[074d3d]: / mne / tests / test_transforms.py

Download this file

653 lines (584 with data), 22.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import itertools
import os
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import (
assert_allclose,
assert_almost_equal,
assert_array_equal,
assert_array_less,
assert_equal,
)
import mne
from mne import read_trans, write_trans
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.io import read_info
from mne.transforms import (
_angle_between_quats,
_average_quats,
_cart_to_sph,
_compute_r2,
_euler_to_quat,
_find_trans,
_find_vector_rotation,
_fit_matched_points,
_get_trans,
_MatchedDisplacementFieldInterpolator,
_pol_to_cart,
_quat_real,
_quat_to_affine,
_quat_to_euler,
_read_fs_xfm,
_sph_to_cart,
_topo_to_sph,
_validate_pipeline,
_write_fs_xfm,
apply_trans,
combine_transforms,
get_ras_to_neuromag_trans,
invert_transform,
quat_to_rot,
rot_to_quat,
rotation,
rotation3d,
rotation3d_align_z_axis,
rotation_angles,
translation,
)
from mne.transforms import (
_SphericalSurfaceWarp as SphericalSurfaceWarp,
)
data_path = testing.data_path(download=False)
fname = data_path / "MEG" / "sample" / "sample_audvis_trunc-trans.fif"
fname_eve = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw-eve.fif"
subjects_dir = data_path / "subjects"
fname_t1 = subjects_dir / "fsaverage" / "mri" / "T1.mgz"
base_dir = Path(__file__).parents[1] / "io" / "tests" / "data"
fname_trans = base_dir / "sample-audvis-raw-trans.txt"
test_fif_fname = base_dir / "test_raw.fif"
ctf_fname = base_dir / "test_ctf_raw.fif"
hp_fif_fname = base_dir / "test_chpi_raw_sss.fif"
def test_tps():
"""Test TPS warping."""
az = np.linspace(0.0, 2 * np.pi, 20, endpoint=False)
pol = np.linspace(0, np.pi, 12)[1:-1]
sph = np.array(np.meshgrid(1, az, pol, indexing="ij"))
sph.shape = (3, -1)
assert_equal(sph.shape[1], 200)
source = _sph_to_cart(sph.T)
destination = source.copy()
destination *= 2
destination[:, 0] += 1
# fit with 100 points
warp = SphericalSurfaceWarp()
assert "no " in repr(warp)
warp.fit(source[::3], destination[::2])
assert "oct5" in repr(warp)
destination_est = warp.transform(source)
assert_allclose(destination_est, destination, atol=1e-3)
@testing.requires_testing_data
def test_get_trans():
"""Test converting '-trans.txt' to '-trans.fif'."""
trans = read_trans(fname)
trans = invert_transform(trans) # starts out as head->MRI, so invert
trans_2 = _get_trans(fname_trans)[0]
assert trans.__eq__(trans_2, atol=1e-5)
@testing.requires_testing_data
def test_io_trans(tmp_path):
"""Test reading and writing of trans files."""
os.mkdir(tmp_path / "sample")
pytest.raises(RuntimeError, _find_trans, "sample", subjects_dir=tmp_path)
trans0 = read_trans(fname)
fname1 = tmp_path / "sample" / "test-trans.fif"
trans0.save(fname1)
assert fname1 == _find_trans("sample", subjects_dir=tmp_path)
trans1 = read_trans(fname1)
# check all properties
assert trans0 == trans1
# check reading non -trans.fif files
pytest.raises(OSError, read_trans, fname_eve)
# check warning on bad filenames
fname2 = tmp_path / "trans-test-bad-name.fif"
with pytest.warns(RuntimeWarning, match="-trans.fif"):
write_trans(fname2, trans0)
def test_get_ras_to_neuromag_trans():
"""Test the coordinate transformation from ras to neuromag."""
