[074d3d]: / mne / utils / numerics.py

Download this file

1136 lines (959 with data), 38.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
"""Some utility functions."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import inspect
import numbers
import operator
import os
import shutil
import sys
from contextlib import contextmanager
from datetime import date, datetime, timedelta, timezone
from io import BytesIO, StringIO
from math import ceil, sqrt
from pathlib import Path
import numpy as np
from scipy import sparse
from ..fixes import (
_infer_dimension_,
_safe_svd,
has_numba,
jit,
stable_cumsum,
svd_flip,
)
from ._logging import logger, verbose, warn
from .check import (
_check_pandas_installed,
_ensure_int,
_validate_type,
check_random_state,
)
from .docs import fill_doc
from .misc import _empty_hash, _pl
def split_list(v, n, idx=False):
"""Split list in n (approx) equal pieces, possibly giving indices."""
n = int(n)
tot = len(v)
sz = tot // n
start = stop = 0
for i in range(n - 1):
stop += sz
yield (np.arange(start, stop), v[start:stop]) if idx else v[start:stop]
start += sz
yield (np.arange(start, tot), v[start:]) if idx else v[start]
def array_split_idx(ary, indices_or_sections, axis=0, n_per_split=1):
"""Do what numpy.array_split does, but add indices."""
# this only works for indices_or_sections as int
indices_or_sections = _ensure_int(indices_or_sections)
ary_split = np.array_split(ary, indices_or_sections, axis=axis)
idx_split = np.array_split(np.arange(ary.shape[axis]), indices_or_sections)
idx_split = (
np.arange(sp[0] * n_per_split, (sp[-1] + 1) * n_per_split) for sp in idx_split
)
return zip(idx_split, ary_split)
def sum_squared(X):
"""Compute norm of an array.
Parameters
----------
X : array
Data whose norm must be found.
Returns
-------
value : float
Sum of squares of the input array X.
"""
X_flat = X.ravel(order="F" if np.isfortran(X) else "C")
return np.dot(X_flat, X_flat)
def _compute_row_norms(data):
"""Compute scaling based on estimated norm."""
norms = np.sqrt(np.sum(data**2, axis=1))
norms[norms == 0] = 1.0
return norms
def _reg_pinv(x, reg=0, rank="full", rcond=1e-15):
"""Compute a regularized pseudoinverse of Hermitian matrices.
Regularization is performed by adding a constant value to each diagonal
element of the matrix before inversion. This is known as "diagonal
loading". The loading factor is computed as ``reg * np.trace(x) / len(x)``.
The pseudo-inverse is computed through SVD decomposition and inverting the
singular values. When the matrix is rank deficient, some singular values
will be close to zero and will not be used during the inversion. The number
of singular values to use can either be manually specified or automatically
estimated.
Parameters
----------
x : ndarray, shape (..., n, n)
Square, Hermitian matrices to invert.
reg : float
Regularization parameter. Defaults to 0.
rank : int | None | 'full'
This controls the effective rank of the covariance matrix when
computing the inverse. The rank can be set explicitly by specifying an
integer value. If ``None``, the rank will be automatically estimated.
Since applying regularization will always make the covariance matrix
full rank, the rank is estimated before regularization in this case. If
'full', the rank will be estimated after regularization and hence
will mean using the full rank, unless ``reg=0`` is used.
Defaults to 'full'.
rcond : float | 'auto'
Cutoff for detecting small singular values when attempting to estimate
the rank of the matrix (``rank='auto'``). Singular values smaller than
the cutoff are set to zero. When set to 'auto', a cutoff based on
floating point precision will be used. Defaults to 1e-15.
Returns
-------
x_inv : ndarray, shape (..., n, n)
The inverted matrix.
loading_factor : float
Value added to the diagonal of the matrix during regularization.
rank : int
If ``rank`` was set to an integer value, this value is returned,
else the estimated rank of the matrix, before regularization, is
returned.
