = event.xdata, event.ydata
elif event.inaxes is params["ax_z"]:
ax = "z"
x, y = event.xdata, event.ydata
z = params["ax_x"].lines[1].get_ydata()[0]
else:
logger.debug(" Click outside axes")
return None
cut_coords = np.array((x, y, z))
logger.debug("")
if params["mode"] == "glass_brain": # find idx for MIP
# Figure out what XYZ in world coordinates is in our voxel data
codes = "".join(nib.aff2axcodes(params["img_idx"].affine))
assert len(codes) == 3
# We don't care about directionality, just which is which dim
codes = codes.replace("L", "R").replace("P", "A").replace("I", "S")
idx = codes.index(dict(x="R", y="A", z="S")[ax])
img_data = np.abs(_get_img_fdata(params["img_idx"]))
ijk = _cut_coords_to_ijk(cut_coords, params["img_idx"])
if idx == 0:
ijk[0] = np.argmax(img_data[:, ijk[1], ijk[2]])
logger.debug(f" MIP: i = {ijk[0]:d} idx")
elif idx == 1:
ijk[1] = np.argmax(img_data[ijk[0], :, ijk[2]])
logger.debug(f" MIP: j = {ijk[1]:d} idx")
else:
ijk[2] = np.argmax(img_data[ijk[0], ijk[1], :])
logger.debug(f" MIP: k = {ijk[2]} idx")
cut_coords = _ijk_to_cut_coords(ijk, params["img_idx"])
logger.debug(f" Cut coords for {_AX_NAME[ax]}: {_str_ras(cut_coords)}")
return cut_coords
def _str_ras(xyz):
x, y, z = xyz
return f"({x:0.1f}, {y:0.1f}, {z:0.1f}) mm"
def _str_vox(ijk):
i, j, k = ijk
return f"[{i:d}, {j:d}, {k:d}] vox"
def _press(event, params):
"""Manage keypress on the plot."""
pos = params["lx"].get_xdata()
idx = params["stc"].time_as_index(pos)[0]
if event.key == "left":
idx = max(0, idx - 2)
elif event.key == "shift+left":
idx = max(0, idx - 10)
elif event.key == "right":
idx = min(params["stc"].shape[1] - 1, idx + 2)
elif event.key == "shift+right":
idx = min(params["stc"].shape[1] - 1, idx + 10)
_update_timeslice(idx, params)
params["fig"].canvas.draw()
def _update_timeslice(idx, params):
from nilearn.image import index_img
params["lx"].set_xdata([idx / params["stc"].sfreq + params["stc"].tmin])
ax_x, ax_y, ax_z = params["ax_x"], params["ax_y"], params["ax_z"]
# Crosshairs are the first thing plotted in stat_map, and the last
# in glass_brain
idxs = [0, 0, 1] if params["mode"] == "stat_map" else [-2, -2, -1]
cut_coords = (
ax_y.lines[idxs[0]].get_xdata()[0],
ax_x.lines[idxs[1]].get_xdata()[0],
ax_x.lines[idxs[2]].get_ydata()[0],
)
ax_x.clear()
ax_y.clear()
ax_z.clear()
params.update({"img_idx": index_img(params["img"], idx)})
params.update({"title": f"Activation (t={params['stc'].times[idx]:.3f} s.)"})
_plot_and_correct(params=params, cut_coords=cut_coords)
def _update_vertlabel(loc_idx, params):
params["vert_legend"].get_texts()[0].set_text(f"{params['vertices'][loc_idx]}")
@verbose_dec
def _onclick(event, params, verbose=None):
"""Manage clicks on the plot."""
ax_x, ax_y, ax_z = params["ax_x"], params["ax_y"], params["ax_z"]
if event.inaxes is params["ax_time"]:
idx = params["stc"].time_as_index(event.xdata, use_rounding=True)[0]
_update_timeslice(idx, params)
cut_coords = _click_to_cut_coords(event, params)
if cut_coords is None:
return # not in any axes
ax_x.clear()
ax_y.clear()
ax_z.clear()
_plot_and_correct(params=params, cut_coords=cut_coords)
loc_idx = _cut_coords_to_idx(cut_coords, params["dist_to_verts"])
ydata = params["stc"].data[loc_idx]
if loc_idx is not None:
params["ax_time"].lines[0].set_ydata(ydata)
else:
params["ax_time"].lines[0].set_ydata([0.0])
_update_vertlabel(loc_idx, params)
params["fig"].canvas.draw()
def _cut_coords_to_idx(cut_coords, dist_to_verts):
"""Convert voxel coordinates to index in stc.data."""
logger.debug(f" Starting coords: {cut_coords}")
cut_coords = list(cut_coords)
(dist,), (loc_idx,) = dist_to_verts.query([cut_coords])
logger.debug(f"Mapped {cut_coords=} to vertices[{loc_idx}] {dist:0.1f} mm away")
return loc_idx
def _plot_and_correct(*, params, cut_coords):
# black_bg = True is needed because of some matplotlib
# peculiarity. See: https://stackoverflow.com/a/34730204
# Otherwise, event.inaxes does not work for ax_x and ax_z
from nilearn.plotting import plot_glass_brain, plot_stat_map
mode = params["mode"]
nil_func = dict(stat_map=plot_stat_map, glass_brain=plot_glass_brain)[mode]
plot_kwargs = dict(
threshold=None,
axes=params["axes"],
resampling_interpolation="nearest",
vmax=params["vmax"],
figure=params["fig"],
colorbar=params["colorbar"],
bg_img=params["bg_img"],
cmap=params["colormap"],
black_bg=True,
symmetric_cbar=True,
title="",
)
params["axes"].clear()
if params.get("fig_anat") is not None and plot_kwargs["colorbar"]:
params["fig_anat"]._cbar.ax.clear()
params["fig_anat"] = nil_func(
params["img_idx"], cut_coords=cut_coords, **plot_kwargs
)
params["fig_anat"]._cbar.outline.set_visible(False)
for key in "xyz":
params.update({"ax_" + key: params["fig_anat"].axes[key].ax})
# Fix nilearn bug w/cbar background being white
if plot_kwargs["colorbar"]:
params["fig_anat"]._cbar.ax.set_facecolor("0.5")
# adjust one-sided colorbars
if not params["diverging"]:
_crop_colorbar(params["fig_anat"]._cbar, *params["scale_pts"][[0, -1]])
params["fig_anat"]._cbar.set_ticks(params["cbar_ticks"])
if params["mode"] == "glass_brain":
_glass_brain_crosshairs(params, *cut_coords)
@verbose
def plot_volume_source_estimates(
stc,
src,
subject=None,
subjects_dir=None,
mode="stat_map",
bg_img="T1.mgz",
colorbar=True,
colormap="auto",
clim="auto",
transparent=None,
show=True,
initial_time=None,
initial_pos=None,
verbose=None,
):
"""Plot Nutmeg style volumetric source estimates using nilearn.
