[074d3d]: / mne / tests / test_morph.py

Download this file

1172 lines (1062 with data), 43.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from inspect import signature
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
from scipy.sparse import csr_array
from scipy.sparse import eye as speye
from scipy.spatial.distance import cdist
import mne
from mne import (
SourceEstimate,
SourceMorph,
VectorSourceEstimate,
VolSourceEstimate,
VolVectorSourceEstimate,
compute_source_morph,
get_volume_labels_from_aseg,
grade_to_vertices,
make_ad_hoc_cov,
make_forward_solution,
make_sphere_model,
read_evokeds,
read_forward_solution,
read_freesurfer_lut,
read_source_estimate,
read_source_morph,
setup_volume_source_space,
)
from mne._freesurfer import _get_atlas_values, _get_mri_info_data
from mne.datasets import testing
from mne.fixes import _get_img_fdata
from mne.minimum_norm import apply_inverse, make_inverse_operator, read_inverse_operator
from mne.source_space._source_space import _add_interpolator, _grid_interp
from mne.transforms import quat_to_rot
from mne.utils import _record_warnings, catch_logging
# Setup paths
data_path = testing.data_path(download=False)
sample_dir = data_path / "MEG" / "sample"
subjects_dir = data_path / "subjects"
fname_evoked = sample_dir / "sample_audvis-ave.fif"
fname_trans = sample_dir / "sample_audvis_trunc-trans.fif"
fname_inv_vol = sample_dir / "sample_audvis_trunc-meg-vol-7-meg-inv.fif"
fname_fwd_vol = sample_dir / "sample_audvis_trunc-meg-vol-7-fwd.fif"
fname_vol_w = sample_dir / "sample_audvis_trunc-grad-vol-7-fwd-sensmap-vol.w"
fname_inv_surf = sample_dir / "sample_audvis_trunc-meg-eeg-oct-6-meg-inv.fif"
fname_aseg = subjects_dir / "sample" / "mri" / "aseg.mgz"
fname_fmorph = data_path / "MEG" / "sample" / "fsaverage_audvis_trunc-meg"
fname_smorph = sample_dir / "sample_audvis_trunc-meg"
fname_t1 = subjects_dir / "sample" / "mri" / "T1.mgz"
fname_vol = subjects_dir / "sample" / "bem" / "sample-volume-7mm-src.fif"
fname_aseg = subjects_dir / "sample" / "mri" / "aseg.mgz"
fname_fs_vol = subjects_dir / "fsaverage" / "bem" / "fsaverage-vol7-nointerp-src.fif.gz"
fname_aseg_fs = subjects_dir / "fsaverage" / "mri" / "aseg.mgz"
fname_stc = sample_dir / "fsaverage_audvis_trunc-meg"
pytest.importorskip("nibabel")
def _real_vec_stc():
inv = read_inverse_operator(fname_inv_surf)
evoked = read_evokeds(fname_evoked, baseline=(None, 0))[0].crop(0, 0.01)
return apply_inverse(evoked, inv, pick_ori="vector")
def test_sourcemorph_consistency():
"""Test SourceMorph class consistency."""
assert (
list(signature(SourceMorph.__init__).parameters)[1:-1]
== mne.morph._SOURCE_MORPH_ATTRIBUTES
)
@testing.requires_testing_data
def test_sparse_morph():
"""Test sparse morphing."""
rng = np.random.RandomState(0)
vertices_fs = [
np.sort(rng.permutation(np.arange(10242))[:4]),
np.sort(rng.permutation(np.arange(10242))[:6]),
]
data = rng.randn(10, 1)
stc_fs = SourceEstimate(data, vertices_fs, 1, 1, "fsaverage")
spheres_fs = [
mne.read_surface(subjects_dir / "fsaverage" / "surf" / f"{hemi}.sphere.reg")[0]
for hemi in ("lh", "rh")
]
spheres_sample = [
mne.read_surface(subjects_dir / "sample" / "surf" / f"{hemi}.sphere.reg")[0]
for hemi in ("lh", "rh")
]
morph_fs_sample = compute_source_morph(
stc_fs,
"fsaverage",
"sample",
sparse=True,
spacing=None,
subjects_dir=subjects_dir,
)
stc_sample = morph_fs_sample.apply(stc_fs)
offset = 0
orders = list()
for v1, s1, v2, s2 in zip(
stc_fs.vertices, spheres_fs, stc_sample.vertices, spheres_sample
):
dists = cdist(s1[v1], s2[v2])
order = np.argmin(dists, axis=-1)
assert_array_less(dists[np.arange(len(order)), order], 1.5) # mm
orders.append(order + offset)
offset += len(order)
assert_allclose(stc_fs.data, stc_sample.data[np.concatenate(orders)])
# Return
morph_sample_fs = compute_source_morph(
stc_sample,
"sample",
"fsaverage",
sparse=True,
spacing=None,
subjects_dir=subjects_dir,
)
stc_fs_return = morph_sample_fs.apply(stc_sample)
offset = 0
orders = list()
for v1, s, v2 in zip(stc_fs.vertices, spheres_fs, stc_fs_return.vertices):
dists = cdist(s[v1], s[v2])
order = np.argmin(dists, axis=-1)
assert_array_less(dists[np.arange(len(order)), order], 1.5) # mm
orders.append(order + offset)
offset += len(order)
assert_allclose(stc_fs.data, stc_fs_return.data[np.concatenate(orders)])
@testing.requires_testing_data
def test_xhemi_morph():
"""Test cross-hemisphere morphing."""