"""
from ..rank import _estimate_rank_from_s
if rank is not None and rank != "full":
rank = int(operator.index(rank))
if x.ndim < 2 or x.shape[-2] != x.shape[-1]:
raise ValueError("Input matrix must be square.")
if not np.allclose(x, x.conj().swapaxes(-2, -1)):
raise ValueError("Input matrix must be Hermitian (symmetric)")
assert x.ndim >= 2 and x.shape[-2] == x.shape[-1]
n = x.shape[-1]
# Decompose the matrix, not necessarily positive semidefinite
U, s, Vh = np.linalg.svd(x, hermitian=True)
# Estimate the rank before regularization
tol = "auto" if rcond == "auto" else rcond * s[..., :1]
rank_before = _estimate_rank_from_s(s, tol)
# Decompose the matrix again after regularization
loading_factor = reg * np.mean(s, axis=-1)
if reg:
U, s, Vh = np.linalg.svd(
x + loading_factor[..., np.newaxis, np.newaxis] * np.eye(n), hermitian=True
)
# Estimate the rank after regularization
tol = "auto" if rcond == "auto" else rcond * s[..., :1]
rank_after = _estimate_rank_from_s(s, tol)
# Warn the user if both all parameters were kept at their defaults and the
# matrix is rank deficient.
if (rank_after < n).any() and reg == 0 and rank == "full" and rcond == 1e-15:
warn("Covariance matrix is rank-deficient and no regularization is done.")
elif isinstance(rank, int) and rank > n:
raise ValueError(
f"Invalid value for the rank parameter ({rank}) given "
f"the shape of the input matrix ({x.shape[0]} x {x.shape[1]})."
)
# Pick the requested number of singular values
mask = np.arange(s.shape[-1]).reshape((1,) * (x.ndim - 2) + (-1,))
if rank is None:
cmp = ret = rank_before
elif rank == "full":
cmp = rank_after
ret = rank_before
else:
cmp = ret = rank
mask = mask < np.asarray(cmp)[..., np.newaxis]
mask &= s > 0
# Invert only non-zero singular values
s_inv = np.zeros(s.shape)
s_inv[mask] = 1.0 / s[mask]
# Compute the pseudo inverse
x_inv = np.matmul(U * s_inv[..., np.newaxis, :], Vh)
return x_inv, loading_factor, ret
def _gen_events(n_epochs):
"""Generate event structure from number of epochs."""
events = np.c_[np.arange(n_epochs), np.zeros(n_epochs, int), np.ones(n_epochs, int)]
return events
def _reject_data_segments(data, reject, flat, decim, info, tstep):
"""Reject data segments using peak-to-peak amplitude."""
from .._fiff.pick import channel_indices_by_type
from ..epochs import _is_good
data_clean = np.empty_like(data)
idx_by_type = channel_indices_by_type(info)
step = int(ceil(tstep * info["sfreq"]))
if decim is not None:
step = int(ceil(step / float(decim)))
this_start = 0
this_stop = 0
drop_inds = []
for first in range(0, data.shape[1], step):
last = first + step
data_buffer = data[:, first:last]
if data_buffer.shape[1] < (last - first):
break # end of the time segment
if _is_good(
data_buffer,
info["ch_names"],
idx_by_type,
reject,
flat,
ignore_chs=info["bads"],
):
this_stop = this_start + data_buffer.shape[1]
data_clean[:, this_start:this_stop] = data_buffer
this_start += data_buffer.shape[1]
else:
logger.info(f"Artifact detected in [{first}, {last}]")
drop_inds.append((first, last))
data = data_clean[:, :this_stop]
if not data.any():
raise RuntimeError(
"No clean segment found. Please "
"consider updating your rejection "
"thresholds."
)
return data, drop_inds
def _get_inst_data(inst):
"""Get data view from MNE object instance like Raw, Epochs or Evoked."""
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..io import BaseRaw
from ..time_frequency.tfr import BaseTFR
_validate_type(inst, (BaseRaw, BaseEpochs, Evoked, BaseTFR), "Instance")
if not inst.preload:
inst.load_data()
return inst._data
def compute_corr(x, y):
"""Compute pearson correlations between a vector and a matrix."""
if len(x) == 0 or len(y) == 0:
raise ValueError("x or y has zero length")
X = np.array(x, float)
Y = np.array(y, float)
X -= X.mean(0)
Y -= Y.mean(0)
x_sd = X.std(0, ddof=1)
# if covariance matrix is fully expanded, Y needs a
# transpose / broadcasting else Y is correct
y_sd = Y.std(0, ddof=1)[:, None if X.shape == Y.shape else Ellipsis]
return (np.dot(X.T, Y) / float(len(X) - 1)) / (x_sd * y_sd)
@fill_doc
def random_permutation(n_samples, random_state=None):
"""Emulate the randperm matlab function.