Parameters
----------
stc : VectorSourceEstimate
The vector source estimate to plot.
src : instance of SourceSpaces | instance of SourceMorph
The source space. Can also be a SourceMorph to morph the STC to
a new subject (see Examples).
.. versionchanged:: 0.18
Support for :class:`~nibabel.spatialimages.SpatialImage`.
%(subject_none)s
If ``None``, ``stc.subject`` will be used.
%(subjects_dir)s
mode : ``'stat_map'`` | ``'glass_brain'``
The plotting mode to use. For ``'glass_brain'``, activation absolute values are
displayed after being transformed to a standard MNI brain.
bg_img : instance of SpatialImage | str
The background image used in the nilearn plotting function.
Can also be a string to use the ``bg_img`` file in the subject's
MRI directory (default is ``'T1.mgz'``).
Not used in "glass brain" plotting.
colorbar : bool
If True, display a colorbar on the right of the plots.
%(colormap)s
%(clim)s
%(transparent)s
show : bool
Show figures if True. Defaults to True.
initial_time : float | None
The initial time to plot. Can be None (default) to use the time point
with the maximal absolute value activation across all voxels
or the ``initial_pos`` voxel (if ``initial_pos is None`` or not,
respectively).
.. versionadded:: 0.19
initial_pos : ndarray, shape (3,) | None
The initial position to use (in m). Can be None (default) to use the
voxel with the maximum absolute value activation across all time points
or at ``initial_time`` (if ``initial_time is None`` or not,
respectively).
.. versionadded:: 0.19
%(verbose)s
Returns
-------
fig : instance of Figure
The figure.
Notes
-----
Click on any of the anatomical slices to explore the time series.
Clicking on any time point will bring up the corresponding anatomical map.
The left and right arrow keys can be used to navigate in time.
To move in time by larger steps, use shift+left and shift+right.
In ``'glass_brain'`` mode, values are transformed to the standard MNI
brain using the FreeSurfer Talairach transformation
``$SUBJECTS_DIR/$SUBJECT/mri/transforms/talairach.xfm``.
.. versionadded:: 0.17
.. versionchanged:: 0.19
MRI volumes are automatically transformed to MNI space in
``'glass_brain'`` mode.
Examples
--------
Passing a :class:`mne.SourceMorph` as the ``src``
parameter can be useful for plotting in a different subject's space
(here, a ``'sample'`` STC in ``'fsaverage'``'s space)::
>>> morph = mne.compute_source_morph(src_sample, subject_to='fsaverage') # doctest: +SKIP
>>> fig = stc_vol_sample.plot(morph) # doctest: +SKIP
""" # noqa: E501
import nibabel as nib
from matplotlib import colors
from matplotlib import pyplot as plt
from ..morph import SourceMorph
from ..source_estimate import VolSourceEstimate
from ..source_space._source_space import _ensure_src
if not check_version("nilearn", "0.4"):
raise RuntimeError("This function requires nilearn >= 0.4")
from nilearn.image import index_img
_check_option("mode", mode, ("stat_map", "glass_brain"))
_validate_type(stc, VolSourceEstimate, "stc")
if isinstance(src, SourceMorph):
img = src.apply(stc, "nifti1", mri_resolution=False, mri_space=False)
stc = src.apply(stc, mri_resolution=False, mri_space=False)
kind, src_subject = "morph.subject_to", src.subject_to
else:
src = _ensure_src(src, kind="volume", extra=" or SourceMorph")
img = stc.as_volume(src, mri_resolution=False)
kind, src_subject = "src subject", src._subject
del src
_print_coord_trans(
Transform("mri_voxel", "ras", img.affine),
prefix="Image affine ",
units="mm",
level="debug",
)
subject = _check_subject(src_subject, subject, first_kind=kind)
if mode == "glass_brain":
subject = _check_subject(stc.subject, subject)
ras_mni_t = read_ras_mni_t(subject, subjects_dir)
if not np.allclose(ras_mni_t["trans"], np.eye(4)):
_print_coord_trans(ras_mni_t, prefix="Transforming subject ", units="mm")
logger.info("")
