[074d3d]: / mne / stats / cluster_level.py

Download this file

1732 lines (1545 with data), 60.1 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
#!/usr/bin/env python
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from scipy import ndimage, sparse
from scipy.sparse.csgraph import connected_components
from scipy.stats import f as fstat
from scipy.stats import t as tstat
from ..fixes import has_numba, jit
from ..parallel import parallel_func
from ..source_estimate import MixedSourceEstimate, SourceEstimate, VolSourceEstimate
from ..source_space import SourceSpaces
from ..utils import (
ProgressBar,
_check_option,
_pl,
_validate_type,
check_random_state,
logger,
split_list,
verbose,
warn,
)
from .parametric import f_oneway, ttest_1samp_no_p
def _get_buddies_fallback(r, s, neighbors, indices=None):
if indices is None:
buddies = np.where(r)[0]
else:
buddies = indices[r[indices]]
buddies = buddies[np.isin(s[buddies], neighbors, assume_unique=True)]
r[buddies] = False
return buddies.tolist()
def _get_selves_fallback(r, s, ind, inds, t, t_border, max_step):
start = t_border[max(t[ind] - max_step, 0)]
stop = t_border[min(t[ind] + max_step + 1, len(t_border) - 1)]
indices = inds[start:stop]
selves = indices[r[indices]]
selves = selves[s[ind] == s[selves]]
r[selves] = False
return selves.tolist()
def _where_first_fallback(x):
# this is equivalent to np.where(r)[0] for these purposes, but it's
# a little bit faster. Unfortunately there's no way to tell numpy
# just to find the first instance (to save checking every one):
next_ind = int(np.argmax(x))
if next_ind == 0:
next_ind = -1
return next_ind
if has_numba: # pragma: no cover
@jit()
def _get_buddies(r, s, neighbors, indices=None):
buddies = list()
# At some point we might be able to use the sorted-ness of s or
# neighbors to further speed this up
if indices is None:
n_check = len(r)
else:
n_check = len(indices)
for ii in range(n_check):
if indices is None:
this_idx = ii
else:
this_idx = indices[ii]
if r[this_idx]:
this_s = s[this_idx]
for ni in range(len(neighbors)):
if this_s == neighbors[ni]:
buddies.append(this_idx)
r[this_idx] = False
break
return buddies
@jit()
def _get_selves(r, s, ind, inds, t, t_border, max_step):
selves = list()
start = t_border[max(t[ind] - max_step, 0)]
stop = t_border[min(t[ind] + max_step + 1, len(t_border) - 1)]
for ii in range(start, stop):
this_idx = inds[ii]
if r[this_idx] and s[ind] == s[this_idx]:
selves.append(this_idx)
r[this_idx] = False
return selves
@jit()
def _where_first(x):
for ii in range(len(x)):
if x[ii]:
return ii
return -1
else: # pragma: no cover
# fastest ways we've found with NumPy
_get_buddies = _get_buddies_fallback
_get_selves = _get_selves_fallback
_where_first = _where_first_fallback
@jit()
def _masked_sum(x, c):
return np.sum(x[c])
@jit()
def _masked_sum_power(x, c, t_power):
return np.sum(np.sign(x[c]) * np.abs(x[c]) ** t_power)
@jit()
def _sum_cluster_data(data, tstep):
return np.sign(data) * np.logical_not(data == 0) * tstep
def _get_clusters_spatial(s, neighbors):
"""Form spatial clusters using neighbor lists.
This is equivalent to _get_components with n_times = 1, with a properly
reconfigured adjacency matrix (formed as "neighbors" list)
"""
# s is a vector of spatial indices that are significant, like:
# s = np.where(x_in)[0]
# for x_in representing a single time-instant
r = np.ones(s.shape, bool)
clusters = list()
next_ind = 0 if s.size > 0 else -1
while next_ind >= 0:
# put first point in a cluster, adjust remaining
t_inds = [next_ind]
r[next_ind] = 0
icount = 1 # count of nodes in the current cluster
while icount <= len(t_inds):
ind = t_inds[icount - 1]
# look across other vertices
buddies = _get_buddies(r, s, neighbors[s[ind]])
t_inds.extend(buddies)
icount += 1
next_ind = _where_first(r)
clusters.append(s[t_inds])
return clusters
def _reassign(check, clusters, base, num):
"""Reassign cluster numbers."""
# reconfigure check matrix
check[check == num] = base
# concatenate new values into clusters array
clusters[base - 1] = np.concatenate((clusters[base - 1], clusters[num - 1]))
clusters[num - 1] = np.array([], dtype=int)
def _get_clusters_st_1step(keepers, neighbors):
"""Directly calculate clusters.
This uses knowledge that time points are
only adjacent to immediate neighbors for data organized as time x space.
This algorithm time increases linearly with the number of time points,
compared to with the square for the standard (graph) algorithm.
This algorithm creates clusters for each time point using a method more
efficient than the standard graph method (but otherwise equivalent), then
combines these clusters across time points in a reasonable way.
"""
n_src = len(neighbors)
n_times = len(keepers)
# start cluster numbering at 1 for diffing convenience
enum_offset = 1
check = np.zeros((n_times, n_src), dtype=int)
clusters = list()
for ii, k in enumerate(keepers):
c = _get_clusters_spatial(k, neighbors)
for ci, cl in enumerate(c):
check[ii, cl] = ci + enum_offset
enum_offset += len(c)
# give them the correct offsets
c = [cl + ii * n_src for cl in c]
clusters += c
# now that each cluster has been assigned a unique number, combine them
# by going through each time point
for check1, check2, k in zip(check[:-1], check[1:], keepers[:-1]):
# go through each one that needs reassignment
inds = k[check2[k] - check1[k] > 0]
check1_d = check1[inds]
n = check2[inds]
nexts = np.unique(n)
for num in nexts:
prevs = check1_d[n == num]
base = np.min(prevs)
for pr in np.unique(prevs[prevs != base]):
_reassign(check1, clusters, base, pr)
# reassign values
_reassign(check2, clusters, base, num)
# clean up clusters
clusters = [cl for cl in clusters if len(cl) > 0]
return clusters
def _get_clusters_st_multistep(keepers, neighbors, max_step=1):
"""Directly calculate clusters.