stc = read_source_estimate(fname_stc, subject="sample")
# smooth 1 for speed where possible
smooth = 4
spacing = 4
n_grade_verts = 2562
stc = compute_source_morph(
stc,
"sample",
"fsaverage_sym",
smooth=smooth,
warn=False,
spacing=spacing,
subjects_dir=subjects_dir,
).apply(stc)
morph = compute_source_morph(
stc,
"fsaverage_sym",
"fsaverage_sym",
smooth=1,
xhemi=True,
warn=False,
spacing=[stc.vertices[0], []],
subjects_dir=subjects_dir,
)
stc_xhemi = morph.apply(stc)
assert stc_xhemi.data.shape[0] == n_grade_verts
assert stc_xhemi.rh_data.shape[0] == 0
assert len(stc_xhemi.vertices[1]) == 0
assert stc_xhemi.lh_data.shape[0] == n_grade_verts
assert len(stc_xhemi.vertices[0]) == n_grade_verts
# complete reversal mapping
morph = compute_source_morph(
stc,
"fsaverage_sym",
"fsaverage_sym",
smooth=smooth,
xhemi=True,
warn=False,
spacing=stc.vertices,
subjects_dir=subjects_dir,
)
mm = morph.morph_mat
assert mm.shape == (n_grade_verts * 2,) * 2
assert mm.size > n_grade_verts * 2
assert mm[:n_grade_verts, :n_grade_verts].size == 0 # L to L
assert mm[n_grade_verts:, n_grade_verts:].size == 0 # R to L
assert mm[n_grade_verts:, :n_grade_verts].size > n_grade_verts # L to R
assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts # R to L
# more complicated reversal mapping
vertices_use = [stc.vertices[0], np.arange(10242)]
n_src_verts = len(vertices_use[1])
assert vertices_use[0].shape == (n_grade_verts,)
assert vertices_use[1].shape == (n_src_verts,)
# ensure it's sufficiently diffirent to manifest round-trip errors
assert np.isin(vertices_use[1], stc.vertices[1]).mean() < 0.3
morph = compute_source_morph(
stc,
"fsaverage_sym",
"fsaverage_sym",
smooth=smooth,
xhemi=True,
warn=False,
spacing=vertices_use,
subjects_dir=subjects_dir,
)
mm = morph.morph_mat
assert mm.shape == (n_grade_verts + n_src_verts, n_grade_verts * 2)
assert mm[:n_grade_verts, :n_grade_verts].size == 0
assert mm[n_grade_verts:, n_grade_verts:].size == 0
assert mm[:n_grade_verts, n_grade_verts:].size > n_grade_verts
assert mm[n_grade_verts:, :n_grade_verts].size > n_src_verts
# morph forward then back
stc_xhemi = morph.apply(stc)
morph = compute_source_morph(
stc_xhemi,
"fsaverage_sym",
"fsaverage_sym",
smooth=smooth,
xhemi=True,
warn=False,
spacing=stc.vertices,
subjects_dir=subjects_dir,
)
stc_return = morph.apply(stc_xhemi)
for hi in range(2):
assert_array_equal(stc_return.vertices[hi], stc.vertices[hi])
correlation = np.corrcoef(stc.data.ravel(), stc_return.data.ravel())[0, 1]
assert correlation > 0.9 # not great b/c of sparse grade + small smooth
@testing.requires_testing_data
@pytest.mark.parametrize(
"smooth, lower, upper, n_warn, dtype",
[
(None, 0.959, 0.963, 0, float),
(3, 0.968, 0.971, 2, complex),
("nearest", 0.98, 0.99, 0, float),
],
)
def test_surface_source_morph_round_trip(smooth, lower, upper, n_warn, dtype):
"""Test round-trip morphing yields similar STCs."""
kwargs = dict(smooth=smooth, warn=True, subjects_dir=subjects_dir)
stc = mne.read_source_estimate(fname_smorph)
if dtype is complex:
stc.data = 1j * stc.data
assert_array_equal(stc.data.real, 0.0)
with _record_warnings() as w:
morph = compute_source_morph(stc, "sample", "fsaverage", **kwargs)
w = [ww for ww in w if "vertices not included" in str(ww.message)]
assert len(w) == n_warn
assert morph.morph_mat.shape == (20484, len(stc.data))
stc_fs = morph.apply(stc)
morph_back = compute_source_morph(
stc_fs, "fsaverage", "sample", spacing=stc.vertices, **kwargs
)
assert morph_back.morph_mat.shape == (len(stc.data), 20484)
stc_back = morph_back.apply(stc_fs)
corr = np.corrcoef(stc.data.ravel(), stc_back.data.ravel())[0, 1]
assert lower <= corr <= upper
# check the round-trip power
assert_power_preserved(stc, stc_back)
@testing.requires_testing_data
def test_surface_source_morph_shortcut():
"""Test that our shortcut for smooth=0 works."""
stc = mne.read_source_estimate(fname_smorph)
morph_identity = compute_source_morph(
stc,
"sample",
"sample",
spacing=stc.vertices,
smooth=0,
subjects_dir=subjects_dir,
)
stc_back = morph_identity.apply(stc)
assert_allclose(stc_back.data, stc.data, rtol=1e-4)
abs_sum = morph_identity.morph_mat - speye(len(stc.data), format="csc")
abs_sum = np.abs(abs_sum.data).sum()
assert abs_sum < 1e-4
def assert_power_preserved(orig, new, limits=(1.0, 1.05)):
"""Assert that the power is preserved during a round-trip morph."""