It returns a vector containing a random permutation of the
integers between 0 and n_samples-1. It returns the same random numbers
than randperm matlab function whenever the random_state is the same
as the matlab's random seed.
This function is useful for comparing against matlab scripts
which use the randperm function.
Note: the randperm(n_samples) matlab function generates a random
sequence between 1 and n_samples, whereas
random_permutation(n_samples, random_state) function generates
a random sequence between 0 and n_samples-1, that is:
randperm(n_samples) = random_permutation(n_samples, random_state) - 1
Parameters
----------
n_samples : int
End point of the sequence to be permuted (excluded, i.e., the end point
is equal to n_samples-1)
%(random_state)s
Returns
-------
randperm : ndarray, int
Randomly permuted sequence between 0 and n-1.
"""
rng = check_random_state(random_state)
# This can't just be rng.permutation(n_samples) because it's not identical
# to what MATLAB produces
idx = rng.uniform(size=n_samples)
randperm = np.argsort(idx)
return randperm
@verbose
def _apply_scaling_array(data, picks_list, scalings, verbose=None):
"""Scale data type-dependently for estimation."""
scalings = _check_scaling_inputs(data, picks_list, scalings)
if isinstance(scalings, dict):
logger.debug(f" Scaling using mapping {scalings}.")
picks_dict = dict(picks_list)
scalings = [(picks_dict[k], v) for k, v in scalings.items() if k in picks_dict]
for idx, scaling in scalings:
data[idx, :] *= scaling # F - order
else:
logger.debug(" Scaling using computed norms.")
data *= scalings[:, np.newaxis] # F - order
def _invert_scalings(scalings):
if isinstance(scalings, dict):
scalings = {k: 1.0 / v for k, v in scalings.items()}
elif isinstance(scalings, np.ndarray):
scalings = 1.0 / scalings
return scalings
def _undo_scaling_array(data, picks_list, scalings):
scalings = _invert_scalings(_check_scaling_inputs(data, picks_list, scalings))
return _apply_scaling_array(data, picks_list, scalings, verbose=False)
@contextmanager
def _scaled_array(data, picks_list, scalings):
"""Scale, use, unscale array."""
_apply_scaling_array(data, picks_list=picks_list, scalings=scalings)
try:
yield
finally:
_undo_scaling_array(data, picks_list=picks_list, scalings=scalings)
def _apply_scaling_cov(data, picks_list, scalings):
"""Scale resulting data after estimation."""
scalings = _check_scaling_inputs(data, picks_list, scalings)
scales = None
if isinstance(scalings, dict):
n_channels = len(data)
covinds = list(zip(*picks_list))[1]
assert len(data) == sum(len(k) for k in covinds)
assert list(sorted(np.concatenate(covinds))) == list(range(len(data)))
scales = np.zeros(n_channels)
for ch_t, idx in picks_list:
scales[idx] = scalings[ch_t]
elif isinstance(scalings, np.ndarray):
if len(scalings) != len(data):
raise ValueError("Scaling factors and data are of incompatible shape")
scales = scalings
elif scalings is None:
pass
else:
raise RuntimeError("Arff...")
if scales is not None:
assert np.sum(scales == 0.0) == 0
data *= scales[None, :] * scales[:, None]
def _undo_scaling_cov(data, picks_list, scalings):
scalings = _invert_scalings(_check_scaling_inputs(data, picks_list, scalings))
return _apply_scaling_cov(data, picks_list, scalings)
def _check_scaling_inputs(data, picks_list, scalings):
"""Aux function."""
rescale_dict_ = dict(mag=1e15, grad=1e13, eeg=1e6)
scalings_ = None
if isinstance(scalings, str) and scalings == "norm":
scalings_ = 1.0 / _compute_row_norms(data)
elif isinstance(scalings, dict):
rescale_dict_.update(scalings)
scalings_ = rescale_dict_
elif isinstance(scalings, np.ndarray):
scalings_ = scalings
elif scalings is None:
pass
else:
raise NotImplementedError(f"Not a valid rescaling option: {scalings}")
return scalings_
def hashfunc(fname, block_size=1048576, hash_type="md5"): # 2 ** 20
"""Calculate the hash for a file.
Parameters
----------
fname : str
Filename.
block_size : int
Block size to use when reading.
Returns
-------
hash_ : str
The hexadecimal digest of the hash.
"""
hasher = _empty_hash(kind=hash_type)
with open(fname, "rb") as fid:
while True:
data = fid.read(block_size)
if not data:
break
hasher.update(data)
return hasher.hexdigest()
def create_slices(start, stop, step=None, length=1):
"""Generate slices of time indexes.
