[074d3d]: / mne / time_frequency / tests / test_csd.py

Download this file

651 lines (551 with data), 21.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import pickle
from itertools import product
from os import path as op
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from pytest import raises
import mne
from mne.channels import equalize_channels
from mne.proj import Projection
from mne.time_frequency import (
CrossSpectralDensity,
csd_array_fourier,
csd_array_morlet,
csd_array_multitaper,
csd_fourier,
csd_morlet,
csd_multitaper,
csd_tfr,
pick_channels_csd,
read_csd,
tfr_morlet,
)
from mne.time_frequency.csd import _sym_mat_to_vector, _vector_to_sym_mat
from mne.utils import sum_squared
base_dir = op.join(op.dirname(__file__), "..", "..", "io", "tests", "data")
raw_fname = op.join(base_dir, "test_raw.fif")
event_fname = op.join(base_dir, "test-eve.fif")
def _make_csd(add_proj=False):
"""Make a simple CrossSpectralDensity object."""
frequencies = [1.0, 2.0, 3.0, 4.0]
n_freqs = len(frequencies)
names = ["CH1", "CH2", "CH3"]
tmin, tmax = (0.0, 1.0)
data = np.arange(6.0 * n_freqs).reshape(n_freqs, 6).T
if add_proj:
proj_data = dict(col_names=names, row_names=None, data=np.ones((1, len(names))))
projs = [Projection(data=proj_data)]
else:
projs = None
return CrossSpectralDensity(data, names, frequencies, 1, tmin, tmax, projs=projs)
def test_csd():
"""Test constructing a CrossSpectralDensity."""
csd = CrossSpectralDensity(
[1, 2, 3], ["CH1", "CH2"], frequencies=1, n_fft=1, tmin=0, tmax=1
)
assert_array_equal(csd._data, [[1], [2], [3]]) # Conversion to 2D array
assert_array_equal(csd.frequencies, [1]) # Conversion to 1D array
# Channels don't match
raises(
ValueError,
CrossSpectralDensity,
[1, 2, 3],
["CH1", "CH2", "Too many!"],
tmin=0,
tmax=1,
frequencies=1,
n_fft=1,
)
raises(
ValueError,
CrossSpectralDensity,
[1, 2, 3],
["too little"],
tmin=0,
tmax=1,
frequencies=1,
n_fft=1,
)
# Frequencies don't match
raises(
ValueError,
CrossSpectralDensity,
[[1, 2], [3, 4], [5, 6]],
["CH1", "CH2"],
tmin=0,
tmax=1,
frequencies=1,
n_fft=1,
)
# Invalid dims
raises(
ValueError,
CrossSpectralDensity,
[[[1]]],
["CH1"],
frequencies=1,
n_fft=1,
tmin=0,
tmax=1,
)
def test_csd_repr():
"""Test string representation of CrossSpectralDensity."""
csd = _make_csd()
assert str(csd) == (
"<CrossSpectralDensity | n_channels=3, time=0.0 to "
"1.0 s, frequencies=1.0, 2.0, 3.0, 4.0 Hz.>"
)
assert str(csd.mean()) == (
"<CrossSpectralDensity | n_channels=3, "
"time=0.0 to 1.0 s, frequencies=1.0-4.0 Hz.>"
)
csd_binned = csd.mean(fmin=[1, 3], fmax=[2, 4])
assert str(csd_binned) == (
"<CrossSpectralDensity | n_channels=3, "
"time=0.0 to 1.0 s, frequencies=1.0-2.0, "
"3.0-4.0 Hz.>"
)
csd_binned = csd.mean(fmin=[1, 2], fmax=[1, 4])
assert str(csd_binned) == (
"<CrossSpectralDensity | n_channels=3, "
"time=0.0 to 1.0 s, frequencies=1.0, 2.0-4.0 "
"Hz.>"
)
csd_no_time = csd.copy()
csd_no_time.tmin = None
csd_no_time.tmax = None
assert str(csd_no_time) == (
"<CrossSpectralDensity | n_channels=3, time=unknown, "
"frequencies=1.0, 2.0, 3.0, 4.0 Hz.>"
)
def test_csd_mean():
"""Test averaging frequency bins of CrossSpectralDensity."""
