[074d3d]: / mne / time_frequency / tfr.py

Download this file

4311 lines (3888 with data), 144.1 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
"""A module which implements the time-frequency estimation.
Morlet code inspired by Matlab code from Sheraz Khan & Brainstorm & SPM
"""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import inspect
from copy import deepcopy
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
from scipy.fft import fft, ifft
from scipy.signal import argrelmax
from .._fiff.meas_info import ContainsMixin, Info
from .._fiff.pick import _picks_to_idx, pick_info
from ..baseline import _check_baseline, rescale
from ..channels.channels import UpdateChannelsMixin
from ..channels.layout import _find_topomap_coords, _merge_ch_data, _pair_grad_sensors
from ..defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from ..filter import next_fast_len
from ..parallel import parallel_func
from ..utils import (
ExtendedTimeMixin,
GetEpochsMixin,
SizeMixin,
_build_data_frame,
_check_combine,
_check_event_id,
_check_fname,
_check_method_kwargs,
_check_option,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_time_format,
_convert_times,
_ensure_events,
_freq_mask,
_import_h5io_funcs,
_is_numeric,
_pl,
_prepare_read_metadata,
_prepare_write_metadata,
_time_mask,
_validate_type,
check_fname,
copy_doc,
copy_function_doc_to_method_doc,
fill_doc,
legacy,
logger,
object_diff,
repr_html,
sizeof_fmt,
verbose,
warn,
)
from ..utils.spectrum import _get_instance_type_string
from ..viz.topo import _imshow_tfr, _imshow_tfr_unified, _plot_topo
from ..viz.topomap import (
_add_colorbar,
_get_pos_outlines,
_set_contour_locator,
plot_tfr_topomap,
plot_topomap,
)
from ..viz.utils import (
_make_combine_callable,
_prepare_joint_axes,
_set_title_multiple_electrodes,
_setup_cmap,
_setup_vmin_vmax,
add_background_image,
figure_nobar,
plt_show,
)
from .multitaper import dpss_windows, tfr_array_multitaper
from .spectrum import EpochsSpectrum
@fill_doc
def morlet(sfreq, freqs, n_cycles=7.0, sigma=None, zero_mean=False):
"""Compute Morlet wavelets for the given frequency range.
Parameters
----------
sfreq : float
The sampling Frequency.
freqs : float | array-like, shape (n_freqs,)
Frequencies to compute Morlet wavelets for.
n_cycles : float | array-like, shape (n_freqs,)
Number of cycles. Can be a fixed number (float) or one per frequency
(array-like).
sigma : float, default None
It controls the width of the wavelet ie its temporal
resolution. If sigma is None the temporal resolution
is adapted with the frequency like for all wavelet transform.
The higher the frequency the shorter is the wavelet.
If sigma is fixed the temporal resolution is fixed
like for the short time Fourier transform and the number
of oscillations increases with the frequency.
zero_mean : bool, default False
Make sure the wavelet has a mean of zero.
Returns
-------
Ws : list of ndarray | ndarray
The wavelets time series. If ``freqs`` was a float, a single
ndarray is returned instead of a list of ndarray.
See Also
--------
mne.time_frequency.fwhm
Notes
-----
%(morlet_reference)s
%(fwhm_morlet_notes)s
References
----------
.. footbibliography::
Examples
--------
Let's show a simple example of the relationship between ``n_cycles`` and
the FWHM using :func:`mne.time_frequency.fwhm`:
.. plot::
import numpy as np
import matplotlib.pyplot as plt
from mne.time_frequency import morlet, fwhm
sfreq, freq, n_cycles = 1000., 10, 7 # i.e., 700 ms
this_fwhm = fwhm(freq, n_cycles)
wavelet = morlet(sfreq=sfreq, freqs=freq, n_cycles=n_cycles)
M, w = len(wavelet), n_cycles # convert to SciPy convention
s = w * sfreq / (2 * freq * np.pi) # from SciPy docs
_, ax = plt.subplots(layout="constrained")
colors = dict(real="#66CCEE", imag="#EE6677")
t = np.arange(-M // 2 + 1, M // 2 + 1) / sfreq
for kind in ('real', 'imag'):
ax.plot(
t, getattr(wavelet, kind), label=kind, color=colors[kind],
)
ax.plot(t, np.abs(wavelet), label=f'abs', color='k', lw=1., zorder=6)
half_max = np.max(np.abs(wavelet)) / 2.
ax.plot([-this_fwhm / 2., this_fwhm / 2.], [half_max, half_max],
color='k', linestyle='-', label='FWHM', zorder=6)
ax.legend(loc='upper right')
ax.set(xlabel='Time (s)', ylabel='Amplitude')
""" # noqa: E501
Ws = list()
n_cycles = np.array(n_cycles, float).ravel()
freqs = np.array(freqs, float)
if np.any(freqs <= 0):
raise ValueError("all frequencies in 'freqs' must be greater than 0.")
if (n_cycles.size != 1) and (n_cycles.size != len(freqs)):
raise ValueError("n_cycles should be fixed or defined for each frequency.")
_check_option("freqs.ndim", freqs.ndim, [0, 1])
singleton = freqs.ndim == 0
if singleton:
freqs = freqs[np.newaxis]
for k, f in enumerate(freqs):
if len(n_cycles) != 1:
this_n_cycles = n_cycles[k]
else:
this_n_cycles = n_cycles[0]
# sigma_t is the stddev of gaussian window in the time domain; can be
# scale-dependent or fixed across freqs
if sigma is None:
sigma_t = this_n_cycles / (2.0 * np.pi * f)
else:
sigma_t = this_n_cycles / (2.0 * np.pi * sigma)
# time vector. We go 5 standard deviations out to make sure we're
# *very* close to zero at the ends. We also make sure that there's a
# sample at exactly t=0
t = np.arange(0.0, 5.0 * sigma_t, 1.0 / sfreq)
t = np.r_[-t[::-1], t[1:]]
oscillation = np.exp(2.0 * 1j * np.pi * f * t)
if zero_mean:
# this offset is equivalent to the κ_σ term in Wikipedia's
# equations, and satisfies the "admissibility criterion" for CWTs
real_offset = np.exp(-2 * (np.pi * f * sigma_t) ** 2)
oscillation -= real_offset
gaussian_envelope = np.exp(-(t**2) / (2.0 * sigma_t**2))
W = oscillation * gaussian_envelope
# the scaling factor here is proportional to what is used in
# Tallon-Baudry 1997: (sigma_t*sqrt(pi))^(-1/2). It yields a wavelet
# with norm sqrt(2) for the full wavelet / norm 1 for the real part
W /= np.sqrt(0.5) * np.linalg.norm(W.ravel())
Ws.append(W)
if singleton:
Ws = Ws[0]
return Ws
def fwhm(freq, n_cycles):
"""Compute the full-width half maximum of a Morlet wavelet.
Uses the formula from :footcite:t:`Cohen2019`.
Parameters
----------
freq : float
The oscillation frequency of the wavelet.
n_cycles : float
The duration of the wavelet, expressed as the number of oscillation
cycles.
Returns
-------
fwhm : float
The full-width half maximum of the wavelet.
Notes
-----
.. versionadded:: 1.3
References
----------
.. footbibliography::
"""
return n_cycles * np.sqrt(2 * np.log(2)) / (np.pi * freq)
def _make_dpss(
sfreq,
freqs,
n_cycles=7.0,
time_bandwidth=4.0,
zero_mean=False,
return_weights=False,
):
"""Compute DPSS tapers for the given frequency range.
Parameters
----------
sfreq : float
The sampling frequency.
freqs : ndarray, shape (n_freqs,)
The frequencies in Hz.
n_cycles : float | ndarray, shape (n_freqs,), default 7.
The number of cycles globally or for each frequency.
time_bandwidth : float, default 4.0
Time x Bandwidth product.
The number of good tapers (low-bias) is chosen automatically based on
this to equal floor(time_bandwidth - 1).
Default is 4.0, giving 3 good tapers.
zero_mean : bool | None, , default False
Make sure the wavelet has a mean of zero.
return_weights : bool
Whether to return the concentration weights.
Returns
-------
Ws : list of array
The wavelets time series.
Cs : list of array
The concentration weights. Only returned if return_weights=True.
"""
Ws = list()
Cs = list()
freqs = np.array(freqs)
if np.any(freqs <= 0):
raise ValueError("all frequencies in 'freqs' must be greater than 0.")
if time_bandwidth < 2.0:
raise ValueError("time_bandwidth should be >= 2.0 for good tapers")
n_taps = int(np.floor(time_bandwidth - 1))
n_cycles = np.atleast_1d(n_cycles)
if n_cycles.size != 1 and n_cycles.size != len(freqs):
raise ValueError("n_cycles should be fixed or defined for each frequency.")
for m in range(n_taps):
Wm = list()
Cm = list()
for k, f in enumerate(freqs):
if len(n_cycles) != 1:
this_n_cycles = n_cycles[k]
else:
this_n_cycles = n_cycles[0]
t_win = this_n_cycles / float(f)
t = np.arange(0.0, t_win, 1.0 / sfreq)
# Making sure wavelets are centered before tapering
oscillation = np.exp(2.0 * 1j * np.pi * f * (t - t_win / 2.0))
# Get dpss tapers
tapers, conc = dpss_windows(
t.shape[0], time_bandwidth / 2.0, n_taps, sym=False
)
Wk = oscillation * tapers[m]
if zero_mean: # to make it zero mean
real_offset = Wk.mean()
Wk -= real_offset
Wk /= np.sqrt(0.5) * np.linalg.norm(Wk.ravel())
Ck = np.sqrt(conc[m])
Wm.append(Wk)
Cm.append(Ck)
Ws.append(Wm)
Cs.append(Cm)
if return_weights:
return Ws, Cs
return Ws
# Low level convolution
def _get_nfft(wavelets, X, use_fft=True, check=True):
n_times = X.shape[-1]
max_size = max(w.size for w in wavelets)
if max_size > n_times:
msg = (
f"At least one of the wavelets ({max_size}) is longer than the "
f"signal ({n_times}). Consider using a longer signal or "
"shorter wavelets."
)
if check:
if use_fft:
warn(msg, UserWarning)
else:
raise ValueError(msg)
nfft = n_times + max_size - 1
nfft = next_fast_len(nfft) # 2 ** int(np.ceil(np.log2(nfft)))
return nfft
def _cwt_gen(X, Ws, *, fsize=0, mode="same", decim=1, use_fft=True):
"""Compute cwt with fft based convolutions or temporal convolutions.
Parameters
----------
X : array of shape (n_signals, n_times)
The data.
Ws : list of array
Wavelets time series.
fsize : int
FFT length.
mode : {'full', 'valid', 'same'}
See numpy.convolve.
decim : int | slice, default 1
To reduce memory usage, decimation factor after time-frequency
decomposition.
If `int`, returns tfr[..., ::decim].
If `slice`, returns tfr[..., decim].
.. note:: Decimation may create aliasing artifacts.
use_fft : bool, default True
Use the FFT for convolutions or not.
Returns
-------
out : array, shape (n_signals, n_freqs, n_time_decim)
The time-frequency transform of the signals.
"""
_check_option("mode", mode, ["same", "valid", "full"])
decim = _ensure_slice(decim)
X = np.asarray(X)
# Precompute wavelets for given frequency range to save time
_, n_times = X.shape
n_times_out = X[:, decim].shape[1]
n_freqs = len(Ws)
# precompute FFTs of Ws
if use_fft:
fft_Ws = np.empty((n_freqs, fsize), dtype=np.complex128)
for i, W in enumerate(Ws):
fft_Ws[i] = fft(W, fsize)
# Make generator looping across signals
tfr = np.zeros((n_freqs, n_times_out), dtype=np.complex128)
for x in X:
if use_fft:
fft_x = fft(x, fsize)
# Loop across wavelets
for ii, W in enumerate(Ws):
if use_fft:
ret = ifft(fft_x * fft_Ws[ii])[: n_times + W.size - 1]
else:
# Work around multarray.correlate->OpenBLAS bug on ppc64le
# ret = np.correlate(x, W, mode=mode)
ret = np.convolve(x, W.real, mode=mode) + 1j * np.convolve(
x, W.imag, mode=mode
)
# Center and decimate decomposition
if mode == "valid":
sz = int(abs(W.size - n_times)) + 1
offset = (n_times - sz) // 2
this_slice = slice(offset // decim.step, (offset + sz) // decim.step)
if use_fft:
ret = _centered(ret, sz)
tfr[ii, this_slice] = ret[decim]
elif mode == "full" and not use_fft:
start = (W.size - 1) // 2
end = len(ret) - (W.size // 2)
ret = ret[start:end]
tfr[ii, :] = ret[decim]
else:
if use_fft:
ret = _centered(ret, n_times)
tfr[ii, :] = ret[decim]
yield tfr
# Loop of convolution: single trial
def _compute_tfr(
epoch_data,
freqs,
sfreq=1.0,
method="morlet",
n_cycles=7.0,
zero_mean=None,
time_bandwidth=None,
use_fft=True,
decim=1,
output="complex",
return_weights=False,
n_jobs=None,
*,
verbose=None,
):
"""Compute time-frequency transforms.
Parameters
----------
epoch_data : array of shape (n_epochs, n_channels, n_times)
The epochs.default ``'complex'``
freqs : array-like of floats, shape (n_freqs)
The frequencies.
sfreq : float | int, default 1.0
Sampling frequency of the data.
method : 'multitaper' | 'morlet', default 'morlet'
The time-frequency method. 'morlet' convolves a Morlet wavelet.
'multitaper' uses complex exponentials windowed with multiple DPSS
tapers.
n_cycles : float | array of float, default 7.0
Number of cycles in the wavelet. Fixed number
or one per frequency.
zero_mean : bool | None, default None
None means True for method='multitaper' and False for method='morlet'.
If True, make sure the wavelets have a mean of zero.
time_bandwidth : float, default None
If None and method=multitaper, will be set to 4.0 (3 tapers).
Time x (Full) Bandwidth product. Only applies if
method == 'multitaper'. The number of good tapers (low-bias) is
chosen automatically based on this to equal floor(time_bandwidth - 1).
use_fft : bool, default True
Use the FFT for convolutions or not.
decim : int | slice, default 1
To reduce memory usage, decimation factor after time-frequency
decomposition.
If `int`, returns tfr[..., ::decim].
If `slice`, returns tfr[..., decim].
.. note::
Decimation may create aliasing artifacts, yet decimation
is done after the convolutions.
output : str
* 'complex' (default) : single trial complex.
* 'power' : single trial power.
* 'phase' : single trial phase.
* 'avg_power' : average of single trial power.
* 'itc' : inter-trial coherence.
* 'avg_power_itc' : average of single trial power and inter-trial
coherence across trials.
return_weights : bool, default False
Whether to return the taper weights. Only applies if method='multitaper' and
output='complex' or 'phase'.
%(n_jobs)s
The number of epochs to process at the same time. The parallelization
is implemented across channels.
%(verbose)s
Returns
-------
out : array
Time frequency transform of epoch_data. If output is in ['complex',
'phase', 'power'], then shape of ``out`` is ``(n_epochs, n_chans,
n_freqs, n_times)``, else it is ``(n_chans, n_freqs, n_times)``.
