#!/usr/bin/env python
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from scipy import ndimage, sparse
from scipy.sparse.csgraph import connected_components
from scipy.stats import f as fstat
from scipy.stats import t as tstat
from ..fixes import has_numba, jit
from ..parallel import parallel_func
from ..source_estimate import MixedSourceEstimate, SourceEstimate, VolSourceEstimate
from ..source_space import SourceSpaces
from ..utils import (
ProgressBar,
_check_option,
_pl,
_validate_type,
check_random_state,
logger,
split_list,
verbose,
warn,
)
from .parametric import f_oneway, ttest_1samp_no_p
def _get_buddies_fallback(r, s, neighbors, indices=None):
if indices is None:
buddies = np.where(r)[0]
else:
buddies = indices[r[indices]]
buddies = buddies[np.isin(s[buddies], neighbors, assume_unique=True)]
r[buddies] = False
return buddies.tolist()
def _get_selves_fallback(r, s, ind, inds, t, t_border, max_step):
start = t_border[max(t[ind] - max_step, 0)]
stop = t_border[min(t[ind] + max_step + 1, len(t_border) - 1)]
indices = inds[start:stop]
selves = indices[r[indices]]
selves = selves[s[ind] == s[selves]]
r[selves] = False
return selves.tolist()
def _where_first_fallback(x):
# this is equivalent to np.where(r)[0] for these purposes, but it's
# a little bit faster. Unfortunately there's no way to tell numpy
# just to find the first instance (to save checking every one):
next_ind = int(np.argmax(x))
if next_ind == 0:
next_ind = -1
return next_ind
if has_numba: # pragma: no cover
@jit()
def _get_buddies(r, s, neighbors, indices=None):
buddies = list()
# At some point we might be able to use the sorted-ness of s or
# neighbors to further speed this up
if indices is None:
n_check = len(r)
else:
n_check = len(indices)
for ii in range(n_check):
if indices is None:
this_idx = ii
else:
this_idx = indices[ii]
if r[this_idx]:
this_s = s[this_idx]
for ni in range(len(neighbors)):
if this_s == neighbors[ni]:
buddies.append(this_idx)
r[this_idx] = False
break
return buddies
@jit()
def _get_selves(r, s, ind, inds, t, t_border, max_step):
selves = list()
start = t_border[max(t[ind] - max_step, 0)]
stop = t_border[min(t[ind] + max_step + 1, len(t_border) - 1)]
for ii in range(start, stop):
this_idx = inds[ii]
if r[this_idx] and s[ind] == s[this_idx]:
selves.append(this_idx)
r[this_idx] = False
return selves
@jit()
def _where_first(x):
for ii in range(len(x)):
if x[ii]:
return ii
return -1
else: # pragma: no cover
# fastest ways we've found with NumPy
_get_buddies = _get_buddies_fallback
_get_selves = _get_selves_fallback
_where_first = _where_first_fallback
@jit()
def _masked_sum(x, c):
return np.sum(x[c])
@jit()
def _masked_sum_power(x, c, t_power):
return np.sum(np.sign(x[c]) * np.abs(x[c]) ** t_power)
@jit()
def _sum_cluster_data(data, tstep):
return np.sign(data) * np.logical_not(data == 0) * tstep
def _get_clusters_spatial(s, neighbors):
"""Form spatial clusters using neighbor lists.
This is equivalent to _get_components with n_times = 1, with a properly
reconfigured adjacency matrix (formed as "neighbors" list)
"""
# s is a vector of spatial indices that are significant, like:
# s = np.where(x_in)[0]
# for x_in representing a single time-instant
r = np.ones(s.shape, bool)
clusters = list()
next_ind = 0 if s.size > 0 else -1
while next_ind >= 0:
# put first point in a cluster, adjust remaining
t_inds = [next_ind]
r[next_ind] = 0
icount = 1 # count of nodes in the current cluster
while icount <= len(t_inds):
ind = t_inds[icount - 1]
# look across other vertices
buddies = _get_buddies(r, s, neighbors[s[ind]])
t_inds.extend(buddies)
icount += 1
next_ind = _where_first(r)
clusters.append(s[t_inds])
return clusters
def _reassign(check, clusters, base, num):
"""Reassign cluster numbers."""
# reconfigure check matrix
check[check == num] = base
# concatenate new values into clusters array
clusters[base - 1] = np.concatenate((clusters[base - 1], clusters[num - 1]))
clusters[num - 1] = np.array([], dtype=int)
def _get_clusters_st_1step(keepers, neighbors):
"""Directly calculate clusters.
This uses knowledge that time points are
only adjacent to immediate neighbors for data organized as time x space.
This algorithm time increases linearly with the number of time points,
compared to with the square for the standard (graph) algorithm.
This algorithm creates clusters for each time point using a method more
efficient than the standard graph method (but otherwise equivalent), then
combines these clusters across time points in a reasonable way.