This uses knowledge that time points are
only adjacent to immediate neighbors for data organized as time x space.
This algorithm time increases linearly with the number of time points,
compared to with the square for the standard (graph) algorithm.
"""
n_src = len(neighbors)
n_times = len(keepers)
t_border = list()
t_border.append(0)
for ki, k in enumerate(keepers):
keepers[ki] = k + ki * n_src
t_border.append(t_border[ki] + len(k))
t_border = np.array(t_border)
keepers = np.concatenate(keepers)
v = keepers
t, s = divmod(v, n_src)
r = np.ones(t.shape, dtype=bool)
clusters = list()
inds = np.arange(t_border[0], t_border[n_times])
next_ind = 0 if s.size > 0 else -1
while next_ind >= 0:
# put first point in a cluster, adjust remaining
t_inds = [next_ind]
r[next_ind] = False
icount = 1 # count of nodes in the current cluster
# look for significant values at the next time point,
# same sensor, not placed yet, and add those
while icount <= len(t_inds):
ind = t_inds[icount - 1]
selves = _get_selves(r, s, ind, inds, t, t_border, max_step)
# look at current time point across other vertices
these_inds = inds[t_border[t[ind]] : t_border[t[ind] + 1]]
buddies = _get_buddies(r, s, neighbors[s[ind]], these_inds)
t_inds += buddies + selves
icount += 1
next_ind = _where_first(r)
clusters.append(v[t_inds])
return clusters
def _get_clusters_st(x_in, neighbors, max_step=1):
"""Choose the most efficient version."""
n_src = len(neighbors)
n_times = x_in.size // n_src
cl_goods = np.where(x_in)[0]
if len(cl_goods) > 0:
keepers = [np.array([], dtype=int)] * n_times
row, col = np.unravel_index(cl_goods, (n_times, n_src))
lims = [0]
if isinstance(row, int):
row = [row]
col = [col]
else:
order = np.argsort(row)
row = row[order]
col = col[order]
lims += (np.where(np.diff(row) > 0)[0] + 1).tolist()
lims.append(len(row))
for start, end in zip(lims[:-1], lims[1:]):
keepers[row[start]] = np.sort(col[start:end])
if max_step == 1:
return _get_clusters_st_1step(keepers, neighbors)
else:
return _get_clusters_st_multistep(keepers, neighbors, max_step)
else:
return []
def _get_components(x_in, adjacency, return_list=True):
"""Get connected components from a mask and a adjacency matrix."""
if adjacency is False:
components = np.arange(len(x_in))
else:
mask = np.logical_and(x_in[adjacency.row], x_in[adjacency.col])
data = adjacency.data[mask]
row = adjacency.row[mask]
col = adjacency.col[mask]
shape = adjacency.shape
idx = np.where(x_in)[0]
row = np.concatenate((row, idx))
col = np.concatenate((col, idx))
data = np.concatenate((data, np.ones(len(idx), dtype=data.dtype)))
adjacency = sparse.coo_array((data, (row, col)), shape=shape)
_, components = connected_components(adjacency)
if return_list:
start = np.min(components)
stop = np.max(components)
comp_list = [list() for i in range(start, stop + 1, 1)]
mask = np.zeros(len(comp_list), dtype=bool)
for ii, comp in enumerate(components):
comp_list[comp].append(ii)
mask[comp] += x_in[ii]
clusters = [np.array(k) for k, m in zip(comp_list, mask) if m]
return clusters
else:
return components
def _find_clusters(
x,
threshold,
tail=0,
adjacency=None,
max_step=1,
include=None,
partitions=None,
t_power=1,
show_info=False,
):
"""Find all clusters which are above/below a certain threshold.
When doing a two-tailed test (tail == 0), only points with the same
sign will be clustered together.
Parameters
----------
x : 1D array
Data
threshold : float | dict
Where to threshold the statistic. Should be negative for tail == -1,
and positive for tail == 0 or 1. Can also be an dict for
threshold-free cluster enhancement.
tail : -1 | 0 | 1
Type of comparison
adjacency : scipy.sparse.coo_array, None, or list
Defines adjacency between features. The matrix is assumed to
be symmetric and only the upper triangular half is used.
If adjacency is a list, it is assumed that each entry stores the
indices of the spatial neighbors in a spatio-temporal dataset x.
Default is None, i.e, a regular lattice adjacency.
False means no adjacency.
max_step : int
If adjacency is a list, this defines the maximal number of steps
between vertices along the second dimension (typically time) to be
considered adjacent.
include : 1D bool array or None
Mask to apply to the data of points to cluster. If None, all points
are used.
partitions : array of int or None
An array (same size as X) of integers indicating which points belong
to each partition.
t_power : float
Power to raise the statistical values (usually t-values) by before
summing (sign will be retained). Note that t_power == 0 will give a
count of nodes in each cluster, t_power == 1 will weight each node by
its statistical score.
show_info : bool
If True, display information about thresholds used (for TFCE). Should
only be done for the standard permutation.
Returns
-------
clusters : list of slices or list of arrays (boolean masks)
We use slices for 1D signals and mask to multidimensional
arrays. None is returned if threshold is a dict (TFCE)
sums : array
Sum of x values in clusters.