However, using multitaper method and output ``'complex'`` or
``'phase'`` results in shape of ``out`` being ``(n_epochs, n_chans,
n_tapers, n_freqs, n_times)``. If output is ``'avg_power_itc'``, the
real values in the ``output`` contain average power' and the imaginary
values contain the ITC: ``out = avg_power + i * itc``.
weights : array of shape (n_tapers, n_freqs)
The taper weights. Only returned if method='multitaper', output='complex' or
'phase', and return_weights=True.
"""
# Check data
epoch_data = np.asarray(epoch_data)
if epoch_data.ndim != 3:
raise ValueError(
"epoch_data must be of shape (n_epochs, n_chans, "
f"n_times), got {epoch_data.shape}"
)
# Check params
freqs, sfreq, zero_mean, n_cycles, time_bandwidth, decim = _check_tfr_param(
freqs,
sfreq,
method,
zero_mean,
n_cycles,
time_bandwidth,
use_fft,
decim,
output,
)
return_weights = (
return_weights and method == "multitaper" and output in ["complex", "phase"]
)
decim = _ensure_slice(decim)
if (freqs > sfreq / 2.0).any():
raise ValueError(
"Cannot compute freq above Nyquist freq of the data "
f"({sfreq / 2.0:0.1f} Hz), got {freqs.max():0.1f} Hz"
)
# We decimate *after* decomposition, so we need to create our kernels
# for the original sfreq
if method == "morlet":
W = morlet(sfreq, freqs, n_cycles=n_cycles, zero_mean=zero_mean)
Ws = [W] # to have same dimensionality as the 'multitaper' case
weights = None # no tapers for Morlet estimates
elif method == "multitaper":
Ws, weights = _make_dpss(
sfreq,
freqs,
n_cycles=n_cycles,
time_bandwidth=time_bandwidth,
zero_mean=zero_mean,
return_weights=True, # required for converting complex → power
)
weights = np.asarray(weights)
# Check wavelets
if len(Ws[0][0]) > epoch_data.shape[2]:
raise ValueError(
"At least one of the wavelets is longer than the "
f"signal ({len(Ws[0][0])} > {epoch_data.shape[2]} samples). "
"Use a longer signal or shorter wavelets."
)
# Initialize output
n_freqs = len(freqs)
n_tapers = len(Ws)
n_epochs, n_chans, n_times = epoch_data[:, :, decim].shape
if output in ("power", "phase", "avg_power", "itc"):
dtype = np.float64
elif output in ("complex", "avg_power_itc"):
# avg_power_itc is stored as power + 1i * itc to keep a
# simple dimensionality
dtype = np.complex128
if ("avg_" in output) or ("itc" in output):
out = np.empty((n_chans, n_freqs, n_times), dtype)
elif output in ["complex", "phase"] and method == "multitaper":
out = np.empty((n_chans, n_epochs, n_tapers, n_freqs, n_times), dtype)
else:
out = np.empty((n_chans, n_epochs, n_freqs, n_times), dtype)
# Parallel computation
all_Ws = sum([list(W) for W in Ws], list())
_get_nfft(all_Ws, epoch_data, use_fft)
parallel, my_cwt, n_jobs = parallel_func(_time_frequency_loop, n_jobs)
# Parallelization is applied across channels.
tfrs = parallel(
my_cwt(channel, Ws, output, use_fft, "same", decim, weights)
for channel in epoch_data.transpose(1, 0, 2)
)
# FIXME: to avoid overheads we should use np.array_split()
for channel_idx, tfr in enumerate(tfrs):
out[channel_idx] = tfr
if ("avg_" not in output) and ("itc" not in output):
# This is to enforce that the first dimension is for epochs
out = np.moveaxis(out, 1, 0)
if return_weights:
return out, weights
return out
def _check_tfr_param(
freqs, sfreq, method, zero_mean, n_cycles, time_bandwidth, use_fft, decim, output
):
"""Aux. function to _compute_tfr to check the params validity."""
# Check freqs
if not isinstance(freqs, list | np.ndarray):
raise ValueError(f"freqs must be an array-like, got {type(freqs)} instead.")
freqs = np.asarray(freqs, dtype=float)
if freqs.ndim != 1:
raise ValueError(
f"freqs must be of shape (n_freqs,), got {np.array(freqs.shape)} instead."
)
# Check sfreq
if not isinstance(sfreq, float | int):
raise ValueError(f"sfreq must be a float or an int, got {type(sfreq)} instead.")
sfreq = float(sfreq)
# Default zero_mean = True if multitaper else False
zero_mean = method == "multitaper" if zero_mean is None else zero_mean
if not isinstance(zero_mean, bool):
raise ValueError(
f"zero_mean should be of type bool, got {type(zero_mean)}. instead"
)
freqs = np.asarray(freqs)
# Check n_cycles
if isinstance(n_cycles, int | float):
n_cycles = float(n_cycles)
elif isinstance(n_cycles, list | np.ndarray):
n_cycles = np.array(n_cycles)
if len(n_cycles) != len(freqs):
raise ValueError(
"n_cycles must be a float or an array of length "
f"{len(freqs)} frequencies, got {len(n_cycles)} cycles instead."
)
else:
raise ValueError(
f"n_cycles must be a float or an array, got {type(n_cycles)} instead."
)
# Check time_bandwidth
if (method == "morlet") and (time_bandwidth is not None):
raise ValueError('time_bandwidth only applies to "multitaper" method.')
elif method == "multitaper":
time_bandwidth = 4.0 if time_bandwidth is None else float(time_bandwidth)
# Check use_fft
if not isinstance(use_fft, bool):
raise ValueError(f"use_fft must be a boolean, got {type(use_fft)} instead.")
# Check decim
if isinstance(decim, int):
decim = slice(None, None, decim)
if not isinstance(decim, slice):
raise ValueError(
f"decim must be an integer or a slice, got {type(decim)} instead."
)
# Check output
_check_option(
"output",
output,
["complex", "power", "phase", "avg_power_itc", "avg_power", "itc"],
)
_check_option("method", method, ["multitaper", "morlet"])
return freqs, sfreq, zero_mean, n_cycles, time_bandwidth, decim
def _time_frequency_loop(X, Ws, output, use_fft, mode, decim, weights=None):
"""Aux. function to _compute_tfr.
Loops time-frequency transform across wavelets and epochs.
Parameters
----------
X : array, shape (n_epochs, n_times)
The epochs data of a single channel.
Ws : list, shape (n_tapers, n_wavelets, n_times)
The wavelets.
output : str
* 'complex' : single trial complex.
* 'power' : single trial power.
* 'phase' : single trial phase.
* 'avg_power' : average of single trial power.
* 'itc' : inter-trial coherence.
* 'avg_power_itc' : average of single trial power and inter-trial
coherence across trials.
use_fft : bool
Use the FFT for convolutions or not.
mode : {'full', 'valid', 'same'}
See numpy.convolve.
decim : slice
The decimation slice: e.g. power[:, decim]
weights : array, shape (n_tapers, n_wavelets) | None
Concentration weights for each taper in the wavelets, if present.
"""
# Set output type
dtype = np.float64
if output in ["complex", "avg_power_itc"]:
dtype = np.complex128
# Init outputs
decim = _ensure_slice(decim)
n_tapers = len(Ws)
n_epochs, n_times = X[:, decim].shape
n_freqs = len(Ws[0])
if ("avg_" in output) or ("itc" in output):
tfrs = np.zeros((n_freqs, n_times), dtype=dtype)
elif output in ["complex", "phase"] and weights is not None:
tfrs = np.zeros((n_epochs, n_tapers, n_freqs, n_times), dtype=dtype)
else:
tfrs = np.zeros((n_epochs, n_freqs, n_times), dtype=dtype)
if weights is not None:
weights = np.expand_dims(weights, axis=-1) # add singleton time dimension
# Loops across tapers.
for taper_idx, W in enumerate(Ws):
# No need to check here, it's done earlier (outside parallel part)
nfft = _get_nfft(W, X, use_fft, check=False)
coefs = _cwt_gen(X, W, fsize=nfft, mode=mode, decim=decim, use_fft=use_fft)
# Inter-trial phase locking is apparently computed per taper...
if "itc" in output:
plf = np.zeros((n_freqs, n_times), dtype=np.complex128)
# Loop across epochs
for epoch_idx, tfr in enumerate(coefs):
# Transform complex values
if output not in ["complex", "phase"] and weights is not None:
tfr = weights[taper_idx] * tfr # weight each taper estimate
if output in ["power", "avg_power"]:
tfr = (tfr * tfr.conj()).real # power
elif output == "phase":
tfr = np.angle(tfr)
elif output == "avg_power_itc":
tfr_abs = np.abs(tfr)
plf += tfr / tfr_abs # phase
tfr = tfr_abs**2 # power
elif output == "itc":
plf += tfr / np.abs(tfr) # phase
continue # not need to stack anything else than plf
# Stack or add
if ("avg_" in output) or ("itc" in output):
tfrs += tfr
elif output in ["complex", "phase"] and weights is not None:
tfrs[epoch_idx, taper_idx] += tfr
else:
tfrs[epoch_idx] += tfr
# Compute inter trial coherence
if output == "avg_power_itc":
tfrs += 1j * np.abs(plf)
elif output == "itc":
tfrs += np.abs(plf)
# Normalization of average metrics
if ("avg_" in output) or ("itc" in output):
tfrs /= n_epochs
# Normalization by taper weights
if n_tapers > 1 and output not in ["complex", "phase", "itc"]:
if "avg_" not in output: # add singleton epochs dimension to weights
weights = np.expand_dims(weights, axis=0)
tfrs.real *= 2 / (weights * weights.conj()).real.sum(axis=-3)
if output == "avg_power_itc": # weight itc by the number of tapers
tfrs.imag = tfrs.imag / n_tapers
return tfrs
@fill_doc
def cwt(X, Ws, use_fft=True, mode="same", decim=1):
"""Compute time-frequency decomposition with continuous wavelet transform.
Parameters
----------
X : array, shape (n_signals, n_times)
The signals.
Ws : list of array
Wavelets time series.
use_fft : bool
Use FFT for convolutions. Defaults to True.
mode : 'same' | 'valid' | 'full'
Convention for convolution. 'full' is currently not implemented with
``use_fft=False``. Defaults to ``'same'``.
%(decim_tfr)s
Returns
-------
tfr : array, shape (n_signals, n_freqs, n_times)
The time-frequency decompositions.
See Also
--------
mne.time_frequency.tfr_morlet : Compute time-frequency decomposition
with Morlet wavelets.
"""
nfft = _get_nfft(Ws, X, use_fft)
return _cwt_array(X, Ws, nfft, mode, decim, use_fft)
def _cwt_array(X, Ws, nfft, mode, decim, use_fft):
decim = _ensure_slice(decim)
coefs = _cwt_gen(X, Ws, fsize=nfft, mode=mode, decim=decim, use_fft=use_fft)
n_signals, n_times = X[:, decim].shape
tfrs = np.empty((n_signals, len(Ws), n_times), dtype=np.complex128)
for k, tfr in enumerate(coefs):
tfrs[k] = tfr
return tfrs
def _tfr_aux(
method, inst, freqs, decim, return_itc, picks, average, output, **tfr_params
):
from ..epochs import BaseEpochs
kwargs = dict(
method=method,
freqs=freqs,
picks=picks,
decim=decim,
output=output,
**tfr_params,
)
if isinstance(inst, BaseEpochs):
kwargs.update(average=average, return_itc=return_itc)
elif average:
logger.info("inst is Evoked, setting `average=False`")
average = False
if average and output == "complex":
raise ValueError('output must be "power" if average=True')
if not average and return_itc:
raise ValueError("Inter-trial coherence is not supported with average=False")
return inst.compute_tfr(**kwargs)
@legacy(alt='.compute_tfr(method="morlet")')
@verbose
def tfr_morlet(
inst,
freqs,
n_cycles,
use_fft=False,
return_itc=True,
decim=1,
n_jobs=None,
picks=None,
zero_mean=True,
average=True,
output="power",
verbose=None,
):
"""Compute Time-Frequency Representation (TFR) using Morlet wavelets.
Same computation as `~mne.time_frequency.tfr_array_morlet`, but
operates on `~mne.Epochs` or `~mne.Evoked` objects instead of
:class:`NumPy arrays <numpy.ndarray>`.
Parameters
----------
inst : Epochs | Evoked
The epochs or evoked object.
%(freqs_tfr_array)s
%(n_cycles_tfr)s
use_fft : bool, default False
The fft based convolution or not.
return_itc : bool, default True
Return inter-trial coherence (ITC) as well as averaged power.
Must be ``False`` for evoked data.
%(decim_tfr)s
%(n_jobs)s
picks : array-like of int | None, default None
The indices of the channels to decompose. If None, all available
good data channels are decomposed.
zero_mean : bool, default True
Make sure the wavelet has a mean of zero.
.. versionadded:: 0.13.0
%(average_tfr)s
output : str
Can be ``"power"`` (default) or ``"complex"``. If ``"complex"``, then
``average`` must be ``False``.
.. versionadded:: 0.15.0
%(verbose)s
Returns
-------
power : AverageTFR | EpochsTFR
The averaged or single-trial power.
itc : AverageTFR | EpochsTFR
The inter-trial coherence (ITC). Only returned if return_itc
is True.
See Also
--------
mne.time_frequency.tfr_array_morlet
mne.time_frequency.tfr_multitaper
mne.time_frequency.tfr_array_multitaper
mne.time_frequency.tfr_stockwell
mne.time_frequency.tfr_array_stockwell
Notes
-----
%(morlet_reference)s
%(temporal_window_tfr_intro)s
%(temporal_window_tfr_morlet_notes)s
See :func:`mne.time_frequency.morlet` for more information about the
Morlet wavelet.
References
----------
.. footbibliography::
"""
tfr_params = dict(
n_cycles=n_cycles,
n_jobs=n_jobs,
use_fft=use_fft,
zero_mean=zero_mean,
output=output,
)
return _tfr_aux(
"morlet", inst, freqs, decim, return_itc, picks, average, **tfr_params
)
@verbose
def tfr_array_morlet(
data,
sfreq,
freqs,
n_cycles=7.0,
zero_mean=True,
use_fft=True,
decim=1,
output="complex",
n_jobs=None,
*,
verbose=None,
):
"""Compute Time-Frequency Representation (TFR) using Morlet wavelets.
Same computation as `~mne.time_frequency.tfr_morlet`, but operates on
:class:`NumPy arrays <numpy.ndarray>` instead of `~mne.Epochs` objects.
Parameters
----------
data : array of shape (n_epochs, n_channels, n_times)
The epochs.
sfreq : float | int
Sampling frequency of the data.
%(freqs_tfr_array)s
%(n_cycles_tfr)s
zero_mean : bool | None
If True, make sure the wavelets have a mean of zero. default False.
.. versionchanged:: 1.8
The default will change from ``zero_mean=False`` in 1.6 to ``True`` in
1.8.
use_fft : bool
Use the FFT for convolutions or not. default True.
%(decim_tfr)s
output : str, default ``'complex'``
* ``'complex'`` : single trial complex.
* ``'power'`` : single trial power.
* ``'phase'`` : single trial phase.
* ``'avg_power'`` : average of single trial power.
* ``'itc'`` : inter-trial coherence.
* ``'avg_power_itc'`` : average of single trial power and inter-trial
coherence across trials.
%(n_jobs)s
The number of epochs to process at the same time. The parallelization
is implemented across channels. Default 1.
%(verbose)s
Returns
-------
out : array
Time frequency transform of ``data``.