"""
n_src = len(neighbors)
n_times = len(keepers)
# start cluster numbering at 1 for diffing convenience
enum_offset = 1
check = np.zeros((n_times, n_src), dtype=int)
clusters = list()
for ii, k in enumerate(keepers):
c = _get_clusters_spatial(k, neighbors)
for ci, cl in enumerate(c):
check[ii, cl] = ci + enum_offset
enum_offset += len(c)
# give them the correct offsets
c = [cl + ii * n_src for cl in c]
clusters += c
# now that each cluster has been assigned a unique number, combine them
# by going through each time point
for check1, check2, k in zip(check[:-1], check[1:], keepers[:-1]):
# go through each one that needs reassignment
inds = k[check2[k] - check1[k] > 0]
check1_d = check1[inds]
n = check2[inds]
nexts = np.unique(n)
for num in nexts:
prevs = check1_d[n == num]
base = np.min(prevs)
for pr in np.unique(prevs[prevs != base]):
_reassign(check1, clusters, base, pr)
# reassign values
_reassign(check2, clusters, base, num)
# clean up clusters
clusters = [cl for cl in clusters if len(cl) > 0]
return clusters
def _get_clusters_st_multistep(keepers, neighbors, max_step=1):
"""Directly calculate clusters.
This uses knowledge that time points are
only adjacent to immediate neighbors for data organized as time x space.
This algorithm time increases linearly with the number of time points,
compared to with the square for the standard (graph) algorithm.
"""
n_src = len(neighbors)
n_times = len(keepers)
t_border = list()
t_border.append(0)
for ki, k in enumerate(keepers):
keepers[ki] = k + ki * n_src
t_border.append(t_border[ki] + len(k))
t_border = np.array(t_border)
keepers = np.concatenate(keepers)
v = keepers
t, s = divmod(v, n_src)
r = np.ones(t.shape, dtype=bool)
clusters = list()
inds = np.arange(t_border[0], t_border[n_times])
next_ind = 0 if s.size > 0 else -1
while next_ind >= 0:
# put first point in a cluster, adjust remaining
t_inds = [next_ind]
r[next_ind] = False
icount = 1 # count of nodes in the current cluster
# look for significant values at the next time point,
# same sensor, not placed yet, and add those
while icount <= len(t_inds):
ind = t_inds[icount - 1]
selves = _get_selves(r, s, ind, inds, t, t_border, max_step)
# look at current time point across other vertices
these_inds = inds[t_border[t[ind]] : t_border[t[ind] + 1]]
buddies = _get_buddies(r, s, neighbors[s[ind]], these_inds)
t_inds += buddies + selves
icount += 1
next_ind = _where_first(r)
clusters.append(v[t_inds])
return clusters
def _get_clusters_st(x_in, neighbors, max_step=1):
"""Choose the most efficient version."""
n_src = len(neighbors)
n_times = x_in.size // n_src
cl_goods = np.where(x_in)[0]
if len(cl_goods) > 0:
keepers = [np.array([], dtype=int)] * n_times
row, col = np.unravel_index(cl_goods, (n_times, n_src))
lims = [0]
if isinstance(row, int):
row = [row]
col = [col]
else:
order = np.argsort(row)
row = row[order]
col = col[order]
lims += (np.where(np.diff(row) > 0)[0] + 1).tolist()
lims.append(len(row))
for start, end in zip(lims[:-1], lims[1:]):
keepers[row[start]] = np.sort(col[start:end])
if max_step == 1:
return _get_clusters_st_1step(keepers, neighbors)
else:
return _get_clusters_st_multistep(keepers, neighbors, max_step)
else:
return []
def _get_components(x_in, adjacency, return_list=True):
"""Get connected components from a mask and a adjacency matrix."""
if adjacency is False:
components = np.arange(len(x_in))
else:
mask = np.logical_and(x_in[adjacency.row], x_in[adjacency.col])
data = adjacency.data[mask]
row = adjacency.row[mask]
col = adjacency.col[mask]
shape = adjacency.shape
idx = np.where(x_in)[0]
row = np.concatenate((row, idx))
col = np.concatenate((col, idx))
data = np.concatenate((data, np.ones(len(idx), dtype=data.dtype)))
adjacency = sparse.coo_array((data, (row, col)), shape=shape)
_, components = connected_components(adjacency)
if return_list:
start = np.min(components)
stop = np.max(components)
comp_list = [list() for i in range(start, stop + 1, 1)]
mask = np.zeros(len(comp_list), dtype=bool)
for ii, comp in enumerate(components):
comp_list[comp].append(ii)
mask[comp] += x_in[ii]
clusters = [np.array(k) for k, m in zip(comp_list, mask) if m]
return clusters
else:
return components
def _find_clusters(
x,
threshold,
tail=0,
adjacency=None,
max_step=1,
include=None,
partitions=None,
t_power=1,
show_info=False,
):
"""Find all clusters which are above/below a certain threshold.
When doing a two-tailed test (tail == 0), only points with the same
sign will be clustered together.
Parameters
----------
x : 1D array
Data
threshold : float | dict
Where to threshold the statistic. Should be negative for tail == -1,
and positive for tail == 0 or 1. Can also be an dict for
threshold-free cluster enhancement.
tail : -1 | 0 | 1
Type of comparison
adjacency : scipy.sparse.coo_array, None, or list
Defines adjacency between features. The matrix is assumed to
be symmetric and only the upper triangular half is used.
If adjacency is a list, it is assumed that each entry stores the
indices of the spatial neighbors in a spatio-temporal dataset x.
Default is None, i.e, a regular lattice adjacency.