csd = _make_csd()
# Test different ways to average across all frequencies
avg = [[9], [10], [11], [12], [13], [14]]
assert_array_equal(csd.mean()._data, avg)
assert_array_equal(csd.mean(fmin=None, fmax=4)._data, avg)
assert_array_equal(csd.mean(fmin=1, fmax=None)._data, avg)
assert_array_equal(csd.mean(fmin=0, fmax=None)._data, avg)
assert_array_equal(csd.mean(fmin=1, fmax=4)._data, avg)
# Test averaging across frequency bins
csd_binned = csd.mean(fmin=[1, 3], fmax=[2, 4])
assert_array_equal(
csd_binned._data,
[[3, 15], [4, 16], [5, 17], [6, 18], [7, 19], [8, 20]],
)
csd_binned = csd.mean(fmin=[1, 3], fmax=[1, 4])
assert_array_equal(
csd_binned._data,
[[0, 15], [1, 16], [2, 17], [3, 18], [4, 19], [5, 20]],
)
# This flag should be set after averaging
assert csd.mean()._is_sum
# Test construction of .frequency attribute
assert csd.mean().frequencies == [[1, 2, 3, 4]]
assert csd.mean(fmin=[1, 3], fmax=[2, 4]).frequencies == [[1, 2], [3, 4]]
# Test invalid inputs
raises(ValueError, csd.mean, fmin=1, fmax=[2, 3])
raises(ValueError, csd.mean, fmin=[1, 2], fmax=[3])
raises(ValueError, csd.mean, fmin=[1, 2], fmax=[1, 1])
# Taking the mean twice should raise an error
raises(RuntimeError, csd.mean().mean)
def test_csd_get_frequency_index():
"""Test the _get_frequency_index method of CrossSpectralDensity."""
csd = _make_csd()
assert csd._get_frequency_index(1) == 0
assert csd._get_frequency_index(2) == 1
assert csd._get_frequency_index(4) == 3
assert csd._get_frequency_index(0.9) == 0
assert csd._get_frequency_index(2.1) == 1
assert csd._get_frequency_index(4.1) == 3
# Frequency can be off by a maximum of 1
raises(IndexError, csd._get_frequency_index, csd.frequencies[-1] + 1.0001)
def test_csd_pick_frequency():
"""Test the pick_frequency method of CrossSpectralDensity."""
csd = _make_csd()
csd2 = csd.pick_frequency(freq=2)
assert csd2.frequencies == [2]
assert_array_equal(csd2.get_data(), [[6, 7, 8], [7, 9, 10], [8, 10, 11]])
csd2 = csd.pick_frequency(index=1)
assert csd2.frequencies == [2]
assert_array_equal(csd2.get_data(), [[6, 7, 8], [7, 9, 10], [8, 10, 11]])
# Nonexistent frequency
raises(IndexError, csd.pick_frequency, -1)
# Nonexistent index
raises(IndexError, csd.pick_frequency, index=10)
# Invalid parameters
raises(ValueError, csd.pick_frequency)
raises(ValueError, csd.pick_frequency, freq=2, index=1)
def test_csd_get_data():
"""Test the get_data method of CrossSpectralDensity."""
csd = _make_csd()
# CSD matrix corresponding to 2 Hz.
assert_array_equal(csd.get_data(frequency=2), [[6, 7, 8], [7, 9, 10], [8, 10, 11]])
# Mean CSD matrix
assert_array_equal(csd.mean().get_data(), [[9, 10, 11], [10, 12, 13], [11, 13, 14]])
# Average across frequency bins, select bin
assert_array_equal(
csd.mean(fmin=[1, 3], fmax=[2, 4]).get_data(index=1),
[[15, 16, 17], [16, 18, 19], [17, 19, 20]],
)
# Invalid inputs
raises(ValueError, csd.get_data)
raises(ValueError, csd.get_data, frequency=1, index=1)
raises(IndexError, csd.get_data, frequency=15)
raises(ValueError, csd.mean().get_data, frequency=1)
raises(IndexError, csd.mean().get_data, index=15)
def test_csd_save(tmp_path):
"""Test saving and loading a CrossSpectralDensity."""