Parameters
----------
start : int
Index where first slice should start.
stop : int
Index where last slice should maximally end.
length : int
Number of time sample included in a given slice.
step: int | None
Number of time samples separating two slices.
If step = None, step = length.
Returns
-------
slices : list
List of slice objects.
"""
# default parameters
if step is None:
step = length
# slicing
slices = [slice(t, t + length, 1) for t in range(start, stop - length + 1, step)]
return slices
def _time_mask(
times, tmin=None, tmax=None, sfreq=None, raise_error=True, include_tmax=True
):
"""Safely find sample boundaries."""
orig_tmin = tmin
orig_tmax = tmax
tmin = -np.inf if tmin is None else tmin
tmax = np.inf if tmax is None else tmax
if not np.isfinite(tmin):
tmin = times[0]
if not np.isfinite(tmax):
tmax = times[-1]
include_tmax = True # ignore this param when tmax is infinite
if sfreq is not None:
# Push to a bit past the nearest sample boundary first
sfreq = float(sfreq)
tmin = int(round(tmin * sfreq)) / sfreq - 0.5 / sfreq
tmax = int(round(tmax * sfreq)) / sfreq
tmax += (0.5 if include_tmax else -0.5) / sfreq
else:
assert include_tmax # can only be used when sfreq is known
if raise_error and tmin > tmax:
raise ValueError(
f"tmin ({orig_tmin}) must be less than or equal to tmax ({orig_tmax})"
)
mask = times >= tmin
mask &= times <= tmax
if raise_error and not mask.any():
extra = "" if include_tmax else "when include_tmax=False "
raise ValueError(
f"No samples remain when using tmin={orig_tmin} and tmax={orig_tmax} "
f"{extra}(original time bounds are [{times[0]}, {times[-1]}] containing "
f"{len(times)} sample{_pl(times)})"
)
return mask
def _freq_mask(freqs, sfreq, fmin=None, fmax=None, raise_error=True):
"""Safely find frequency boundaries."""
orig_fmin = fmin
orig_fmax = fmax
fmin = -np.inf if fmin is None else fmin
fmax = np.inf if fmax is None else fmax
if not np.isfinite(fmin):
fmin = freqs[0]
if not np.isfinite(fmax):
fmax = freqs[-1]
if sfreq is None:
raise ValueError("sfreq can not be None")
# Push 0.5/sfreq past the nearest frequency boundary first
sfreq = float(sfreq)
fmin = int(round(fmin * sfreq)) / sfreq - 0.5 / sfreq
fmax = int(round(fmax * sfreq)) / sfreq + 0.5 / sfreq
if raise_error and fmin > fmax:
raise ValueError(
f"fmin ({orig_fmin}) must be less than or equal to fmax ({orig_fmax})"
)
mask = freqs >= fmin
mask &= freqs <= fmax
if raise_error and not mask.any():
raise ValueError(
f"No frequencies remain when using fmin={orig_fmin} and fmax={orig_fmax} "
f"(original frequency bounds are [{freqs[0]}, {freqs[-1]}])"
)
return mask
def grand_average(all_inst, interpolate_bads=True, drop_bads=True):
"""Make grand average of a list of Evoked, AverageTFR, or Spectrum data.
For :class:`mne.Evoked` data, the function interpolates bad channels based on the
``interpolate_bads`` parameter. If ``interpolate_bads`` is True, the grand average
file will contain good channels and the bad channels interpolated from the good
MEG/EEG channels.
For :class:`mne.time_frequency.AverageTFR` and :class:`mne.time_frequency.Spectrum`
data, the function takes the subset of channels not marked as bad in any of the
instances.
The ``grand_average.nave`` attribute will be equal to the number of datasets used to
calculate the grand average.
.. note:: A grand average evoked should not be used for source localization.
Parameters
----------
all_inst : list of Evoked, AverageTFR or Spectrum
The datasets.
.. versionchanged:: 1.10.0
Added support for :class:`~mne.time_frequency.Spectrum` objects.
interpolate_bads : bool
If True, bad MEG and EEG channels are interpolated. Ignored for
:class:`~mne.time_frequency.AverageTFR` and
:class:`~mne.time_frequency.Spectrum` data.
drop_bads : bool
If True, drop all bad channels marked as bad in any data set. If neither
``interpolate_bads`` nor ``drop_bads`` is `True`, in the output file, every
channel marked as bad in at least one of the input files will be marked as bad,
but no interpolation or dropping will be performed.