# To get from voxel coords to world coords (i.e., define affine)
# we would apply img.affine, then also apply ras_mni_t, which
# transforms from the subject's RAS to MNI RAS. So we left-multiply
# these.
img = nib.Nifti1Image(img.dataobj, np.dot(ras_mni_t["trans"], img.affine))
bg_img = None # not used
else: # stat_map
if bg_img is None:
bg_img = "T1.mgz"
bg_img = _load_subject_mri(bg_img, stc, subject, subjects_dir, "bg_img")
params = dict(
stc=stc,
mode=mode,
img=img,
bg_img=bg_img,
colorbar=colorbar,
)
vertices = np.hstack(stc.vertices)
stc_ijk = np.array(np.unravel_index(vertices, img.shape[:3], order="F")).T
assert stc_ijk.shape == (vertices.size, 3)
params["dist_to_verts"] = _DistanceQuery(apply_trans(img.affine, stc_ijk))
params["vertices"] = vertices
del kind, stc_ijk
if initial_time is None:
time_sl = slice(0, None)
else:
initial_time = float(initial_time)
logger.info(f"Fixing initial time: {initial_time} s")
initial_time = np.argmin(np.abs(stc.times - initial_time))
time_sl = slice(initial_time, initial_time + 1)
if initial_pos is None: # find max pos and (maybe) time
loc_idx, time_idx = np.unravel_index(
np.abs(stc.data[:, time_sl]).argmax(), stc.data[:, time_sl].shape
)
time_idx += time_sl.start
else: # position specified
initial_pos = np.array(initial_pos, float)
if initial_pos.shape != (3,):
raise ValueError(
"initial_pos must be float ndarray with shape "
f"(3,), got shape {initial_pos.shape}"
)
initial_pos *= 1000
logger.info(f"Fixing initial position: {initial_pos.tolist()} mm")
loc_idx = _cut_coords_to_idx(initial_pos, params["dist_to_verts"])
if initial_time is not None: # time also specified
time_idx = time_sl.start
else: # find the max
time_idx = np.argmax(np.abs(stc.data[loc_idx]))
img_idx = params["img_idx"] = index_img(img, time_idx)
assert img_idx.shape == img.shape[:3]
del initial_time, initial_pos
ijk = np.unravel_index(vertices[loc_idx], img.shape[:3], order="F")
cut_coords = _ijk_to_cut_coords(ijk, img_idx)
np.testing.assert_allclose(_cut_coords_to_ijk(cut_coords, img_idx), ijk)
logger.info(
f"Showing: t = {stc.times[time_idx]:0.3f} s, "
f"{_str_ras(cut_coords)}, "
f"{_str_vox(ijk)}, "
f"{vertices[loc_idx]:d} vertex"
)
del ijk
# Plot initial figure
fig, (axes, ax_time) = plt.subplots(2, layout="constrained")
axes.set(xticks=[], yticks=[])
marker = "o" if len(stc.times) == 1 else None
ydata = stc.data[loc_idx]
h = ax_time.plot(stc.times, ydata, color="k", marker=marker)[0]
if len(stc.times) > 1:
ax_time.set(xlim=stc.times[[0, -1]])
ax_time.set(xlabel="Time (s)", ylabel="Activation")
params["vert_legend"] = ax_time.legend([h], [""], title="Vertex")
_update_vertlabel(loc_idx, params)
lx = ax_time.axvline(stc.times[time_idx], color="g")
params.update(fig=fig, ax_time=ax_time, lx=lx, axes=axes)
allow_pos_lims = mode != "glass_brain"
mapdata = _process_clim(clim, colormap, transparent, stc.data, allow_pos_lims)
_separate_map(mapdata)
diverging = "pos_lims" in mapdata["clim"]
ticks = _get_map_ticks(mapdata)
params.update(cbar_ticks=ticks, diverging=diverging)
colormap, scale_pts = _linearize_map(mapdata)
del mapdata
ylim = [min((scale_pts[0], ydata.min())), max((scale_pts[-1], ydata.max()))]
ylim = np.array(ylim) + np.array([-1, 1]) * 0.05 * np.diff(ylim)[0]
dup_neg = False
if stc.data.min() < 0:
ax_time.axhline(0.0, color="0.5", ls="-", lw=0.5, zorder=2)
dup_neg = not diverging # glass brain with signed data
yticks = list(ticks)
if dup_neg:
yticks += [0] + list(-np.array(ticks))
yticks = np.unique(yticks)
ax_time.set(yticks=yticks)
ax_time.set(ylim=ylim)
del yticks
if not diverging: # set eq above iff one-sided
# there is a bug in nilearn where this messes w/transparency
# Need to double the colormap
if (scale_pts < 0).any():
# XXX We should fix this, but it's hard to get nilearn to
# use arbitrary bounds :(
# Should get them to support non-mirrored colorbars, or
# at least a proper `vmin` for one-sided things.
# Hopefully this is a sufficiently rare use case!
raise ValueError(
"Negative colormap limits for sequential "
'control points clim["lims"] not supported '
"currently, consider shifting or flipping the "
"sign of your data for visualization purposes"
)
# due to nilearn plotting weirdness, extend this to go
# -scale_pts[2]->scale_pts[2] instead of scale_pts[0]->scale_pts[2]
colormap = _get_cmap(colormap)
colormap = colormap(
np.interp(np.linspace(-1, 1, 256), scale_pts / scale_pts[2], [0, 0.5, 1])
)
colormap = colors.ListedColormap(colormap)
params.update(vmax=scale_pts[-1], scale_pts=scale_pts, colormap=colormap)
_plot_and_correct(params=params, cut_coords=cut_coords)
plt_show(show)
fig.canvas.mpl_connect(
"button_press_event", partial(_onclick, params=params, verbose=verbose)
)
fig.canvas.mpl_connect("key_press_event", partial(_press, params=params))
return fig
def _check_views(surf, views, hemi, stc=None, backend=None):
from ..source_estimate import SourceEstimate
from ._brain.view import views_dicts
_validate_type(views, (list, tuple, str), "views")
views = [views] if isinstance(views, str) else list(views)
if surf == "flat":
_check_option("views", views, (["auto"], ["flat"]))
views = ["flat"]
elif len(views) == 1 and views[0] == "auto":
views = ["lateral"]
if views == ["flat"]:
if stc is not None:
_validate_type(
stc, SourceEstimate, "stc", "SourceEstimate when a flatmap is used"
)
if backend is not None:
if backend not in ("pyvistaqt", "notebook"):
raise RuntimeError(
"The PyVista 3D backend must be used to plot a flatmap"
)
if (views == ["flat"]) ^ (surf == "flat"): # exactly only one of the two
raise ValueError(
'surface="flat" must be used with views="flat", got '
f"surface={repr(surf)} and views={repr(views)}"
)
_check_option("hemi", hemi, ("split", "both", "lh", "rh", "vol", None))
use_hemi = "lh" if hemi == "split" or hemi is None else hemi
for vi, v in enumerate(views):
_check_option(f"views[{vi}]", v, sorted(views_dicts[use_hemi]))
return views
@verbose
def plot_vector_source_estimates(
stc,
subject=None,
hemi="lh",
colormap="hot",
time_label="auto",
smoothing_steps=10,
transparent=None,
brain_alpha=0.4,
overlay_alpha=None,
vector_alpha=1.0,
scale_factor=None,
time_viewer="auto",
*,
subjects_dir=None,
figure=None,
views="lateral",
colorbar=True,
clim="auto",
cortex="classic",
size=800,
background="black",
foreground=None,
initial_time=None,
time_unit="s",
title=None,
show_traces="auto",
src=None,
volume_options=1.0,
view_layout="vertical",
add_data_kwargs=None,
brain_kwargs=None,
verbose=None,
):
"""Plot VectorSourceEstimate with PyVista.