pytest.importorskip("h5io")
csd = _make_csd(add_proj=True)
fname = op.join(str(tmp_path), "csd.h5")
csd.save(fname)
csd2 = read_csd(fname)
assert_array_equal(csd._data, csd2._data)
assert_array_equal(csd.frequencies, csd2.frequencies)
assert csd.tmin == csd2.tmin
assert csd.tmax == csd2.tmax
assert csd.ch_names == csd2.ch_names
assert csd._is_sum == csd2._is_sum
assert isinstance(csd2.projs[0], Projection)
def test_csd_pickle(tmp_path):
"""Test pickling and unpickling a CrossSpectralDensity."""
csd = _make_csd()
tempdir = str(tmp_path)
fname = op.join(tempdir, "csd.dat")
with open(fname, "wb") as f:
pickle.dump(csd, f)
with open(fname, "rb") as f:
csd2 = pickle.load(f) # nosec B301
assert_array_equal(csd._data, csd2._data)
assert csd.tmin == csd2.tmin
assert csd.tmax == csd2.tmax
assert csd.ch_names == csd2.ch_names
assert csd.frequencies == csd2.frequencies
assert csd._is_sum == csd2._is_sum
def test_pick_channels_csd():
"""Test selecting channels from a CrossSpectralDensity."""
csd = _make_csd()
csd = pick_channels_csd(csd, ["CH1", "CH3"])
assert csd.ch_names == ["CH1", "CH3"]
assert_array_equal(csd._data, [[0, 6, 12, 18], [2, 8, 14, 20], [5, 11, 17, 23]])
def test_sym_mat_to_vector():
"""Test converting between vectors and symmetric matrices."""
mat = np.array([[0, 1, 2, 3], [1, 4, 5, 6], [2, 5, 7, 8], [3, 6, 8, 9]])
assert_array_equal(_sym_mat_to_vector(mat), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
vec = np.arange(10)
assert_array_equal(
_vector_to_sym_mat(vec),
[[0, 1, 2, 3], [1, 4, 5, 6], [2, 5, 7, 8], [3, 6, 8, 9]],
)
# Test complex values: diagonals should be complex conjugates
comp_vec = np.arange(3) + 1j
assert_array_equal(
_vector_to_sym_mat(comp_vec),
[[0.0 + 0.0j, 1.0 + 1.0j], [1.0 - 1.0j, 2.0 + 0.0j]],
)
# Test preservation of data type
assert _sym_mat_to_vector(mat.astype(np.int8)).dtype == np.int8
assert _vector_to_sym_mat(vec.astype(np.int8)).dtype == np.int8
assert _sym_mat_to_vector(mat.astype(np.float16)).dtype == np.float16
assert _vector_to_sym_mat(vec.astype(np.float16)).dtype == np.float16
def _generate_coherence_data():
"""Create an epochs object with coherence at 22Hz between channels 1 and 3.
A base 10 Hz sine wave is generated for all channels, but with different
phases, which means no actual coherence. A 22Hz sine wave is laid on top
for channels 1 and 3, with the same phase, so there is coherence between
these channels.