"""
_check_option("tail", tail, [-1, 0, 1])
x = np.asanyarray(x)
if not np.isscalar(threshold):
if not isinstance(threshold, dict):
raise TypeError(
"threshold must be a number, or a dict for "
"threshold-free cluster enhancement"
)
if not all(key in threshold for key in ["start", "step"]):
raise KeyError('threshold, if dict, must have at least "start" and "step"')
tfce = True
use_x = x[np.isfinite(x)]
if use_x.size == 0:
raise RuntimeError(
"No finite values found in the observed statistic values"
)
if tail == -1:
if threshold["start"] > 0:
raise ValueError('threshold["start"] must be <= 0 for tail == -1')
if threshold["step"] >= 0:
raise ValueError('threshold["step"] must be < 0 for tail == -1')
stop = np.min(use_x)
elif tail == 1:
stop = np.max(use_x)
else: # tail == 0
stop = max(np.max(use_x), -np.min(use_x))
del use_x
thresholds = np.arange(threshold["start"], stop, threshold["step"], float)
h_power = threshold.get("h_power", 2)
e_power = threshold.get("e_power", 0.5)
if show_info is True:
if len(thresholds) == 0:
warn(
f'threshold["start"] ({threshold["start"]}) is more extreme '
f"than data statistics with most extreme value {stop}"
)
else:
logger.info(
"Using %d thresholds from %0.2f to %0.2f for TFCE "
"computation (h_power=%0.2f, e_power=%0.2f)",
len(thresholds),
thresholds[0],
thresholds[-1],
h_power,
e_power,
)
scores = np.zeros(x.size)
else:
thresholds = [threshold]
tfce = False
# include all points by default
if include is None:
include = np.ones(x.shape, dtype=bool)
if tail in [0, 1] and not np.all(np.diff(thresholds) > 0):
raise ValueError("Thresholds must be monotonically increasing")
if tail == -1 and not np.all(np.diff(thresholds) < 0):
raise ValueError("Thresholds must be monotonically decreasing")
# set these here just in case thresholds == []
clusters = list()
sums = list()
for ti, thresh in enumerate(thresholds):
# these need to be reset on each run
clusters = list()
if tail == 0:
x_ins = [
np.logical_and(x > thresh, include),
np.logical_and(x < -thresh, include),
]
elif tail == -1:
x_ins = [np.logical_and(x < thresh, include)]
else: # tail == 1
x_ins = [np.logical_and(x > thresh, include)]
# loop over tails
for x_in in x_ins:
if np.any(x_in):
out = _find_clusters_1dir_parts(
x, x_in, adjacency, max_step, partitions, t_power, ndimage
)
clusters += out[0]
sums.append(out[1])
if tfce:
# the score of each point is the sum of the h^H * e^E for each
# supporting section "rectangle" h x e.
if ti == 0:
h = abs(thresh)
else:
h = abs(thresh - thresholds[ti - 1])
h = h**h_power
for c in clusters:
# triage based on cluster storage type
if isinstance(c, slice):
len_c = c.stop - c.start
elif isinstance(c, tuple):
len_c = len(c)
elif c.dtype == np.dtype(bool):
len_c = np.sum(c)
else:
len_c = len(c)
scores[c] += h * (len_c**e_power)
# turn sums into array
sums = np.concatenate(sums) if sums else np.array([])
if tfce:
sums = scores
clusters = None # clusters construction is made in _permutation_cluster_test
return clusters, sums
def _find_clusters_1dir_parts(
x, x_in, adjacency, max_step, partitions, t_power, ndimage
):
"""Deal with partitions, and pass the work to _find_clusters_1dir."""
if partitions is None:
clusters, sums = _find_clusters_1dir(
x, x_in, adjacency, max_step, t_power, ndimage
)
else:
# cluster each partition separately
clusters = list()
sums = list()
for p in range(np.max(partitions) + 1):
x_i = np.logical_and(x_in, partitions == p)
out = _find_clusters_1dir(x, x_i, adjacency, max_step, t_power, ndimage)
clusters += out[0]
sums.append(out[1])
sums = np.concatenate(sums)
return clusters, sums
def _find_clusters_1dir(x, x_in, adjacency, max_step, t_power, ndimage):
"""Actually call the clustering algorithm."""
if adjacency is None:
labels, n_labels = ndimage.label(x_in)
if x.ndim == 1:
# slices
clusters = ndimage.find_objects(labels, n_labels)
# equivalent to if len(clusters) == 0 but faster
if not clusters:
sums = list()
else:
index = list(range(1, n_labels + 1))
if t_power == 1:
sums = ndimage.sum(x, labels, index=index)
else:
sums = ndimage.sum(
np.sign(x) * np.abs(x) ** t_power, labels, index=index
)
else:
# boolean masks (raveled)
clusters = list()
sums = np.empty(n_labels)
for label in range(n_labels):
c = labels == label + 1
clusters.append(c.ravel())
if t_power == 1:
sums[label] = np.sum(x[c])
else:
sums[label] = np.sum(np.sign(x[c]) * np.abs(x[c]) ** t_power)
else:
if x.ndim > 1:
raise Exception(
"Data should be 1D when using a adjacency to define clusters."
)
if isinstance(adjacency, sparse.spmatrix):
adjacency = sparse.coo_array(adjacency)
if sparse.issparse(adjacency) or adjacency is False:
clusters = _get_components(x_in, adjacency)
elif isinstance(adjacency, list): # use temporal adjacency
clusters = _get_clusters_st(x_in, adjacency, max_step)
else:
raise TypeError(
f"adjacency must be a sparse array or list, got {type(adjacency)}"
)
if t_power == 1:
sums = [_masked_sum(x, c) for c in clusters]
else:
sums = [_masked_sum_power(x, c, t_power) for c in clusters]
return clusters, np.atleast_1d(sums)
def _cluster_indices_to_mask(components, n_tot, slice_out):
"""Convert to the old format of clusters, which were bool arrays (or slices in 1D).""" # noqa: E501
for ci, c in enumerate(components):
if not slice_out:
# boolean array
components[ci] = np.zeros((n_tot), dtype=bool)
components[ci][c] = True
else:
# slice (similar as ndimage.find_object output)
components[ci] = (slice(c.min(), c.max() + 1),)
return components
def _cluster_mask_to_indices(components, shape):
"""Convert to the old format of clusters, which were bool arrays."""
for ci, c in enumerate(components):
if isinstance(c, np.ndarray): # mask
components[ci] = np.where(c.reshape(shape))
elif isinstance(c, slice):
components[ci] = np.arange(c.start, c.stop)
else:
assert isinstance(c, tuple), type(c)
c = list(c) # tuple->list
for ii, cc in enumerate(c):
if isinstance(cc, slice):
c[ii] = np.arange(cc.start, cc.stop)
else:
c[ii] = np.where(cc)[0]
components[ci] = tuple(c)
return components
def _pval_from_histogram(T, H0, tail):
"""Get p-values from stats values given an H0 distribution.