A "glass brain" is drawn and all dipoles defined in the source estimate
are shown using arrows, depicting the direction and magnitude of the
current moment at the dipole. Additionally, an overlay is plotted on top of
the cortex with the magnitude of the current.
Parameters
----------
stc : VectorSourceEstimate | MixedVectorSourceEstimate
The vector source estimate to plot.
%(subject_none)s
If ``None``, ``stc.subject`` will be used.
hemi : str, 'lh' | 'rh' | 'split' | 'both'
The hemisphere to display.
%(colormap)s
This should be a sequential colormap.
%(time_label)s
smoothing_steps : int
The amount of smoothing.
%(transparent)s
brain_alpha : float
Alpha value to apply globally to the surface meshes. Defaults to 0.4.
overlay_alpha : float
Alpha value to apply globally to the overlay. Defaults to
``brain_alpha``.
vector_alpha : float
Alpha value to apply globally to the vector glyphs. Defaults to 1.
scale_factor : float | None
Scaling factor for the vector glyphs. By default, an attempt is made to
automatically determine a sane value.
time_viewer : bool | str
Display time viewer GUI. Can be "auto", which is True for the PyVista
backend and False otherwise.
.. versionchanged:: 0.20
Added "auto" option and default.
subjects_dir : str
The path to the freesurfer subjects reconstructions.
It corresponds to Freesurfer environment variable SUBJECTS_DIR.
figure : instance of Figure3D | list | int | None
If None, a new figure will be created. If multiple views or a
split view is requested, this must be a list of the appropriate
length. If int is provided it will be used to identify the PyVista
figure by it's id or create a new figure with the given id.
%(views)s
colorbar : bool
If True, display colorbar on scene.
%(clim_onesided)s
cortex : str or tuple
Specifies how binarized curvature values are rendered.
either the name of a preset Brain cortex colorscheme (one of
'classic', 'bone', 'low_contrast', or 'high_contrast'), or the
name of a colormap, or a tuple with values (colormap, min,
max, reverse) to fully specify the curvature colors.
size : float or tuple of float
The size of the window, in pixels. can be one number to specify
a square window, or the (width, height) of a rectangular window.
background : matplotlib color
Color of the background of the display window.
foreground : matplotlib color | None
Color of the foreground of the display window.
None will choose black or white based on the background color.
initial_time : float | None
The time to display on the plot initially. ``None`` to display the
first time sample (default).
time_unit : 's' | 'ms'
Whether time is represented in seconds ("s", default) or
milliseconds ("ms").
%(title_stc)s
.. versionadded:: 1.9
%(show_traces)s
%(src_volume_options)s
%(view_layout)s
%(add_data_kwargs)s
%(brain_kwargs)s
%(verbose)s
Returns
-------
brain : mne.viz.Brain
A instance of :class:`mne.viz.Brain`.
Notes
-----
.. versionadded:: 0.15
If the current magnitude overlay is not desired, set ``overlay_alpha=0``
and ``smoothing_steps=1``.
"""
from ..source_estimate import _BaseVectorSourceEstimate
_validate_type(stc, _BaseVectorSourceEstimate, "stc", "vector source estimate")
return _plot_stc(
stc,
subject=subject,
surface="white",
hemi=hemi,
colormap=colormap,
time_label=time_label,
smoothing_steps=smoothing_steps,
subjects_dir=subjects_dir,
views=views,
clim=clim,
figure=figure,
initial_time=initial_time,
time_unit=time_unit,
background=background,
time_viewer=time_viewer,
colorbar=colorbar,
transparent=transparent,
brain_alpha=brain_alpha,
overlay_alpha=overlay_alpha,
vector_alpha=vector_alpha,
cortex=cortex,
foreground=foreground,
size=size,
title=title,
scale_factor=scale_factor,
show_traces=show_traces,
src=src,
volume_options=volume_options,
view_layout=view_layout,
add_data_kwargs=add_data_kwargs,
brain_kwargs=brain_kwargs,
)
@verbose
def plot_sparse_source_estimates(
src,
stcs,
colors=None,
linewidth=2,
fontsize=18,
bgcolor=(0.05, 0, 0.1),
opacity=0.2,
brain_color=(0.7,) * 3,
show=True,
high_resolution=False,
fig_name=None,
fig_number=None,
labels=None,
modes=("cone", "sphere"),
scale_factors=(1, 0.6),
verbose=None,
**kwargs,
):
"""Plot source estimates obtained with sparse solver.
Active dipoles are represented in a "Glass" brain.
If the same source is active in multiple source estimates it is
displayed with a sphere otherwise with a cone in 3D.
Parameters
----------
src : dict
The source space.
stcs : instance of SourceEstimate or list of instances of SourceEstimate
The source estimates.
colors : list
List of colors.
linewidth : int
Line width in 2D plot.
fontsize : int
Font size.
bgcolor : tuple of length 3
Background color in 3D.
opacity : float in [0, 1]
Opacity of brain mesh.
brain_color : tuple of length 3
Brain color.
show : bool
Show figures if True.
high_resolution : bool
If True, plot on the original (non-downsampled) cortical mesh.
fig_name : str
PyVista figure name.
fig_number : int
Matplotlib figure number.
labels : ndarray or list of ndarray
Labels to show sources in clusters. Sources with the same
label and the waveforms within each cluster are presented in
the same color. labels should be a list of ndarrays when
stcs is a list ie. one label for each stc.
modes : list
Should be a list, with each entry being ``'cone'`` or ``'sphere'``
to specify how the dipoles should be shown.
The pivot for the glyphs in ``'cone'`` mode is always the tail
whereas the pivot in ``'sphere'`` mode is the center.
scale_factors : list
List of floating point scale factors for the markers.
%(verbose)s
**kwargs : kwargs
Keyword arguments to pass to renderer.mesh.
Returns
-------
surface : instance of Figure3D
The 3D figure containing the triangular mesh surface.