Returns
-------
grand_average : Evoked | AverageTFR | Spectrum
The grand average data. Same type as input.
Notes
-----
Aggregating multitaper TFR datasets with a taper dimension such as for complex or
phase data is not supported.
.. versionadded:: 0.11.0
"""
# check if all elements in the given list are evoked data
from ..channels.channels import equalize_channels
from ..evoked import Evoked
from ..time_frequency import AverageTFR, Spectrum
if not all_inst:
raise ValueError(
"Please pass a list of Evoked, AverageTFR, or Spectrum objects."
)
elif len(all_inst) == 1:
warn("Only a single dataset was passed to mne.grand_average().")
inst_type = type(all_inst[0])
_validate_type(all_inst[0], (Evoked, AverageTFR, Spectrum), "All elements")
for inst in all_inst:
_validate_type(inst, inst_type, "All elements", "of the same type")
# Copy channels to leave the original evoked datasets intact.
all_inst = [inst.copy() for inst in all_inst]
# Interpolates if necessary
if isinstance(all_inst[0], Evoked):
if interpolate_bads:
all_inst = [
inst.interpolate_bads() if len(inst.info["bads"]) > 0 else inst
for inst in all_inst
]
from ..evoked import combine_evoked as combine
elif isinstance(all_inst[0], Spectrum):
from ..time_frequency.spectrum import combine_spectrum as combine
else: # isinstance(all_inst[0], AverageTFR):
from ..time_frequency.tfr import combine_tfr as combine
if drop_bads:
bads = list({b for inst in all_inst for b in inst.info["bads"]})
if bads:
for inst in all_inst:
inst.drop_channels(bads)
equalize_channels(all_inst, copy=False)
# make grand_average object using combine_[evoked/tfr/spectrum]
grand_average = combine(all_inst, weights="equal")
# change the grand_average.nave to the number of datasets
grand_average.nave = len(all_inst)
# change comment field
grand_average.comment = f"Grand average (n = {grand_average.nave})"
return grand_average
class _HashableNdarray(np.ndarray):
def __hash__(self):
return object_hash(self)
def __eq__(self, other):
return NotImplementedError # defer to hash
def _hashable_ndarray(x):
return x.view(_HashableNdarray)
def object_hash(x, h=None):
"""Hash a reasonable python object.
Parameters
----------
x : object
Object to hash. Can be anything comprised of nested versions of:
{dict, list, tuple, ndarray, str, bytes, float, int, None}.
h : hashlib HASH object | None
Optional, object to add the hash to. None creates an MD5 hash.
Returns
-------
digest : int
The digest resulting from the hash.
"""
if h is None:
h = _empty_hash()
if hasattr(x, "keys"):
# dict-like types
keys = _sort_keys(x)
for key in keys:
object_hash(key, h)
object_hash(x[key], h)
elif isinstance(x, bytes):
# must come before "str" below
h.update(x)
elif isinstance(x, str | float | int | type(None)):
h.update(str(type(x)).encode("utf-8"))
h.update(str(x).encode("utf-8"))
elif isinstance(x, np.ndarray | np.number | np.bool_):
x = np.asarray(x)
h.update(str(x.shape).encode("utf-8"))
h.update(str(x.dtype).encode("utf-8"))
h.update(x.tobytes())
elif isinstance(x, datetime):
object_hash(_dt_to_stamp(x))
elif sparse.issparse(x):
h.update(str(type(x)).encode("utf-8"))
if not isinstance(x, sparse.csr_array | sparse.csc_array):
raise RuntimeError(f"Unsupported sparse type {type(x)}")
h.update(x.data.tobytes())
h.update(x.indices.tobytes())
h.update(x.indptr.tobytes())
elif hasattr(x, "__len__"):
# all other list-like types
h.update(str(type(x)).encode("utf-8"))
for xx in x:
object_hash(xx, h)
else:
raise RuntimeError(f"unsupported type: {type(x)} ({x})")
return int(h.hexdigest(), 16)
def object_size(x, memo=None):
"""Estimate the size of a reasonable python object.
Parameters
----------
x : object
Object to approximate the size of.
Can be anything comprised of nested versions of:
{dict, list, tuple, ndarray, str, bytes, float, int, None}.
memo : dict | None
The memodict.