- if ``output in ('complex', 'phase', 'power')``, array of shape
``(n_epochs, n_chans, n_freqs, n_times)``
- else, array of shape ``(n_chans, n_freqs, n_times)``
If ``output`` is ``'avg_power_itc'``, the real values in ``out``
contain the average power and the imaginary values contain the ITC:
:math:`out = power_{avg} + i * itc`.
See Also
--------
mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_multitaper
mne.time_frequency.tfr_array_multitaper
mne.time_frequency.tfr_stockwell
mne.time_frequency.tfr_array_stockwell
Notes
-----
%(morlet_reference)s
%(temporal_window_tfr_intro)s
%(temporal_window_tfr_morlet_notes)s
.. versionadded:: 0.14.0
References
----------
.. footbibliography::
"""
return _compute_tfr(
epoch_data=data,
freqs=freqs,
sfreq=sfreq,
method="morlet",
n_cycles=n_cycles,
zero_mean=zero_mean,
time_bandwidth=None,
use_fft=use_fft,
decim=decim,
output=output,
n_jobs=n_jobs,
verbose=verbose,
)
@legacy(alt='.compute_tfr(method="multitaper")')
@verbose
def tfr_multitaper(
inst,
freqs,
n_cycles,
time_bandwidth=4.0,
use_fft=True,
return_itc=True,
decim=1,
n_jobs=None,
picks=None,
average=True,
*,
verbose=None,
):
"""Compute Time-Frequency Representation (TFR) using DPSS tapers.
Same computation as :func:`~mne.time_frequency.tfr_array_multitaper`, but
operates on :class:`~mne.Epochs` or :class:`~mne.Evoked` objects instead of
:class:`NumPy arrays <numpy.ndarray>`.
Parameters
----------
inst : Epochs | Evoked
The epochs or evoked object.
%(freqs_tfr_array)s
%(n_cycles_tfr)s
%(time_bandwidth_tfr)s
use_fft : bool, default True
The fft based convolution or not.
return_itc : bool, default True
Return inter-trial coherence (ITC) as well as averaged (or
single-trial) power.
%(decim_tfr)s
%(n_jobs)s
%(picks_good_data)s
%(average_tfr)s
%(verbose)s
Returns
-------
power : AverageTFR | EpochsTFR
The averaged or single-trial power.
itc : AverageTFR | EpochsTFR
The inter-trial coherence (ITC). Only returned if return_itc
is True.
See Also
--------
mne.time_frequency.tfr_array_multitaper
mne.time_frequency.tfr_stockwell
mne.time_frequency.tfr_array_stockwell
mne.time_frequency.tfr_morlet
mne.time_frequency.tfr_array_morlet
Notes
-----
%(temporal_window_tfr_intro)s
%(temporal_window_tfr_multitaper_notes)s
%(time_bandwidth_tfr_notes)s
.. versionadded:: 0.9.0
"""
from ..epochs import EpochsArray
from ..evoked import Evoked
tfr_params = dict(
n_cycles=n_cycles,
n_jobs=n_jobs,
use_fft=use_fft,
zero_mean=True,
time_bandwidth=time_bandwidth,
)
if isinstance(inst, Evoked) and not average:
# convert AverageTFR to EpochsTFR for backwards compatibility
inst = EpochsArray(inst.data[np.newaxis], inst.info, tmin=inst.tmin, proj=False)
return _tfr_aux(
method="multitaper",
inst=inst,
freqs=freqs,
decim=decim,
return_itc=return_itc,
picks=picks,
average=average,
output="power",
**tfr_params,
)
# TFR(s) class
@fill_doc
class BaseTFR(ContainsMixin, UpdateChannelsMixin, SizeMixin, ExtendedTimeMixin):
"""Base class for RawTFR, EpochsTFR, and AverageTFR (for type checking only).
.. note::
This class should not be instantiated directly; it is provided in the public API
only for type-checking purposes (e.g., ``isinstance(my_obj, BaseTFR)``). To
create TFR objects, use the ``.compute_tfr()`` methods on :class:`~mne.io.Raw`,
:class:`~mne.Epochs`, or :class:`~mne.Evoked`, or use the constructors listed
below under "See Also".
Parameters
----------
inst : instance of Raw, Epochs, or Evoked
The data from which to compute the time-frequency representation.
%(method_tfr)s
%(freqs_tfr)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(decim_tfr)s
%(n_jobs)s
%(reject_by_annotation_tfr)s
%(verbose)s
%(method_kw_tfr)s
See Also
--------
mne.time_frequency.RawTFR
mne.time_frequency.RawTFRArray
mne.time_frequency.EpochsTFR
mne.time_frequency.EpochsTFRArray
mne.time_frequency.AverageTFR
mne.time_frequency.AverageTFRArray
"""
def __init__(
self,
inst,
method,
freqs,
tmin,
tmax,
picks,
proj,
*,
decim,
n_jobs,
reject_by_annotation=None,
verbose=None,
**method_kw,
):
from ..epochs import BaseEpochs
from ._stockwell import tfr_array_stockwell
# triage reading from file
if isinstance(inst, dict):
self.__setstate__(inst)
return
if method is None or freqs is None:
problem = [
f"{k}=None"
for k, v in dict(method=method, freqs=freqs).items()
if v is None
]
# TODO when py3.11 is min version, replace if/elif/else block with
# classname = inspect.currentframe().f_back.f_code.co_qualname.split(".")[0]
_varnames = inspect.currentframe().f_back.f_code.co_varnames
if "BaseRaw" in _varnames:
classname = "RawTFR"
elif "Evoked" in _varnames:
classname = "AverageTFR"
else:
assert "BaseEpochs" in _varnames and "Evoked" not in _varnames
classname = "EpochsTFR"
# end TODO
raise ValueError(
f"{classname} got unsupported parameter value{_pl(problem)} "
f"{' and '.join(problem)}."
)
# check method
valid_methods = ["morlet", "multitaper"]
if isinstance(inst, BaseEpochs):
valid_methods.append("stockwell")
method = _check_option("method", method, valid_methods)
# for stockwell, `tmin, tmax` already added to `method_kw` by calling method,
# and `freqs` vector has been pre-computed
if method != "stockwell":
method_kw.update(freqs=freqs)
# ↓↓↓ if constructor called directly, prevents key error
method_kw.setdefault("output", "power")
self._freqs = np.asarray(freqs, dtype=np.float64)
del freqs
# always store weights for per-taper outputs
if method == "multitaper" and method_kw.get("output") in ["complex", "phase"]:
method_kw["return_weights"] = True
# check validity of kwargs manually to save compute time if any are invalid
tfr_funcs = dict(
morlet=tfr_array_morlet,
multitaper=tfr_array_multitaper,
stockwell=tfr_array_stockwell,
)
_check_method_kwargs(tfr_funcs[method], method_kw, msg=f'TFR method "{method}"')
self._tfr_func = partial(tfr_funcs[method], **method_kw)
# apply proj if desired
if proj:
inst = inst.copy().apply_proj()
self.inst = inst
# prep picks and add the info object. bads and non-data channels are dropped by
# _picks_to_idx() so we update the info accordingly:
self._picks = _picks_to_idx(inst.info, picks, "data", with_ref_meg=False)
self.info = pick_info(inst.info, sel=self._picks, copy=True)
# assign some attributes
self._method = method
self._inst_type = type(inst)
self._baseline = None
self._weights = None
self.preload = True # needed for __getitem__, never False for TFRs
# self._dims may also get updated by child classes
self._dims = ["channel", "freq", "time"]
self._needs_taper_dim = method == "multitaper" and method_kw["output"] in (
"complex",
"phase",
)
if self._needs_taper_dim:
self._dims.insert(1, "taper")
self._dims = tuple(self._dims)
# get the instance data.
time_mask = _time_mask(inst.times, tmin, tmax, sfreq=self.sfreq)
get_instance_data_kw = dict(time_mask=time_mask)
if reject_by_annotation is not None:
get_instance_data_kw.update(reject_by_annotation=reject_by_annotation)
data = self._get_instance_data(**get_instance_data_kw)
# compute the TFR
self._decim = _ensure_slice(decim)
self._raw_times = inst.times[time_mask]
self._compute_tfr(data, n_jobs, verbose)
self._update_epoch_attributes()
# "apply" decim to the rest of the object (data is decimated in _compute_tfr)
with self.info._unlock():
self.info["sfreq"] /= self._decim.step
_decim_times = inst.times[self._decim]
_decim_time_mask = _time_mask(_decim_times, tmin, tmax, sfreq=self.sfreq)
self._raw_times = _decim_times[_decim_time_mask].copy()
self._set_times(self._raw_times)
self._decim = 1
# record data type (for repr and html_repr). ITC handled in the calling method.
if method == "stockwell":
self._data_type = "Power Estimates"
else:
data_types = dict(
power="Power Estimates",
avg_power="Average Power Estimates",
avg_power_itc="Average Power Estimates",
phase="Phase",
complex="Complex Amplitude",
)
self._data_type = data_types[method_kw["output"]]
# check for correct shape and bad values. `tfr_array_stockwell` doesn't take kw
# `output` so it may be missing here, so use `.get()`
negative_ok = method_kw.get("output", "") in ("complex", "phase")
# if method_kw.get("output", None) in ("phase", "complex"):
# raise RuntimeError
self._check_values(negative_ok=negative_ok)
# we don't need these anymore, and they make save/load harder
del self._picks
del self._tfr_func
del self._needs_taper_dim
del self._shape # calculated from self._data henceforth
del self.inst # save memory
def __abs__(self):
"""Return the absolute value."""
tfr = self.copy()
tfr.data = np.abs(tfr.data)
return tfr
@fill_doc
def __add__(self, other):
"""Add two TFR instances.
%(__add__tfr)s
"""
self._check_compatibility(other)
out = self.copy()
out.data += other.data
return out
@fill_doc
def __iadd__(self, other):
"""Add a TFR instance to another, in-place.
%(__iadd__tfr)s
"""
self._check_compatibility(other)
self.data += other.data
return self
@fill_doc
def __sub__(self, other):
"""Subtract two TFR instances.
%(__sub__tfr)s
"""
self._check_compatibility(other)
out = self.copy()
out.data -= other.data
return out
@fill_doc
def __isub__(self, other):
"""Subtract a TFR instance from another, in-place.
%(__isub__tfr)s
"""
self._check_compatibility(other)
self.data -= other.data
return self
@fill_doc
def __mul__(self, num):
"""Multiply a TFR instance by a scalar.
%(__mul__tfr)s
"""
out = self.copy()
out.data *= num
return out
@fill_doc
def __imul__(self, num):
"""Multiply a TFR instance by a scalar, in-place.
%(__imul__tfr)s
"""
self.data *= num
return self
@fill_doc
def __truediv__(self, num):
"""Divide a TFR instance by a scalar.
%(__truediv__tfr)s
"""
out = self.copy()
out.data /= num
return out
@fill_doc
def __itruediv__(self, num):
"""Divide a TFR instance by a scalar, in-place.
%(__itruediv__tfr)s
"""
self.data /= num
return self
def __eq__(self, other):
"""Test equivalence of two TFR instances."""
return object_diff(vars(self), vars(other)) == ""
def __getstate__(self):
"""Prepare object for serialization."""
return dict(
method=self.method,
data=self._data,
sfreq=self.sfreq,
dims=self._dims,
freqs=self.freqs,
times=self.times,
inst_type_str=_get_instance_type_string(self),
data_type=self._data_type,
info=self.info,
baseline=self._baseline,
decim=self._decim,
weights=self._weights,
)
def __setstate__(self, state):
"""Unpack from serialized format."""
from ..epochs import Epochs
from ..evoked import Evoked
from ..io import Raw
defaults = dict(
method="unknown",
baseline=None,
decim=1,
data_type="TFR",
inst_type_str="Unknown",
)
defaults.update(**state)
self._method = defaults["method"]
self._data = defaults["data"]
self._freqs = np.asarray(defaults["freqs"], dtype=np.float64)
self._dims = defaults["dims"]
self._raw_times = np.asarray(defaults["times"], dtype=np.float64)
self._baseline = defaults["baseline"]
self.info = Info(**defaults["info"])
self._data_type = defaults["data_type"]
self._decim = defaults["decim"]
self.preload = True
self._set_times(self._raw_times)
self._weights = state.get("weights") # objs saved before #12910 won't have
# Handle instance type. Prior to gh-11282, Raw was not a possibility so if
# `inst_type_str` is missing it must be Epochs or Evoked
unknown_class = Epochs if "epoch" in self._dims else Evoked
inst_types = dict(Raw=Raw, Epochs=Epochs, Evoked=Evoked, Unknown=unknown_class)
self._inst_type = inst_types[defaults["inst_type_str"]]
# sanity check data/freqs/times/info/weights agreement
self._check_state()
def __repr__(self):
"""Build string representation of the TFR object."""
inst_type_str = _get_instance_type_string(self)
nave = f" (nave={self.nave})" if hasattr(self, "nave") else ""
# shape & dimension names
dims = " × ".join(
[f"{size} {dim}s" for size, dim in zip(self.shape, self._dims)]
)
freq_range = f"{self.freqs[0]:0.1f} - {self.freqs[-1]:0.1f} Hz"
time_range = f"{self.times[0]:0.2f} - {self.times[-1]:0.2f} s"
return (
f"<{self._data_type} from {inst_type_str}{nave}, "
f"{self.method} method | {dims}, {freq_range}, {time_range}, "
f"{sizeof_fmt(self._size)}>"
)
@repr_html
def _repr_html_(self, caption=None):
"""Build HTML representation of the TFR object."""
from ..html_templates import _get_html_template
inst_type_str = _get_instance_type_string(self)
nave = getattr(self, "nave", 0)
t = _get_html_template("repr", "tfr.html.jinja")
t = t.render(tfr=self, inst_type=inst_type_str, nave=nave, caption=caption)
return t
def _check_compatibility(self, other):
"""Check compatibility of two TFR instances, in preparation for arithmetic."""
operation = inspect.currentframe().f_back.f_code.co_name.strip("_")
if operation.startswith("i"):
operation = operation[1:]
msg = f"Cannot {operation} the two TFR instances: {{}} do not match{{}}."
extra = ""
if not isinstance(other, type(self)):
problem = "types"
extra = f" (self is {type(self)}, other is {type(other)})"
elif not self.times.shape == other.times.shape or np.any(
self.times != other.times
):
problem = "times"
elif not self.freqs.shape == other.freqs.shape or np.any(
self.freqs != other.freqs
):
problem = "freqs"
else: # should be OK
return
raise RuntimeError(msg.format(problem, extra))
def _check_state(self):
"""Check data/freqs/times/info/weights agreement during __setstate__."""
msg = "{} axis of data ({}) doesn't match {} attribute ({})"
n_chan_info = len(self.info["chs"])
n_chan = self._data.shape[self._dims.index("channel")]
n_freq = self._data.shape[self._dims.index("freq")]
n_time = self._data.shape[self._dims.index("time")]
n_taper = (
self._data.shape[self._dims.index("taper")]
if "taper" in self._dims
else None
)
if n_taper is not None and self._weights is None:
raise ValueError("Taper dimension in data, but no weights found.")
if n_chan_info != n_chan:
msg = msg.format("Channel", n_chan, "info", n_chan_info)
elif n_freq != len(self.freqs):
msg = msg.format("Frequency", n_freq, "freqs", self.freqs.size)
elif n_time != len(self.times):
msg = msg.format("Time", n_time, "times", self.times.size)
elif n_taper is not None and n_taper != self._weights.shape[0]:
msg = msg.format("Taper", n_taper, "weights", self._weights.shape[0])
elif n_taper is not None and n_freq != self._weights.shape[1]:
msg = msg.format("Frequency", n_freq, "weights", self._weights.shape[1])
else:
return
raise ValueError(msg)
def _check_values(self, negative_ok=False):
"""Check TFR results for correct shape and bad values."""