__tracebackhide__ = True
for kind in ("real", "imag"):
numer = np.linalg.norm(getattr(orig.data, kind))
denom = np.linalg.norm(getattr(new.data, kind))
if numer == denom == 0.0: # no data of this type
continue
power_ratio = numer / denom
min_, max_ = limits
assert min_ < power_ratio < max_, f"Power ratio {kind} = {power_ratio}"
@testing.requires_testing_data
def test_surface_vector_source_morph(tmp_path):
"""Test surface and vector source estimate morph."""
pytest.importorskip("h5io")
inverse_operator_surf = read_inverse_operator(fname_inv_surf)
stc_surf = read_source_estimate(fname_smorph, subject="sample")
stc_surf.crop(0.09, 0.1) # for faster computation
stc_vec = _real_vec_stc()
source_morph_surf = compute_source_morph(
inverse_operator_surf["src"], subjects_dir=subjects_dir, smooth=1, warn=False
) # smooth 1 for speed
assert source_morph_surf.subject_from == "sample"
assert source_morph_surf.subject_to == "fsaverage"
assert source_morph_surf.kind == "surface"
assert isinstance(source_morph_surf.src_data, dict)
assert isinstance(source_morph_surf.src_data["vertices_from"], list)
assert isinstance(source_morph_surf, SourceMorph)
stc_surf_morphed = source_morph_surf.apply(stc_surf)
assert isinstance(stc_surf_morphed, SourceEstimate)
stc_vec_morphed = source_morph_surf.apply(stc_vec)
with pytest.raises(ValueError, match="Invalid value for the 'output'"):
source_morph_surf.apply(stc_surf, output="nifti1")
# check if correct class after morphing
assert isinstance(stc_surf_morphed, SourceEstimate)
assert isinstance(stc_vec_morphed, VectorSourceEstimate)
# check __repr__
assert "surface" in repr(source_morph_surf)
# check loading and saving for surf
source_morph_surf.save(tmp_path / "42.h5")
source_morph_surf_r = read_source_morph(tmp_path / "42.h5")
assert all(
[
read == saved
for read, saved in zip(
sorted(source_morph_surf_r.__dict__), sorted(source_morph_surf.__dict__)
)
]
)
# check wrong subject correction
stc_surf.subject = None
assert isinstance(source_morph_surf.apply(stc_surf), SourceEstimate)
# degenerate
stc_vol = read_source_estimate(fname_vol_w, "sample")
with pytest.raises(TypeError, match="stc_from must be an instance"):
source_morph_surf.apply(stc_vol)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_volume_source_morph_basic(tmp_path):
"""Test volume source estimate morph, special cases and exceptions."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("h5io")
pytest.importorskip("dipy")
inverse_operator_vol = read_inverse_operator(fname_inv_vol)
stc_vol = read_source_estimate(fname_vol_w, "sample")
# check for invalid input type
with pytest.raises(TypeError, match="src must be"):
compute_source_morph(src=42)
# check for raising an error if neither
# inverse_operator_vol['src'][0]['subject_his_id'] nor subject_from is set,
# but attempting to perform a volume morph
src = inverse_operator_vol["src"]
assert src._subject is None # already None on disk (old!)
with pytest.raises(ValueError, match="subject_from could not be inferred"):
with pytest.warns(RuntimeWarning, match="recommend regenerating"):
compute_source_morph(src=src, subjects_dir=subjects_dir)
# check infer subject_from from src[0]['subject_his_id']
src[0]["subject_his_id"] = "sample"
with pytest.raises(ValueError, match="Inter-hemispheric morphing"):
compute_source_morph(src=src, subjects_dir=subjects_dir, xhemi=True)
with pytest.raises(ValueError, match="Only surface.*sparse morph"):
compute_source_morph(src=src, sparse=True, subjects_dir=subjects_dir)
# terrible quality but fast
zooms = 20
kwargs = dict(zooms=zooms, niter_sdr=(1,), niter_affine=(1,))
source_morph_vol = compute_source_morph(
subjects_dir=subjects_dir, src=fname_inv_vol, subject_from="sample", **kwargs
)
shape = (13,) * 3 # for the given zooms
assert source_morph_vol.subject_from == "sample"
# the brain used in sample data has shape (255, 255, 255)
assert tuple(source_morph_vol.sdr_morph.domain_shape) == shape
assert tuple(source_morph_vol.pre_affine.domain_shape) == shape
# proofs the above
assert_array_equal(source_morph_vol.zooms, (zooms,) * 3)
# assure proper src shape
mri_size = (src[0]["mri_height"], src[0]["mri_depth"], src[0]["mri_width"])
assert source_morph_vol.src_data["src_shape_full"] == mri_size
fwd = read_forward_solution(fname_fwd_vol)
fwd["src"][0]["subject_his_id"] = "sample" # avoid further warnings
source_morph_vol = compute_source_morph(
fwd["src"], "sample", "sample", subjects_dir=subjects_dir, **kwargs
)
# check wrong subject_to
with pytest.raises(OSError, match="cannot read file"):
compute_source_morph(fwd["src"], "sample", "42", subjects_dir=subjects_dir)
# two different ways of saving
source_morph_vol.save(tmp_path / "vol")
# check loading
source_morph_vol_r = read_source_morph(tmp_path / "vol-morph.h5")
# check for invalid file name handling ()
with pytest.raises(OSError, match="not found"):
read_source_morph(tmp_path / "42")
# check morph
stc_vol_morphed = source_morph_vol.apply(stc_vol)
# old way, verts do not match
assert not np.array_equal(stc_vol_morphed.vertices[0], stc_vol.vertices[0])
# vector
stc_vol_vec = VolVectorSourceEstimate(
np.tile(stc_vol.data[:, np.newaxis], (1, 3, 1)), stc_vol.vertices, 0, 1
)
stc_vol_vec_morphed = source_morph_vol.apply(stc_vol_vec)
assert isinstance(stc_vol_vec_morphed, VolVectorSourceEstimate)
for ii in range(3):
assert_allclose(stc_vol_vec_morphed.data[:, ii], stc_vol_morphed.data)
# check output as NIfTI
assert isinstance(
source_morph_vol.apply(stc_vol_vec, output="nifti2"), nib.Nifti2Image
)
# check for subject_from mismatch
source_morph_vol_r.subject_from = "42"
with pytest.raises(ValueError, match="subject_from must match"):
source_morph_vol_r.apply(stc_vol_morphed)
# check if nifti is in grid morph space with voxel_size == spacing
img_morph_res = source_morph_vol.apply(stc_vol, output="nifti1")
# assure morph spacing
assert isinstance(img_morph_res, nib.Nifti1Image)
assert img_morph_res.header.get_zooms()[:3] == (zooms,) * 3
# assure src shape
img_mri_res = source_morph_vol.apply(stc_vol, output="nifti1", mri_resolution=True)
assert isinstance(img_mri_res, nib.Nifti1Image)
assert img_mri_res.shape == (
src[0]["mri_height"],
src[0]["mri_depth"],
src[0]["mri_width"],
) + (img_mri_res.shape[3],)