"""
ch_names = ["CH1", "CH2", "CH3"]
sfreq = 50.0
info = mne.create_info(ch_names, sfreq, "eeg")
tstep = 1.0 / sfreq
n_samples = int(10 * sfreq) # 10 seconds of data
times = np.arange(n_samples) * tstep
events = np.array([[0, 1, 1]]) # one event
# Phases for the signals
phases = np.arange(info["nchan"]) * 0.3 * np.pi
# Generate 10 Hz sine waves with different phases
signal = np.vstack([np.sin(times * 2 * np.pi * 10 + phase) for phase in phases])
data = np.zeros((1, info["nchan"], n_samples))
data[0, :, :] = signal
# Generate 22Hz sine wave at the first and last electrodes with the same
# phase.
signal = np.sin(times * 2 * np.pi * 22)
data[0, [0, -1], :] += signal
return mne.EpochsArray(data, info, events, baseline=(0, times[-1]))
def _test_csd_matrix(csd):
"""Perform a suite of tests on a CSD matrix."""
# Check shape of the CSD matrix
n_chan = len(csd.ch_names)
assert n_chan == 3
assert csd.ch_names == ["CH1", "CH2", "CH3"]
n_freqs = len(csd.frequencies)
assert n_freqs == 3
assert csd._data.shape == (6, 3) # Only upper triangle of CSD matrix
# Extract CSD ndarrays. Diagonals are PSDs.
csd_10 = csd.get_data(index=0)
csd_22 = csd.get_data(index=2)
power_10 = np.diag(csd_10)
power_22 = np.diag(csd_22)
# Check if the CSD matrices are hermitian
assert np.all(np.tril(csd_10).T.conj() == np.triu(csd_10))
assert np.all(np.tril(csd_22).T.conj() == np.triu(csd_22))
# Off-diagonals show phase difference
assert np.abs(csd_10[0, 1].imag) > 0.4
assert np.abs(csd_10[0, 2].imag) > 0.4
assert np.abs(csd_10[1, 2].imag) > 0.4
# No phase differences at 22 Hz
assert np.all(np.abs(csd_22[0, 2].imag) < 1e-3)
# Test CSD between the two channels that have a 20Hz signal and the one
# that has only a 10 Hz signal
assert np.abs(csd_22[0, 2]) > np.abs(csd_22[0, 1])
assert np.abs(csd_22[0, 2]) > np.abs(csd_22[1, 2])
# Check that electrodes/frequency combinations with signal have more
# power than frequencies without signal.
power_15 = np.diag(csd.get_data(index=1))
assert np.all(power_10 > power_15)
assert np.all(power_22[[0, -1]] > power_15[[0, -1]])
def _test_fourier_multitaper_parameters(epochs, csd_epochs, csd_array):
"""Parameter tests for csd_*_fourier and csd_*_multitaper."""
raises(ValueError, csd_epochs, epochs, fmin=20, fmax=10)
raises(
ValueError,
csd_array,
epochs._data,
epochs.info["sfreq"],
epochs.tmin,
fmin=20,
fmax=10,
)
raises(ValueError, csd_epochs, epochs, fmin=20.11, fmax=20.19)
raises(
ValueError,
csd_array,
epochs._data,
epochs.info["sfreq"],
epochs.tmin,
fmin=20.11,
fmax=20.19,
)
raises(ValueError, csd_epochs, epochs, tmin=0.15, tmax=0.1)
raises(
ValueError,
csd_array,
epochs._data,
epochs.info["sfreq"],
epochs.tmin,
tmin=0.15,
tmax=0.1,
)
raises(ValueError, csd_epochs, epochs, tmin=-1, tmax=10)
raises(
ValueError,
csd_array,
epochs._data,
epochs.info["sfreq"],
epochs.tmin,
tmin=-1,
tmax=10,
)
raises(ValueError, csd_epochs, epochs, tmin=10, tmax=11)
raises(
ValueError,
csd_array,
epochs._data,
epochs.info["sfreq"],
epochs.tmin,
tmin=10,
tmax=11,
)
# Test checks for data types and sizes
diff_types = [np.random.randn(3, 5), "error"]
err_data = [np.random.randn(3, 5), np.random.randn(2, 4)]
raises(ValueError, csd_array, err_data, sfreq=1)
raises(ValueError, csd_array, diff_types, sfreq=1)
raises(ValueError, csd_array, np.random.randn(3), sfreq=1)
def test_csd_fourier():
"""Test computing cross-spectral density using short-term Fourier."""