assert len(self._dims) == self._data.ndim
assert self._data.shape == self._shape
# Check for implausible power values: take min() across all but the channel axis
# TODO: should this be more fine-grained (report "chan X in epoch Y")?
ch_dim = self._dims.index("channel")
dims = np.arange(self._data.ndim).tolist()
dims.pop(ch_dim)
negative_values = self._data.min(axis=tuple(dims)) < 0
if negative_values.any() and not negative_ok:
chs = np.array(self.ch_names)[negative_values].tolist()
s = _pl(negative_values.sum())
warn(
f"Negative value in time-frequency decomposition for channel{s} "
f"{', '.join(chs)}",
UserWarning,
)
def _compute_tfr(self, data, n_jobs, verbose):
result = self._tfr_func(
data,
self.sfreq,
decim=self._decim,
n_jobs=n_jobs,
verbose=verbose,
)
# assign ._data and maybe ._itc
# tfr_array_stockwell always returns ITC (sometimes it's None)
if self.method == "stockwell":
self._data, self._itc, freqs = result
assert np.array_equal(self._freqs, freqs)
elif self.method == "multitaper" and self._tfr_func.keywords.get(
"output", ""
) in ["complex", "phase"]:
self._data, self._weights = result
elif self._tfr_func.keywords.get("output", "").endswith("_itc"):
self._data, self._itc = result.real, result.imag
else:
self._data = result
# remove fake "epoch" dimension
if self.method != "stockwell" and _get_instance_type_string(self) != "Epochs":
self._data = np.squeeze(self._data, axis=0)
# this is *expected* shape, it gets asserted later in _check_values()
# (and then deleted afterwards)
expected_shape = [
len(self.ch_names),
len(self.freqs),
len(self._raw_times[self._decim]), # don't use self.times, not set yet
]
# deal with the "taper" dimension
if self._needs_taper_dim:
tapers_dim = 1 if _get_instance_type_string(self) != "Epochs" else 2
expected_shape.insert(1, self._data.shape[tapers_dim])
self._shape = tuple(expected_shape)
@verbose
def _onselect(
self,
eclick,
erelease,
picks=None,
exclude="bads",
combine="mean",
baseline=None,
mode=None,
cmap=None,
source_plot_joint=False,
topomap_args=None,
verbose=None,
):
"""Respond to rectangle selector in TFR image plots with a topomap plot."""
if abs(eclick.x - erelease.x) < 0.1 or abs(eclick.y - erelease.y) < 0.1:
return
t_range = (min(eclick.xdata, erelease.xdata), max(eclick.xdata, erelease.xdata))
f_range = (min(eclick.ydata, erelease.ydata), max(eclick.ydata, erelease.ydata))
# snap to nearest measurement point
t_idx = np.abs(self.times - np.atleast_2d(t_range).T).argmin(axis=1)
f_idx = np.abs(self.freqs - np.atleast_2d(f_range).T).argmin(axis=1)
tmin, tmax = self.times[t_idx]
fmin, fmax = self.freqs[f_idx]
# immutable → mutable default
if topomap_args is None:
topomap_args = dict()
topomap_args.setdefault("cmap", cmap)
topomap_args.setdefault("vlim", (None, None))
# figure out which channel types we're dealing with
types = list()
if "eeg" in self:
types.append("eeg")
if "mag" in self:
types.append("mag")
if "grad" in self:
grad_picks = _pair_grad_sensors(
self.info, topomap_coords=False, raise_error=False
)
if len(grad_picks) > 1:
types.append("grad")
elif len(types) == 0:
logger.info(
"Need at least 2 gradiometer pairs to plot a gradiometer topomap."
)
return # Don't draw a figure for nothing.
fig = figure_nobar()
t_range = f"{tmin:.3f}" if tmin == tmax else f"{tmin:.3f} - {tmax:.3f}"
f_range = f"{fmin:.2f}" if fmin == fmax else f"{fmin:.2f} - {fmax:.2f}"
fig.suptitle(f"{t_range} s,\n{f_range} Hz")
if source_plot_joint:
ax = fig.add_subplot()
data, times, freqs = self.get_data(
picks=picks, exclude=exclude, return_times=True, return_freqs=True
)
# merge grads before baselining (makes ERDs visible)
ch_types = np.array(self.get_channel_types(unique=True))
ch_type = ch_types.item() # will error if there are more than one
data, pos = _merge_if_grads(
data=data,
info=self.info,
ch_type=ch_type,
sphere=topomap_args.get("sphere"),
combine=combine,
)
# baseline and crop
data, *_ = _prep_data_for_plot(
data,
times,
freqs,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
baseline=baseline,
mode=mode,
taper_weights=self.weights,
verbose=verbose,
)
# average over times and freqs
data = data.mean((-2, -1))
im, _ = plot_topomap(data, pos, axes=ax, show=False, **topomap_args)
_add_colorbar(ax, im, topomap_args["cmap"], title="AU")
plt_show(fig=fig)
else:
for idx, ch_type in enumerate(types):
ax = fig.add_subplot(1, len(types), idx + 1)
plot_tfr_topomap(
self,
ch_type=ch_type,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
baseline=baseline,
mode=mode,
axes=ax,
**topomap_args,
)
ax.set_title(ch_type)
def _update_epoch_attributes(self):
# overwritten in EpochsTFR; adds things needed for to_data_frame and __getitem__
pass
@property
def _detrend_picks(self):
"""Provide compatibility with __iter__."""
return list()
@property
def baseline(self):
"""Start and end of the baseline period (in seconds)."""
return self._baseline
@property
def ch_names(self):
"""The channel names."""
return self.info["ch_names"]
@property
def data(self):
"""The time-frequency-resolved power estimates."""
return self._data
@data.setter
def data(self, data):
self._data = data
@property
def freqs(self):
"""The frequencies at which power estimates were computed."""
return self._freqs
@property
def method(self):
"""The method used to compute the time-frequency power estimates."""
return self._method
@property
def sfreq(self):
"""Sampling frequency of the data."""
return self.info["sfreq"]
@property
def shape(self):
"""Data shape."""
return self._data.shape
@property
def times(self):
"""The time points present in the data (in seconds)."""
return self._times_readonly
@property
def weights(self):
"""The weights used for each taper in the time-frequency estimates."""
return self._weights
@fill_doc
def crop(self, tmin=None, tmax=None, fmin=None, fmax=None, include_tmax=True):
"""Crop data to a given time interval in place.
Parameters
----------
%(tmin_tmax_psd)s
fmin : float | None
Lowest frequency of selection in Hz.
.. versionadded:: 0.18.0
fmax : float | None
Highest frequency of selection in Hz.
.. versionadded:: 0.18.0
%(include_tmax)s
Returns
-------
%(inst_tfr)s
The modified instance.
"""
super().crop(tmin=tmin, tmax=tmax, include_tmax=include_tmax)
if fmin is not None or fmax is not None:
freq_mask = _freq_mask(
self.freqs, sfreq=self.info["sfreq"], fmin=fmin, fmax=fmax
)
else:
freq_mask = slice(None)
self._freqs = self.freqs[freq_mask]
# Deal with broadcasting (boolean arrays do not broadcast, but indices
# do, so we need to convert freq_mask to make use of broadcasting)
if isinstance(freq_mask, np.ndarray):
freq_mask = np.where(freq_mask)[0]
self._data = self._data[..., freq_mask, :]
return self
def copy(self):
"""Return copy of the TFR instance.
Returns
-------
%(inst_tfr)s
A copy of the object.
"""
return deepcopy(self)
@verbose
def apply_baseline(self, baseline, mode="mean", verbose=None):
"""Baseline correct the data.
Parameters
----------
%(baseline_rescale)s
How baseline is computed is determined by the ``mode`` parameter.
mode : 'mean' | 'ratio' | 'logratio' | 'percent' | 'zscore' | 'zlogratio'
Perform baseline correction by
- subtracting the mean of baseline values ('mean')
- dividing by the mean of baseline values ('ratio')
- dividing by the mean of baseline values and taking the log
('logratio')
- subtracting the mean of baseline values followed by dividing by
the mean of baseline values ('percent')
- subtracting the mean of baseline values and dividing by the
standard deviation of baseline values ('zscore')
- dividing by the mean of baseline values, taking the log, and
dividing by the standard deviation of log baseline values
('zlogratio')
%(verbose)s
Returns
-------
%(inst_tfr)s
The modified instance.
"""
self._baseline = _check_baseline(baseline, times=self.times, sfreq=self.sfreq)
rescale(self.data, self.times, self.baseline, mode, copy=False, verbose=verbose)
return self
@fill_doc
def get_data(
self,
picks=None,
exclude="bads",
fmin=None,
fmax=None,
tmin=None,
tmax=None,
return_times=False,
return_freqs=False,
return_tapers=False,
):
"""Get time-frequency data in NumPy array format.
Parameters
----------
%(picks_good_data_noref)s
%(exclude_spectrum_get_data)s
%(fmin_fmax_tfr)s
%(tmin_tmax_psd)s
return_times : bool
Whether to return the time values for the requested time range.
Default is ``False``.
return_freqs : bool
Whether to return the frequency bin values for the requested
frequency range. Default is ``False``.
return_tapers : bool
Whether to return the taper numbers. Default is ``False``.
.. versionadded:: 1.10.0
Returns
-------
data : array
The requested data in a NumPy array.
times : array
The time values for the requested data range. Only returned if
``return_times`` is ``True``.
freqs : array
The frequency values for the requested data range. Only returned if
``return_freqs`` is ``True``.
tapers : array | None
The taper numbers. Only returned if ``return_tapers`` is ``True``. Will be
``None`` if a taper dimension is not present in the data.
Notes
-----
Returns a copy of the underlying data (not a view).
"""
tmin = self.times[0] if tmin is None else tmin
tmax = self.times[-1] if tmax is None else tmax
fmin = 0 if fmin is None else fmin
fmax = np.inf if fmax is None else fmax
picks = _picks_to_idx(
self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
)
fmin_idx = np.searchsorted(self.freqs, fmin)
fmax_idx = np.searchsorted(self.freqs, fmax, side="right")
tmin_idx = np.searchsorted(self.times, tmin)
tmax_idx = np.searchsorted(self.times, tmax, side="right")
freq_picks = np.arange(fmin_idx, fmax_idx)
time_picks = np.arange(tmin_idx, tmax_idx)
freq_axis = self._dims.index("freq")
time_axis = self._dims.index("time")
chan_axis = self._dims.index("channel")
# normally there's a risk of np.take reducing array dimension if there
# were only one channel or frequency selected, but `_picks_to_idx`
# and np.arange both always return arrays, so we're safe; the result
# will always have the same `ndim` as it started with.
data = (
self._data.take(picks, chan_axis)
.take(freq_picks, freq_axis)
.take(time_picks, time_axis)
)
out = [data]
if return_times:
times = self._raw_times[tmin_idx:tmax_idx]
out.append(times)
if return_freqs:
freqs = self._freqs[fmin_idx:fmax_idx]
out.append(freqs)
if return_tapers:
if "taper" in self._dims:
tapers = np.arange(self.shape[self._dims.index("taper")])
else:
tapers = None
out.append(tapers)
if not return_times and not return_freqs and not return_tapers:
return out[0]
return tuple(out)
@verbose
def plot(
self,
picks=None,
*,
exclude=(),
tmin=None,
tmax=None,
fmin=0.0,
fmax=np.inf,
baseline=None,
mode="mean",
dB=False,
combine=None,
layout=None, # TODO deprecate? not used in orig implementation either
yscale="auto",
vlim=(None, None),
cnorm=None,
cmap=None,
colorbar=True,
title=None, # don't deprecate this one; has (useful) option title="auto"
mask=None,
mask_style=None,
mask_cmap="Greys",
mask_alpha=0.1,
axes=None,
show=True,
verbose=None,
):
"""Plot TFRs as two-dimensional time-frequency images.
Parameters
----------
%(picks_good_data)s
%(exclude_spectrum_plot)s
%(tmin_tmax_psd)s
%(fmin_fmax_tfr)s
%(baseline_rescale)s
How baseline is computed is determined by the ``mode`` parameter.
%(mode_tfr_plot)s
%(dB_spectrum_plot)s
%(combine_tfr_plot)s
.. versionchanged:: 1.3
Added support for ``callable``.
%(layout_spectrum_plot_topo)s
%(yscale_tfr_plot)s
.. versionadded:: 0.14.0
%(vlim_tfr_plot)s
%(cnorm)s
.. versionadded:: 0.24
%(cmap_topomap)s
%(colorbar)s
%(title_tfr_plot)s
%(mask_tfr_plot)s
.. versionadded:: 0.16.0
%(mask_style_tfr_plot)s
.. versionadded:: 0.17
%(mask_cmap_tfr_plot)s
.. versionadded:: 0.17
%(mask_alpha_tfr_plot)s
.. versionadded:: 0.16.0
%(axes_tfr_plot)s
%(show)s
%(verbose)s
Returns
-------
figs : list of instances of matplotlib.figure.Figure
A list of figures containing the time-frequency power.
"""
# the rectangle selector plots topomaps, which needs all channels uncombined,
# so we keep a reference to that state here, and (because the topomap plotting
# function wants an AverageTFR) update it with `comment` and `nave` values in
# case we started out with a singleton EpochsTFR or RawTFR
initial_state = self.__getstate__()
initial_state.setdefault("comment", "")
initial_state.setdefault("nave", 1)
# `_picks_to_idx` also gets done inside `get_data()`` below, but we do it here
# because we need the indices later
idx_picks = _picks_to_idx(
self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
)
pick_names = np.array(self.ch_names)[idx_picks].tolist() # for titles
ch_types = self.get_channel_types(idx_picks)
# get data arrays
data, times, freqs = self.get_data(
picks=idx_picks, exclude=(), return_times=True, return_freqs=True
)
# pass tmin/tmax here ↓↓↓, not here ↑↑↑; we want to crop *after* baselining
data, times, freqs = _prep_data_for_plot(
data,
times,
freqs,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
baseline=baseline,
mode=mode,
dB=dB,
taper_weights=self.weights,
verbose=verbose,
)
# shape
ch_axis = self._dims.index("channel")
freq_axis = self._dims.index("freq")
time_axis = self._dims.index("time")
want_shape = list(self.shape)
want_shape[ch_axis] = len(idx_picks) if combine is None else 1
want_shape[freq_axis] = len(freqs) # in case there was fmin/fmax cropping
want_shape[time_axis] = len(times) # in case there was tmin/tmax cropping
want_shape = [
n for dim, n in zip(self._dims, want_shape) if dim != "taper"
] # tapers must be aggregated over by now
want_shape = tuple(want_shape)
# combine
combine_was_none = combine is None
combine = _make_combine_callable(
combine, axis=ch_axis, valid=("mean", "rms"), keepdims=True
)
try:
data = combine(data) # no need to copy; get_data() never returns a view
except Exception as e:
msg = (
"Something went wrong with the callable passed to 'combine'; see "
"traceback."