# create model points in neuromag-like space
rng = np.random.RandomState(0)
anterior = [0, 1, 0]
left = [-1, 0, 0]
right = [0.8, 0, 0]
up = [0, 0, 1]
rand_pts = rng.uniform(-1, 1, (3, 3))
pts = np.vstack((anterior, left, right, up, rand_pts))
# change coord system
rx, ry, rz, tx, ty, tz = rng.uniform(-2 * np.pi, 2 * np.pi, 6)
trans = np.dot(translation(tx, ty, tz), rotation(rx, ry, rz))
pts_changed = apply_trans(trans, pts)
# transform back into original space
nas, lpa, rpa = pts_changed[:3]
hsp_trans = get_ras_to_neuromag_trans(nas, lpa, rpa)
pts_restored = apply_trans(hsp_trans, pts_changed)
err = "Neuromag transformation failed"
assert_allclose(pts_restored, pts, atol=1e-6, err_msg=err)
def _cartesian_to_sphere(x, y, z):
"""Convert using old function."""
hypotxy = np.hypot(x, y)
r = np.hypot(hypotxy, z)
elev = np.arctan2(z, hypotxy)
az = np.arctan2(y, x)
return az, elev, r
def _sphere_to_cartesian(theta, phi, r):
"""Convert using old function."""
z = r * np.sin(phi)
rcos_phi = r * np.cos(phi)
x = rcos_phi * np.cos(theta)
y = rcos_phi * np.sin(theta)
return x, y, z
def test_sph_to_cart():
"""Test conversion between sphere and cartesian."""
# Simple test, expected value (11, 0, 0)
r, theta, phi = 11.0, 0.0, np.pi / 2.0
z = r * np.cos(phi)
rsin_phi = r * np.sin(phi)
x = rsin_phi * np.cos(theta)
y = rsin_phi * np.sin(theta)
coord = _sph_to_cart(np.array([[r, theta, phi]]))[0]
assert_allclose(coord, (x, y, z), atol=1e-7)
assert_allclose(coord, (r, 0, 0), atol=1e-7)
rng = np.random.RandomState(0)
# round-trip test
coords = rng.randn(10, 3)
assert_allclose(_sph_to_cart(_cart_to_sph(coords)), coords, atol=1e-5)
# equivalence tests to old versions
for coord in coords:
sph = _cart_to_sph(coord[np.newaxis])
cart = _sph_to_cart(sph)
sph_old = np.array(_cartesian_to_sphere(*coord))
cart_old = _sphere_to_cartesian(*sph_old)
sph_old[1] = np.pi / 2.0 - sph_old[1] # new convention
assert_allclose(sph[0], sph_old[[2, 0, 1]], atol=1e-7)
assert_allclose(cart[0], cart_old, atol=1e-7)
assert_allclose(cart[0], coord, atol=1e-7)
def _polar_to_cartesian(theta, r):
"""Transform polar coordinates to cartesian."""
x = r * np.cos(theta)
y = r * np.sin(theta)
return x, y
def test_polar_to_cartesian():
"""Test helper transform function from polar to cartesian."""
r = 1
theta = np.pi
# expected values are (-1, 0)
x = r * np.cos(theta)
y = r * np.sin(theta)
coord = _pol_to_cart(np.array([[r, theta]]))[0]
# np.pi is an approx since pi is irrational
assert_allclose(coord, (x, y), atol=1e-7)
assert_allclose(coord, (-1, 0), atol=1e-7)
assert_allclose(coord, _polar_to_cartesian(theta, r), atol=1e-7)
rng = np.random.RandomState(0)
r = rng.randn(10)
theta = rng.rand(10) * (2 * np.pi)
polar = np.array((r, theta)).T
assert_allclose(
[_polar_to_cartesian(p[1], p[0]) for p in polar], _pol_to_cart(polar), atol=1e-7
)
def _topo_to_phi_theta(theta, radius):
"""Convert using old function."""
sph_phi = (0.5 - radius) * 180
sph_theta = -theta
return sph_phi, sph_theta
def test_topo_to_sph():
"""Test topo to sphere conversion."""