"""
import matplotlib.pyplot as plt
# Update the backend
from .backends.renderer import _get_renderer
linestyles = [
("solid", "solid"), # noqa: E241
("dashed", "dashed"), # noqa: E241
("dotted", "dotted"), # noqa: E241
("dashdot", "dashdot"), # noqa: E241
("loosely dotted", (0, (1, 10))), # noqa: E241
("dotted", (0, (1, 1))), # noqa: E241
("densely dotted", (0, (1, 1))), # noqa: E241
("loosely dashed", (0, (5, 10))), # noqa: E241
("dashed", (0, (5, 5))), # noqa: E241
("densely dashed", (0, (5, 1))), # noqa: E241
("loosely dashdotted", (0, (3, 10, 1, 10))), # noqa: E241
("dashdotted", (0, (3, 5, 1, 5))), # noqa: E241
("densely dashdotted", (0, (3, 1, 1, 1))), # noqa: E241
("dashdotdotted", (0, (3, 5, 1, 5, 1, 5))), # noqa: E241
("loosely dashdotdotted", (0, (3, 10, 1, 10, 1, 10))), # noqa: E241
("densely dashdotdotted", (0, (3, 1, 1, 1, 1, 1))), # noqa: E241
]
known_modes = ["cone", "sphere"]
if not isinstance(modes, list | tuple) or not all(
mode in known_modes for mode in modes
):
raise ValueError('mode must be a list containing only "cone" or "sphere"')
if not isinstance(stcs, list):
stcs = [stcs]
if labels is not None and not isinstance(labels, list):
labels = [labels]
if colors is None:
colors = _get_color_list()
linestyles = cycle(linestyles)
linestyles = [next(linestyles)[1] for _ in range(len(stcs))]
# Show 3D
lh_points = src[0]["rr"]
rh_points = src[1]["rr"]
points = np.r_[lh_points, rh_points]
lh_normals = src[0]["nn"]
rh_normals = src[1]["nn"]
normals = np.r_[lh_normals, rh_normals]
if high_resolution:
use_lh_faces = src[0]["tris"]
use_rh_faces = src[1]["tris"]
else:
use_lh_faces = src[0]["use_tris"]
use_rh_faces = src[1]["use_tris"]
use_faces = np.r_[use_lh_faces, lh_points.shape[0] + use_rh_faces]
points *= 170
vertnos = [np.r_[stc.lh_vertno, lh_points.shape[0] + stc.rh_vertno] for stc in stcs]
unique_vertnos = np.unique(np.concatenate(vertnos).ravel())
renderer = _get_renderer(bgcolor=bgcolor, size=(600, 600), name=fig_name)
renderer.mesh(
x=points[:, 0],
y=points[:, 1],
z=points[:, 2],
triangles=use_faces,
color=brain_color,
opacity=opacity,
backface_culling=True,
normals=normals,
**kwargs,
)
# Show time courses
fig = plt.figure(fig_number, layout="constrained")
fig.clf()
ax = fig.add_subplot(111)
colors = cycle(colors)
logger.info(f"Total number of active sources: {unique_vertnos}")
if labels is not None:
colors = [
next(colors) for _ in range(np.unique(np.concatenate(labels).ravel()).size)
]
for idx, v in enumerate(unique_vertnos):
# get indices of stcs it belongs to
ind = [k for k, vertno in enumerate(vertnos) if v in vertno]
is_common = len(ind) > 1
if labels is None:
c = next(colors)
else:
# if vertex is in different stcs than take label from first one
c = colors[labels[ind[0]][vertnos[ind[0]] == v]]
mode = modes[1] if is_common else modes[0]
scale_factor = scale_factors[1] if is_common else scale_factors[0]
if isinstance(scale_factor, np.ndarray | list | tuple) and len(
unique_vertnos
) == len(scale_factor):
scale_factor = scale_factor[idx]
x, y, z = points[v]
nx, ny, nz = normals[v]
renderer.quiver3d(
x=x,
y=y,
z=z,
u=nx,
v=ny,
w=nz,
color=_to_rgb(c),
mode=mode,
scale=scale_factor,
)
for k in ind:
vertno = vertnos[k]
mask = vertno == v
assert np.sum(mask) == 1
linestyle = linestyles[k]
ax.plot(
1e3 * stcs[k].times,
1e9 * stcs[k].data[mask].ravel(),
c=c,
linewidth=linewidth,
linestyle=linestyle,
)
ax.set_xlabel("Time (ms)", fontsize=fontsize)
ax.set_ylabel("Source amplitude (nAm)", fontsize=fontsize)
if fig_name is not None:
ax.set_title(fig_name)
plt_show(show)
renderer.show()
renderer.set_camera(distance="auto", focalpoint="auto")
return renderer.scene()
@verbose
def plot_dipole_locations(
dipoles,
trans=None,
subject=None,
subjects_dir=None,
mode="orthoview",
coord_frame="mri",
idx="gof",
show_all=True,
ax=None,
block=False,
show=True,
scale=None,
color=None,
*,
highlight_color="r",
fig=None,
title=None,
head_source="seghead",
surf="pial",
width=None,
verbose=None,
):
"""Plot dipole locations.
If mode is set to 'arrow' or 'sphere', only the location of the first
time point of each dipole is shown else use the show_all parameter.
Parameters
----------
dipoles : list of instances of Dipole | Dipole
The dipoles to plot.
trans : dict | None
The mri to head trans.
Can be None with mode set to '3d'.
subject : str | None
The FreeSurfer subject name (will be used to set the FreeSurfer
environment variable ``SUBJECT``).
Can be ``None`` with mode set to ``'3d'``.
%(subjects_dir)s
mode : str
Can be:
``'arrow'`` or ``'sphere'``
Plot in 3D mode using PyVista with the given glyph type.
``'orthoview'``
Plot in matplotlib ``Axes3D`` using matplotlib with MRI slices
shown on the sides of a cube, with the dipole(s) shown as arrows
extending outward from a dot (i.e., the arrows pivot on the tail).
``'outlines'``
Plot in matplotlib ``Axes`` using a quiver of arrows for the
dipoles in three axes (axial, coronal, and sagittal views),
with the arrow pivoting in the middle of the arrow.
.. versionchanged:: 1.1
Added support for ``'outlines'``.
coord_frame : str
Coordinate frame to use: 'head' or 'mri'. Can also be 'mri_rotated'
when mode equals ``'outlines'``. Defaults to 'mri'.
.. versionadded:: 0.14.0
.. versionchanged:: 1.1
Added support for ``'mri_rotated'``.
idx : int | 'gof' | 'amplitude'
Index of the initially plotted dipole. Can also be 'gof' to plot the
dipole with highest goodness of fit value or 'amplitude' to plot the
dipole with the highest amplitude. The dipoles can also be browsed
through using up/down arrow keys or mouse scroll. Defaults to 'gof'.