)
raise ValueError(msg) from e
# call succeeded, check type and shape
mismatch = False
if not isinstance(data, np.ndarray):
mismatch = "type"
extra = ""
elif data.shape not in (want_shape, want_shape[1:]):
mismatch = "shape"
extra = f" of shape {data.shape}"
if mismatch:
raise RuntimeError(
f"Wrong {mismatch} yielded by callable passed to 'combine'. Make sure "
"your function takes a single argument (an array of shape "
"(n_channels, n_freqs, n_times)) and returns an array of shape "
f"(n_freqs, n_times); yours yielded: {type(data)}{extra}."
)
# restore singleton collapsed axis (removed by user-provided callable):
# (n_freqs, n_times) → (1, n_freqs, n_times)
if data.shape == (len(freqs), len(times)):
data = data[np.newaxis]
assert data.shape == want_shape
# cmap handling. power may be negative depending on baseline strategy so set
# `norm` empirically — but only if user didn't set limits explicitly.
norm = False if vlim == (None, None) else data.min() >= 0.0
vmin, vmax = _setup_vmin_vmax(data, *vlim, norm=norm)
cmap = _setup_cmap(cmap, norm=norm)
# prepare figure(s)
if axes is None:
figs = [plt.figure(layout="constrained") for _ in range(data.shape[0])]
axes = [fig.add_subplot() for fig in figs]
elif isinstance(axes, plt.Axes):
figs = [axes.get_figure()]
axes = [axes]
elif isinstance(axes, np.ndarray): # allow plotting into a grid of axes
figs = [ax.get_figure() for ax in axes.flat]
elif hasattr(axes, "__iter__") and len(axes):
figs = [ax.get_figure() for ax in axes]
else:
raise ValueError(
f"axes must be None, Axes, or list/array of Axes, got {type(axes)}"
)
if len(axes) != data.shape[0]:
raise RuntimeError(
f"Mismatch between picked channels ({data.shape[0]}) and axes "
f"({len(axes)}); there must be one axes for each picked channel."
)
# check if we're being called from within plot_joint(). If so, get the
# `topomap_args` from the calling context and pass it to the onselect handler.
# (we need 2 `f_back` here because of the verbose decorator)
calling_frame = inspect.currentframe().f_back.f_back
source_plot_joint = calling_frame.f_code.co_name == "plot_joint"
topomap_args = (
dict()
if not source_plot_joint
else calling_frame.f_locals.get("topomap_args", dict())
)
# plot
for ix, _fig in enumerate(figs):
# restrict the onselect instance to the channel type of the picks used in
# the image plot
uniq_types = np.unique(ch_types)
ch_type = None if len(uniq_types) > 1 else uniq_types.item()
this_tfr = AverageTFR(inst=initial_state).pick(ch_type, verbose=verbose)
_onselect_callback = partial(
this_tfr._onselect,
picks=None, # already restricted the picks in `this_tfr`
exclude=(),
baseline=baseline,
mode=mode,
cmap=cmap,
source_plot_joint=source_plot_joint,
topomap_args=topomap_args,
)
# draw the image plot
_imshow_tfr(
ax=axes[ix],
tfr=data[[ix]],
ch_idx=0,
tmin=times[0],
tmax=times[-1],
vmin=vmin,
vmax=vmax,
onselect=_onselect_callback,
ylim=None,
freq=freqs,
x_label="Time (s)",
y_label="Frequency (Hz)",
colorbar=colorbar,
cmap=cmap,
yscale=yscale,
mask=mask,
mask_style=mask_style,
mask_cmap=mask_cmap,
mask_alpha=mask_alpha,
cnorm=cnorm,
)
# handle title. automatic title is:
# f"{Baselined} {power} ({ch_name})" or
# f"{Baselined} {power} ({combination} of {N} {ch_type}s)"
if title == "auto":
if combine_was_none: # one plot per channel
which_chs = pick_names[ix]
elif len(pick_names) == 1: # there was only one pick anyway
which_chs = pick_names[0]
else: # one plot for all chs combined
which_chs = _set_title_multiple_electrodes(
None, combine, pick_names, all_=True, ch_type=ch_type
)
_prefix = "Power" if baseline is None else "Baselined power"
_title = f"{_prefix} ({which_chs})"
else:
_title = title
_fig.suptitle(_title)
plt_show(show)
return figs
@verbose
def plot_joint(
self,
*,
timefreqs=None,
picks=None,
exclude=(),
combine="mean",
tmin=None,
tmax=None,
fmin=None,
fmax=None,
baseline=None,
mode="mean",
dB=False,
yscale="auto",
vlim=(None, None),
cnorm=None,
cmap=None,
colorbar=True,
title=None, # TODO consider deprecating this one, or adding an "auto" option
show=True,
topomap_args=None,
image_args=None,
verbose=None,
):
"""Plot TFRs as a two-dimensional image with topomap highlights.
Parameters
----------
%(timefreqs)s
%(picks_good_data)s
%(exclude_psd)s
Default is an empty :class:`tuple` which includes all channels.
%(combine_tfr_plot_joint)s
.. versionchanged:: 1.3
Added support for ``callable``.
%(tmin_tmax_psd)s
%(fmin_fmax_tfr)s
%(baseline_rescale)s
How baseline is computed is determined by the ``mode`` parameter.
%(mode_tfr_plot)s
%(dB_tfr_plot_topo)s
%(yscale_tfr_plot)s
%(vlim_tfr_plot_joint)s
%(cnorm)s
%(cmap_tfr_plot_topo)s
%(colorbar_tfr_plot_joint)s
%(title_none)s
%(show)s
%(topomap_args)s
%(image_args)s
%(verbose)s
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the topography.
Notes
-----
%(notes_timefreqs_tfr_plot_joint)s
.. versionadded:: 0.16.0
"""
from matplotlib import ticker
from matplotlib.patches import ConnectionPatch
# handle recursion
picks = _picks_to_idx(
self.info, picks, "data_or_ica", exclude=exclude, with_ref_meg=False
)
all_ch_types = np.array(self.get_channel_types())
uniq_ch_types = sorted(set(all_ch_types[picks]))
if len(uniq_ch_types) > 1:
msg = "Multiple channel types selected, returning one figure per type."
logger.info(msg)
figs = list()
for this_type in uniq_ch_types:
this_picks = np.intersect1d(
picks,
np.nonzero(np.isin(all_ch_types, this_type))[0],
assume_unique=True,
)
# TODO might be nice to not "copy first, then pick"; alternative might
# be to subset the data with `this_picks` and then construct the "copy"
# using __getstate__ and __setstate__
_tfr = self.copy().pick(this_picks)
figs.append(
_tfr.plot_joint(
timefreqs=timefreqs,
picks=None,
baseline=baseline,
mode=mode,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
vlim=vlim,
cmap=cmap,
dB=dB,
colorbar=colorbar,
show=False,
title=title,
yscale=yscale,
combine=combine,
exclude=(),
topomap_args=topomap_args,
verbose=verbose,
)
)
return figs
else:
ch_type = uniq_ch_types[0]
# handle defaults
_validate_type(combine, ("str", "callable"), item_name="combine") # no `None`
image_args = dict() if image_args is None else image_args
topomap_args = dict() if topomap_args is None else topomap_args.copy()
# make sure if topomap_args["ch_type"] is set, it matches what is in `self.info`
topomap_args.setdefault("ch_type", ch_type)
if topomap_args["ch_type"] != ch_type:
raise ValueError(
f"topomap_args['ch_type'] is {topomap_args['ch_type']} which does not "
f"match the channel type present in the object ({ch_type})."
)
# some necessary defaults
topomap_args.setdefault("outlines", "head")
topomap_args.setdefault("contours", 6)
# don't pass these:
topomap_args.pop("axes", None)
topomap_args.pop("show", None)
topomap_args.pop("colorbar", None)
# get the time/freq limits of the image plot, to make sure requested annotation
# times/freqs are in range
_, times, freqs = self.get_data(
picks=picks,
exclude=(),
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
return_times=True,
return_freqs=True,
)
# validate requested annotation times and freqs
timefreqs = _get_timefreqs(self, timefreqs)
valid_timefreqs = dict()
while timefreqs:
(_time, _freq), (t_win, f_win) = timefreqs.popitem()
# convert to half-windows
t_win /= 2
f_win /= 2
# make sure the times / freqs are in-bounds
msg = (
"Requested {} exceeds the range of the data ({}). Choose different "
"`timefreqs`."
)
if (times > _time).all() or (times < _time).all():
_var = f"time point ({_time:0.3f} s)"
_range = f"{times[0]:0.3f} - {times[-1]:0.3f} s"
raise ValueError(msg.format(_var, _range))
elif (freqs > _freq).all() or (freqs < _freq).all():
_var = f"frequency ({_freq:0.1f} Hz)"
_range = f"{freqs[0]:0.1f} - {freqs[-1]:0.1f} Hz"
raise ValueError(msg.format(_var, _range))
# snap the times/freqs to the nearest point we have an estimate for, and
# store the validated points
if t_win == 0:
_time = times[np.argmin(np.abs(times - _time))]
if f_win == 0:
_freq = freqs[np.argmin(np.abs(freqs - _freq))]
valid_timefreqs[(_time, _freq)] = (t_win, f_win)
# prep data for topomaps (unlike image plot, must include all channels of the
# current ch_type). Don't pass tmin/tmax here (crop later after baselining)
topomap_picks = _picks_to_idx(self.info, ch_type)
data, times, freqs = self.get_data(
picks=topomap_picks, exclude=(), return_times=True, return_freqs=True
)
# merge grads before baselining (makes ERDS visible)
info = pick_info(self.info, sel=topomap_picks, copy=True)
data, pos = _merge_if_grads(
data=data,
info=info,
ch_type=ch_type,
sphere=topomap_args.get("sphere"),
combine=combine,
)
# loop over intended topomap locations, to find one vlim that works for all.
tf_array = np.array(list(valid_timefreqs)) # each row is [time, freq]
tf_array = tf_array[tf_array[:, 0].argsort()] # sort by time
_vmin, _vmax = (np.inf, -np.inf)
topomap_arrays = list()
topomap_titles = list()
for _time, _freq in tf_array:
# reduce data to the range of interest in the TF plane (i.e., finally crop)
t_win, f_win = valid_timefreqs[(_time, _freq)]
_tmin, _tmax = np.array([-1, 1]) * t_win + _time
_fmin, _fmax = np.array([-1, 1]) * f_win + _freq
_data, *_ = _prep_data_for_plot(
data,
times,
freqs,
tmin=_tmin,
tmax=_tmax,
fmin=_fmin,
fmax=_fmax,
baseline=baseline,
mode=mode,
taper_weights=self.weights,
verbose=verbose,
)
_data = _data.mean(axis=(-1, -2)) # avg over times and freqs
topomap_arrays.append(_data)
_vmin = min(_data.min(), _vmin)
_vmax = max(_data.max(), _vmax)
# construct topopmap subplot title
t_pm = "" if t_win == 0 else f" ± {t_win:0.2f}"
f_pm = "" if f_win == 0 else f" ± {f_win:0.1f}"
_title = f"{_time:0.2f}{t_pm} s,\n{_freq:0.1f}{f_pm} Hz"
topomap_titles.append(_title)
# handle cmap. Power may be negative depending on baseline strategy so set
# `norm` empirically. vmin/vmax will be handled separately within the `plot()`
# call for the image plot.
norm = np.min(topomap_arrays) >= 0.0
cmap = _setup_cmap(cmap, norm=norm)
topomap_args.setdefault("cmap", cmap[0]) # prevent interactive cbar
# finalize topomap vlims and compute contour locations.
# By passing `data=None` here ↓↓↓↓ we effectively assert vmin & vmax aren't None
_vlim = _setup_vmin_vmax(data=None, vmin=_vmin, vmax=_vmax, norm=norm)
topomap_args.setdefault("vlim", _vlim)
locator, topomap_args["contours"] = _set_contour_locator(
*topomap_args["vlim"], topomap_args["contours"]
)
# initialize figure and do the image plot. `self.plot()` needed to wait to be
# called until after `topomap_args` was fully populated --- we don't pass the
# dict through to `self.plot()` explicitly here, but we do "reach back" and get
# it if it's needed by the interactive rectangle selector.
fig, image_ax, topomap_axes = _prepare_joint_axes(len(valid_timefreqs))
fig = self.plot(
picks=picks,
exclude=(),
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
baseline=baseline,
mode=mode,
dB=dB,
combine=combine,
yscale=yscale,
vlim=vlim,
cnorm=cnorm,
cmap=cmap,
colorbar=False,
title=title,
# mask, mask_style, mask_cmap, mask_alpha
axes=image_ax,
show=False,
verbose=verbose,
**image_args,
)[0] # [0] because `.plot()` always returns a list
# now, actually plot the topomaps
for ax, title, _data in zip(topomap_axes, topomap_titles, topomap_arrays):
ax.set_title(title)
plot_topomap(_data, pos, axes=ax, show=False, **topomap_args)
# draw colorbar
if colorbar:
cbar = fig.colorbar(ax.images[0])
cbar.locator = ticker.MaxNLocator(nbins=5) if locator is None else locator
cbar.update_ticks()
# draw the connection lines between time-frequency image and topoplots
for (time_, freq_), topo_ax in zip(tf_array, topomap_axes):
con = ConnectionPatch(
xyA=[time_, freq_],
xyB=[0.5, 0],
coordsA="data",
coordsB="axes fraction",
axesA=image_ax,
axesB=topo_ax,
color="grey",
linestyle="-",
linewidth=1.5,
alpha=0.66,
zorder=1,
clip_on=False,
)
fig.add_artist(con)
plt_show(show)
return fig
@verbose
def plot_topo(
self,
picks=None,
baseline=None,
mode="mean",
tmin=None,
tmax=None,
fmin=None,
fmax=None,
vmin=None, # TODO deprecate in favor of `vlim` (needs helper func refactor)
vmax=None,
layout=None,
cmap="RdBu_r",
title=None, # don't deprecate; topo titles aren't standard (color, size, just.)
dB=False,
colorbar=True,
layout_scale=0.945,
show=True,
border="none",
fig_facecolor="k",
fig_background=None,
font_color="w",
yscale="auto",
verbose=None,
):
"""Plot a TFR image for each channel in a sensor layout arrangement.
Parameters
----------
%(picks_good_data)s
%(baseline_rescale)s
How baseline is computed is determined by the ``mode`` parameter.
%(mode_tfr_plot)s
%(tmin_tmax_psd)s
%(fmin_fmax_tfr)s
%(vmin_vmax_tfr_plot_topo)s
%(layout_spectrum_plot_topo)s
%(cmap_tfr_plot_topo)s
%(title_none)s
%(dB_tfr_plot_topo)s
%(colorbar)s
%(layout_scale)s
%(show)s
%(border_topo)s
%(fig_facecolor)s
%(fig_background)s
%(font_color)s
%(yscale_tfr_plot)s
%(verbose)s
Returns
-------
fig : matplotlib.figure.Figure
The figure containing the topography.