False means no adjacency.
max_step : int
If adjacency is a list, this defines the maximal number of steps
between vertices along the second dimension (typically time) to be
considered adjacent.
include : 1D bool array or None
Mask to apply to the data of points to cluster. If None, all points
are used.
partitions : array of int or None
An array (same size as X) of integers indicating which points belong
to each partition.
t_power : float
Power to raise the statistical values (usually t-values) by before
summing (sign will be retained). Note that t_power == 0 will give a
count of nodes in each cluster, t_power == 1 will weight each node by
its statistical score.
show_info : bool
If True, display information about thresholds used (for TFCE). Should
only be done for the standard permutation.
Returns
-------
clusters : list of slices or list of arrays (boolean masks)
We use slices for 1D signals and mask to multidimensional
arrays. None is returned if threshold is a dict (TFCE)
sums : array
Sum of x values in clusters.
"""
_check_option("tail", tail, [-1, 0, 1])
x = np.asanyarray(x)
if not np.isscalar(threshold):
if not isinstance(threshold, dict):
raise TypeError(
"threshold must be a number, or a dict for "
"threshold-free cluster enhancement"
)
if not all(key in threshold for key in ["start", "step"]):
raise KeyError('threshold, if dict, must have at least "start" and "step"')
tfce = True
use_x = x[np.isfinite(x)]
if use_x.size == 0:
raise RuntimeError(
"No finite values found in the observed statistic values"
)
if tail == -1:
if threshold["start"] > 0:
raise ValueError('threshold["start"] must be <= 0 for tail == -1')
if threshold["step"] >= 0:
raise ValueError('threshold["step"] must be < 0 for tail == -1')
stop = np.min(use_x)
elif tail == 1:
stop = np.max(use_x)
else: # tail == 0
stop = max(np.max(use_x), -np.min(use_x))
del use_x
thresholds = np.arange(threshold["start"], stop, threshold["step"], float)
h_power = threshold.get("h_power", 2)
e_power = threshold.get("e_power", 0.5)
if show_info is True:
if len(thresholds) == 0:
warn(
f'threshold["start"] ({threshold["start"]}) is more extreme '
f"than data statistics with most extreme value {stop}"
)
else:
logger.info(
"Using %d thresholds from %0.2f to %0.2f for TFCE "
"computation (h_power=%0.2f, e_power=%0.2f)",
len(thresholds),
thresholds[0],
thresholds[-1],
h_power,
e_power,
)
scores = np.zeros(x.size)
else:
thresholds = [threshold]
tfce = False
# include all points by default
if include is None:
include = np.ones(x.shape, dtype=bool)
if tail in [0, 1] and not np.all(np.diff(thresholds) > 0):
raise ValueError("Thresholds must be monotonically increasing")
if tail == -1 and not np.all(np.diff(thresholds) < 0):
raise ValueError("Thresholds must be monotonically decreasing")
# set these here just in case thresholds == []
clusters = list()
sums = list()
for ti, thresh in enumerate(thresholds):
# these need to be reset on each run
clusters = list()
if tail == 0:
x_ins = [
np.logical_and(x > thresh, include),
np.logical_and(x < -thresh, include),
]
elif tail == -1:
x_ins = [np.logical_and(x < thresh, include)]
else: # tail == 1
x_ins = [np.logical_and(x > thresh, include)]
# loop over tails
for x_in in x_ins:
if np.any(x_in):
out = _find_clusters_1dir_parts(
x, x_in, adjacency, max_step, partitions, t_power, ndimage
)
clusters += out[0]
sums.append(out[1])
if tfce:
# the score of each point is the sum of the h^H * e^E for each
# supporting section "rectangle" h x e.
if ti == 0:
h = abs(thresh)
else:
h = abs(thresh - thresholds[ti - 1])
h = h**h_power
for c in clusters:
# triage based on cluster storage type
if isinstance(c, slice):
len_c = c.stop - c.start
elif isinstance(c, tuple):
len_c = len(c)
elif c.dtype == np.dtype(bool):
len_c = np.sum(c)
else:
len_c = len(c)
scores[c] += h * (len_c**e_power)
# turn sums into array
sums = np.concatenate(sums) if sums else np.array([])
if tfce:
sums = scores
clusters = None # clusters construction is made in _permutation_cluster_test
return clusters, sums
def _find_clusters_1dir_parts(
x, x_in, adjacency, max_step, partitions, t_power, ndimage
):
"""Deal with partitions, and pass the work to _find_clusters_1dir."""
if partitions is None:
clusters, sums = _find_clusters_1dir(
x, x_in, adjacency, max_step, t_power, ndimage
)
else:
# cluster each partition separately
clusters = list()
sums = list()
for p in range(np.max(partitions) + 1):
x_i = np.logical_and(x_in, partitions == p)
out = _find_clusters_1dir(x, x_i, adjacency, max_step, t_power, ndimage)
clusters += out[0]
sums.append(out[1])
sums = np.concatenate(sums)
return clusters, sums
def _find_clusters_1dir(x, x_in, adjacency, max_step, t_power, ndimage):
"""Actually call the clustering algorithm."""
if adjacency is None:
labels, n_labels = ndimage.label(x_in)
if x.ndim == 1:
# slices
clusters = ndimage.find_objects(labels, n_labels)
# equivalent to if len(clusters) == 0 but faster
if not clusters:
sums = list()
else:
index = list(range(1, n_labels + 1))
if t_power == 1:
sums = ndimage.sum(x, labels, index=index)
else:
sums = ndimage.sum(
np.sign(x) * np.abs(x) ** t_power, labels, index=index
)
else:
# boolean masks (raveled)
clusters = list()
sums = np.empty(n_labels)
for label in range(n_labels):
c = labels == label + 1
clusters.append(c.ravel())
if t_power == 1:
sums[label] = np.sum(x[c])
else:
sums[label] = np.sum(np.sign(x[c]) * np.abs(x[c]) ** t_power)
else:
if x.ndim > 1:
raise Exception(
"Data should be 1D when using a adjacency to define clusters."