Returns
-------
size : int
The estimated size in bytes of the object.
"""
# Note: this will not process object arrays properly (since those only)
# hold references
if memo is None:
memo = dict()
id_ = id(x)
if id_ in memo:
return 0 # do not add already existing ones
if isinstance(x, bytes | str | int | float | type(None) | Path):
size = sys.getsizeof(x)
elif isinstance(x, np.ndarray):
# On newer versions of NumPy, just doing sys.getsizeof(x) works,
# but on older ones you always get something small :(
size = sys.getsizeof(np.array([]))
if x.base is None or id(x.base) not in memo:
size += x.nbytes
elif isinstance(x, np.generic):
size = x.nbytes
elif isinstance(x, dict):
size = sys.getsizeof(x)
for key, value in x.items():
size += object_size(key, memo)
size += object_size(value, memo)
elif isinstance(x, list | tuple):
size = sys.getsizeof(x) + sum(object_size(xx, memo) for xx in x)
elif isinstance(x, datetime):
size = object_size(_dt_to_stamp(x), memo)
elif isinstance(x, date):
size = 24 # 3 8-byte integers
elif _is_sparse_cs(x):
size = sum(sys.getsizeof(xx) for xx in [x, x.data, x.indices, x.indptr])
else:
raise RuntimeError(f"unsupported type: {type(x)} ({x})")
memo[id_] = size
return size
def _is_sparse_cs(x):
return isinstance(
x, sparse.csr_matrix | sparse.csc_matrix | sparse.csr_array | sparse.csc_array
)
def _sort_keys(x):
"""Sort and return keys of dict."""
keys = list(x.keys()) # note: not thread-safe
idx = np.argsort([str(k) for k in keys])
keys = [keys[ii] for ii in idx]
return keys
def _array_equal_nan(a, b, allclose=False):
try:
if allclose:
func = np.testing.assert_allclose
else:
func = np.testing.assert_array_equal
func(a, b)
except AssertionError:
return False
return True
def object_diff(a, b, pre="", *, allclose=False):
"""Compute all differences between two python variables.
Parameters
----------
a : object
Currently supported: class, dict, list, tuple, ndarray,
int, str, bytes, float, StringIO, BytesIO.
b : object
Must be same type as ``a``.
pre : str
String to prepend to each line.
allclose : bool
If True (default False), use assert_allclose.
Returns
-------
diffs : str
A string representation of the differences.
"""
pd = _check_pandas_installed(strict=False)
out = ""
if type(a) is not type(b):
# Deal with NamedInt and NamedFloat
for sub in (int, float):
if isinstance(a, sub) and isinstance(b, sub):
break
else:
return f"{pre} type mismatch ({type(a)}, {type(b)})\n"
if inspect.isclass(a):
if inspect.isclass(b) and a != b:
return f"{pre} class mismatch ({a}, {b})\n"
elif isinstance(a, dict):
k1s = _sort_keys(a)
k2s = _sort_keys(b)
m1 = set(k2s) - set(k1s)
if len(m1):
out += pre + f" left missing keys {m1}\n"
for key in k1s:
if key not in k2s:
out += pre + f" right missing key {key}\n"
else:
out += object_diff(
a[key], b[key], pre=(pre + f"[{repr(key)}]"), allclose=allclose
)
elif isinstance(a, list | tuple):
if len(a) != len(b):
out += pre + f" length mismatch ({len(a)}, {len(b)})\n"
else:
for ii, (xx1, xx2) in enumerate(zip(a, b)):
out += object_diff(xx1, xx2, pre + f"[{ii}]", allclose=allclose)
elif isinstance(a, float):
if not _array_equal_nan(a, b, allclose):
out += pre + f" value mismatch ({a}, {b})\n"
elif isinstance(a, str | int | bytes | np.generic):
if a != b:
out += pre + f" value mismatch ({a}, {b})\n"
elif a is None:
if b is not None:
out += pre + f" left is None, right is not ({b})\n"
elif isinstance(a, np.ndarray):
if not _array_equal_nan(a, b, allclose):
out += pre + " array mismatch\n"
elif isinstance(a, StringIO | BytesIO):
if a.getvalue() != b.getvalue():
out += pre + " StringIO mismatch\n"
elif isinstance(a, datetime | date):
ts = (a - b).total_seconds()
if ts != 0:
out += pre + f" {a.__class__.__name__} mismatch ({a} vs {b} by {ts} sec)\n"
elif sparse.issparse(a):
# sparsity and sparse type of b vs a already checked above by type()
if b.shape != a.shape:
out += pre + (
f" sparse matrix a and b shape mismatch ({a.shape} vs {b.shape})"
)
else:
c = a - b
c.eliminate_zeros()
if c.nnz > 0:
out += pre + (f" sparse matrix a and b differ on {c.nnz} elements")
elif pd and isinstance(a, pd.DataFrame):
try:
pd.testing.assert_frame_equal(a, b)
except AssertionError:
out += pre + " DataFrame mismatch\n"
elif hasattr(a, "__getstate__") and a.__getstate__() is not None:
out += object_diff(a.__getstate__(), b.__getstate__(), pre, allclose=allclose)
else:
raise RuntimeError(pre + f": unsupported type {type(a)} ({a})")
return out
class _PCA:
"""Principal component analysis (PCA)."""