"""
# convenience vars
times = self.times.copy()
freqs = self.freqs
data = self.data
info = self.info
info, data = _prepare_picks(info, data, picks, axis=0)
del picks
# baseline, crop, convert complex to power, aggregate tapers, and dB scaling
data, times, freqs = _prep_data_for_plot(
data,
times,
freqs,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
baseline=baseline,
mode=mode,
dB=dB,
taper_weights=self.weights,
verbose=verbose,
)
# get vlims
vmin, vmax = _setup_vmin_vmax(data, vmin, vmax)
if layout is None:
from mne import find_layout
layout = find_layout(self.info)
onselect_callback = partial(self._onselect, baseline=baseline, mode=mode)
click_fun = partial(
_imshow_tfr,
tfr=data,
freq=freqs,
yscale=yscale,
cmap=(cmap, True),
onselect=onselect_callback,
)
imshow = partial(
_imshow_tfr_unified,
tfr=data,
freq=freqs,
cmap=cmap,
onselect=onselect_callback,
)
fig = _plot_topo(
info=info,
times=times,
show_func=imshow,
click_func=click_fun,
layout=layout,
colorbar=colorbar,
vmin=vmin,
vmax=vmax,
cmap=cmap,
layout_scale=layout_scale,
title=title,
border=border,
x_label="Time (s)",
y_label="Frequency (Hz)",
fig_facecolor=fig_facecolor,
font_color=font_color,
unified=True,
img=True,
)
add_background_image(fig, fig_background)
plt_show(show)
return fig
@copy_function_doc_to_method_doc(plot_tfr_topomap)
def plot_topomap(
self,
tmin=None,
tmax=None,
fmin=0.0,
fmax=np.inf,
*,
ch_type=None,
baseline=None,
mode="mean",
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=2,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%1.1e",
units=None,
axes=None,
show=True,
):
return plot_tfr_topomap(
self,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
ch_type=ch_type,
baseline=baseline,
mode=mode,
sensors=sensors,
show_names=show_names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
units=units,
axes=axes,
show=show,
)
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save time-frequency data to disk (in HDF5 format).
Parameters
----------
fname : path-like
Path of file to save to, which should end with ``-tfr.h5`` or ``-tfr.hdf5``.
%(overwrite)s
%(verbose)s
See Also
--------
mne.time_frequency.read_tfrs
"""
_, write_hdf5 = _import_h5io_funcs()
check_fname(fname, "time-frequency object", (".h5", ".hdf5"))
fname = _check_fname(fname, overwrite=overwrite, verbose=verbose)
out = self.__getstate__()
if "metadata" in out:
out["metadata"] = _prepare_write_metadata(out["metadata"])
write_hdf5(fname, out, overwrite=overwrite, title="mnepython", slash="replace")
@verbose
def to_data_frame(
self,
picks=None,
index=None,
long_format=False,
time_format=None,
*,
verbose=None,
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default, additional
columns ``'time'``, ``'freq'``, ``'taper'``, ``'epoch'``, and ``'condition'``
(epoch event description) are added, unless ``index`` is not ``None`` (in which
case the columns specified in ``index`` will be used to form the DataFrame's
index instead). ``'epoch'``, and ``'condition'`` are not supported for
``AverageTFR``. ``'taper'`` is only supported when a taper dimensions is
present, such as for complex or phase multitaper data.
Parameters
----------
%(picks_all)s
%(index_df_epo)s
Valid string values are ``'time'``, ``'freq'``, ``'taper'``, ``'epoch'``,
and ``'condition'`` for ``EpochsTFR`` and ``'time'``, ``'freq'``, and
``'taper'`` for ``AverageTFR``. Defaults to ``None``.
%(long_format_df_epo)s
%(time_format_df)s
.. versionadded:: 0.23
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# triage for Epoch-derived or unaggregated spectra
from_epo = isinstance(self, EpochsTFR)
unagg_mt = "taper" in self._dims
# arg checking
valid_index_args = ["time", "freq"]
if from_epo:
valid_index_args.extend(["epoch", "condition"])
if unagg_mt:
valid_index_args.append("taper")
valid_time_formats = ["ms", "timedelta"]
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(time_format, valid_time_formats)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data, times, freqs, tapers = self.get_data(
picks, return_times=True, return_freqs=True, return_tapers=True
)
ch_axis = self._dims.index("channel")
if not from_epo:
data = data[np.newaxis] # add singleton "epochs" axis
ch_axis += 1
if not unagg_mt:
data = np.expand_dims(data, -3) # add singleton "tapers" axis
n_epochs, n_picks, n_tapers, n_freqs, n_times = data.shape
# reshape to (epochs*tapers*freqs*times) x signals
data = np.moveaxis(data, ch_axis, -1)
data = data.reshape(n_epochs * n_tapers * n_freqs * n_times, n_picks)
# prepare extra columns / multiindex
mindex = list()
default_index = list()
times = _convert_times(times, time_format, self.info["meas_date"])
times = np.tile(times, n_epochs * n_freqs * n_tapers)
freqs = np.tile(np.repeat(freqs, n_times), n_epochs * n_tapers)
mindex.append(("time", times))
mindex.append(("freq", freqs))
if from_epo:
mindex.append(
("epoch", np.repeat(self.selection, n_times * n_freqs * n_tapers))
)
rev_event_id = {v: k for k, v in self.event_id.items()}
conditions = [rev_event_id[k] for k in self.events[:, 2]]
mindex.append(
("condition", np.repeat(conditions, n_times * n_freqs * n_tapers))
)
default_index.extend(["condition", "epoch"])
if unagg_mt:
tapers = np.repeat(np.tile(tapers, n_epochs), n_freqs * n_times)
mindex.append(("taper", tapers))
default_index.append("taper")
default_index.extend(["freq", "time"])
assert all(len(mdx) == len(mindex[0]) for mdx in mindex[1:])
# build DataFrame
df = _build_data_frame(
self, data, picks, long_format, mindex, index, default_index=default_index
)
return df
@fill_doc
class AverageTFR(BaseTFR):
"""Data object for spectrotemporal representations of averaged data.
.. warning:: The preferred means of creating AverageTFR objects is via the
instance methods :meth:`mne.Epochs.compute_tfr` and
:meth:`mne.Evoked.compute_tfr`, or via
:meth:`mne.time_frequency.EpochsTFR.average`. Direct class
instantiation is discouraged.
Parameters
----------
inst : instance of Evoked | instance of Epochs | dict
The data from which to compute the time-frequency representation. Passing a
:class:`dict` will create the AverageTFR using the ``__setstate__`` interface
and is not recommended for typical use cases.
freqs : ndarray, shape (n_freqs,)
The frequencies in Hz.
%(method_tfr)s
%(freqs_tfr)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(decim_tfr)s
%(comment_averagetfr)s
%(n_jobs)s
%(verbose)s
%(method_kw_tfr)s
Attributes
----------
%(baseline_tfr_attr)s
%(ch_names_tfr_attr)s
%(comment_averagetfr_attr)s
%(freqs_tfr_attr)s
%(info_not_none)s
%(method_tfr_attr)s
%(nave_tfr_attr)s
%(sfreq_tfr_attr)s
%(shape_tfr_attr)s
%(weights_tfr_attr)s
See Also
--------
RawTFR
EpochsTFR
AverageTFRArray
mne.Evoked.compute_tfr
mne.time_frequency.EpochsTFR.average
Notes
-----
The old API (prior to version 1.7) was::
AverageTFR(info, data, times, freqs, nave, comment=None, method=None)
That API is still available via :class:`~mne.time_frequency.AverageTFRArray` for
cases where the data are precomputed or do not originate from MNE-Python objects.
The preferred new API uses instance methods::
evoked.compute_tfr(method, freqs, ...)
epochs.compute_tfr(method, freqs, average=True, ...)
The new API also supports AverageTFR instantiation from a :class:`dict`, but this
is primarily for save/load and internal purposes, and wraps ``__setstate__``.
During the transition from the old to the new API, it may be expedient to use
:class:`~mne.time_frequency.AverageTFRArray` as a "quick-fix" approach to updating
scripts under active development.
References
----------
.. footbibliography::
"""
def __init__(
self,
*,
inst=None,
freqs=None,
method=None,
tmin=None,
tmax=None,
picks=None,
proj=False,
decim=1,
comment=None,
n_jobs=None,
verbose=None,
**method_kw,
):
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ._stockwell import _check_input_st, _compute_freqs_st
# dict is allowed for __setstate__ compatibility, and Epochs.compute_tfr() can
# return an AverageTFR depending on its parameters, so Epochs input is allowed
_validate_type(
inst, (BaseEpochs, Evoked, dict), "object passed to AverageTFR constructor"
)
# stockwell API is very different from multitaper/morlet
if method == "stockwell" and not isinstance(inst, dict):
if isinstance(freqs, str) and freqs == "auto":
fmin, fmax = None, None
elif len(freqs) == 2:
fmin, fmax = freqs
else:
raise ValueError(
"for Stockwell method, freqs must be a length-2 iterable "
f'or "auto", got {freqs}.'
)
method_kw.update(fmin=fmin, fmax=fmax)
# Compute freqs. We need a couple lines of code dupe here (also in
# BaseTFR.__init__) to get the subset of times to pass to _check_input_st()
_mask = _time_mask(inst.times, tmin, tmax, sfreq=inst.info["sfreq"])
_times = inst.times[_mask].copy()
_, default_nfft, _ = _check_input_st(_times, None)
n_fft = method_kw.get("n_fft", default_nfft)
*_, freqs = _compute_freqs_st(fmin, fmax, n_fft, inst.info["sfreq"])
# use Evoked.comment or str(Epochs.event_id) as the default comment...
if comment is None:
comment = getattr(inst, "comment", ",".join(getattr(inst, "event_id", "")))
# ...but don't overwrite if it's coming in with a comment already set
if isinstance(inst, dict):
inst.setdefault("comment", comment)
else:
self._comment = getattr(self, "_comment", comment)
super().__init__(
inst,
method,
freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
def __getstate__(self):
"""Prepare AverageTFR object for serialization."""
out = super().__getstate__()
out.update(nave=self.nave, comment=self.comment)
# NOTE: self._itc should never exist in the instance returned to the user; it
# is temporarily present in the output from the tfr_array_* function, and is
# split out into a separate AverageTFR object (and deleted from the object
# holding power estimates) before those objects are passed back to the user.
# The following lines are there because we make use of __getstate__ to achieve
# that splitting of objects.
if hasattr(self, "_itc"):
out.update(itc=self._itc)
return out
def __setstate__(self, state):
"""Unpack AverageTFR from serialized format."""
if state["data"].ndim not in [3, 4]:
raise ValueError(
f"RawTFR data should be 3D or 4D, got {state['data'].ndim}."
)
# Set dims now since optional tapers makes it difficult to disentangle later
state["dims"] = ("channel",)
if state["data"].ndim == 4:
state["dims"] += ("taper",)
state["dims"] += ("freq", "time")
super().__setstate__(state)
self._comment = state.get("comment", "")
self._nave = state.get("nave", 1)
@property
def comment(self):
return self._comment
@comment.setter
def comment(self, comment):
self._comment = comment
@property
def nave(self):
return self._nave
@nave.setter
def nave(self, nave):
self._nave = nave
def _get_instance_data(self, time_mask):
# AverageTFRs can be constructed from Epochs data, so we triage shape here.
# Evoked data get a fake singleton "epoch" axis prepended
dim = slice(None) if _get_instance_type_string(self) == "Epochs" else np.newaxis
data = self.inst.get_data(picks=self._picks)[dim, :, time_mask]
self._nave = getattr(self.inst, "nave", data.shape[0])
return data
@fill_doc
class AverageTFRArray(AverageTFR):
"""Data object for *precomputed* spectrotemporal representations of averaged data.
Parameters
----------
%(info_not_none)s
%(data_tfr)s
%(times)s
%(freqs_tfr_array)s
nave : int
The number of averaged TFRs.
%(comment_averagetfr_attr)s
%(method_tfr_array)s
%(weights_tfr_array)s
Attributes
----------
%(baseline_tfr_attr)s
%(ch_names_tfr_attr)s
%(comment_averagetfr_attr)s
%(freqs_tfr_attr)s
%(info_not_none)s
%(method_tfr_attr)s
%(nave_tfr_attr)s
%(sfreq_tfr_attr)s
%(shape_tfr_attr)s
%(weights_tfr_attr)s
See Also
--------
AverageTFR
EpochsTFRArray
mne.Epochs.compute_tfr
mne.Evoked.compute_tfr
"""
def __init__(
self,
info,
data,
times,
freqs,
*,
nave=None,
comment=None,
method=None,
weights=None,
):
state = dict(info=info, data=data, times=times, freqs=freqs)
optional = dict(nave=nave, comment=comment, method=method, weights=weights)
for name, value in optional.items():
if value is not None:
state[name] = value
self.__setstate__(state)
@fill_doc
class EpochsTFR(BaseTFR, GetEpochsMixin):
"""Data object for spectrotemporal representations of epoched data.
.. important::
The preferred means of creating EpochsTFR objects from :class:`~mne.Epochs`
objects is via the instance method :meth:`~mne.Epochs.compute_tfr`.
To create an EpochsTFR object from pre-computed data (i.e., a NumPy array) use
:class:`~mne.time_frequency.EpochsTFRArray`.
Parameters
----------
inst : instance of Epochs
The data from which to compute the time-frequency representation.
%(freqs_tfr_epochs)s
%(method_tfr_epochs)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(decim_tfr)s
%(n_jobs)s
%(verbose)s
%(method_kw_tfr)s
Attributes
----------
%(baseline_tfr_attr)s
%(ch_names_tfr_attr)s
%(comment_tfr_attr)s
%(drop_log)s
%(event_id_attr)s
%(events_attr)s
%(freqs_tfr_attr)s
%(info_not_none)s
%(metadata_attr)s
%(method_tfr_attr)s
%(selection_attr)s
%(sfreq_tfr_attr)s
%(shape_tfr_attr)s
%(weights_tfr_attr)s
See Also
--------
mne.Epochs.compute_tfr
RawTFR
AverageTFR
EpochsTFRArray
References
----------
.. footbibliography::
"""
def __init__(
self,
*,
inst=None,
freqs=None,
method=None,
tmin=None,
tmax=None,
picks=None,
proj=False,
decim=1,
n_jobs=None,
verbose=None,
**method_kw,
):
from ..epochs import BaseEpochs
# dict is allowed for __setstate__ compatibility
_validate_type(
inst, (BaseEpochs, dict), "object passed to EpochsTFR constructor", "Epochs"
)
super().__init__(
inst,
method,
freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@fill_doc
def __getitem__(self, item):
"""Subselect epochs from an EpochsTFR.
Parameters
----------
%(item)s
Access options are the same as for :class:`~mne.Epochs` objects, see the
docstring Notes section of :meth:`mne.Epochs.__getitem__` for explanation.
Returns
-------
%(getitem_epochstfr_return)s
"""
return super().__getitem__(item)
def __getstate__(self):
"""Prepare EpochsTFR object for serialization."""
out = super().__getstate__()
out.update(
metadata=self._metadata,
drop_log=self.drop_log,
event_id=self.event_id,
events=self.events,
selection=self.selection,
raw_times=self._raw_times,
)
return out
def __setstate__(self, state):
"""Unpack EpochsTFR from serialized format."""
if state["data"].ndim not in [4, 5]:
raise ValueError(
f"EpochsTFR data should be 4D or 5D, got {state['data'].ndim}."
)
# Set dims now since optional tapers makes it difficult to disentangle later
state["dims"] = ("epoch", "channel")
if state["data"].ndim == 5:
state["dims"] += ("taper",)
state["dims"] += ("freq", "time")
super().__setstate__(state)
self._metadata = state.get("metadata", None)
n_epochs = self.shape[0]
n_times = self.shape[-1]
fake_samps = np.linspace(
n_times, n_times * (n_epochs + 1), n_epochs, dtype=int, endpoint=False
)
fake_events = np.dstack(
(fake_samps, np.zeros_like(fake_samps), np.ones_like(fake_samps))
).squeeze(axis=0)
self.events = state.get("events", _ensure_events(fake_events))
self.event_id = state.get("event_id", _check_event_id(None, self.events))
self.selection = state.get("selection", np.arange(n_epochs))
self.drop_log = state.get(
"drop_log",
tuple(
() if k in self.selection else ("IGNORED",)
for k in range(max(len(self.events), max(self.selection) + 1))
),
)
self._bad_dropped = True # always true, need for `equalize_event_counts()`
def __next__(self, return_event_id=False):
"""Iterate over EpochsTFR objects.