)
if isinstance(adjacency, sparse.spmatrix):
adjacency = sparse.coo_array(adjacency)
if sparse.issparse(adjacency) or adjacency is False:
clusters = _get_components(x_in, adjacency)
elif isinstance(adjacency, list): # use temporal adjacency
clusters = _get_clusters_st(x_in, adjacency, max_step)
else:
raise TypeError(
f"adjacency must be a sparse array or list, got {type(adjacency)}"
)
if t_power == 1:
sums = [_masked_sum(x, c) for c in clusters]
else:
sums = [_masked_sum_power(x, c, t_power) for c in clusters]
return clusters, np.atleast_1d(sums)
def _cluster_indices_to_mask(components, n_tot, slice_out):
"""Convert to the old format of clusters, which were bool arrays (or slices in 1D).""" # noqa: E501
for ci, c in enumerate(components):
if not slice_out:
# boolean array
components[ci] = np.zeros((n_tot), dtype=bool)
components[ci][c] = True
else:
# slice (similar as ndimage.find_object output)
components[ci] = (slice(c.min(), c.max() + 1),)
return components
def _cluster_mask_to_indices(components, shape):
"""Convert to the old format of clusters, which were bool arrays."""
for ci, c in enumerate(components):
if isinstance(c, np.ndarray): # mask
components[ci] = np.where(c.reshape(shape))
elif isinstance(c, slice):
components[ci] = np.arange(c.start, c.stop)
else:
assert isinstance(c, tuple), type(c)
c = list(c) # tuple->list
for ii, cc in enumerate(c):
if isinstance(cc, slice):
c[ii] = np.arange(cc.start, cc.stop)
else:
c[ii] = np.where(cc)[0]
components[ci] = tuple(c)
return components
def _pval_from_histogram(T, H0, tail):
"""Get p-values from stats values given an H0 distribution.
For each stat compute a p-value as percentile of its statistics
within all statistics in surrogate data
"""
# from pct to fraction
if tail == -1: # up tail
pval = np.array([np.mean(H0 <= t) for t in T])
elif tail == 1: # low tail
pval = np.array([np.mean(H0 >= t) for t in T])
else: # both tails
pval = np.array([np.mean(abs(H0) >= abs(t)) for t in T])
return pval
def _setup_adjacency(adjacency, n_tests, n_times):
if not sparse.issparse(adjacency):
raise ValueError(
"If adjacency matrix is given, it must be a SciPy sparse matrix."
)
if adjacency.shape[0] == n_tests: # use global algorithm
adjacency = adjacency.tocoo()
else: # use temporal adjacency algorithm
got_times, mod = divmod(n_tests, adjacency.shape[0])
if got_times != n_times or mod != 0:
raise ValueError(
f"adjacency (len {adjacency.shape[0]}) must be of the correct size, "
"i.e. be equal to or evenly divide the number of tests ({n_tests}).\n\n"
"If adjacency was computed for a source space, try using "
'the fwd["src"] or inv["src"] as some original source space '
"vertices can be excluded during forward computation"
)
# we claim to only use upper triangular part... not true here
adjacency = (adjacency + adjacency.transpose()).tocsr()
adjacency = [
adjacency.indices[adjacency.indptr[i] : adjacency.indptr[i + 1]]
for i in range(len(adjacency.indptr) - 1)
]
return adjacency
def _do_permutations(
X_full,
slices,
threshold,
tail,
adjacency,
stat_fun,
max_step,
include,
partitions,
t_power,
orders,
sample_shape,
buffer_size,
progress_bar,
):
n_samp, n_vars = X_full.shape
if buffer_size is not None and n_vars <= buffer_size:
buffer_size = None # don't use buffer for few variables
# allocate space for output
max_cluster_sums = np.empty(len(orders), dtype=np.double)
if buffer_size is not None:
# allocate buffer, so we don't need to allocate memory during loop
X_buffer = [
np.empty((len(X_full[s]), buffer_size), dtype=X_full.dtype) for s in slices
]
for seed_idx, order in enumerate(orders):
# shuffle sample indices
assert order is not None
idx_shuffle_list = [order[s] for s in slices]
if buffer_size is None:
# shuffle all data at once
X_shuffle_list = [X_full[idx, :] for idx in idx_shuffle_list]
t_obs_surr = stat_fun(*X_shuffle_list)
else:
# only shuffle a small data buffer, so we need less memory
t_obs_surr = np.empty(n_vars, dtype=X_full.dtype)
for pos in range(0, n_vars, buffer_size):
# number of variables for this loop
n_var_loop = min(pos + buffer_size, n_vars) - pos
# fill buffer
for i, idx in enumerate(idx_shuffle_list):
X_buffer[i][:, :n_var_loop] = X_full[idx, pos : pos + n_var_loop]
# apply stat_fun and store result
tmp = stat_fun(*X_buffer)
t_obs_surr[pos : pos + n_var_loop] = tmp[:n_var_loop]