For each stat compute a p-value as percentile of its statistics
within all statistics in surrogate data
"""
# from pct to fraction
if tail == -1: # up tail
pval = np.array([np.mean(H0 <= t) for t in T])
elif tail == 1: # low tail
pval = np.array([np.mean(H0 >= t) for t in T])
else: # both tails
pval = np.array([np.mean(abs(H0) >= abs(t)) for t in T])
return pval
def _setup_adjacency(adjacency, n_tests, n_times):
if not sparse.issparse(adjacency):
raise ValueError(
"If adjacency matrix is given, it must be a SciPy sparse matrix."
)
if adjacency.shape[0] == n_tests: # use global algorithm
adjacency = adjacency.tocoo()
else: # use temporal adjacency algorithm
got_times, mod = divmod(n_tests, adjacency.shape[0])
if got_times != n_times or mod != 0:
raise ValueError(
f"adjacency (len {adjacency.shape[0]}) must be of the correct size, "
"i.e. be equal to or evenly divide the number of tests ({n_tests}).\n\n"
"If adjacency was computed for a source space, try using "
'the fwd["src"] or inv["src"] as some original source space '
"vertices can be excluded during forward computation"
)
# we claim to only use upper triangular part... not true here
adjacency = (adjacency + adjacency.transpose()).tocsr()
adjacency = [
adjacency.indices[adjacency.indptr[i] : adjacency.indptr[i + 1]]
for i in range(len(adjacency.indptr) - 1)
]
return adjacency
def _do_permutations(
X_full,
slices,
threshold,
tail,
adjacency,
stat_fun,
max_step,
include,
partitions,
t_power,
orders,
sample_shape,
buffer_size,
progress_bar,
):
n_samp, n_vars = X_full.shape
if buffer_size is not None and n_vars <= buffer_size:
buffer_size = None # don't use buffer for few variables
# allocate space for output
max_cluster_sums = np.empty(len(orders), dtype=np.double)
if buffer_size is not None:
# allocate buffer, so we don't need to allocate memory during loop
X_buffer = [
np.empty((len(X_full[s]), buffer_size), dtype=X_full.dtype) for s in slices
]
for seed_idx, order in enumerate(orders):
# shuffle sample indices
assert order is not None
idx_shuffle_list = [order[s] for s in slices]
if buffer_size is None:
# shuffle all data at once
X_shuffle_list = [X_full[idx, :] for idx in idx_shuffle_list]
t_obs_surr = stat_fun(*X_shuffle_list)
else:
# only shuffle a small data buffer, so we need less memory
t_obs_surr = np.empty(n_vars, dtype=X_full.dtype)
for pos in range(0, n_vars, buffer_size):
# number of variables for this loop
n_var_loop = min(pos + buffer_size, n_vars) - pos
# fill buffer
for i, idx in enumerate(idx_shuffle_list):
X_buffer[i][:, :n_var_loop] = X_full[idx, pos : pos + n_var_loop]
# apply stat_fun and store result
tmp = stat_fun(*X_buffer)
t_obs_surr[pos : pos + n_var_loop] = tmp[:n_var_loop]
# The stat should have the same shape as the samples for no adj.
if adjacency is None:
t_obs_surr.shape = sample_shape
# Find cluster on randomized stats
out = _find_clusters(
t_obs_surr,
threshold=threshold,
tail=tail,
max_step=max_step,
adjacency=adjacency,
partitions=partitions,
include=include,
t_power=t_power,
)
perm_clusters_sums = out[1]
if len(perm_clusters_sums) > 0:
max_cluster_sums[seed_idx] = np.max(perm_clusters_sums)
else:
max_cluster_sums[seed_idx] = 0
progress_bar.update(seed_idx + 1)
return max_cluster_sums
def _do_1samp_permutations(
X,
slices,
threshold,
tail,
adjacency,
stat_fun,
max_step,
include,
partitions,
t_power,
orders,
sample_shape,
buffer_size,
progress_bar,
):
n_samp, n_vars = X.shape
assert slices is None # should be None for the 1 sample case
if buffer_size is not None and n_vars <= buffer_size:
buffer_size = None # don't use buffer for few variables
# allocate space for output
max_cluster_sums = np.empty(len(orders), dtype=np.double)
if buffer_size is not None:
# allocate a buffer so we don't need to allocate memory in loop
X_flip_buffer = np.empty((n_samp, buffer_size), dtype=X.dtype)
for seed_idx, order in enumerate(orders):
assert isinstance(order, np.ndarray)
# new surrogate data with specified sign flip
assert order.size == n_samp # should be guaranteed by parent
signs = 2 * order[:, None].astype(int) - 1
if not np.all(np.equal(np.abs(signs), 1)):
raise ValueError("signs from rng must be +/- 1")
if buffer_size is None:
# be careful about non-writable memmap (GH#1507)
if X.flags.writeable:
X *= signs
# Recompute statistic on randomized data
t_obs_surr = stat_fun(X)
# Set X back to previous state (trade memory eff. for CPU use)
X *= signs
else:
t_obs_surr = stat_fun(X * signs)
else:
# only sign-flip a small data buffer, so we need less memory
t_obs_surr = np.empty(n_vars, dtype=X.dtype)
for pos in range(0, n_vars, buffer_size):
# number of variables for this loop
n_var_loop = min(pos + buffer_size, n_vars) - pos
X_flip_buffer[:, :n_var_loop] = signs * X[:, pos : pos + n_var_loop]
# apply stat_fun and store result
tmp = stat_fun(X_flip_buffer)
t_obs_surr[pos : pos + n_var_loop] = tmp[:n_var_loop]
# The stat should have the same shape as the samples for no adj.
if adjacency is None:
t_obs_surr.shape = sample_shape
# Find cluster on randomized stats
out = _find_clusters(
t_obs_surr,
threshold=threshold,
tail=tail,
max_step=max_step,
adjacency=adjacency,
partitions=partitions,
include=include,
t_power=t_power,
)
perm_clusters_sums = out[1]
if len(perm_clusters_sums) > 0:
# get max with sign info
idx_max = np.argmax(np.abs(perm_clusters_sums))
max_cluster_sums[seed_idx] = perm_clusters_sums[idx_max]
else:
max_cluster_sums[seed_idx] = 0
progress_bar.update(seed_idx + 1)
return max_cluster_sums
def bin_perm_rep(ndim, a=0, b=1):
"""Ndim permutations with repetitions of (a,b).