rng = np.random.RandomState(0)
angles = rng.rand(10) * 360
radii = rng.rand(10)
angles[0] = 30
radii[0] = 0.25
# new way
sph = _topo_to_sph(np.array([angles, radii]).T)
new = _sph_to_cart(sph)
new[:, [0, 1]] = new[:, [1, 0]] * [-1, 1]
# old way
for ii, (angle, radius) in enumerate(zip(angles, radii)):
sph_phi, sph_theta = _topo_to_phi_theta(angle, radius)
if ii == 0:
assert_allclose(_topo_to_phi_theta(angle, radius), [45, -30])
azimuth = sph_theta / 180.0 * np.pi
elevation = sph_phi / 180.0 * np.pi
assert_allclose(sph[ii], [1.0, azimuth, np.pi / 2.0 - elevation], atol=1e-7)
r = np.ones_like(radius)
x, y, z = _sphere_to_cartesian(azimuth, elevation, r)
pos = [-y, x, z]
if ii == 0:
expected = np.array([1.0 / 2.0, np.sqrt(3) / 2.0, 1.0])
expected /= np.sqrt(2)
assert_allclose(pos, expected, atol=1e-7)
assert_allclose(pos, new[ii], atol=1e-7)
def test_rotation():
"""Test conversion between rotation angles and transformation matrix."""
tests = [(0, 0, 1), (0.5, 0.5, 0.5), (np.pi, 0, -1.5)]
for rot in tests:
x, y, z = rot
m = rotation3d(x, y, z)
m4 = rotation(x, y, z)
assert_array_equal(m, m4[:3, :3])
back = rotation_angles(m)
assert_almost_equal(actual=back, desired=rot, decimal=12)
back4 = rotation_angles(m4)
assert_almost_equal(actual=back4, desired=rot, decimal=12)
def test_rotation3d_align_z_axis():
"""Test rotation3d_align_z_axis."""
# The more complex z axis fails the assert presumably due to tolerance
#
inp_zs = [
[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
[0, 0, -1],
[-0.75071668, -0.62183808, 0.22302888],
]
exp_res = [
[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]],
[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, -1.0, 0.0]],
[[0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [-1.0, 0.0, 0.0]],
[[1.0, 0.0, 0.0], [0.0, -1.0, 0.0], [0.0, 0.0, -1.0]],
[
[0.53919688, -0.38169517, -0.75071668],
[-0.38169517, 0.683832, -0.62183808],
[0.75071668, 0.62183808, 0.22302888],
],
]
for res, z in zip(exp_res, inp_zs):
assert_allclose(res, rotation3d_align_z_axis(z), atol=1e-7)
@testing.requires_testing_data
def test_combine():
"""Test combining transforms."""
trans = read_trans(fname)
inv = invert_transform(trans)
combine_transforms(trans, inv, trans["from"], trans["from"])
pytest.raises(
RuntimeError, combine_transforms, trans, inv, trans["to"], trans["from"]
)
pytest.raises(
RuntimeError, combine_transforms, trans, inv, trans["from"], trans["to"]
)
pytest.raises(
RuntimeError, combine_transforms, trans, trans, trans["from"], trans["to"]
)
def test_quaternions():
"""Test quaternion calculations."""
rots = [np.eye(3)]
for fname in [test_fif_fname, ctf_fname, hp_fif_fname]:
rots += [read_info(fname)["dev_head_t"]["trans"][:3, :3]]
# nasty numerical cases
rots += [
np.array(
[
[-0.99978541, -0.01873462, -0.00898756],
[-0.01873462, 0.62565561, 0.77987608],
[-0.00898756, 0.77987608, -0.62587152],
]
)
]
rots += [
np.array(
[
[0.62565561, -0.01873462, 0.77987608],
[-0.01873462, -0.99978541, -0.00898756],
[0.77987608, -0.00898756, -0.62587152],
]
)
]
rots += [
np.array(
[
[-0.99978541, -0.00898756, -0.01873462],
[-0.00898756, -0.62587152, 0.77987608],
[-0.01873462, 0.77987608, 0.62565561],
]
)
]
for rot in rots:
assert_allclose(rot, quat_to_rot(rot_to_quat(rot)), rtol=1e-5, atol=1e-5)
rot = rot[np.newaxis, np.newaxis, :, :]
assert_allclose(rot, quat_to_rot(rot_to_quat(rot)), rtol=1e-5, atol=1e-5)
# let's make sure our angle function works in some reasonable way
for ii in range(3):
for jj in range(3):
a = np.zeros(3)
b = np.zeros(3)
a[ii] = 1.0
b[jj] = 1.0
expected = np.pi if ii != jj else 0.0
assert_allclose(_angle_between_quats(a, b), expected, atol=1e-5)
y_180 = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1.0]])
assert_allclose(_angle_between_quats(rot_to_quat(y_180), np.zeros(3)), np.pi)
h_180_attitude_90 = np.array([[0, 1, 0], [1, 0, 0], [0, 0, -1.0]])
assert_allclose(
_angle_between_quats(rot_to_quat(h_180_attitude_90), np.zeros(3)), np.pi
)
def test_vector_rotation():
"""Test basic rotation matrix math."""