# The stat should have the same shape as the samples for no adj.
if adjacency is None:
t_obs_surr.shape = sample_shape
# Find cluster on randomized stats
out = _find_clusters(
t_obs_surr,
threshold=threshold,
tail=tail,
max_step=max_step,
adjacency=adjacency,
partitions=partitions,
include=include,
t_power=t_power,
)
perm_clusters_sums = out[1]
if len(perm_clusters_sums) > 0:
max_cluster_sums[seed_idx] = np.max(perm_clusters_sums)
else:
max_cluster_sums[seed_idx] = 0
progress_bar.update(seed_idx + 1)
return max_cluster_sums
def _do_1samp_permutations(
X,
slices,
threshold,
tail,
adjacency,
stat_fun,
max_step,
include,
partitions,
t_power,
orders,
sample_shape,
buffer_size,
progress_bar,
):
n_samp, n_vars = X.shape
assert slices is None # should be None for the 1 sample case
if buffer_size is not None and n_vars <= buffer_size:
buffer_size = None # don't use buffer for few variables
# allocate space for output
max_cluster_sums = np.empty(len(orders), dtype=np.double)
if buffer_size is not None:
# allocate a buffer so we don't need to allocate memory in loop
X_flip_buffer = np.empty((n_samp, buffer_size), dtype=X.dtype)
for seed_idx, order in enumerate(orders):
assert isinstance(order, np.ndarray)
# new surrogate data with specified sign flip
assert order.size == n_samp # should be guaranteed by parent
signs = 2 * order[:, None].astype(int) - 1
if not np.all(np.equal(np.abs(signs), 1)):
raise ValueError("signs from rng must be +/- 1")
if buffer_size is None:
# be careful about non-writable memmap (GH#1507)
if X.flags.writeable:
X *= signs
# Recompute statistic on randomized data
t_obs_surr = stat_fun(X)
# Set X back to previous state (trade memory eff. for CPU use)
X *= signs
else:
t_obs_surr = stat_fun(X * signs)
else:
# only sign-flip a small data buffer, so we need less memory
t_obs_surr = np.empty(n_vars, dtype=X.dtype)
for pos in range(0, n_vars, buffer_size):
# number of variables for this loop
n_var_loop = min(pos + buffer_size, n_vars) - pos
X_flip_buffer[:, :n_var_loop] = signs * X[:, pos : pos + n_var_loop]
# apply stat_fun and store result
tmp = stat_fun(X_flip_buffer)
t_obs_surr[pos : pos + n_var_loop] = tmp[:n_var_loop]
# The stat should have the same shape as the samples for no adj.
if adjacency is None:
t_obs_surr.shape = sample_shape
# Find cluster on randomized stats
out = _find_clusters(
t_obs_surr,
threshold=threshold,
tail=tail,
max_step=max_step,
adjacency=adjacency,
partitions=partitions,
include=include,
t_power=t_power,
)
perm_clusters_sums = out[1]
if len(perm_clusters_sums) > 0:
# get max with sign info
idx_max = np.argmax(np.abs(perm_clusters_sums))
max_cluster_sums[seed_idx] = perm_clusters_sums[idx_max]
else:
max_cluster_sums[seed_idx] = 0
progress_bar.update(seed_idx + 1)
return max_cluster_sums
def bin_perm_rep(ndim, a=0, b=1):
"""Ndim permutations with repetitions of (a,b).
Returns an array with all the possible permutations with repetitions of
(0,1) in ndim dimensions. The array is shaped as (2**ndim,ndim), and is
ordered with the last index changing fastest. For examble, for ndim=3:
Examples
--------
>>> bin_perm_rep(3)
array([[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1]])
"""
# Create the leftmost column as 0,0,...,1,1,...
nperms = 2**ndim
perms = np.empty((nperms, ndim), type(a))
perms.fill(a)
half_point = nperms // 2
perms[half_point:, 0] = b
# Fill the rest of the table by sampling the previous column every 2 items
for j in range(1, ndim):
half_col = perms[::2, j - 1]
perms[:half_point, j] = half_col
perms[half_point:, j] = half_col
# This is equivalent to something like:
# orders = [np.fromiter(np.binary_repr(s + 1, ndim), dtype=int)
# for s in np.arange(2 ** ndim)]
return perms
def _get_1samp_orders(n_samples, n_permutations, tail, rng):
"""Get the 1samp orders."""