# check if nifti is defined resolution with voxel_size == (5., 5., 5.)
img_any_res = source_morph_vol.apply(
stc_vol, output="nifti1", mri_resolution=(5.0, 5.0, 5.0)
)
assert isinstance(img_any_res, nib.Nifti1Image)
assert img_any_res.header.get_zooms()[:3] == (5.0, 5.0, 5.0)
# check if morph outputs correct data
assert isinstance(stc_vol_morphed, VolSourceEstimate)
# check if loaded and saved objects contain the same
assert all(
[
read == saved
for read, saved in zip(
sorted(source_morph_vol_r.__dict__), sorted(source_morph_vol.__dict__)
)
]
)
# check __repr__
assert "volume" in repr(source_morph_vol)
# check Nifti2Image
assert isinstance(
source_morph_vol.apply(
stc_vol, mri_resolution=True, mri_space=True, output="nifti2"
),
nib.Nifti2Image,
)
# Degenerate conditions
with pytest.raises(TypeError, match="output must be"):
source_morph_vol.apply(stc_vol, output=1)
with pytest.raises(ValueError, match="subject_from does not match"):
compute_source_morph(src=src, subject_from="42")
with pytest.raises(ValueError, match="output"):
source_morph_vol.apply(stc_vol, output="42")
with pytest.raises(ValueError, match="subject_to cannot be None"):
compute_source_morph(src, "sample", None, subjects_dir=subjects_dir)
# Check if not morphed, but voxel size not boolean, raise ValueError.
# Note that this check requires dipy to not raise the dipy ImportError
# before checking if the actual voxel size error will raise.
with pytest.raises(ValueError, match="Cannot infer original voxel size"):
stc_vol.as_volume(inverse_operator_vol["src"], mri_resolution=4)
stc_surf = read_source_estimate(fname_stc, "sample")
with pytest.raises(TypeError, match="stc_from must be an instance"):
source_morph_vol.apply(stc_surf)
# src_to
source_morph_vol = compute_source_morph(
fwd["src"],
subject_from="sample",
src_to=fwd["src"],
subject_to="sample",
subjects_dir=subjects_dir,
**kwargs,
)
stc_vol_2 = source_morph_vol.apply(stc_vol)
# new way, verts match
assert_array_equal(stc_vol.vertices[0], stc_vol_2.vertices[0])
stc_vol_bad = VolSourceEstimate(
stc_vol.data[:-1], [stc_vol.vertices[0][:-1]], stc_vol.tmin, stc_vol.tstep
)
match = (
"vertices do not match between morph \\(4157\\) and stc \\(4156\\).*"
"\n.*\n.*\n.*Vertices were likely excluded during forward computatio.*"
)
with pytest.raises(ValueError, match=match):
source_morph_vol.apply(stc_vol_bad)
# nifti outputs and stc equiv
img_vol = source_morph_vol.apply(stc_vol, output="nifti1")
img_vol_2 = stc_vol_2.as_volume(src=fwd["src"], mri_resolution=False)
assert_allclose(img_vol.affine, img_vol_2.affine)
img_vol = img_vol.get_fdata()
img_vol_2 = img_vol_2.get_fdata()
assert img_vol.shape == img_vol_2.shape
assert_allclose(img_vol, img_vol_2)
@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize(
"subject_from, subject_to, lower, upper, dtype, morph_mat",
[
("sample", "fsaverage", 5.9, 6.1, float, False),
("fsaverage", "fsaverage", 0.0, 0.1, float, False),
("sample", "sample", 0.0, 0.1, complex, False),
("sample", "sample", 0.0, 0.1, float, True), # morph_mat
("sample", "fsaverage", 10, 12, float, True), # morph_mat
],
)
def test_volume_source_morph_round_trip(
tmp_path, subject_from, subject_to, lower, upper, dtype, morph_mat, monkeypatch
):
"""Test volume source estimate morph round-trips well."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("h5io")
pytest.importorskip("dipy")
from nibabel.processing import resample_from_to
src = dict()
if morph_mat:
# ~1.5 minutes with pos=7. (4157 morphs!) for sample, so only test
# morph_mat computation mode with a few labels
label_names = sorted(get_volume_labels_from_aseg(fname_aseg))[1:2]
if "sample" in (subject_from, subject_to):
src["sample"] = setup_volume_source_space(
"sample",
subjects_dir=subjects_dir,
volume_label=label_names,
mri=fname_aseg,
)
assert sum(s["nuse"] for s in src["sample"]) == 12
if "fsaverage" in (subject_from, subject_to):
src["fsaverage"] = setup_volume_source_space(
"fsaverage",
subjects_dir=subjects_dir,
volume_label=label_names[:3],
mri=fname_aseg_fs,
)
assert sum(s["nuse"] for s in src["fsaverage"]) == 16
else:
assert not morph_mat
if "sample" in (subject_from, subject_to):
src["sample"] = mne.read_source_spaces(fname_vol)
src["sample"][0]["subject_his_id"] = "sample"
assert src["sample"][0]["nuse"] == 4157
if "fsaverage" in (subject_from, subject_to):