x = np.array([1.0, 0.0, 0.0])
y = np.array([0.0, 1.0, 0.0])
rot = _find_vector_rotation(x, y)
assert_array_equal(rot, [[0, -1, 0], [1, 0, 0], [0, 0, 1]])
quat_1 = rot_to_quat(rot)
quat_2 = rot_to_quat(np.eye(3))
assert_allclose(_angle_between_quats(quat_1, quat_2), np.pi / 2.0)
def test_average_quats():
"""Test averaging of quaternions."""
sq2 = 1.0 / np.sqrt(2.0)
quats = np.array(
[[0, sq2, sq2], [0, sq2, sq2], [0, sq2, 0], [0, 0, sq2], [sq2, 0, 0]], float
)
# In MATLAB:
# quats = [[0, sq2, sq2, 0]; [0, sq2, sq2, 0];
# [0, sq2, 0, sq2]; [0, 0, sq2, sq2]; [sq2, 0, 0, sq2]];
expected = [
quats[0],
quats[0],
[0, 0.788675134594813, 0.577350269189626],
[0, 0.657192299694123, 0.657192299694123],
[0.100406058540540, 0.616329446922803, 0.616329446922803],
]
# Averaging the first two should give the same thing:
for lim, ex in enumerate(expected):
assert_allclose(_average_quats(quats[: lim + 1]), ex, atol=1e-7)
quats[1] *= -1 # same quaternion (hidden value is zero here)!
rot_0, rot_1 = quat_to_rot(quats[:2])
assert_allclose(rot_0, rot_1, atol=1e-7)
for lim, ex in enumerate(expected):
assert_allclose(_average_quats(quats[: lim + 1]), ex, atol=1e-7)
# Assert some symmetry
count = 0
extras = [[sq2, sq2, 0]] + list(np.eye(3))
for quat in np.concatenate((quats, expected, extras)):
if np.isclose(_quat_real(quat), 0.0, atol=1e-7): # can flip sign
count += 1
angle = _angle_between_quats(quat, -quat)
assert_allclose(angle, 0.0, atol=1e-7)
rot_0, rot_1 = quat_to_rot(np.array((quat, -quat)))
assert_allclose(rot_0, rot_1, atol=1e-7)
assert count == 4 + len(extras)
@testing.requires_testing_data
@pytest.mark.parametrize("subject", ("fsaverage", "sample"))
def test_fs_xfm(subject, tmp_path):
"""Test reading and writing of Freesurfer transforms."""
fname = data_path / "subjects" / subject / "mri" / "transforms" / "talairach.xfm"
xfm, kind = _read_fs_xfm(str(fname))
if subject == "fsaverage":
assert_allclose(xfm, np.eye(4), atol=1e-5) # fsaverage is in MNI
assert kind == "MNI Transform File"
fname_out = tmp_path / "out.xfm"
_write_fs_xfm(fname_out, xfm, kind)
xfm_read, kind_read = _read_fs_xfm(str(fname_out))
assert kind_read == kind
assert_allclose(xfm, xfm_read, rtol=1e-5, atol=1e-5)
# Some wacky one
xfm[:3] = np.random.RandomState(0).randn(3, 4)
_write_fs_xfm(fname_out, xfm, "foo")
xfm_read, kind_read = _read_fs_xfm(str(fname_out))
assert kind_read == "foo"
assert_allclose(xfm, xfm_read, rtol=1e-5, atol=1e-5)
# degenerate conditions
with open(fname_out, "w") as fid:
fid.write("foo")
with pytest.raises(ValueError, match="Failed to find"):
_read_fs_xfm(str(fname_out))
_write_fs_xfm(fname_out, xfm[:2], "foo")
with pytest.raises(ValueError, match="Could not find"):
_read_fs_xfm(str(fname_out))
@pytest.fixture()
def quats():
"""Make some unit quats."""