# Adapted from sklearn and stripped down to just use linalg.svd
# and make it easier to later provide a "center" option if we want
def __init__(self, n_components=None, whiten=False):
self.n_components = n_components
self.whiten = whiten
def fit_transform(self, X, y=None):
X = X.copy()
U, S, _ = self._fit(X)
U = U[:, : self.n_components_]
if self.whiten:
# X_new = X * V / S * sqrt(n_samples) = U * sqrt(n_samples)
U *= sqrt(X.shape[0] - 1)
else:
# X_new = X * V = U * S * V^T * V = U * S
U *= S[: self.n_components_]
return U
def fit(self, X):
self._fit(X)
def _fit(self, X):
if self.n_components is None:
n_components = min(X.shape)
else:
n_components = self.n_components
n_samples, n_features = X.shape
if n_components == "mle":
if n_samples < n_features:
raise ValueError(
"n_components='mle' is only supported if n_samples >= n_features"
)
elif not 0 <= n_components <= min(n_samples, n_features):
raise ValueError(
f"n_components={repr(n_components)} must be between 0 and "
f"min(n_samples, n_features)={repr(min(n_samples, n_features))} with "
"svd_solver='full'"
)
elif n_components >= 1:
if not isinstance(n_components, numbers.Integral | np.integer):
raise ValueError(
f"n_components={repr(n_components)} must be of type int "
f"when greater than or equal to 1, "
f"was of type={repr(type(n_components))}"
)
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
U, S, V = _safe_svd(X, full_matrices=False)
# flip eigenvectors' sign to enforce deterministic output
U, V = svd_flip(U, V)
components_ = V
# Get variance explained by singular values
explained_variance_ = (S**2) / (n_samples - 1)
total_var = explained_variance_.sum()
explained_variance_ratio_ = explained_variance_ / total_var
singular_values_ = S.copy() # Store the singular values.
# Postprocess the number of components required
if n_components == "mle":
n_components = _infer_dimension_(explained_variance_, n_samples, n_features)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
ratio_cumsum = stable_cumsum(explained_variance_ratio_)
n_components = np.searchsorted(ratio_cumsum, n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = explained_variance_[n_components:].mean()
else:
self.noise_variance_ = 0.0
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = components_[:n_components]
self.n_components_ = n_components
self.explained_variance_ = explained_variance_[:n_components]
self.explained_variance_ratio_ = explained_variance_ratio_[:n_components]
self.singular_values_ = singular_values_[:n_components]
return U, S, V
def _mask_to_onsets_offsets(mask):
"""Group boolean mask into contiguous onset:offset pairs."""
assert mask.dtype == np.dtype(bool) and mask.ndim == 1
mask = mask.astype(int)
diff = np.diff(mask)
onsets = np.where(diff > 0)[0] + 1
if mask[0]:
onsets = np.concatenate([[0], onsets])
offsets = np.where(diff < 0)[0] + 1
if mask[-1]:
offsets = np.concatenate([offsets, [len(mask)]])
assert len(onsets) == len(offsets)
return onsets, offsets
def _julian_to_date(jd):
"""Convert Julian integer to a date object.