# Created to save space with:
#
# bem = op.join(op.dirname(mne.__file__), 'data', 'fsaverage',
# 'fsaverage-inner_skull-bem.fif')
# src_fsaverage = mne.setup_volume_source_space(
# 'fsaverage', pos=7., bem=bem, mindist=0,
# subjects_dir=subjects_dir, add_interpolator=False)
# mne.write_source_spaces(fname_fs_vol, src_fsaverage,
# overwrite=True)
#
# For speed we do it without the interpolator because it's huge.
src["fsaverage"] = mne.read_source_spaces(fname_fs_vol)
src["fsaverage"][0].update(
vol_dims=np.array([23, 29, 25]), seg_name="brain"
)
_add_interpolator(src["fsaverage"])
assert src["fsaverage"][0]["nuse"] == 6379
src_to, src_from = src[subject_to], src[subject_from]
del src
# No SDR just for speed once everything works
kwargs = dict(
niter_sdr=(), niter_affine=(1,), subjects_dir=subjects_dir, verbose=True
)
morph_from_to = compute_source_morph(
src=src_from, src_to=src_to, subject_to=subject_to, **kwargs
)
morph_to_from = compute_source_morph(
src=src_to, src_to=src_from, subject_to=subject_from, **kwargs
)
nuse = sum(s["nuse"] for s in src_from)
assert nuse > 10
use = np.linspace(0, nuse - 1, 10).round().astype(int)
data = np.eye(nuse)[:, use]
if dtype is complex:
data = data * 1j
vertices = [s["vertno"] for s in src_from]
stc_from = VolSourceEstimate(data, vertices, 0, 1)
with catch_logging() as log:
stc_from_rt = morph_to_from.apply(
morph_from_to.apply(stc_from, verbose="debug")
)
log = log.getvalue()
assert "individual volume morph" in log
maxs = np.argmax(stc_from_rt.data, axis=0)
src_rr = np.concatenate([s["rr"][s["vertno"]] for s in src_from])
dists = 1000 * np.linalg.norm(src_rr[use] - src_rr[maxs], axis=1)
mu = np.mean(dists)
# fsaverage=5.99; 7.97 without additional src_ras_t fix
# fsaverage=7.97; 25.4 without src_ras_t fix
assert lower <= mu < upper, f"round-trip distance {mu}"
# check that pre_affine is close to identity when subject_to==subject_from
if subject_to == subject_from:
for morph in (morph_to_from, morph_from_to):
assert_allclose(morph.pre_affine.affine, np.eye(4), atol=1e-2)
# check that power is more or less preserved (labelizing messes with this)
if morph_mat:
if subject_to == "fsaverage":
limits = (18, 18.5)
else:
limits = (7, 7.5)
else:
limits = (1, 1.2)
stc_from_unit = stc_from.copy().crop(0, 0)
stc_from_unit._data.fill(1.0)
stc_from_unit_rt = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
assert_power_preserved(stc_from_unit, stc_from_unit_rt, limits=limits)
if morph_mat:
fname = tmp_path / "temp-morph.h5"
morph_to_from.save(fname)
morph_to_from = read_source_morph(fname)
assert morph_to_from.vol_morph_mat is None
morph_to_from.compute_vol_morph_mat(verbose=True)
morph_to_from.save(fname, overwrite=True)
morph_to_from = read_source_morph(fname)
assert isinstance(morph_to_from.vol_morph_mat, csr_array), "csr"
# equivalence (plus automatic calling)
assert morph_from_to.vol_morph_mat is None
monkeypatch.setattr(mne.morph, "_VOL_MAT_CHECK_RATIO", 0.0)
with catch_logging() as log:
with pytest.warns(RuntimeWarning, match=r"calling morph\.compute"):
stc_from_rt_lin = morph_to_from.apply(
morph_from_to.apply(stc_from, verbose="debug")
)
assert isinstance(morph_from_to.vol_morph_mat, csr_array), "csr"
log = log.getvalue()
assert "sparse volume morph matrix" in log
assert_allclose(stc_from_rt.data, stc_from_rt_lin.data)
del stc_from_rt_lin
stc_from_unit_rt_lin = morph_to_from.apply(morph_from_to.apply(stc_from_unit))
assert_allclose(stc_from_unit_rt.data, stc_from_unit_rt_lin.data)
del stc_from_unit_rt_lin
del stc_from, stc_from_rt
# before and after morph, check the proportion of vertices
# that are inside and outside the brainmask.mgz
brain = nib.load(subjects_dir / subject_from / "mri" / "brain.mgz")
mask = _get_img_fdata(brain) > 0
if subject_from == subject_to == "sample":
for stc in [stc_from_unit, stc_from_unit_rt]:
img = stc.as_volume(src_from, mri_resolution=True)
img = nib.Nifti1Image( # abs to convert complex
np.abs(_get_img_fdata(img)[:, :, :, 0]), img.affine
)
img = _get_img_fdata(resample_from_to(img, brain, order=1))
assert img.shape == mask.shape
in_ = img[mask].astype(bool).mean()
out = img[~mask].astype(bool).mean()
if morph_mat:
out_max = 0.001
in_min, in_max = 0.005, 0.007
else:
out_max = 0.02
in_min, in_max = 0.97, 0.98
assert out < out_max, f"proportion out of volume {out}"
assert in_min < in_ < in_max, f"proportion inside volume {in_}"
@pytest.mark.slowtest
@testing.requires_testing_data
def test_morph_stc_dense():
"""Test morphing stc."""