epochs = _generate_coherence_data()
sfreq = epochs.info["sfreq"]
_test_fourier_multitaper_parameters(epochs, csd_fourier, csd_array_fourier)
# Compute CSDs using various parameters
times = [(None, None), (1, 9)]
as_arrays = [False, True]
parameters = product(times, as_arrays)
for (tmin, tmax), as_array in parameters:
if as_array:
csd = csd_array_fourier(
epochs.get_data(copy=False),
sfreq,
epochs.tmin,
fmin=9,
fmax=23,
tmin=tmin,
tmax=tmax,
ch_names=epochs.ch_names,
)
else:
csd = csd_fourier(epochs, fmin=9, fmax=23, tmin=tmin, tmax=tmax)
if tmin is None and tmax is None:
assert csd.tmin == 0 and csd.tmax == 9.98
else:
assert csd.tmin == tmin and csd.tmax == tmax
csd = csd.mean([9.9, 14.9, 21.9], [10.1, 15.1, 22.1])
_test_csd_matrix(csd)
# For the next test, generate a simple sine wave with a known power
times = np.arange(20 * sfreq) / sfreq # 20 seconds of signal
signal = np.sin(2 * np.pi * 10 * times)[None, None, :] # 10 Hz wave
signal_power_per_sample = sum_squared(signal) / len(times)
# Power per sample should not depend on time window length
for tmax in [12, 18]:
t_mask = times <= tmax
n_samples = sum(t_mask)
# Power per sample should not depend on number of FFT points
for add_n_fft in [0, 30]:
n_fft = n_samples + add_n_fft
csd = (
csd_array_fourier(signal, sfreq, tmax=tmax, n_fft=n_fft)
.sum()
.get_data()
)
first_samp = csd[0, 0]
fourier_power_per_sample = np.abs(first_samp) * sfreq / n_fft
assert abs(signal_power_per_sample - fourier_power_per_sample) < 0.001
def test_csd_multitaper():
"""Test computing cross-spectral density using multitapers."""
epochs = _generate_coherence_data()
sfreq = epochs.info["sfreq"]
_test_fourier_multitaper_parameters(epochs, csd_multitaper, csd_array_multitaper)
# Compute CSDs using various parameters
times = [(None, None), (1, 9)]
as_arrays = [False, True]
adaptives = [False, True]
parameters = product(times, as_arrays, adaptives)
for (tmin, tmax), as_array, adaptive in parameters:
if as_array:
csd = csd_array_multitaper(
epochs.get_data(copy=False),
sfreq,
epochs.tmin,
adaptive=adaptive,
fmin=9,
fmax=23,
tmin=tmin,
tmax=tmax,
ch_names=epochs.ch_names,
)
else:
csd = csd_multitaper(
epochs, adaptive=adaptive, fmin=9, fmax=23, tmin=tmin, tmax=tmax
)
if tmin is None and tmax is None:
assert csd.tmin == 0 and csd.tmax == 9.98
else:
assert csd.tmin == tmin and csd.tmax == tmax
csd = csd.mean([9.9, 14.9, 21.9], [10.1, 15.1, 22.1])
_test_csd_matrix(csd)
# Test equivalence with PSD
spectrum = epochs.compute_psd(fmin=1e-3, normalization="full") # omit DC
psd, psd_freqs = spectrum.get_data(return_freqs=True)
csd = csd_multitaper(epochs)
assert_allclose(psd_freqs, csd.frequencies)
csd = np.array([np.diag(csd.get_data(index=ii)) for ii in range(len(csd))]).T
assert_allclose(psd[0], csd)
# For the next test, generate a simple sine wave with a known power
times = np.arange(20 * sfreq) / sfreq # 20 seconds of signal
signal = np.sin(2 * np.pi * 10 * times)[None, None, :] # 10 Hz wave
signal_power_per_sample = sum_squared(signal) / len(times)
# Power per sample should not depend on time window length
for tmax in [12, 18]:
t_mask = times <= tmax
n_samples = sum(t_mask)
n_fft = len(times)
# Power per sample should not depend on number of tapers
for n_tapers in [1, 2, 5]:
bandwidth = sfreq / float(n_samples) * (n_tapers + 1)
csd_mt = (
csd_array_multitaper(
signal, sfreq, tmax=tmax, bandwidth=bandwidth, n_fft=n_fft
)
.sum()
.get_data()
)
mt_power_per_sample = np.abs(csd_mt[0, 0]) * sfreq / n_fft
assert abs(signal_power_per_sample - mt_power_per_sample) < 0.001
def test_csd_morlet():
"""Test computing cross-spectral density using Morlet wavelets."""