Returns an array with all the possible permutations with repetitions of
(0,1) in ndim dimensions. The array is shaped as (2**ndim,ndim), and is
ordered with the last index changing fastest. For examble, for ndim=3:
Examples
--------
>>> bin_perm_rep(3)
array([[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1]])
"""
# Create the leftmost column as 0,0,...,1,1,...
nperms = 2**ndim
perms = np.empty((nperms, ndim), type(a))
perms.fill(a)
half_point = nperms // 2
perms[half_point:, 0] = b
# Fill the rest of the table by sampling the previous column every 2 items
for j in range(1, ndim):
half_col = perms[::2, j - 1]
perms[:half_point, j] = half_col
perms[half_point:, j] = half_col
# This is equivalent to something like:
# orders = [np.fromiter(np.binary_repr(s + 1, ndim), dtype=int)
# for s in np.arange(2 ** ndim)]
return perms
def _get_1samp_orders(n_samples, n_permutations, tail, rng):
"""Get the 1samp orders."""
max_perms = 2 ** (n_samples - (tail == 0)) - 1
extra = ""
if isinstance(n_permutations, str):
if n_permutations != "all":
raise ValueError('n_permutations as a string must be "all"')
n_permutations = max_perms
n_permutations = int(n_permutations)
if max_perms < n_permutations:
# omit first perm b/c accounted for in H0.append() later;
# convert to binary array representation
extra = " (exact test)"
orders = bin_perm_rep(n_samples)[1 : max_perms + 1]
elif n_samples <= 20: # fast way to do it for small(ish) n_samples
orders = rng.choice(max_perms, n_permutations - 1, replace=False)
orders = [
np.fromiter(np.binary_repr(s + 1, n_samples), dtype=int) for s in orders
]
else: # n_samples >= 64
# Here we can just use the hash-table (w/collision detection)
# functionality of a dict to ensure uniqueness
orders = np.zeros((n_permutations - 1, n_samples), int)
hashes = {}
ii = 0
# in the symmetric case, we should never flip one of the subjects
# to prevent positive/negative equivalent collisions
use_samples = n_samples - (tail == 0)
while ii < n_permutations - 1:
signs = tuple((rng.uniform(size=use_samples) < 0.5).astype(int))
if signs not in hashes:
orders[ii, :use_samples] = signs
if tail == 0 and rng.uniform() < 0.5:
# To undo the non-flipping of the last subject in the
# tail == 0 case, half the time we use the positive
# last subject, half the time negative last subject
orders[ii] = 1 - orders[ii]
hashes[signs] = None
ii += 1
return orders, n_permutations, extra
def _permutation_cluster_test(
X,
threshold,
n_permutations,
tail,
stat_fun,
adjacency,
n_jobs,
seed,
max_step,
exclude,
step_down_p,
t_power,
out_type,
check_disjoint,
buffer_size,
):
"""Aux Function.
Note. X is required to be a list. Depending on the length of X
either a 1 sample t-test or an F test / more sample permutation scheme
is elicited.
"""
_check_option("out_type", out_type, ["mask", "indices"])
_check_option("tail", tail, [-1, 0, 1])
if not isinstance(threshold, dict):
threshold = float(threshold)
if (
tail < 0
and threshold > 0
or tail > 0
and threshold < 0
or tail == 0
and threshold < 0
):
raise ValueError(
f"incompatible tail and threshold signs, got {tail} and {threshold}"
)
# check dimensions for each group in X (a list at this stage).
X = [x[:, np.newaxis] if x.ndim == 1 else x for x in X]
n_samples = X[0].shape[0]
n_times = X[0].shape[1]
sample_shape = X[0].shape[1:]
for x in X:
if x.shape[1:] != sample_shape:
raise ValueError("All samples mush have the same size")
# flatten the last dimensions in case the data is high dimensional
X = [np.reshape(x, (x.shape[0], -1)) for x in X]
n_tests = X[0].shape[1]
if adjacency is not None and adjacency is not False:
adjacency = _setup_adjacency(adjacency, n_tests, n_times)
if (exclude is not None) and not exclude.size == n_tests:
raise ValueError("exclude must be the same shape as X[0]")
# Step 1: Calculate t-stat for original data
# -------------------------------------------------------------
t_obs = stat_fun(*X)
_validate_type(t_obs, np.ndarray, "return value of stat_fun")
logger.info(f"stat_fun(H1): min={np.min(t_obs)} max={np.max(t_obs)}")
# test if stat_fun treats variables independently
if buffer_size is not None:
t_obs_buffer = np.zeros_like(t_obs)
for pos in range(0, n_tests, buffer_size):
t_obs_buffer[pos : pos + buffer_size] = stat_fun(
*[x[:, pos : pos + buffer_size] for x in X]
)
if not np.all(t_obs == t_obs_buffer):
warn(
"Provided stat_fun does not treat variables independently. "
"Setting buffer_size to None."