subject_from = "sample"
subject_to = "fsaverage"
stc_from = read_source_estimate(fname_smorph, subject="sample")
stc_to = read_source_estimate(fname_fmorph)
# make sure we can specify grade
stc_from.crop(0.09, 0.1) # for faster computation
stc_to.crop(0.09, 0.1) # for faster computation
assert_array_equal(
stc_to.time_as_index([0.09, 0.1], use_rounding=True), [0, len(stc_to.times) - 1]
)
# After dep change this to:
morph = compute_source_morph(
subject_to=subject_to,
spacing=3,
smooth=12,
src=stc_from,
subjects_dir=subjects_dir,
precompute=True,
)
assert morph.vol_morph_mat is None # a no-op for surface
stc_to1 = morph.apply(stc_from)
assert_allclose(stc_to.data, stc_to1.data, atol=1e-5)
mean_from = stc_from.data.mean(axis=0)
mean_to = stc_to1.data.mean(axis=0)
assert np.corrcoef(mean_to, mean_from).min() > 0.999
vertices_to = grade_to_vertices(subject_to, grade=3, subjects_dir=subjects_dir)
# make sure we can fill by morphing
with pytest.warns(RuntimeWarning, match="consider increasing"):
morph = compute_source_morph(
stc_from,
subject_from,
subject_to,
spacing=None,
smooth=1,
subjects_dir=subjects_dir,
)
stc_to5 = morph.apply(stc_from)
assert stc_to5.data.shape[0] == 163842 + 163842
# Morph vector data
stc_vec = _real_vec_stc()
stc_vec_to1 = compute_source_morph(
stc_vec,
subject_from,
subject_to,
subjects_dir=subjects_dir,
spacing=vertices_to,
smooth=1,
warn=False,
).apply(stc_vec)
assert stc_vec_to1.subject == subject_to
assert stc_vec_to1.tmin == stc_vec.tmin
assert stc_vec_to1.tstep == stc_vec.tstep
assert len(stc_vec_to1.lh_vertno) == 642
assert len(stc_vec_to1.rh_vertno) == 642
# Degenerate conditions
# Morphing to a density that is too high should raise an informative error
# (here we need to push to grade=6, but for some subjects even grade=5
# will break)
with pytest.raises(ValueError, match="Cannot use icosahedral grade 6 "):
compute_source_morph(
stc_to1,
subject_from=subject_to,
subject_to=subject_from,
spacing=6,
subjects_dir=subjects_dir,
)
del stc_to1
with pytest.raises(ValueError, match="smooth.* has to be at least 0"):
compute_source_morph(
stc_from,
subject_from,
subject_to,
spacing=5,
smooth=-1,
subjects_dir=subjects_dir,
)
# subject from mismatch
with pytest.raises(ValueError, match="subject_from does not match"):
compute_source_morph(stc_from, subject_from="foo", subjects_dir=subjects_dir)
# only one set of vertices
with pytest.raises(ValueError, match="grade.*list must have two elements"):
compute_source_morph(
stc_from,
subject_from=subject_from,
spacing=[vertices_to[0]],
subjects_dir=subjects_dir,
)
@testing.requires_testing_data
def test_morph_stc_sparse():
"""Test morphing stc with sparse=True."""
subject_from = "sample"
subject_to = "fsaverage"
# Morph sparse data
# Make a sparse stc
stc_from = read_source_estimate(fname_smorph, subject="sample")
stc_from.vertices[0] = stc_from.vertices[0][[100, 500]]
stc_from.vertices[1] = stc_from.vertices[1][[200]]
stc_from._data = stc_from._data[:3]
stc_to_sparse = compute_source_morph(
stc_from,
subject_from=subject_from,
subject_to=subject_to,
spacing=None,
sparse=True,
subjects_dir=subjects_dir,
).apply(stc_from)
assert_allclose(
np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))
)
assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
assert stc_to_sparse.subject == subject_to
assert stc_from.tmin == stc_from.tmin
assert stc_from.tstep == stc_from.tstep
stc_from.vertices[0] = np.array([], dtype=np.int64)
stc_from._data = stc_from._data[:1]
stc_to_sparse = compute_source_morph(
stc_from,
subject_from,
subject_to,
spacing=None,
sparse=True,
subjects_dir=subjects_dir,
).apply(stc_from)
assert_allclose(
np.sort(stc_from.data.sum(axis=1)), np.sort(stc_to_sparse.data.sum(axis=1))
)
assert len(stc_from.rh_vertno) == len(stc_to_sparse.rh_vertno)
assert len(stc_from.lh_vertno) == len(stc_to_sparse.lh_vertno)
assert stc_to_sparse.subject == subject_to
assert stc_from.tmin == stc_from.tmin
assert stc_from.tstep == stc_from.tstep
# Degenerate cases
with pytest.raises(ValueError, match="spacing must be set to None"):
compute_source_morph(
stc_from,
subject_from=subject_from,
subject_to=subject_to,
spacing=5,
sparse=True,
subjects_dir=subjects_dir,
)
with pytest.raises(ValueError, match="xhemi=True can only be used with"):
compute_source_morph(
stc_from,
subject_from=subject_from,
subject_to=subject_to,
spacing=None,
sparse=True,
xhemi=True,
subjects_dir=subjects_dir,
)
@testing.requires_testing_data
@pytest.mark.parametrize(
"sl, n_real, n_mri, n_orig",
[
# First and last should add up, middle can have overlap should be <= sum
(slice(0, 1), 37, 138, 8),
(slice(1, 2), 51, 204, 12),
(slice(0, 2), 88, 324, 20),
],
)
def test_volume_labels_morph(tmp_path, sl, n_real, n_mri, n_orig):
"""Test generating a source space from volume label."""