NOTE: __iter__() and _stop_iter() are defined by the GetEpochs mixin.
Parameters
----------
return_event_id : bool
If ``True``, return both the EpochsTFR data and its associated ``event_id``.
Returns
-------
epoch : array of shape (n_channels, n_freqs, n_times)
The single-epoch time-frequency data.
event_id : int
The integer event id associated with the epoch. Only returned if
``return_event_id`` is ``True``.
"""
if self._current >= len(self._data):
self._stop_iter()
epoch = self._data[self._current]
event_id = self.events[self._current][-1]
self._current += 1
if return_event_id:
return epoch, event_id
return epoch
def _check_singleton(self):
"""Check if self contains only one Epoch, and return it as an AverageTFR."""
if self.shape[0] > 1:
calling_func = inspect.currentframe().f_back.f_code.co_name
raise NotImplementedError(
f"Cannot call {calling_func}() from EpochsTFR with multiple epochs; "
"please subselect a single epoch before plotting."
)
return list(self.iter_evoked())[0]
def _get_instance_data(self, time_mask):
return self.inst.get_data(picks=self._picks)[:, :, time_mask]
def _update_epoch_attributes(self):
# adjust dims and shape
if self.method != "stockwell": # stockwell consumes epochs dimension
self._dims = ("epoch",) + self._dims
self._shape = (len(self.inst),) + self._shape
# we need these for to_data_frame()
self.event_id = self.inst.event_id.copy()
self.events = self.inst.events.copy()
self.selection = self.inst.selection.copy()
# we need these for __getitem__()
self.drop_log = deepcopy(self.inst.drop_log)
self._metadata = self.inst.metadata
# we need this for compatibility with equalize_event_counts()
self._bad_dropped = True
def average(self, method="mean", *, dim="epochs", copy=False):
"""Aggregate the EpochsTFR across epochs, frequencies, or times.
Parameters
----------
method : "mean" | "median" | callable
How to aggregate the data across the given ``dim``. If callable,
must take a :class:`NumPy array<numpy.ndarray>` of shape
``(n_epochs, n_channels, n_freqs, n_times)`` and return an array
with one fewer dimensions (which dimension is collapsed depends on
the value of ``dim``). Default is ``"mean"``.
dim : "epochs" | "freqs" | "times"
The dimension along which to combine the data.
copy : bool
Whether to return a copy of the modified instance, or modify in place.
Ignored when ``dim="epochs"`` or ``"times"`` because those options return
different types (:class:`~mne.time_frequency.AverageTFR` and
:class:`~mne.time_frequency.EpochsSpectrum`, respectively).
Returns
-------
tfr : instance of EpochsTFR | AverageTFR | EpochsSpectrum
The aggregated TFR object.
Notes
-----
Passing in ``np.median`` is considered unsafe for complex data; pass
the string ``"median"`` instead to compute the *marginal* median
(i.e. the median of the real and imaginary components separately).
See discussion here:
https://github.com/scipy/scipy/pull/12676#issuecomment-783370228
Averaging is not supported for data containing a taper dimension.
"""
if "taper" in self._dims:
raise NotImplementedError(
"Averaging multitaper tapers across epochs, frequencies, or times is "
"not supported. If averaging across epochs, consider averaging the "
"epochs before computing the complex/phase spectrum."
)
_check_option("dim", dim, ("epochs", "freqs", "times"))
axis = self._dims.index(dim[:-1]) # self._dims entries aren't plural
func = _check_combine(mode=method, axis=axis)
data = func(self.data)
n_epochs, n_channels, n_freqs, n_times = self.data.shape
freqs, times = self.freqs, self.times
if dim == "epochs":
expected_shape = self._data.shape[1:]
elif dim == "freqs":
expected_shape = (n_epochs, n_channels, n_times)
freqs = np.mean(self.freqs, keepdims=True)
elif dim == "times":
expected_shape = (n_epochs, n_channels, n_freqs)
times = np.mean(self.times, keepdims=True)
if data.shape != expected_shape:
raise RuntimeError(
"EpochsTFR.average() got a method that resulted in data of shape "
f"{data.shape}, but it should be {expected_shape}."
)
state = self.__getstate__()
# restore singleton freqs axis (not necessary for epochs/times: class changes)
if dim == "freqs":
data = np.expand_dims(data, axis=axis)
else:
state["dims"] = (*state["dims"][:axis], *state["dims"][axis + 1 :])
state["data"] = data
state["info"] = deepcopy(self.info)
state["freqs"] = freqs
state["times"] = times
if dim == "epochs":
state["inst_type_str"] = "Evoked"
state["nave"] = n_epochs
state["comment"] = f"{method} of {n_epochs} EpochsTFR{_pl(n_epochs)}"
out = AverageTFR(inst=state)
out._data_type = "Average Power"
return out
elif dim == "times":
return EpochsSpectrum(
state,
method=None,
fmin=None,
fmax=None,
tmin=None,
tmax=None,
picks=None,
exclude=None,
proj=None,
remove_dc=None,
n_jobs=None,
)
# ↓↓↓ these two are for dim == "freqs"
elif copy:
return EpochsTFR(inst=state, method=None, freqs=None)
else:
self._data = np.expand_dims(data, axis=axis)
self._freqs = freqs
return self
@verbose
def drop(self, indices, reason="USER", verbose=None):
"""Drop epochs based on indices or boolean mask.
.. note:: The indices refer to the current set of undropped epochs
rather than the complete set of dropped and undropped epochs.
They are therefore not necessarily consistent with any
external indices (e.g., behavioral logs). To drop epochs
based on external criteria, do not use the ``preload=True``
flag when constructing an Epochs object, and call this
method before calling the :meth:`mne.Epochs.drop_bad` or
:meth:`mne.Epochs.load_data` methods.
Parameters
----------
indices : array of int or bool
Set epochs to remove by specifying indices to remove or a boolean
mask to apply (where True values get removed). Events are
correspondingly modified.
reason : str
Reason for dropping the epochs ('ECG', 'timeout', 'blink' etc).
Default: 'USER'.
%(verbose)s
Returns
-------
epochs : instance of Epochs or EpochsTFR
The epochs with indices dropped. Operates in-place.
"""
from ..epochs import BaseEpochs
BaseEpochs.drop(self, indices=indices, reason=reason, verbose=verbose)
return self
def iter_evoked(self, copy=False):
"""Iterate over EpochsTFR to yield a sequence of AverageTFR objects.
The AverageTFR objects will each contain a single epoch (i.e., no averaging is
performed). This method resets the EpochTFR instance's iteration state to the
first epoch.
Parameters
----------
copy : bool
Whether to yield copies of the data and measurement info, or views/pointers.
"""
self.__iter__()
state = self.__getstate__()
state["inst_type_str"] = "Evoked"
state["dims"] = state["dims"][1:] # drop "epochs"
while True:
try:
data, event_id = self.__next__(return_event_id=True)
except StopIteration:
break
if copy:
state["info"] = deepcopy(self.info)
state["data"] = data.copy()
else:
state["data"] = data
state["nave"] = 1
yield AverageTFR(inst=state, method=None, freqs=None, comment=str(event_id))
@verbose
@copy_doc(BaseTFR.plot)
def plot(
self,
picks=None,
*,
exclude=(),
tmin=None,
tmax=None,
fmin=None,
fmax=None,
baseline=None,
mode="mean",
dB=False,
combine=None,
layout=None, # TODO deprecate; not used in orig implementation
yscale="auto",
vlim=(None, None),
cnorm=None,
cmap=None,
colorbar=True,
title=None, # don't deprecate this one; has (useful) option title="auto"
mask=None,
mask_style=None,
mask_cmap="Greys",
mask_alpha=0.1,
axes=None,
show=True,
verbose=None,
):
singleton_epoch = self._check_singleton()
return singleton_epoch.plot(
picks=picks,
exclude=exclude,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
baseline=baseline,
mode=mode,
dB=dB,
combine=combine,
layout=layout,
yscale=yscale,
vlim=vlim,
cnorm=cnorm,
cmap=cmap,
colorbar=colorbar,
title=title,
mask=mask,
mask_style=mask_style,
mask_cmap=mask_cmap,
mask_alpha=mask_alpha,
axes=axes,
show=show,
verbose=verbose,
)
@verbose
@copy_doc(BaseTFR.plot_topo)
def plot_topo(
self,
picks=None,
baseline=None,
mode="mean",
tmin=None,
tmax=None,
fmin=None,
fmax=None,
vmin=None, # TODO deprecate in favor of `vlim` (needs helper func refactor)
vmax=None,
layout=None,
cmap=None,
title=None, # don't deprecate; topo titles aren't standard (color, size, just.)
dB=False,
colorbar=True,
layout_scale=0.945,
show=True,
border="none",
fig_facecolor="k",
fig_background=None,
font_color="w",
yscale="auto",
verbose=None,
):
singleton_epoch = self._check_singleton()
return singleton_epoch.plot_topo(
picks=picks,
baseline=baseline,
mode=mode,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
vmin=vmin,
vmax=vmax,
layout=layout,
cmap=cmap,
title=title,
dB=dB,
colorbar=colorbar,
layout_scale=layout_scale,
show=show,
border=border,
fig_facecolor=fig_facecolor,
fig_background=fig_background,
font_color=font_color,
yscale=yscale,
verbose=verbose,
)
@verbose
@copy_doc(BaseTFR.plot_joint)
def plot_joint(
self,
*,
timefreqs=None,
picks=None,
exclude=(),
combine="mean",
tmin=None,
tmax=None,
fmin=None,
fmax=None,
baseline=None,
mode="mean",
dB=False,
yscale="auto",
vlim=(None, None),
cnorm=None,
cmap=None,
colorbar=True,
title=None,
show=True,
topomap_args=None,
image_args=None,
verbose=None,
):
singleton_epoch = self._check_singleton()
return singleton_epoch.plot_joint(
timefreqs=timefreqs,
picks=picks,
exclude=exclude,
combine=combine,
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
baseline=baseline,
mode=mode,
dB=dB,
yscale=yscale,
vlim=vlim,
cnorm=cnorm,
cmap=cmap,
colorbar=colorbar,
title=title,
show=show,
topomap_args=topomap_args,
image_args=image_args,
verbose=verbose,
)
@copy_doc(BaseTFR.plot_topomap)
def plot_topomap(
self,
tmin=None,
tmax=None,
fmin=0.0,
fmax=np.inf,
*,
ch_type=None,
baseline=None,
mode="mean",
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=2,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%1.1e",
units=None,
axes=None,
show=True,
):
singleton_epoch = self._check_singleton()
return singleton_epoch.plot_topomap(
tmin=tmin,
tmax=tmax,
fmin=fmin,
fmax=fmax,
ch_type=ch_type,
baseline=baseline,
mode=mode,
sensors=sensors,
show_names=show_names,
mask=mask,
mask_params=mask_params,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
units=units,
axes=axes,
show=show,
)
@fill_doc
class EpochsTFRArray(EpochsTFR):
"""Data object for *precomputed* spectrotemporal representations of epoched data.
Parameters
----------
%(info_not_none)s
%(data_tfr)s
%(times)s
%(freqs_tfr_array)s
%(comment_tfr_attr)s
%(method_tfr_array)s
%(events_epochstfr)s
%(event_id_epochstfr)s
%(selection)s
%(drop_log)s
%(metadata_epochstfr)s
%(weights_tfr_array)s
Attributes
----------
%(baseline_tfr_attr)s
%(ch_names_tfr_attr)s
%(comment_tfr_attr)s
%(drop_log)s
%(event_id_attr)s
%(events_attr)s
%(freqs_tfr_attr)s
%(info_not_none)s
%(metadata_attr)s
%(method_tfr_attr)s
%(selection_attr)s
%(sfreq_tfr_attr)s
%(shape_tfr_attr)s
%(weights_tfr_attr)s
See Also
--------
AverageTFR
mne.Epochs.compute_tfr
mne.Evoked.compute_tfr
"""
def __init__(
self,
info,
data,
times,
freqs,
*,
comment=None,
method=None,
events=None,
event_id=None,
selection=None,
drop_log=None,
metadata=None,
weights=None,
):
state = dict(info=info, data=data, times=times, freqs=freqs)
optional = dict(
comment=comment,
method=method,
events=events,
event_id=event_id,
selection=selection,
drop_log=drop_log,
metadata=metadata,
weights=weights,
)
for name, value in optional.items():
if value is not None:
state[name] = value
self.__setstate__(state)
@fill_doc
class RawTFR(BaseTFR):
"""Data object for spectrotemporal representations of continuous data.
.. warning:: The preferred means of creating RawTFR objects from
:class:`~mne.io.Raw` objects is via the instance method
:meth:`~mne.io.Raw.compute_tfr`. Direct class instantiation
is not supported.
Parameters
----------
inst : instance of Raw
The data from which to compute the time-frequency representation.
%(method_tfr)s
%(freqs_tfr)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(reject_by_annotation_tfr)s
%(decim_tfr)s
%(n_jobs)s
%(verbose)s
%(method_kw_tfr)s
Attributes
----------
ch_names : list
The channel names.
freqs : array
Frequencies at which the amplitude, power, or fourier coefficients
have been computed.
%(info_not_none)s
method : str
The method used to compute the spectra (``'morlet'``, ``'multitaper'``
or ``'stockwell'``).
%(weights_tfr_attr)s
See Also
--------
mne.io.Raw.compute_tfr
EpochsTFR
AverageTFR
References
----------
.. footbibliography::
"""
def __init__(
self,
inst,
method=None,
freqs=None,
*,
tmin=None,
tmax=None,
picks=None,
proj=False,
reject_by_annotation=False,
decim=1,
n_jobs=None,
verbose=None,
**method_kw,
):
from ..io import BaseRaw
# dict is allowed for __setstate__ compatibility
_validate_type(
inst, (BaseRaw, dict), "object passed to RawTFR constructor", "Raw"
)
super().__init__(
inst,
method,
freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
reject_by_annotation=reject_by_annotation,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
def __setstate__(self, state):
"""Unpack RawTFR from serialized format."""
if state["data"].ndim not in [3, 4]:
raise ValueError(
f"RawTFR data should be 3D or 4D, got {state['data'].ndim}."
)
# Set dims now since optional tapers makes it difficult to disentangle later
state["dims"] = ("channel",)
if state["data"].ndim == 4:
state["dims"] += ("taper",)
state["dims"] += ("freq", "time")
super().__setstate__(state)
def __getitem__(self, item):
"""Get RawTFR data.
Parameters
----------
item : int | slice | array-like
Indexing is similar to a :class:`NumPy array<numpy.ndarray>`; see
Notes.
Returns
-------
%(getitem_tfr_return)s
Notes
-----
The last axis is always time, the next-to-last axis is always
frequency, and the first axis is always channel. If
``method='multitaper'`` and ``output='complex'`` then the second axis
will be taper index.
Integer-, list-, and slice-based indexing is possible:
- ``raw_tfr[[0, 2]]`` gives the whole time-frequency plane for the
first and third channels.