Parameters
----------
jd : int
Julian date - number of days since julian day 0
Julian day number 0 assigned to the day starting at
noon on January 1, 4713 BC, proleptic Julian calendar
November 24, 4714 BC, in the proleptic Gregorian calendar
Returns
-------
jd_date : datetime
Datetime representation of jd
"""
# https://aa.usno.navy.mil/data/docs/JulianDate.php
# Thursday, A.D. 1970 Jan 1 12:00:00.0 2440588.000000
jd_t0 = 2440588
datetime_t0 = datetime(1970, 1, 1, 12, 0, 0, 0, tzinfo=timezone.utc)
dt = timedelta(days=(jd - jd_t0))
return (datetime_t0 + dt).date()
def _date_to_julian(jd_date):
"""Convert datetime object to a Julian integer.
Parameters
----------
jd_date : date
Returns
-------
jd : float
Julian date corresponding to jd_date
- number of days since julian day 0
Julian day number 0 assigned to the day starting at
noon on January 1, 4713 BC, proleptic Julian calendar
November 24, 4714 BC, in the proleptic Gregorian calendar
"""
# https://aa.usno.navy.mil/data/docs/JulianDate.php
# Thursday, A.D. 1970 Jan 1 12:00:00.0 2440588.000000
jd_t0 = 2440588
date_t0 = date(1970, 1, 1)
dt = jd_date - date_t0
return jd_t0 + dt.days
def _check_dt(dt):
if (
not isinstance(dt, datetime)
or dt.tzinfo is None
or dt.tzinfo is not timezone.utc
):
raise ValueError(f"Date must be datetime object in UTC: {repr(dt)}")
def _dt_to_stamp(inp_date):
"""Convert a datetime object to a timestamp."""
_check_dt(inp_date)
return int(inp_date.timestamp() // 1), inp_date.microsecond
def _stamp_to_dt(utc_stamp):
"""Convert timestamp to datetime object in Windows-friendly way."""
# The min on windows is 86400
stamp = [int(s) for s in utc_stamp]
if len(stamp) == 1: # In case there is no microseconds information
stamp.append(0)
return datetime.fromtimestamp(0, tz=timezone.utc) + timedelta(
seconds=stamp[0], microseconds=stamp[1]
)
class _ReuseCycle:
"""Cycle over a variable, preferring to reuse earlier indices.
Requires the values in ``x`` to be hashable and unique. This holds
nicely for matplotlib's color cycle, which gives HTML hex color strings.
"""
def __init__(self, x):
self.indices = list()
self.popped = dict()
assert len(x) > 0
self.x = x
def __iter__(self):
while True:
yield self.__next__()
def __next__(self):
if not len(self.indices):
self.indices = list(range(len(self.x)))
self.popped = dict()
idx = self.indices.pop(0)
val = self.x[idx]
assert val not in self.popped
self.popped[val] = idx
return val
def restore(self, val):
try:
idx = self.popped.pop(val)
except KeyError:
warn(f"Could not find value: {val}")
else:
loc = np.searchsorted(self.indices, idx)
self.indices.insert(loc, idx)
def _arange_div_fallback(n, d):
x = np.arange(n, dtype=np.float64)
x /= d
return x
if has_numba:
@jit(fastmath=False)
def _arange_div(n, d):
out = np.empty(n, np.float64)
for i in range(n):
out[i] = i / d
return out
else: # pragma: no cover
_arange_div = _arange_div_fallback
_LRU_CACHES = dict()
_LRU_CACHE_MAXSIZES = dict()
def _custom_lru_cache(maxsize):
def dec(fun):
fun_hash = hash(fun)
this_cache = _LRU_CACHES[fun_hash] = dict()
_LRU_CACHE_MAXSIZES[fun_hash] = maxsize
def cache_fun(*args):
hash_ = object_hash(args)
if hash_ in this_cache:
this_val = this_cache.pop(hash_)
else:
this_val = fun(*args)
this_cache[hash_] = this_val # (re)insert in last pos
while len(this_cache) > _LRU_CACHE_MAXSIZES[fun_hash]:
for key in this_cache: # just an easy way to get first element
this_cache.pop(key)
break # first in, first out
return this_val
return cache_fun
return dec
def _array_repr(x):
"""Produce compact info about float ndarray x."""
assert isinstance(x, np.ndarray), type(x)
return f"shape : {x.shape}, range : [{np.nanmin(x):+0.2g}, {np.nanmax(x):+0.2g}]"
def _replace_md5(fname):
"""Replace a file based on MD5sum."""
# adapted from sphinx-gallery
assert fname.endswith(".new")
fname_old = fname[:-4]
if os.path.isfile(fname_old) and hashfunc(fname) == hashfunc(fname_old):
os.remove(fname)
else:
shutil.move(fname, fname_old)