nib = pytest.importorskip("nibabel")
n_use = (sl.stop - sl.start) // (sl.step or 1)
# see gh-5224
evoked = mne.read_evokeds(fname_evoked)[0].crop(0, 0)
evoked.pick(evoked.ch_names[:306:8])
evoked.info.normalize_proj()
n_ch = len(evoked.ch_names)
lut, _ = read_freesurfer_lut()
label_names = sorted(get_volume_labels_from_aseg(fname_aseg))
use_label_names = label_names[sl]
src = setup_volume_source_space(
"sample",
subjects_dir=subjects_dir,
volume_label=use_label_names,
mri=fname_aseg,
)
assert len(src) == n_use
assert src.kind == "volume"
n_src = sum(s["nuse"] for s in src)
sphere = make_sphere_model("auto", "auto", evoked.info)
fwd = make_forward_solution(evoked.info, fname_trans, src, sphere)
assert fwd["sol"]["data"].shape == (n_ch, n_src * 3)
inv = make_inverse_operator(
evoked.info, fwd, make_ad_hoc_cov(evoked.info), loose=1.0
)
stc = apply_inverse(evoked, inv)
assert stc.data.shape == (n_src, 1)
img = stc.as_volume(src, mri_resolution=True)
assert img.shape == (86, 86, 86, 1)
n_on = np.array(img.dataobj).astype(bool).sum()
aseg_img = _get_img_fdata(nib.load(fname_aseg))
n_got_real = np.isin(
aseg_img.ravel(), [lut[name] for name in use_label_names]
).sum()
assert n_got_real == n_real
# - This was 291 on `main` before gh-5590
# - Refactoring transforms it became 279 with a < 1e-8 change in vox_mri_t
# - Dropped to 123 once nearest-voxel was used in gh-7653
# - Jumped back up to 330 with morphing fixes actually correctly
# interpolating across all volumes
assert aseg_img.shape == img.shape[:3]
assert n_on == n_mri
for ii in range(2):
# should work with (ii=0) or without (ii=1) the interpolator
if ii:
src[0]["interpolator"] = None
img = stc.as_volume(src, mri_resolution=False)
n_on = np.array(img.dataobj).astype(bool).sum()
# was 20 on `main` before gh-5590
# then 44 before gh-7653, which took it back to 20
assert n_on == n_orig
# without the interpolator, this should fail
assert src[0]["interpolator"] is None
with pytest.raises(RuntimeError, match=r".*src\[0\], .* mri_resolution"):
stc.as_volume(src, mri_resolution=True)
@pytest.fixture(scope="session", params=[testing._pytest_param()])
def _mixed_morph_srcs():
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
# create a mixed source space
labels_vol = ["Left-Cerebellum-Cortex", "Right-Cerebellum-Cortex"]
src = mne.setup_source_space(
"sample", spacing="oct3", add_dist=False, subjects_dir=subjects_dir
)
src += mne.setup_volume_source_space(
"sample",
mri=fname_aseg,
pos=10.0,
volume_label=labels_vol,
subjects_dir=subjects_dir,
add_interpolator=True,
verbose=True,
)
# create the destination space
src_fs = mne.read_source_spaces(
subjects_dir / "fsaverage" / "bem" / "fsaverage-ico-5-src.fif"
)
src_fs += mne.setup_volume_source_space(
"fsaverage",
pos=7.0,
volume_label=labels_vol,
subjects_dir=subjects_dir,
add_interpolator=False,
verbose=True,
)
del labels_vol
with pytest.raises(ValueError, match="src_to must be provided .* mixed"):
mne.compute_source_morph(
src=src,
subject_from="sample",
subject_to="fsaverage",
subjects_dir=subjects_dir,
)
with pytest.warns(RuntimeWarning, match="not included in smoothing"):
morph = mne.compute_source_morph(
src=src,
subject_from="sample",
subject_to="fsaverage",
subjects_dir=subjects_dir,
niter_affine=[1, 0, 0],
niter_sdr=[1, 0, 0],
src_to=src_fs,
smooth=5,
verbose=True,
)
return morph, src, src_fs
@pytest.mark.slowtest
@pytest.mark.parametrize("vector", (False, True))
def test_mixed_source_morph(_mixed_morph_srcs, vector):
"""Test mixed source space morphing."""