quats = np.random.RandomState(0).randn(5, 3)
quats[:, 0] = 0 # identity
quats /= 2 * np.linalg.norm(quats, axis=1, keepdims=True) # some real part
return quats
def _check_fit_matched_points(
p, x, weights, do_scale, angtol=1e-5, dtol=1e-5, stol=1e-7
):
__tracebackhide__ = True
mne.coreg._ALLOW_ANALITICAL = False
try:
params = mne.coreg.fit_matched_points(
p, x, weights=weights, scale=do_scale, out="params"
)
finally:
mne.coreg._ALLOW_ANALITICAL = True
quat_an, scale_an = _fit_matched_points(p, x, weights, scale=do_scale)
assert len(params) == 6 + int(do_scale)
q_co = _euler_to_quat(params[:3])
translate_co = params[3:6]
angle = np.rad2deg(_angle_between_quats(quat_an[:3], q_co))
dist = np.linalg.norm(quat_an[3:] - translate_co)
assert 0 <= angle < angtol, "angle"
assert 0 <= dist < dtol, "dist"
if do_scale:
scale_co = params[6]
assert_allclose(scale_an, scale_co, rtol=stol, err_msg="scale")
# errs
trans = _quat_to_affine(quat_an)
trans[:3, :3] *= scale_an
weights = np.ones(1) if weights is None else weights
err_an = np.linalg.norm(weights[:, np.newaxis] * apply_trans(trans, p) - x)
trans = mne.coreg._trans_from_params((True, True, do_scale), params)
err_co = np.linalg.norm(weights[:, np.newaxis] * apply_trans(trans, p) - x)
if err_an > 1e-14:
assert err_an < err_co * 1.5
return quat_an, scale_an
@pytest.mark.parametrize("scaling", [0.25, 1])
@pytest.mark.parametrize("do_scale", (True, False))
def test_fit_matched_points(quats, scaling, do_scale):
"""Test analytical least-squares matched point fitting."""
if scaling != 1 and not do_scale:
return # no need to test this, it will not be good
rng = np.random.RandomState(0)
fro = rng.randn(10, 3)
translation = rng.randn(3)
for qi, quat in enumerate(quats):
print(qi)
to = scaling * np.dot(quat_to_rot(quat), fro.T).T + translation
for corrupted in (False, True):
# mess up a point
if corrupted:
to[0, 2] += 100
weights = np.ones(len(to))
weights[0] = 0
else:
weights = None
est, scale_est = _check_fit_matched_points(
fro, to, weights=weights, do_scale=do_scale
)
assert_allclose(scale_est, scaling, rtol=1e-5)
assert_allclose(est[:3], quat, atol=1e-14)
assert_allclose(est[3:], translation, atol=1e-14)
# if we don't adjust for the corruption above, it should get worse
angle = dist = None
for weighted in (False, True):
if not weighted:
weights = None
dist_bounds = (5, 20)
if scaling == 1:
angle_bounds = (5, 95)
angtol, dtol, stol = 1, 15, 3
else:
angle_bounds = (5, 105)
angtol, dtol, stol = 20, 15, 3
else:
weights = np.ones(len(to))
weights[0] = 10 # weighted=True here means "make it worse"
angle_bounds = (angle, 180) # unweighted values as new min
dist_bounds = (dist, 100)
if scaling == 1:
# XXX this angtol is not great but there is a hard to
# identify linalg/angle calculation bug on Travis...
angtol, dtol, stol = 180, 70, 3
else:
angtol, dtol, stol = 50, 70, 3
est, scale_est = _check_fit_matched_points(
fro,
to,
weights=weights,
do_scale=do_scale,
angtol=angtol,
dtol=dtol,
stol=stol,
)
assert not np.allclose(est[:3], quat, atol=1e-5)
assert not np.allclose(est[3:], translation, atol=1e-5)
angle = np.rad2deg(_angle_between_quats(est[:3], quat))
assert_array_less(angle_bounds[0], angle)
assert_array_less(angle, angle_bounds[1])
dist = np.linalg.norm(est[3:] - translation)
assert_array_less(dist_bounds[0], dist)
assert_array_less(dist, dist_bounds[1])
def test_euler(quats):
"""Test euler transformations."""
euler = _quat_to_euler(quats)
quats_2 = _euler_to_quat(euler)
assert_allclose(quats, quats_2, atol=1e-14)
quat_rot = quat_to_rot(quats)
euler_rot = np.array([rotation(*e)[:3, :3] for e in euler])
assert_allclose(quat_rot, euler_rot, atol=1e-14)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_registration():
"""Test volume registration."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("dipy")
from dipy.align import resample
T1 = nib.load(fname_t1)
affine = np.eye(4)
affine[0, 3] = 10
T1_resampled = resample(
moving=T1.get_fdata(),
static=T1.get_fdata(),
moving_affine=T1.affine,
static_affine=T1.affine,
between_affine=np.linalg.inv(affine),
)
for pipeline, cval in zip(("rigids", ("translation", "sdr")), (0.0, "1%")):
reg_affine, sdr_morph = mne.transforms.compute_volume_registration(
T1_resampled, T1, pipeline=pipeline, zooms=10, niter=[5]
)
assert_allclose(affine, reg_affine, atol=0.01)
T1_aligned = mne.transforms.apply_volume_registration(
T1_resampled, T1, reg_affine, sdr_morph, cval=cval
)
r2 = _compute_r2(_get_img_fdata(T1_aligned), _get_img_fdata(T1))
assert 99.9 < r2
with pytest.raises(ValueError, match="cval"):
mne.transforms.apply_volume_registration(
T1_resampled, T1, reg_affine, sdr_morph, cval="bad"
)
# check that all orders of the pipeline work
for pipeline_len in range(1, 5):
for pipeline in itertools.combinations(
("translation", "rigid", "affine", "sdr"), pipeline_len
):
_validate_pipeline(pipeline)
_validate_pipeline(list(pipeline))
with pytest.raises(ValueError, match="Steps in pipeline are out of order"):
_validate_pipeline(("sdr", "affine"))
with pytest.raises(ValueError, match="Steps in pipeline should not be repeated"):
_validate_pipeline(("affine", "affine"))
# test points
info = read_info(test_fif_fname)
trans = read_trans(fname)
info2, trans2 = mne.transforms.apply_volume_registration_points(
info, trans, T1_resampled, T1, reg_affine, sdr_morph
)
assert_allclose(trans2["trans"], np.eye(4), atol=0.001) # same before
ch_pos = info2.get_montage().get_positions()["ch_pos"]
assert_allclose(
[ch_pos["EEG 001"], ch_pos["EEG 002"], ch_pos["EEG 003"]],
[
[-0.04136687, 0.05402692, 0.09491907],
[-0.01874947, 0.05656526, 0.09966554],
[0.00828519, 0.05535511, 0.09869323],
],
atol=0.001,
)
def test_displacement_field():
"""Test that our matched point deformation works."""
to = np.array([[5, 4, 1], [6, 1, 0], [4, -1, 1], [3, 3, 0]], float)
fro = np.array([[0, 2, 2], [2, 2, 1], [2, 0, 2], [0, 0, 1]], float)
interp = _MatchedDisplacementFieldInterpolator(fro, to)
fro_t = interp(fro)
assert_allclose(to, fro_t, atol=1e-12)
# check midpoints (should all be decent)
for a in range(len(to)):
for b in range(a + 1, len(to)):
to_ = np.mean(to[[a, b]], axis=0)
fro_ = np.mean(fro[[a, b]], axis=0)
fro_t = interp(fro_)
assert_allclose(to_, fro_t, atol=1e-12)