Only used if mode equals 'orthoview'.
.. versionadded:: 0.14.0
show_all : bool
Whether to always plot all the dipoles. If ``True`` (default), the
active dipole is plotted as a red dot and its location determines the
shown MRI slices. The non-active dipoles are plotted as small blue
dots. If ``False``, only the active dipole is plotted.
Only used if ``mode='orthoview'``.
.. versionadded:: 0.14.0
ax : instance of matplotlib Axes3D | list of matplotlib Axes | None
Axes to plot into. If None (default), axes will be created.
If mode equals ``'orthoview'``, must be a single ``Axes3D``.
If mode equals ``'outlines'``, must be a list of three ``Axes``.
.. versionadded:: 0.14.0
block : bool
Whether to halt program execution until the figure is closed. Defaults
to False.
Only used if mode equals 'orthoview'.
.. versionadded:: 0.14.0
show : bool
Show figure if True. Defaults to True.
Only used if mode equals 'orthoview'.
scale : float
The scale (size in meters) of the dipoles if ``mode`` is not
``'orthoview'``. The default is 0.03 when mode is ``'outlines'`` and
0.005 otherwise.
color : tuple
The color of the dipoles.
The default (None) will use ``'y'`` if mode is ``'orthoview'`` and
``show_all`` is True, else 'r'. Can also be a list of colors to use
when mode is ``'outlines'``.
.. versionchanged:: 0.19.0
Color is now passed in orthoview mode.
highlight_color : color
The highlight color. Only used in orthoview mode with
``show_all=True``.
.. versionadded:: 0.19.0
fig : instance of Figure3D | None
3D figure in which to plot the alignment.
If ``None``, creates a new 600x600 pixel figure with black background.
Only used when mode is ``'arrow'`` or ``'sphere'``.
.. versionadded:: 0.19.0
title : str | None
The title of the figure if ``mode='orthoview'`` (ignored for all other
modes). If ``None``, dipole number and its properties (amplitude,
orientation etc.) will be shown. Defaults to ``None``.
.. versionadded:: 0.21.0
%(head_source)s
Only used when mode equals ``'outlines'``.
.. versionadded:: 1.1
surf : str | None
Brain surface to show outlines for, can be ``'white'``, ``'pial'``, or
``None``. Only used when mode is ``'outlines'``.
.. versionadded:: 1.1
width : float | None
Width of the matplotlib quiver arrow, see
:meth:`matplotlib:matplotlib.axes.Axes.quiver`. If None (default),
when mode is ``'outlines'`` 0.015 will be used, and when mode is
``'orthoview'`` the matplotlib default is used.
%(verbose)s
Returns
-------
fig : instance of Figure3D or matplotlib.figure.Figure
The PyVista figure or matplotlib Figure.
Notes
-----
.. versionadded:: 0.9.0
"""
_validate_type(mode, str, "mode")
_validate_type(coord_frame, str, "coord_frame")
_check_option("mode", mode, ("orthoview", "outlines", "arrow", "sphere"))
if mode in ("orthoview", "outlines"):
subjects_dir = str(get_subjects_dir(subjects_dir, raise_error=True))
kwargs = dict(
trans=trans,
subject=subject,
subjects_dir=subjects_dir,
coord_frame=coord_frame,
ax=ax,
block=block,
show=show,
color=color,
title=title,
width=width,
)
dipoles = _check_concat_dipoles(dipoles)
if mode == "orthoview":
fig = _plot_dipole_mri_orthoview(
dipoles,
idx=idx,
show_all=show_all,
highlight_color=highlight_color,
**kwargs,
)
elif mode == "outlines":
fig = _plot_dipole_mri_outlines(
dipoles, head_source=head_source, surf=surf, scale=scale, **kwargs
)
else:
assert mode in ("arrow", "sphere"), mode
fig = _plot_dipole_3d(
dipoles,
trans=trans,
coord_frame=coord_frame,
color=color,
fig=fig,
scale=scale,
mode=mode,
)
return fig
def snapshot_brain_montage(fig, montage, hide_sensors=True):
"""Take a snapshot of a PyVista Scene and project channels onto 2d coords.
Note that this will take the raw values for 3d coordinates of each channel,
without applying any transforms. If brain images are flipped up/dn upon
using `~matplotlib.pyplot.imshow`, check your matplotlib backend as this
behavior changes.
Parameters
----------
fig : instance of Figure3D
The figure on which you've plotted electrodes using
:func:`mne.viz.plot_alignment`.
montage : instance of DigMontage or Info | dict
The digital montage for the electrodes plotted in the scene. If
:class:`~mne.Info`, channel positions will be pulled from the ``loc``
field of ``chs``. dict should have ch:xyz mappings.
hide_sensors : bool
Whether to remove the spheres in the scene before taking a snapshot.
The sensors will always be shown in the final figure. If you want an
image of just the brain, use :class:`mne.viz.Brain` instead.
Returns
-------
xy : array, shape (n_channels, 2)
The 2d location of each channel on the image of the current scene view.
im : array, shape (m, n, 3)
The screenshot of the current scene view.
"""
from ..channels import DigMontage
# Update the backend
from .backends.renderer import _get_renderer
if fig is None:
raise ValueError("The figure must have a scene")
if isinstance(montage, DigMontage):
chs = montage._get_ch_pos()
ch_names, xyz = zip(*[(ich, ixyz) for ich, ixyz in chs.items()])
elif isinstance(montage, Info):
xyz = [ich["loc"][:3] for ich in montage["chs"]]
ch_names = [ich["ch_name"] for ich in montage["chs"]]
elif isinstance(montage, dict):
if not all(len(ii) == 3 for ii in montage.values()):
raise ValueError("All electrode positions must be length 3")
ch_names, xyz = zip(*[(ich, ixyz) for ich, ixyz in montage.items()])
else:
raise TypeError(
"montage must be an instance of `DigMontage`, `Info`, or `dict`"
)
# initialize figure
renderer = _get_renderer(fig, show=True)
xyz = np.vstack(xyz)
proj = renderer.project(xyz=xyz, ch_names=ch_names)
if hide_sensors is True:
proj.visible(False)
im = renderer.screenshot()
proj.visible(True)
return proj.xy, im
def _plot_dipole_mri_orthoview(
dipole,
trans,
subject,
subjects_dir=None,
coord_frame="head",
idx="gof",
show_all=True,
ax=None,
block=False,
show=True,
color=None,
highlight_color="r",
title=None,
width=None,
):
"""Plot dipoles on top of MRI slices in 3-D."""