epochs = _generate_coherence_data()
sfreq = epochs.info["sfreq"]
# Compute CSDs by a variety of methods
freqs = [10, 15, 22]
n_cycles = [20, 30, 44]
times = [(None, None), (1, 9)]
as_arrays = [False, True]
parameters = product(times, as_arrays)
for (tmin, tmax), as_array in parameters:
if as_array:
csd = csd_array_morlet(
epochs.get_data(copy=False),
sfreq,
freqs,
t0=epochs.tmin,
n_cycles=n_cycles,
tmin=tmin,
tmax=tmax,
ch_names=epochs.ch_names,
)
else:
csd = csd_morlet(
epochs, frequencies=freqs, n_cycles=n_cycles, tmin=tmin, tmax=tmax
)
if tmin is None and tmax is None:
assert csd.tmin == 0 and csd.tmax == 9.98
else:
assert csd.tmin == tmin and csd.tmax == tmax
_test_csd_matrix(csd)
# CSD diagonals should contain PSD
tfr = tfr_morlet(epochs, freqs, n_cycles, return_itc=False)
power = np.mean(tfr.data, 2)
csd = csd_morlet(epochs, frequencies=freqs, n_cycles=n_cycles)
assert_allclose(csd._data[[0, 3, 5]] * sfreq, power)
# Test using plain convolution instead of FFT
csd = csd_morlet(epochs, frequencies=freqs, n_cycles=n_cycles, use_fft=False)
assert_allclose(csd._data[[0, 3, 5]] * sfreq, power)
# Test baselining warning
epochs_nobase = epochs.copy()
epochs_nobase.baseline = None
with epochs_nobase.info._unlock():
epochs_nobase.info["highpass"] = 0
with pytest.warns(RuntimeWarning, match="baseline"):
csd = csd_morlet(epochs_nobase, frequencies=[10], decim=20)
def test_equalize_channels():
"""Test equalization of channels for instances of CrossSpectralDensity."""
csd1 = _make_csd()
# TODO replace with `.pick()` when CSD objects get that method
csd2 = csd1.copy().pick_channels(["CH2", "CH1"], ordered=True)
csd1, csd2 = equalize_channels([csd1, csd2])
assert csd1.ch_names == ["CH1", "CH2"]
assert csd2.ch_names == ["CH1", "CH2"]
def test_csd_tfr():
"""Test computing cross-spectral density on time-frequency epochs."""
rng = np.random.default_rng(11)
n_epochs = 6
info = mne.io.read_info(raw_fname)
info = mne.pick_info(info, mne.pick_types(info, eeg=True))
freqs = np.arange(38, 40)
times = np.linspace(0, 1, int(round(info["sfreq"])))
data = rng.normal(size=(n_epochs, len(info.ch_names), times.size)) * 1e-6
epochs = mne.EpochsArray(data, info)
csd_test = csd_morlet(epochs, freqs, n_cycles=7, tmin=0.25, tmax=0.75)
epochs_tfr = tfr_morlet(
epochs, freqs, n_cycles=7, average=False, return_itc=False, output="complex"
)
csd = csd_tfr(epochs_tfr, tmin=0.25, tmax=0.75)
assert_allclose(csd._data, csd_test._data)
assert_array_equal(csd.frequencies, freqs)