)
buffer_size = None
# The stat should have the same shape as the samples for no adj.
if t_obs.size != np.prod(sample_shape):
raise ValueError(
f"t_obs.shape {t_obs.shape} provided by stat_fun {stat_fun} is not "
f"compatible with the sample shape {sample_shape}"
)
if adjacency is None or adjacency is False:
t_obs.shape = sample_shape
if exclude is not None:
include = np.logical_not(exclude)
else:
include = None
# determine if adjacency itself can be separated into disjoint sets
if check_disjoint is True and (adjacency is not None and adjacency is not False):
partitions = _get_partitions_from_adjacency(adjacency, n_times)
else:
partitions = None
logger.info("Running initial clustering …")
out = _find_clusters(
t_obs,
threshold,
tail,
adjacency,
max_step=max_step,
include=include,
partitions=partitions,
t_power=t_power,
show_info=True,
)
clusters, cluster_stats = out
# The stat should have the same shape as the samples
t_obs.shape = sample_shape
# For TFCE, return the "adjusted" statistic instead of raw scores
# and for clusters, each point gets treated independently
tfce = isinstance(threshold, dict)
if tfce:
t_obs = cluster_stats.reshape(t_obs.shape) * np.sign(t_obs)
clusters = [np.array([c]) for c in range(t_obs.size)]
logger.info(f"Found {len(clusters)} cluster{_pl(clusters)}")
# convert clusters to old format
if (adjacency is not None and adjacency is not False) or tfce:
# our algorithms output lists of indices by default
if out_type == "mask":
slice_out = (adjacency is None) & (len(sample_shape) == 1)
clusters = _cluster_indices_to_mask(clusters, n_tests, slice_out)
else:
# ndimage outputs slices or boolean masks by default,
if out_type == "indices":
clusters = _cluster_mask_to_indices(clusters, t_obs.shape)
# convert our seed to orders
# check to see if we can do an exact test
# (for a two-tailed test, we can exploit symmetry to just do half)
extra = ""
rng = check_random_state(seed)
del seed
if len(X) == 1: # 1-sample test
do_perm_func = _do_1samp_permutations
X_full = X[0]
slices = None
orders, n_permutations, extra = _get_1samp_orders(
n_samples, n_permutations, tail, rng
)
else:
n_permutations = int(n_permutations)
do_perm_func = _do_permutations
X_full = np.concatenate(X, axis=0)
n_samples_per_condition = [x.shape[0] for x in X]
splits_idx = np.append([0], np.cumsum(n_samples_per_condition))
slices = [slice(splits_idx[k], splits_idx[k + 1]) for k in range(len(X))]
orders = [rng.permutation(len(X_full)) for _ in range(n_permutations - 1)]
del rng
parallel, my_do_perm_func, n_jobs = parallel_func(
do_perm_func, n_jobs, verbose=False
)
if len(clusters) == 0:
warn("No clusters found, returning empty H0, clusters, and cluster_pv")
return t_obs, np.array([]), np.array([]), np.array([])
# Step 2: If we have some clusters, repeat process on permuted data
# -------------------------------------------------------------------
# Step 3: repeat permutations for step-down-in-jumps procedure
n_removed = 1 # number of new clusters added
total_removed = 0
step_down_include = None # start out including all points
n_step_downs = 0
while n_removed > 0:
# actually do the clustering for each partition
if include is not None:
if step_down_include is not None:
this_include = np.logical_and(include, step_down_include)
else:
this_include = include
else:
this_include = step_down_include
with ProgressBar(
iterable=range(len(orders)), mesg=f"Permuting{extra}"
) as progress_bar:
H0 = parallel(
my_do_perm_func(
X_full,
slices,
threshold,
tail,
adjacency,
stat_fun,
max_step,
this_include,
partitions,
t_power,
order,
sample_shape,
buffer_size,
progress_bar.subset(idx),
)
for idx, order in split_list(orders, n_jobs, idx=True)
)
# include original (true) ordering
if tail == -1: # up tail
orig = cluster_stats.min()
elif tail == 1:
orig = cluster_stats.max()
else:
orig = abs(cluster_stats).max()
H0.insert(0, [orig])
H0 = np.concatenate(H0)
logger.debug("Computing cluster p-values")
cluster_pv = _pval_from_histogram(cluster_stats, H0, tail)
# figure out how many new ones will be removed for step-down
to_remove = np.where(cluster_pv < step_down_p)[0]
n_removed = to_remove.size - total_removed
total_removed = to_remove.size
step_down_include = np.ones(n_tests, dtype=bool)
for ti in to_remove:
step_down_include[clusters[ti]] = False
if adjacency is None and adjacency is not False:
step_down_include.shape = sample_shape
n_step_downs += 1
if step_down_p > 0:
a_text = "additional " if n_step_downs > 1 else ""
logger.info(
"Step-down-in-jumps iteration #%i found %i %s"
"cluster%s to exclude from subsequent iterations",
n_step_downs,
n_removed,
a_text,
_pl(n_removed),
)
# The clusters should have the same shape as the samples
clusters = _reshape_clusters(clusters, sample_shape)
return t_obs, clusters, cluster_pv, H0
def _check_fun(X, stat_fun, threshold, tail=0, kind="within"):
"""Check the stat_fun and threshold values."""
if kind == "within":
if threshold is None:
if stat_fun is not None and stat_fun is not ttest_1samp_no_p:
warn(
"Automatic threshold is only valid for stat_fun=None "
f"(or ttest_1samp_no_p), got {stat_fun}"
)
p_thresh = 0.05 / (1 + (tail == 0))
n_samples = len(X)
threshold = -tstat.ppf(p_thresh, n_samples - 1)
if np.sign(tail) < 0:
threshold = -threshold
logger.info(f"Using a threshold of {threshold:.6f}")
stat_fun = ttest_1samp_no_p if stat_fun is None else stat_fun
else:
assert kind == "between"
if threshold is None:
if stat_fun is not None and stat_fun is not f_oneway:
warn(
"Automatic threshold is only valid for stat_fun=None "
f"(or f_oneway), got {stat_fun}"
)
elif tail != 1:
warn('Ignoring argument "tail", performing 1-tailed F-test')
p_thresh = 0.05
dfn = len(X) - 1
dfd = np.sum([len(x) for x in X]) - len(X)
threshold = fstat.ppf(1.0 - p_thresh, dfn, dfd)
logger.info(f"Using a threshold of {threshold:.6f}")
stat_fun = f_oneway if stat_fun is None else stat_fun
return stat_fun, threshold
@verbose
def permutation_cluster_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Cluster-level statistical permutation test.