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
_import_nibabel("plotting MRI slices")
_check_option("coord_frame", coord_frame, ["head", "mri"])
if idx == "gof":
idx = np.argmax(dipole.gof)
elif idx == "amplitude":
idx = np.argmax(np.abs(dipole.amplitude))
else:
idx = _ensure_int(idx, "idx", 'an int or one of ["gof", "amplitude"]')
vox, ori, pos, data = _get_dipole_loc(
dipole, trans, subject, subjects_dir, coord_frame
)
dims = len(data) # Symmetric size assumed.
dd = dims // 2
if ax is None:
fig, ax = plt.subplots(
1, subplot_kw=dict(projection="3d"), layout="constrained"
)
else:
_validate_type(ax, Axes3D, "ax", "Axes3D", extra='when mode is "orthoview"')
fig = ax.get_figure()
gridx, gridy = np.meshgrid(
np.linspace(-dd, dd, dims), np.linspace(-dd, dd, dims), indexing="ij"
)
params = {
"ax": ax,
"data": data,
"idx": idx,
"dipole": dipole,
"vox": vox,
"gridx": gridx,
"gridy": gridy,
"ori": ori,
"coord_frame": coord_frame,
"show_all": show_all,
"pos": pos,
"color": color,
"highlight_color": highlight_color,
"title": title,
"width": width,
}
_plot_dipole(**params)
ax.view_init(elev=30, azim=-140)
callback_func = partial(_dipole_changed, params=params)
fig.canvas.mpl_connect("scroll_event", callback_func)
fig.canvas.mpl_connect("key_press_event", callback_func)
plt_show(show, block=block)
return fig
RAS_AFFINE = np.eye(4)
RAS_AFFINE[:3, 3] = [-128] * 3
RAS_SHAPE = (256, 256, 256)
def _get_dipole_loc(dipole, trans, subject, subjects_dir, coord_frame):
"""Get the dipole locations and orientations."""
import nibabel as nib
from nibabel.processing import resample_from_to
_check_option("coord_frame", coord_frame, ["head", "mri"])
subjects_dir = str(get_subjects_dir(subjects_dir=subjects_dir, raise_error=True))
t1_fname = op.join(subjects_dir, subject, "mri", "T1.mgz")
t1 = nib.load(t1_fname)
# Do everything in mm here to make life slightly easier
vox_ras_t, _, mri_ras_t, _, _ = _read_mri_info(t1_fname, units="mm")
head_mri_t = _get_trans(trans, fro="head", to="mri")[0].copy()
head_mri_t["trans"][:3, 3] *= 1000 # m→mm
del trans
pos = dipole.pos * 1e3 # m→mm
ori = dipole.ori
# Figure out how to always resample to an identity, 256x256x256 RAS:
#
# 1. Resample to head or MRI surface RAS (the conditional), but also
# 2. Resample to what will work for the standard 1mm** RAS_AFFINE (resamp)
#
# We could do this with two resample_from_to calls, but it's cleaner,
# faster, and we get fewer boundary artifacts if we do it in one shot.
# So first olve usamp s.t. ``upsamp @ vox_ras_t == RAS_AFFINE`` (2):
upsamp = np.linalg.solve(vox_ras_t["trans"].T, RAS_AFFINE.T).T
# Now figure out how we would resample from RAS to head or MRI coords:
if coord_frame == "head":
dest_ras_t = combine_transforms(head_mri_t, mri_ras_t, "head", "ras")["trans"]
else:
pos = apply_trans(head_mri_t, pos)
ori = apply_trans(head_mri_t, dipole.ori, move=False)
dest_ras_t = mri_ras_t["trans"]
# The order here is wacky because we need `resample_from_to` to operate
# in a reverse order
affine = np.dot(np.dot(dest_ras_t, upsamp), vox_ras_t["trans"])
t1 = resample_from_to(t1, (RAS_SHAPE, affine), order=0)
# Now we could do:
#
# t1 = SpatialImage(t1.dataobj, RAS_AFFINE)
#
# And t1 would be in our destination (mri or head) space. But we don't
# need to construct the image -- let's just get our voxel coords and data:
vox = apply_trans(np.linalg.inv(RAS_AFFINE), pos)
t1_data = _get_img_fdata(t1)
return vox, ori, pos, t1_data
def _plot_dipole(
ax,
data,
vox,
idx,
dipole,
gridx,
gridy,
ori,
coord_frame,
show_all,
pos,
color,
highlight_color,
title,
width,
):
"""Plot dipoles."""