- ``raw_tfr[..., :3, :]`` gives the first 3 frequency bins and all
times for all channels (and tapers, if present).
- ``raw_tfr[..., :100]`` gives the first 100 time samples in all
frequency bins for all channels (and tapers).
- ``raw_tfr[(4, 7)]`` is the same as ``raw_tfr[4, 7]``.
.. note::
Unlike :class:`~mne.io.Raw` objects (which returns a tuple of the
requested data values and the corresponding times), accessing
:class:`~mne.time_frequency.RawTFR` values via subscript does
**not** return the corresponding frequency bin values. If you need
them, use ``RawTFR.freqs[freq_indices]`` or
``RawTFR.get_data(..., return_freqs=True)``.
"""
from ..io import BaseRaw
self._parse_get_set_params = partial(BaseRaw._parse_get_set_params, self)
return BaseRaw._getitem(self, item, return_times=False)
def _get_instance_data(self, time_mask, reject_by_annotation):
start, stop = np.where(time_mask)[0][[0, -1]]
rba = "NaN" if reject_by_annotation else None
data = self.inst.get_data(
self._picks, start, stop + 1, reject_by_annotation=rba
)
# prepend a singleton "epochs" axis
return data[np.newaxis]
@fill_doc
class RawTFRArray(RawTFR):
"""Data object for *precomputed* spectrotemporal representations of continuous data.
Parameters
----------
%(info_not_none)s
%(data_tfr)s
%(times)s
%(freqs_tfr_array)s
%(method_tfr_array)s
%(weights_tfr_array)s
Attributes
----------
%(baseline_tfr_attr)s
%(ch_names_tfr_attr)s
%(freqs_tfr_attr)s
%(info_not_none)s
%(method_tfr_attr)s
%(sfreq_tfr_attr)s
%(shape_tfr_attr)s
%(weights_tfr_attr)s
See Also
--------
RawTFR
mne.io.Raw.compute_tfr
EpochsTFRArray
AverageTFRArray
"""
def __init__(
self,
info,
data,
times,
freqs,
*,
method=None,
weights=None,
):
state = dict(info=info, data=data, times=times, freqs=freqs)
optional = dict(method=method, weights=weights)
for name, value in optional.items():
if value is not None:
state[name] = value
self.__setstate__(state)
def combine_tfr(all_tfr, weights="nave"):
"""Merge AverageTFR data by weighted addition.
Create a new :class:`mne.time_frequency.AverageTFR` instance, using a combination of
the supplied instances as its data. By default, the mean (weighted by trials) is
used. Subtraction can be performed by passing negative weights (e.g., [1, -1]). Data
must have the same channels and the same time instants.
Parameters
----------
all_tfr : list of AverageTFR
The tfr datasets.
weights : list of float | str
The weights to apply to the data of each AverageTFR instance.
Can also be ``'nave'`` to weight according to tfr.nave,
or ``'equal'`` to use equal weighting (each weighted as ``1/N``).
Returns
-------
tfr : AverageTFR
The new TFR data.
Notes
-----
Aggregating multitaper TFR datasets with a taper dimension such as for complex or
phase data is not supported.
.. versionadded:: 0.11.0
"""
if any("taper" in tfr._dims for tfr in all_tfr):
raise NotImplementedError(
"Aggregating multitaper tapers across TFR datasets is not supported."
)
tfr = all_tfr[0].copy()
if isinstance(weights, str):
if weights not in ("nave", "equal"):
raise ValueError('Weights must be a list of float, or "nave" or "equal"')
if weights == "nave":
weights = np.array([e.nave for e in all_tfr], float)
weights /= weights.sum()
else: # == 'equal'
weights = [1.0 / len(all_tfr)] * len(all_tfr)
weights = np.array(weights, float)
if weights.ndim != 1 or weights.size != len(all_tfr):
raise ValueError("Weights must be the same size as all_tfr")
ch_names = tfr.ch_names
for t_ in all_tfr[1:]:
assert t_.ch_names == ch_names, (
f"{tfr} and {t_} do not contain the same channels"
)
assert np.max(np.abs(t_.times - tfr.times)) < 1e-7, (
f"{tfr} and {t_} do not contain the same time instants"
)
# use union of bad channels
bads = list(set(tfr.info["bads"]).union(*(t_.info["bads"] for t_ in all_tfr[1:])))
tfr.info["bads"] = bads
# XXX : should be refactored with combined_evoked function
tfr.data = sum(w * t_.data for w, t_ in zip(weights, all_tfr))
tfr.nave = max(int(1.0 / sum(w**2 / e.nave for w, e in zip(weights, all_tfr))), 1)
return tfr
# Utils
# ↓↓↓↓↓↓↓↓↓↓↓ this is still used in _stockwell.py
def _get_data(inst, return_itc):
"""Get data from Epochs or Evoked instance as epochs x ch x time."""
from ..epochs import BaseEpochs
from ..evoked import Evoked
if not isinstance(inst, BaseEpochs | Evoked):
raise TypeError("inst must be Epochs or Evoked")
if isinstance(inst, BaseEpochs):
data = inst.get_data(copy=False)
else:
if return_itc:
raise ValueError("return_itc must be False for evoked data")
data = inst.data[np.newaxis].copy()
return data
def _prepare_picks(info, data, picks, axis):
"""Prepare the picks."""
picks = _picks_to_idx(info, picks, exclude="bads")
info = pick_info(info, picks)
sl = [slice(None)] * data.ndim
sl[axis] = picks
data = data[tuple(sl)]
return info, data
def _centered(arr, newsize):
"""Aux Function to center data."""
# Return the center newsize portion of the array.
newsize = np.asarray(newsize)
currsize = np.array(arr.shape)
startind = (currsize - newsize) // 2
endind = startind + newsize
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
return arr[tuple(myslice)]
def _ensure_slice(decim):
"""Aux function checking the decim parameter."""
_validate_type(decim, ("int-like", slice), "decim")
if not isinstance(decim, slice):
decim = slice(None, None, int(decim))
# ensure that we can actually use `decim.step`
if decim.step is None:
decim = slice(decim.start, decim.stop, 1)
return decim
# i/o
@verbose
def write_tfrs(fname, tfr, overwrite=False, *, verbose=None):
"""Write a TFR dataset to hdf5.
Parameters
----------
fname : path-like
The file name, which should end with ``-tfr.h5``.
tfr : RawTFR | EpochsTFR | AverageTFR | list of RawTFR | list of EpochsTFR | list of AverageTFR
The (list of) TFR object(s) to save in one file. If ``tfr.comment`` is ``None``,
a sequential numeric string name will be generated on the fly, based on the
order in which the TFR objects are passed. This can be used to selectively load
single TFR objects from the file later.
%(overwrite)s
%(verbose)s
See Also
--------
read_tfrs
Notes
-----
.. versionadded:: 0.9.0
""" # noqa E501
_, write_hdf5 = _import_h5io_funcs()
out = []
if not isinstance(tfr, list | tuple):
tfr = [tfr]
for ii, tfr_ in enumerate(tfr):
comment = ii if getattr(tfr_, "comment", None) is None else tfr_.comment
state = tfr_.__getstate__()
if "metadata" in state:
state["metadata"] = _prepare_write_metadata(state["metadata"])
out.append((comment, state))
write_hdf5(fname, out, overwrite=overwrite, title="mnepython", slash="replace")
@verbose
def read_tfrs(fname, condition=None, *, verbose=None):
"""Load a TFR object from disk.
Parameters
----------
fname : path-like
Path to a TFR file in HDF5 format, which should end with ``-tfr.h5`` or
``-tfr.hdf5``.
condition : int or str | list of int or str | None
The condition to load. If ``None``, all conditions will be returned.
Defaults to ``None``.
%(verbose)s
Returns
-------
tfr : RawTFR | EpochsTFR | AverageTFR | list of RawTFR | list of EpochsTFR | list of AverageTFR
The loaded time-frequency object.
See Also
--------
mne.time_frequency.RawTFR.save
mne.time_frequency.EpochsTFR.save
mne.time_frequency.AverageTFR.save
write_tfrs
Notes
-----
.. versionadded:: 0.9.0
""" # noqa E501
read_hdf5, _ = _import_h5io_funcs()
fname = _check_fname(fname=fname, overwrite="read", must_exist=False)
valid_fnames = tuple(
f"{sep}tfr.{ext}" for sep in ("-", "_") for ext in ("h5", "hdf5")
)
check_fname(fname, "tfr", valid_fnames)
logger.info(f"Reading {fname} ...")
hdf5_dict = read_hdf5(fname, title="mnepython", slash="replace")
# single TFR from TFR.save()
if "inst_type_str" in hdf5_dict:
if "epoch" in hdf5_dict["dims"]:
Klass = EpochsTFR
elif "nave" in hdf5_dict:
Klass = AverageTFR
else:
Klass = RawTFR
out = Klass(inst=hdf5_dict)
if getattr(out, "metadata", None) is not None:
out.metadata = _prepare_read_metadata(out.metadata)
return out
# maybe multiple TFRs from write_tfrs()
return _read_multiple_tfrs(hdf5_dict, condition=condition, verbose=verbose)
@verbose
def _read_multiple_tfrs(tfr_data, condition=None, *, verbose=None):
"""Read (possibly multiple) TFR datasets from an h5 file written by write_tfrs()."""
out = list()
keys = list()
# tfr_data is a list of (comment, tfr_dict) tuples
for key, tfr in tfr_data:
keys.append(str(key)) # auto-assigned keys are ints
is_epochs = tfr["data"].ndim == 4
is_average = "nave" in tfr
if condition is not None:
if not is_average:
raise NotImplementedError(
"condition is only supported when reading AverageTFRs."
)
if key != condition:
continue
tfr = dict(tfr)
tfr["info"] = Info(tfr["info"])
tfr["info"]._check_consistency()
if "metadata" in tfr:
tfr["metadata"] = _prepare_read_metadata(tfr["metadata"])
# additional keys needed for TFR __setstate__
defaults = dict(baseline=None, data_type="Power Estimates")
if is_epochs:
Klass = EpochsTFR
defaults.update(
inst_type_str="Epochs", dims=("epoch", "channel", "freq", "time")
)
elif is_average:
Klass = AverageTFR
defaults.update(inst_type_str="Evoked", dims=("channel", "freq", "time"))
else:
Klass = RawTFR
defaults.update(inst_type_str="Raw", dims=("channel", "freq", "time"))
out.append(Klass(inst=defaults | tfr))
if len(out) == 0:
raise ValueError(
f'Cannot find condition "{condition}" in this file. '
f"The file contains conditions {', '.join(keys)}"
)
if len(out) == 1:
out = out[0]
return out
def _get_timefreqs(tfr, timefreqs):
"""Find and/or setup timefreqs for `tfr.plot_joint`."""
# Input check
timefreq_error_msg = (
"Supplied `timefreqs` are somehow malformed. Please supply None, "
"a list of tuple pairs, or a dict of such tuple pairs, not {}"
)
if isinstance(timefreqs, dict):
for k, v in timefreqs.items():
for item in (k, v):
if len(item) != 2 or any(not _is_numeric(n) for n in item):
raise ValueError(timefreq_error_msg, item)
elif timefreqs is not None:
if not hasattr(timefreqs, "__len__"):
raise ValueError(timefreq_error_msg.format(timefreqs))
if len(timefreqs) == 2 and all(_is_numeric(v) for v in timefreqs):
timefreqs = [tuple(timefreqs)] # stick a pair of numbers in a list
else:
for item in timefreqs:
if (
hasattr(item, "__len__")
and len(item) == 2
and all(_is_numeric(n) for n in item)
):
pass
else:
raise ValueError(timefreq_error_msg.format(item))
# If None, automatic identification of max peak
else:
order = max((1, tfr.data.shape[2] // 30))
peaks_idx = argrelmax(tfr.data, order=order, axis=2)
if peaks_idx[0].size == 0:
_, p_t, p_f = np.unravel_index(tfr.data.argmax(), tfr.data.shape)
timefreqs = [(tfr.times[p_t], tfr.freqs[p_f])]
else:
peaks = [tfr.data[0, f, t] for f, t in zip(peaks_idx[1], peaks_idx[2])]
peakmax_idx = np.argmax(peaks)
peakmax_time = tfr.times[peaks_idx[2][peakmax_idx]]
peakmax_freq = tfr.freqs[peaks_idx[1][peakmax_idx]]
timefreqs = [(peakmax_time, peakmax_freq)]
timefreqs = {
tuple(k): np.asarray(timefreqs[k])
if isinstance(timefreqs, dict)
else np.array([0, 0])
for k in timefreqs
}
return timefreqs
def _check_tfr_complex(tfr, reason="source space estimation"):
"""Check that time-frequency epochs or average data is complex."""
if not np.iscomplexobj(tfr.data):
raise RuntimeError(f"Time-frequency data must be complex for {reason}")
def _merge_if_grads(data, info, ch_type, sphere, combine=None):
if ch_type == "grad":
grad_picks = _pair_grad_sensors(info, topomap_coords=False)
pos = _find_topomap_coords(info, picks=grad_picks[::2], sphere=sphere)
grad_method = combine if isinstance(combine, str) else "rms"
data, _ = _merge_ch_data(data[grad_picks], ch_type, [], method=grad_method)
else:
pos, _ = _get_pos_outlines(info, picks=ch_type, sphere=sphere)
return data, pos
@verbose
def _prep_data_for_plot(
data,
times,
freqs,
*,
tmin=None,
tmax=None,
fmin=None,
fmax=None,
baseline=None,
mode=None,
dB=False,
taper_weights=None,
verbose=None,
):
# baseline
copy = baseline is not None
data = rescale(data, times, baseline, mode, copy=copy, verbose=verbose)
# crop times
time_mask = np.nonzero(_time_mask(times, tmin, tmax))[0]
times = times[time_mask]
# crop freqs
freq_mask = np.nonzero(_time_mask(freqs, fmin, fmax))[0]
freqs = freqs[freq_mask]
# crop data
data = data[..., freq_mask, :][..., time_mask]
# handle unaggregated multitaper (complex or phase multitaper data)
if taper_weights is not None: # assumes a taper dimension
logger.info("Aggregating multitaper estimates before plotting...")
if np.iscomplexobj(data): # complex coefficients → power
data = _tfr_from_mt(data, taper_weights)
else: # tapered phase data → weighted phase data
# channels, tapers, freqs, time
assert data.ndim == 4
# weights as a function of (tapers, freqs)
assert taper_weights.ndim == 2
data = (data * taper_weights[np.newaxis, :, :, np.newaxis]).mean(axis=1)
# handle remaining complex amplitude → real power
if np.iscomplexobj(data):
data = (data * data.conj()).real
if dB:
data = 10 * np.log10(data)
return data, times, freqs
def _tfr_from_mt(x_mt, weights):
"""Aggregate complex multitaper coefficients over tapers and convert to power.
Parameters
----------
x_mt : array, shape (..., n_tapers, n_freqs, n_times)
The complex-valued multitaper coefficients.
weights : array, shape (n_tapers, n_freqs)
The weights to use to combine the tapered estimates.
Returns
-------
tfr : array, shape (..., n_freqs, n_times)
The time-frequency power estimates.
"""
# add singleton dim for time and any dims preceding the tapers
weights = weights[..., np.newaxis]
tfr = weights * x_mt
tfr *= tfr.conj()
tfr = tfr.real.sum(axis=-3)
tfr *= 2 / (weights * weights.conj()).real.sum(axis=-3)
return tfr