For a list of :class:`NumPy arrays <numpy.ndarray>` of data,
calculate some statistics corrected for multiple comparisons using
permutations and cluster-level correction. Each element of the list ``X``
should contain the data for one group of observations (e.g., 2D arrays for
time series, 3D arrays for time-frequency power values). Permutations are
generated with random partitions of the data. For details, see
:footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : list of array, shape (n_observations, p[, q][, r])
The data to be clustered. Each array in ``X`` should contain the
observations for one group. The first dimension of each array is the
number of observations from that group; remaining dimensions comprise
the size of a single observation. For example if ``X = [X1, X2]``
with ``X1.shape = (20, 50, 4)`` and ``X2.shape = (17, 50, 4)``, then
``X`` has 2 groups with respectively 20 and 17 observations in each,
and each data point is of shape ``(50, 4)``. Note: that the
*last dimension* of each element of ``X`` should correspond to the
dimension represented in the ``adjacency`` parameter
(e.g., spectral data should be provided as
``(observations, frequencies, channels/vertices)``).
%(threshold_clust_f)s
%(n_permutations_clust_int)s
%(tail_clust)s
%(stat_fun_clust_f)s
%(adjacency_clust_n)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
%(exclude_clust)s
%(step_down_p_clust)s
%(f_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
F_obs : array, shape (p[, q][, r])
Statistic (F by default) observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
%(threshold_clust_f_notes)s
References
----------
.. footbibliography::
"""
stat_fun, threshold = _check_fun(X, stat_fun, threshold, tail, "between")
return _permutation_cluster_test(
X=X,
threshold=threshold,
n_permutations=n_permutations,
tail=tail,
stat_fun=stat_fun,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
@verbose
def permutation_cluster_1samp_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Non-parametric cluster-level paired t-test.
For details, see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : array, shape (n_observations, p[, q][, r])
The data to be clustered. The first dimension should correspond to the
difference between paired samples (observations) in two conditions.
The subarrays ``X[k]`` can be 1D (e.g., time series), 2D (e.g.,
time series over channels), or 3D (e.g., time-frequencies over
channels) associated with the kth observation. For spatiotemporal data,
see also :func:`mne.stats.spatio_temporal_cluster_1samp_test`.
%(threshold_clust_t)s
%(n_permutations_clust_all)s
%(tail_clust)s
%(stat_fun_clust_t)s
%(adjacency_clust_1)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
%(exclude_clust)s
%(step_down_p_clust)s
%(t_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
t_obs : array, shape (p[, q][, r])
T-statistic observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
From an array of paired observations, e.g. a difference in signal
amplitudes or power spectra in two conditions, calculate if the data
distributions in the two conditions are significantly different.
The procedure uses a cluster analysis with permutation test
for calculating corrected p-values. Randomized data are generated with
random sign flips. See :footcite:`MarisOostenveld2007` for more
information.
Because a 1-sample t-test on the difference in observations is
mathematically equivalent to a paired t-test, internally this function
computes a 1-sample t-test (by default) and uses sign flipping (always)
to perform permutations. This might not be suitable for the case where
there is truly a single observation under test; see :ref:`disc-stats`.
%(threshold_clust_t_notes)s
If ``n_permutations`` exceeds the maximum number of possible permutations
given the number of observations, then ``n_permutations`` and ``seed``
will be ignored since an exact test (full permutation test) will be
performed (this is the case when
``n_permutations >= 2 ** (n_observations - (tail == 0))``).
If no initial clusters are found because all points in the true
distribution are below the threshold, then ``clusters``, ``cluster_pv``,
and ``H0`` will all be empty arrays.
References
----------
.. footbibliography::
"""
stat_fun, threshold = _check_fun(X, stat_fun, threshold, tail)
return _permutation_cluster_test(
X=[X],
threshold=threshold,
n_permutations=n_permutations,
tail=tail,
stat_fun=stat_fun,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
@verbose
def spatio_temporal_cluster_1samp_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
spatial_exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Non-parametric cluster-level paired t-test for spatio-temporal data.
This function provides a convenient wrapper for
:func:`mne.stats.permutation_cluster_1samp_test`, for use with data
organized in the form (observations × time × space),
(observations × frequencies × space), or optionally
(observations × time × frequencies × space). For details, see
:footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : array, shape (n_observations, p[, q], n_vertices)
The data to be clustered. The first dimension should correspond to the
difference between paired samples (observations) in two conditions.
The second, and optionally third, dimensions correspond to the
time or time-frequency data. And, the last dimension should be spatial.
%(threshold_clust_t)s
%(n_permutations_clust_all)s
%(tail_clust)s
%(stat_fun_clust_t)s
%(adjacency_clust_st1)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
spatial_exclude : list of int or None
List of spatial indices to exclude from clustering.
%(step_down_p_clust)s
%(t_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
t_obs : array, shape (p[, q], n_vertices)
T-statistic observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
%(threshold_clust_t_notes)s
References
----------
.. footbibliography::
"""
# convert spatial_exclude before passing on if necessary
if spatial_exclude is not None:
exclude = _st_mask_from_s_inds(
np.prod(X.shape[1:-1]), X.shape[-1], spatial_exclude, True
)
else:
exclude = None
return permutation_cluster_1samp_test(
X,
threshold=threshold,
stat_fun=stat_fun,
tail=tail,
n_permutations=n_permutations,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
@verbose
def spatio_temporal_cluster_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
spatial_exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Non-parametric cluster-level test for spatio-temporal data.
This function provides a convenient wrapper for
:func:`mne.stats.permutation_cluster_test`, for use with data
organized in the form (observations × time × space),
(observations × time × space), or optionally
(observations × time × frequencies × space). For more information,
see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : list of array, shape (n_observations, p[, q], n_vertices)
The data to be clustered. Each array in ``X`` should contain the
observations for one group. The first dimension of each array is the
number of observations from that group (and may vary between groups).
The second, and optionally third, dimensions correspond to the
time or time-frequency data. And, the last dimension should be spatial.
All dimensions except the first should match across all groups.
%(threshold_clust_f)s
%(n_permutations_clust_int)s
%(tail_clust)s
%(stat_fun_clust_f)s
%(adjacency_clust_stn)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
spatial_exclude : list of int or None
List of spatial indices to exclude from clustering.