max_perms = 2 ** (n_samples - (tail == 0)) - 1
extra = ""
if isinstance(n_permutations, str):
if n_permutations != "all":
raise ValueError('n_permutations as a string must be "all"')
n_permutations = max_perms
n_permutations = int(n_permutations)
if max_perms < n_permutations:
# omit first perm b/c accounted for in H0.append() later;
# convert to binary array representation
extra = " (exact test)"
orders = bin_perm_rep(n_samples)[1 : max_perms + 1]
elif n_samples <= 20: # fast way to do it for small(ish) n_samples
orders = rng.choice(max_perms, n_permutations - 1, replace=False)
orders = [
np.fromiter(np.binary_repr(s + 1, n_samples), dtype=int) for s in orders
]
else: # n_samples >= 64
# Here we can just use the hash-table (w/collision detection)
# functionality of a dict to ensure uniqueness
orders = np.zeros((n_permutations - 1, n_samples), int)
hashes = {}
ii = 0
# in the symmetric case, we should never flip one of the subjects
# to prevent positive/negative equivalent collisions
use_samples = n_samples - (tail == 0)
while ii < n_permutations - 1:
signs = tuple((rng.uniform(size=use_samples) < 0.5).astype(int))
if signs not in hashes:
orders[ii, :use_samples] = signs
if tail == 0 and rng.uniform() < 0.5:
# To undo the non-flipping of the last subject in the
# tail == 0 case, half the time we use the positive
# last subject, half the time negative last subject
orders[ii] = 1 - orders[ii]
hashes[signs] = None
ii += 1
return orders, n_permutations, extra
def _permutation_cluster_test(
X,
threshold,
n_permutations,
tail,
stat_fun,
adjacency,
n_jobs,
seed,
max_step,
exclude,
step_down_p,
t_power,
out_type,
check_disjoint,
buffer_size,
):
"""Aux Function.
Note. X is required to be a list. Depending on the length of X
either a 1 sample t-test or an F test / more sample permutation scheme
is elicited.
"""
_check_option("out_type", out_type, ["mask", "indices"])
_check_option("tail", tail, [-1, 0, 1])
if not isinstance(threshold, dict):
threshold = float(threshold)
if (
tail < 0
and threshold > 0
or tail > 0
and threshold < 0
or tail == 0
and threshold < 0
):
raise ValueError(
f"incompatible tail and threshold signs, got {tail} and {threshold}"
)
# check dimensions for each group in X (a list at this stage).
X = [x[:, np.newaxis] if x.ndim == 1 else x for x in X]
n_samples = X[0].shape[0]
n_times = X[0].shape[1]
sample_shape = X[0].shape[1:]
for x in X:
if x.shape[1:] != sample_shape:
raise ValueError("All samples mush have the same size")
# flatten the last dimensions in case the data is high dimensional
X = [np.reshape(x, (x.shape[0], -1)) for x in X]
n_tests = X[0].shape[1]
if adjacency is not None and adjacency is not False:
adjacency = _setup_adjacency(adjacency, n_tests, n_times)
if (exclude is not None) and not exclude.size == n_tests:
raise ValueError("exclude must be the same shape as X[0]")
# Step 1: Calculate t-stat for original data
# -------------------------------------------------------------
t_obs = stat_fun(*X)
_validate_type(t_obs, np.ndarray, "return value of stat_fun")
logger.info(f"stat_fun(H1): min={np.min(t_obs)} max={np.max(t_obs)}")
# test if stat_fun treats variables independently
if buffer_size is not None:
t_obs_buffer = np.zeros_like(t_obs)
for pos in range(0, n_tests, buffer_size):
t_obs_buffer[pos : pos + buffer_size] = stat_fun(
*[x[:, pos : pos + buffer_size] for x in X]
)
if not np.all(t_obs == t_obs_buffer):
warn(
"Provided stat_fun does not treat variables independently. "
"Setting buffer_size to None."
)
buffer_size = None
# The stat should have the same shape as the samples for no adj.
if t_obs.size != np.prod(sample_shape):
raise ValueError(
f"t_obs.shape {t_obs.shape} provided by stat_fun {stat_fun} is not "
f"compatible with the sample shape {sample_shape}"
)
if adjacency is None or adjacency is False:
t_obs.shape = sample_shape
if exclude is not None:
include = np.logical_not(exclude)
else:
include = None
# determine if adjacency itself can be separated into disjoint sets
if check_disjoint is True and (adjacency is not None and adjacency is not False):
partitions = _get_partitions_from_adjacency(adjacency, n_times)
else:
partitions = None
logger.info("Running initial clustering …")
out = _find_clusters(
t_obs,
threshold,
tail,
adjacency,
max_step=max_step,
include=include,
partitions=partitions,
t_power=t_power,
show_info=True,
)
clusters, cluster_stats = out
# The stat should have the same shape as the samples
t_obs.shape = sample_shape
# For TFCE, return the "adjusted" statistic instead of raw scores
# and for clusters, each point gets treated independently
tfce = isinstance(threshold, dict)
if tfce:
t_obs = cluster_stats.reshape(t_obs.shape) * np.sign(t_obs)
clusters = [np.array([c]) for c in range(t_obs.size)]
logger.info(f"Found {len(clusters)} cluster{_pl(clusters)}")
# convert clusters to old format
if (adjacency is not None and adjacency is not False) or tfce:
# our algorithms output lists of indices by default
if out_type == "mask":
slice_out = (adjacency is None) & (len(sample_shape) == 1)
clusters = _cluster_indices_to_mask(clusters, n_tests, slice_out)
else:
# ndimage outputs slices or boolean masks by default,
if out_type == "indices":
clusters = _cluster_mask_to_indices(clusters, t_obs.shape)
# convert our seed to orders
# check to see if we can do an exact test
# (for a two-tailed test, we can exploit symmetry to just do half)
extra = ""