nib = pytest.importorskip("nibabel")
pytest.importorskip("dipy")
morph, src, src_fs = _mixed_morph_srcs
# Test some basic properties in the subject's own space
lut, _ = read_freesurfer_lut()
ids = [lut[s["seg_name"]] for s in src[2:]]
del lut
vertices = [s["vertno"] for s in src]
n_vertices = sum(len(v) for v in vertices)
data = np.zeros((n_vertices, 3, 1))
data[:, 1] = 1.0
klass = mne.MixedVectorSourceEstimate
if not vector:
data = data[:, 1]
klass = klass._scalar_class
stc = klass(data, vertices, 0, 1, "sample")
vol_info = _get_mri_info_data(fname_aseg, data=True)
rrs = np.concatenate([src[2]["rr"][sp["vertno"]] for sp in src[2:]])
n_want = np.isin(_get_atlas_values(vol_info, rrs), ids).sum()
img = _get_img_fdata(stc.volume().as_volume(src, mri_resolution=False))
assert img.astype(bool).sum() == n_want
img_res = nib.load(fname_aseg)
n_want = np.isin(_get_img_fdata(img_res), ids).sum()
img = _get_img_fdata(stc.volume().as_volume(src, mri_resolution=True))
assert img.astype(bool).sum() > n_want # way more get interpolated into
with pytest.raises(TypeError, match="stc_from must be an instance"):
morph.apply(1.0)
# Now actually morph
stc_fs = morph.apply(stc)
vol_info = _get_mri_info_data(fname_aseg_fs, data=True)
rrs = np.concatenate([src_fs[2]["rr"][sp["vertno"]] for sp in src_fs[2:]])
n_want = np.isin(_get_atlas_values(vol_info, rrs), ids).sum()
with pytest.raises(ValueError, match=r"stc\.subject does not match src s"):
stc_fs.volume().as_volume(src, mri_resolution=False)
img = _get_img_fdata(stc_fs.volume().as_volume(src_fs, mri_resolution=False))
assert img.astype(bool).sum() == n_want # correct number of voxels
# Morph separate parts and compare to morphing the entire one
stc_fs_surf = morph.apply(stc.surface())
stc_fs_vol = morph.apply(stc.volume())
stc_fs_2 = stc_fs.__class__(
np.concatenate([stc_fs_surf.data, stc_fs_vol.data]),
stc_fs_surf.vertices + stc_fs_vol.vertices,
stc_fs.tmin,
stc_fs.tstep,
stc_fs.subject,
)
assert_allclose(stc_fs.data, stc_fs_2.data)
def _rand_affine(rng):
quat = rng.randn(3)
quat /= 5 * np.linalg.norm(quat)
affine = np.eye(4)
affine[:3, 3] = rng.randn(3) / 5.0
affine[:3, :3] = quat_to_rot(quat)
return affine
_shapes = (
(10, 10, 10),
(20, 5, 10),
(5, 10, 20),
)
_affines = (
[[2, 0, 0, 1], [0, 0, 1, -1], [0, -1, 0, 2], [0, 0, 0, 1]],
np.eye(4),
np.eye(4)[[0, 2, 1, 3]],
"rand",
)
@pytest.mark.parametrize("from_shape", _shapes)
@pytest.mark.parametrize("from_affine", _affines)
@pytest.mark.parametrize("to_shape", _shapes)
@pytest.mark.parametrize("to_affine", _affines)
@pytest.mark.parametrize("order", [0, 1])
@pytest.mark.parametrize("seed", [0, 1])
def test_resample_equiv(from_shape, from_affine, to_shape, to_affine, order, seed):
"""Test resampling equivalences."""
pytest.importorskip("nibabel")
pytest.importorskip("dipy")
rng = np.random.RandomState(seed)
from_data = rng.randn(*from_shape)
is_rand = False
if isinstance(to_affine, str):
assert to_affine == "rand"
to_affine = _rand_affine(rng)
is_rand = True
if isinstance(from_affine, str):
assert from_affine == "rand"
from_affine = _rand_affine(rng)
is_rand = True
to_affine = np.array(to_affine, float)
assert to_affine.shape == (4, 4)
from_affine = np.array(from_affine, float)
assert from_affine.shape == (4, 4)
#
# 1. nibabel.processing.resample_from_to
#
# for a 1mm iso / 256 -> 5mm / 51 one sample takes ~486 ms
from nibabel.processing import resample_from_to
from nibabel.spatialimages import SpatialImage
start = np.linalg.norm(from_data)
got_nibabel = resample_from_to(
SpatialImage(from_data, from_affine), (to_shape, to_affine), order=order
).get_fdata()
end = np.linalg.norm(got_nibabel)
assert end > 0.05 * start # not too much power lost
#
# 2. dipy.align.imaffine
#
# ~366 ms
import dipy.align.imaffine
interp = "linear" if order == 1 else "nearest"
got_dipy = dipy.align.imaffine.AffineMap(
None,
domain_grid_shape=to_shape,
domain_grid2world=to_affine,
codomain_grid_shape=from_shape,
codomain_grid2world=from_affine,
).transform(from_data, interpolation=interp, resample_only=True)
# XXX possibly some error in dipy or nibabel (/SciPy), or some boundary
# condition?
nib_different = (is_rand and order == 1) or (
from_affine[0, 0] == 2.0 and not np.allclose(from_affine, to_affine)
)
nib_different = nib_different and not (
is_rand and from_affine[0, 0] == 2 and order == 0
)
if nib_different:
assert not np.allclose(got_dipy, got_nibabel), "nibabel fixed"
else:
assert_allclose(got_dipy, got_nibabel, err_msg="dipy<->nibabel")
#
# 3. mne.source_space._grid_interp
#
# ~339 ms
trans = np.linalg.inv(from_affine) @ to_affine # to -> from
interp = _grid_interp(from_shape, to_shape, trans, order=order)
got_mne = np.asarray(interp @ from_data.ravel(order="F")).reshape(
to_shape, order="F"
)
if order == 1:
assert_allclose(got_mne, got_dipy, err_msg="MNE<->dipy")
else:
perc = 100 * np.isclose(got_mne, got_dipy).mean()
assert 83 < perc <= 100