import matplotlib.pyplot as plt
xidx, yidx, zidx = np.round(vox[idx]).astype(int)
xslice = data[xidx]
yslice = data[:, yidx]
zslice = data[:, :, zidx]
ori = ori[idx]
if color is None:
color = "y" if show_all else "r"
color = np.array(_to_rgb(color, alpha=True))
highlight_color = np.array(
_to_rgb(highlight_color, name="highlight_color", alpha=True)
)
if show_all:
colors = np.repeat(color[np.newaxis], len(vox), axis=0)
colors[idx] = highlight_color
size = np.repeat(5, len(vox))
size[idx] = 20
visible = np.arange(len(vox))
else:
colors = color
size = 20
visible = idx
offset = np.min(gridx)
xyz = pos
ax.scatter(
xs=xyz[visible, 0],
ys=xyz[visible, 1],
zs=xyz[visible, 2],
zorder=2,
s=size,
facecolor=colors,
)
xx = np.linspace(offset, xyz[idx, 0], xidx)
yy = np.linspace(offset, xyz[idx, 1], yidx)
zz = np.linspace(offset, xyz[idx, 2], zidx)
ax.plot(
xx,
np.repeat(xyz[idx, 1], len(xx)),
zs=xyz[idx, 2],
zorder=1,
linestyle="-",
color=highlight_color,
)
ax.plot(
np.repeat(xyz[idx, 0], len(yy)),
yy,
zs=xyz[idx, 2],
zorder=1,
linestyle="-",
color=highlight_color,
)
ax.plot(
np.repeat(xyz[idx, 0], len(zz)),
np.repeat(xyz[idx, 1], len(zz)),
zs=zz,
zorder=1,
linestyle="-",
color=highlight_color,
)
q_kwargs = dict(length=50, color=highlight_color, pivot="tail")
if width is not None:
q_kwargs["width"] = width
ax.quiver(xyz[idx, 0], xyz[idx, 1], xyz[idx, 2], ori[0], ori[1], ori[2], **q_kwargs)
dims = np.array([(len(data) / -2.0), (len(data) / 2.0)])
ax.set(xlim=-dims, ylim=-dims, zlim=dims)
# Plot slices
ax.contourf(
xslice, gridx, gridy, offset=offset, zdir="x", cmap="gray", zorder=0, alpha=0.5
)
ax.contourf(
gridx, yslice, gridy, offset=offset, zdir="y", cmap="gray", zorder=0, alpha=0.5
)
ax.contourf(
gridx, gridy, zslice, offset=offset, zdir="z", cmap="gray", zorder=0, alpha=0.5
)
# Plot orientations
args = np.array([list(xyz[idx]) + list(ori)] * 3)
for ii in range(3):
args[ii, [ii, ii + 3]] = [offset + 0.5, 0] # half a mm inward (z ord)
ax.quiver(*args.T, alpha=0.75, **q_kwargs)
# These are the only two options
coord_frame_name = "Head" if coord_frame == "head" else "MRI"
if title is None:
title = (
f"Dipole #{idx + 1} / {len(dipole.times)} @ {dipole.times[idx]:.3f}s, "
f"GOF: {dipole.gof[idx]:.1f}%, {dipole.amplitude[idx] * 1e9:.1f}nAm\n"
f"{coord_frame_name}: {_str_ras(xyz[idx])}"
)
ax.get_figure().suptitle(title)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.draw()
def _dipole_changed(event, params):
"""Handle dipole plotter scroll/key event."""
if event.key is not None:
if event.key == "up":
params["idx"] += 1
elif event.key == "down":
params["idx"] -= 1
else: # some other key
return
elif event.step > 0: # scroll event
params["idx"] += 1
else:
params["idx"] -= 1
params["idx"] = min(max(0, params["idx"]), len(params["dipole"].pos) - 1)
params["ax"].clear()
_plot_dipole(**params)
@fill_doc
def plot_brain_colorbar(
ax,
clim,
colormap="auto",
transparent=True,
orientation="vertical",
label="Activation",
bgcolor="0.5",
):
"""Plot a colorbar that corresponds to a brain activation map.
Parameters
----------
ax : instance of Axes
The Axes to plot into.
%(clim)s
%(colormap)s
%(transparent)s
orientation : str
Orientation of the colorbar, can be "vertical" or "horizontal".
label : str
The colorbar label.
bgcolor : color
The color behind the colorbar (for alpha blending).
Returns
-------
cbar : instance of ColorbarBase
The colorbar.
Notes
-----
.. versionadded:: 0.19
"""
from matplotlib.colorbar import ColorbarBase
from matplotlib.colors import Normalize
mapdata = _process_clim(clim, colormap, transparent)
ticks = _get_map_ticks(mapdata)
colormap, lims = _linearize_map(mapdata)
del mapdata
norm = Normalize(vmin=lims[0], vmax=lims[2])
cbar = ColorbarBase(
ax, cmap=colormap, norm=norm, ticks=ticks, label=label, orientation=orientation
)
# make the colorbar background match the brain color
cbar.ax.set(facecolor=bgcolor)
# remove the colorbar frame except for the line containing the ticks
cbar.outline.set_visible(False)
cbar.ax.set_frame_on(True)
for key in ("left", "top", "bottom" if orientation == "vertical" else "right"):
ax.spines[key].set_visible(False)
return cbar
@dataclass()
class _3d_Options:
antialias: bool | None
depth_peeling: bool | None
smooth_shading: bool | None
multi_samples: int | None
_3d_options = _3d_Options(
antialias=None,
depth_peeling=None,
smooth_shading=None,
multi_samples=None,
)
_3d_default = _3d_Options(
antialias="true",
depth_peeling="true",
smooth_shading="true",
multi_samples="4",
)
def set_3d_options(
antialias=None, depth_peeling=None, smooth_shading=None, *, multi_samples=None
):
"""Set 3D rendering options.
Parameters
----------
antialias : bool | None
If bool, whether to enable or disable full-screen anti-aliasing.
False is useful when renderers have problems (such as software
MESA renderers). If None, use the default setting. This option
can also be controlled using an environment variable, e.g.,
``MNE_3D_OPTION_ANTIALIAS=false``.
depth_peeling : bool | None
If bool, whether to enable or disable accurate transparency.
False is useful when renderers have problems (for instance
while X forwarding on remote servers). If None, use the default
setting. This option can also be controlled using an environment
variable, e.g., ``MNE_3D_OPTION_DEPTH_PEELING=false``.
smooth_shading : bool | None
If bool, whether to enable or disable smooth color transitions
between polygons. False is useful on certain configurations
where this type of shading is not supported or for performance
reasons. This option can also be controlled using an environment
variable, e.g., ``MNE_3D_OPTION_SMOOTH_SHADING=false``.
multi_samples : int
Number of multi-samples. Should be 1 for MESA for volumetric rendering
to work properly.
.. versionadded:: 1.1
Notes
-----
.. versionadded:: 0.21.0
"""
if antialias is not None:
_3d_options.antialias = bool(antialias)
if depth_peeling is not None:
_3d_options.depth_peeling = bool(depth_peeling)
if smooth_shading is not None:
_3d_options.smooth_shading = bool(smooth_shading)
if multi_samples is not None:
_3d_options.multi_samples = int(multi_samples)
def _get_3d_option(key):
_validate_type(key, "str", "key")
opt = getattr(_3d_options, key)
if opt is None: # parse get_config (and defaults)
default_value = getattr(_3d_default, key)
opt = get_config(f"MNE_3D_OPTION_{key.upper()}", default_value)
if key == "multi_samples":
opt = int(opt)
else:
opt = opt.lower() == "true"
return opt