%(step_down_p_clust)s
%(f_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
F_obs : array, shape (p[, q], n_vertices)
Statistic (F by default) observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv: array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
%(threshold_clust_f_notes)s
References
----------
.. footbibliography::
"""
# convert spatial_exclude before passing on if necessary
if spatial_exclude is not None:
exclude = _st_mask_from_s_inds(
np.prod(X[0].shape[1:-1]), X[0].shape[-1], spatial_exclude, True
)
else:
exclude = None
return permutation_cluster_test(
X,
threshold=threshold,
stat_fun=stat_fun,
tail=tail,
n_permutations=n_permutations,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
def _st_mask_from_s_inds(n_times, n_vertices, vertices, set_as=True):
"""Compute mask to apply to a spatio-temporal adjacency matrix.
This can be used to include (or exclude) certain spatial coordinates.
This is useful for excluding certain regions from analysis (e.g.,
medial wall vertices).
Parameters
----------
n_times : int
Number of time points.
n_vertices : int
Number of spatial points.
vertices : list or array of int
Vertex numbers to set.
set_as : bool
If True, all points except "vertices" are set to False (inclusion).
If False, all points except "vertices" are set to True (exclusion).
Returns
-------
mask : array of bool
A (n_times * n_vertices) array of boolean values for masking
"""
mask = np.zeros((n_times, n_vertices), dtype=bool)
mask[:, vertices] = True
mask = mask.ravel()
if set_as is False:
mask = np.logical_not(mask)
return mask
@verbose
def _get_partitions_from_adjacency(adjacency, n_times, verbose=None):
"""Specify disjoint subsets (e.g., hemispheres) based on adjacency."""
if isinstance(adjacency, list):
test = np.ones(len(adjacency))
test_adj = np.zeros((len(adjacency), len(adjacency)), dtype="bool")
for vi in range(len(adjacency)):
test_adj[adjacency[vi], vi] = True
test_adj = sparse.coo_array(test_adj, dtype="float")
else:
test = np.ones(adjacency.shape[0])
test_adj = adjacency
part_clusts = _find_clusters(test, 0, 1, test_adj)[0]
if len(part_clusts) > 1:
logger.info(f"{len(part_clusts)} disjoint adjacency sets found")
partitions = np.zeros(len(test), dtype="int")
for ii, pc in enumerate(part_clusts):
partitions[pc] = ii
if isinstance(adjacency, list):
partitions = np.tile(partitions, n_times)
else:
logger.info("No disjoint adjacency sets found")
partitions = None
return partitions
def _reshape_clusters(clusters, sample_shape):
"""Reshape cluster masks or indices to be of the correct shape."""
# format of the bool mask and indices are ndarrays
if len(clusters) > 0 and isinstance(clusters[0], np.ndarray):
if clusters[0].dtype == np.dtype(bool): # format of mask
clusters = [c.reshape(sample_shape) for c in clusters]
else: # format of indices
clusters = [np.unravel_index(c, sample_shape) for c in clusters]
return clusters
def summarize_clusters_stc(
clu, p_thresh=0.05, tstep=1.0, tmin=0, subject="fsaverage", vertices=None
):
"""Assemble summary SourceEstimate from spatiotemporal cluster results.
This helps visualizing results from spatio-temporal-clustering
permutation tests.
Parameters
----------
clu : tuple
The output from clustering permutation tests.
p_thresh : float
The significance threshold for inclusion of clusters.
tstep : float
The time step between samples of the original :class:`STC
<mne.SourceEstimate>`, in seconds (i.e., ``1 / stc.sfreq``). Defaults
to ``1``, which will yield a colormap indicating cluster duration
measured in *samples* rather than *seconds*.
tmin : float | int
The time of the first sample.
subject : str
The name of the subject.
vertices : list of array | instance of SourceSpaces | None
The vertex numbers associated with the source space locations. Defaults
to None. If None, equals ``[np.arange(10242), np.arange(10242)]``.
Can also be an instance of SourceSpaces to get vertex numbers from.
.. versionchanged:: 0.21
Added support for SourceSpaces.
Returns
-------
out : instance of SourceEstimate
A summary of the clusters. The first time point in this SourceEstimate
object is the summation of all the clusters. Subsequent time points
contain each individual cluster. The magnitude of the activity
corresponds to the duration spanned by the cluster (duration units are
determined by ``tstep``).
.. versionchanged:: 0.21
Added support for volume and mixed source estimates.
"""
_validate_type(vertices, (None, list, SourceSpaces), "vertices")
if vertices is None:
vertices = [np.arange(10242), np.arange(10242)]
klass = SourceEstimate
elif isinstance(vertices, SourceSpaces):
klass = dict(
surface=SourceEstimate, volume=VolSourceEstimate, mixed=MixedSourceEstimate
)[vertices.kind]
vertices = [s["vertno"] for s in vertices]
else:
klass = {1: VolSourceEstimate, 2: SourceEstimate}.get(
len(vertices), MixedSourceEstimate
)
n_vertices_need = sum(len(v) for v in vertices)
t_obs, clusters, clu_pvals, _ = clu
n_times, n_vertices = t_obs.shape
if n_vertices != n_vertices_need:
raise ValueError(
f"Number of cluster vertices ({n_vertices}) did not match the "
f"provided vertices ({n_vertices_need})"
)
good_cluster_inds = np.where(clu_pvals < p_thresh)[0]
# Build a convenient representation of each cluster, where each
# cluster becomes a "time point" in the SourceEstimate
if len(good_cluster_inds) == 0:
raise RuntimeError(
"No significant clusters available. Please adjust "
"your threshold or check your statistical "
"analysis."
)
data = np.zeros((n_vertices, n_times))
data_summary = np.zeros((n_vertices, len(good_cluster_inds) + 1))
for ii, cluster_ind in enumerate(good_cluster_inds):
data.fill(0)
t_inds, v_inds = clusters[cluster_ind]
data[v_inds, t_inds] = t_obs[t_inds, v_inds]
# Store a nice visualization of the cluster by summing across time
data_summary[:, ii + 1] = np.sum(_sum_cluster_data(data, tstep), axis=1)
# Make the first "time point" a sum across all clusters for easy
# visualization
data_summary[:, 0] = np.sum(data_summary, axis=1)
return klass(data_summary, vertices, tmin, tstep, subject)