rng = check_random_state(seed)
del seed
if len(X) == 1: # 1-sample test
do_perm_func = _do_1samp_permutations
X_full = X[0]
slices = None
orders, n_permutations, extra = _get_1samp_orders(
n_samples, n_permutations, tail, rng
)
else:
n_permutations = int(n_permutations)
do_perm_func = _do_permutations
X_full = np.concatenate(X, axis=0)
n_samples_per_condition = [x.shape[0] for x in X]
splits_idx = np.append([0], np.cumsum(n_samples_per_condition))
slices = [slice(splits_idx[k], splits_idx[k + 1]) for k in range(len(X))]
orders = [rng.permutation(len(X_full)) for _ in range(n_permutations - 1)]
del rng
parallel, my_do_perm_func, n_jobs = parallel_func(
do_perm_func, n_jobs, verbose=False
)
if len(clusters) == 0:
warn("No clusters found, returning empty H0, clusters, and cluster_pv")
return t_obs, np.array([]), np.array([]), np.array([])
# Step 2: If we have some clusters, repeat process on permuted data
# -------------------------------------------------------------------
# Step 3: repeat permutations for step-down-in-jumps procedure
n_removed = 1 # number of new clusters added
total_removed = 0
step_down_include = None # start out including all points
n_step_downs = 0
while n_removed > 0:
# actually do the clustering for each partition
if include is not None:
if step_down_include is not None:
this_include = np.logical_and(include, step_down_include)
else:
this_include = include
else:
this_include = step_down_include
with ProgressBar(
iterable=range(len(orders)), mesg=f"Permuting{extra}"
) as progress_bar:
H0 = parallel(
my_do_perm_func(
X_full,
slices,
threshold,
tail,
adjacency,
stat_fun,
max_step,
this_include,
partitions,
t_power,
order,
sample_shape,
buffer_size,
progress_bar.subset(idx),
)
for idx, order in split_list(orders, n_jobs, idx=True)
)
# include original (true) ordering
if tail == -1: # up tail
orig = cluster_stats.min()
elif tail == 1:
orig = cluster_stats.max()
else:
orig = abs(cluster_stats).max()
H0.insert(0, [orig])
H0 = np.concatenate(H0)
logger.debug("Computing cluster p-values")
cluster_pv = _pval_from_histogram(cluster_stats, H0, tail)
# figure out how many new ones will be removed for step-down
to_remove = np.where(cluster_pv < step_down_p)[0]
n_removed = to_remove.size - total_removed
total_removed = to_remove.size
step_down_include = np.ones(n_tests, dtype=bool)
for ti in to_remove:
step_down_include[clusters[ti]] = False
if adjacency is None and adjacency is not False:
step_down_include.shape = sample_shape
n_step_downs += 1
if step_down_p > 0:
a_text = "additional " if n_step_downs > 1 else ""
logger.info(
"Step-down-in-jumps iteration #%i found %i %s"
"cluster%s to exclude from subsequent iterations",
n_step_downs,
n_removed,
a_text,
_pl(n_removed),
)
# The clusters should have the same shape as the samples
clusters = _reshape_clusters(clusters, sample_shape)
return t_obs, clusters, cluster_pv, H0
def _check_fun(X, stat_fun, threshold, tail=0, kind="within"):
"""Check the stat_fun and threshold values."""
if kind == "within":
if threshold is None:
if stat_fun is not None and stat_fun is not ttest_1samp_no_p:
warn(
"Automatic threshold is only valid for stat_fun=None "
f"(or ttest_1samp_no_p), got {stat_fun}"
)
p_thresh = 0.05 / (1 + (tail == 0))
n_samples = len(X)
threshold = -tstat.ppf(p_thresh, n_samples - 1)
if np.sign(tail) < 0:
threshold = -threshold
logger.info(f"Using a threshold of {threshold:.6f}")
stat_fun = ttest_1samp_no_p if stat_fun is None else stat_fun
else:
assert kind == "between"
if threshold is None:
if stat_fun is not None and stat_fun is not f_oneway:
warn(
"Automatic threshold is only valid for stat_fun=None "
f"(or f_oneway), got {stat_fun}"
)
elif tail != 1:
warn('Ignoring argument "tail", performing 1-tailed F-test')
p_thresh = 0.05
dfn = len(X) - 1
dfd = np.sum([len(x) for x in X]) - len(X)
threshold = fstat.ppf(1.0 - p_thresh, dfn, dfd)
logger.info(f"Using a threshold of {threshold:.6f}")
stat_fun = f_oneway if stat_fun is None else stat_fun
return stat_fun, threshold
@verbose
def permutation_cluster_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Cluster-level statistical permutation test.
For a list of :class:`NumPy arrays <numpy.ndarray>` of data,
calculate some statistics corrected for multiple comparisons using
permutations and cluster-level correction. Each element of the list ``X``
should contain the data for one group of observations (e.g., 2D arrays for
time series, 3D arrays for time-frequency power values). Permutations are
generated with random partitions of the data. For details, see
:footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : list of array, shape (n_observations, p[, q][, r])
The data to be clustered. Each array in ``X`` should contain the
observations for one group. The first dimension of each array is the
number of observations from that group; remaining dimensions comprise
the size of a single observation. For example if ``X = [X1, X2]``
with ``X1.shape = (20, 50, 4)`` and ``X2.shape = (17, 50, 4)``, then
``X`` has 2 groups with respectively 20 and 17 observations in each,
and each data point is of shape ``(50, 4)``. Note: that the
*last dimension* of each element of ``X`` should correspond to the
dimension represented in the ``adjacency`` parameter
(e.g., spectral data should be provided as
``(observations, frequencies, channels/vertices)``).
%(threshold_clust_f)s
%(n_permutations_clust_int)s
%(tail_clust)s
%(stat_fun_clust_f)s
%(adjacency_clust_n)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
%(exclude_clust)s
%(step_down_p_clust)s
%(f_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
F_obs : array, shape (p[, q][, r])
Statistic (F by default) observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
%(threshold_clust_f_notes)s
References
----------
.. footbibliography::
"""
stat_fun, threshold = _check_fun(X, stat_fun, threshold, tail, "between")
return _permutation_cluster_test(
X=X,
threshold=threshold,
n_permutations=n_permutations,
tail=tail,
stat_fun=stat_fun,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
@verbose
def permutation_cluster_1samp_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Non-parametric cluster-level paired t-test.
For details, see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : array, shape (n_observations, p[, q][, r])
The data to be clustered. The first dimension should correspond to the
difference between paired samples (observations) in two conditions.
The subarrays ``X[k]`` can be 1D (e.g., time series), 2D (e.g.,
time series over channels), or 3D (e.g., time-frequencies over
channels) associated with the kth observation. For spatiotemporal data,
see also :func:`mne.stats.spatio_temporal_cluster_1samp_test`.
%(threshold_clust_t)s
%(n_permutations_clust_all)s
%(tail_clust)s
%(stat_fun_clust_t)s
%(adjacency_clust_1)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
%(exclude_clust)s
%(step_down_p_clust)s
%(t_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
t_obs : array, shape (p[, q][, r])
T-statistic observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
From an array of paired observations, e.g. a difference in signal
amplitudes or power spectra in two conditions, calculate if the data
distributions in the two conditions are significantly different.
The procedure uses a cluster analysis with permutation test
for calculating corrected p-values. Randomized data are generated with
random sign flips. See :footcite:`MarisOostenveld2007` for more
information.
Because a 1-sample t-test on the difference in observations is
mathematically equivalent to a paired t-test, internally this function
computes a 1-sample t-test (by default) and uses sign flipping (always)
to perform permutations. This might not be suitable for the case where
there is truly a single observation under test; see :ref:`disc-stats`.
%(threshold_clust_t_notes)s
If ``n_permutations`` exceeds the maximum number of possible permutations
given the number of observations, then ``n_permutations`` and ``seed``
will be ignored since an exact test (full permutation test) will be
performed (this is the case when
``n_permutations >= 2 ** (n_observations - (tail == 0))``).
If no initial clusters are found because all points in the true
distribution are below the threshold, then ``clusters``, ``cluster_pv``,
and ``H0`` will all be empty arrays.
References
----------
.. footbibliography::
"""
stat_fun, threshold = _check_fun(X, stat_fun, threshold, tail)
return _permutation_cluster_test(
X=[X],
threshold=threshold,
n_permutations=n_permutations,
tail=tail,
stat_fun=stat_fun,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
@verbose
def spatio_temporal_cluster_1samp_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
spatial_exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Non-parametric cluster-level paired t-test for spatio-temporal data.
This function provides a convenient wrapper for
:func:`mne.stats.permutation_cluster_1samp_test`, for use with data
organized in the form (observations × time × space),
(observations × frequencies × space), or optionally
(observations × time × frequencies × space). For details, see
:footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : array, shape (n_observations, p[, q], n_vertices)
The data to be clustered. The first dimension should correspond to the
difference between paired samples (observations) in two conditions.
The second, and optionally third, dimensions correspond to the
time or time-frequency data. And, the last dimension should be spatial.
%(threshold_clust_t)s
%(n_permutations_clust_all)s
%(tail_clust)s
%(stat_fun_clust_t)s
%(adjacency_clust_st1)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
spatial_exclude : list of int or None
List of spatial indices to exclude from clustering.
%(step_down_p_clust)s
%(t_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
t_obs : array, shape (p[, q], n_vertices)
T-statistic observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv : array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
%(threshold_clust_t_notes)s
References
----------
.. footbibliography::
"""
# convert spatial_exclude before passing on if necessary
if spatial_exclude is not None:
exclude = _st_mask_from_s_inds(
np.prod(X.shape[1:-1]), X.shape[-1], spatial_exclude, True
)
else:
exclude = None
return permutation_cluster_1samp_test(
X,
threshold=threshold,
stat_fun=stat_fun,
tail=tail,
n_permutations=n_permutations,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
@verbose
def spatio_temporal_cluster_test(
X,
threshold=None,
n_permutations=1024,
tail=0,
stat_fun=None,
adjacency=None,
n_jobs=None,
seed=None,
max_step=1,
spatial_exclude=None,
step_down_p=0,
t_power=1,
out_type="indices",
check_disjoint=False,
buffer_size=1000,
verbose=None,
):
"""Non-parametric cluster-level test for spatio-temporal data.
This function provides a convenient wrapper for
:func:`mne.stats.permutation_cluster_test`, for use with data
organized in the form (observations × time × space),
(observations × time × space), or optionally
(observations × time × frequencies × space). For more information,
see :footcite:p:`MarisOostenveld2007,Sassenhagen2019`.
Parameters
----------
X : list of array, shape (n_observations, p[, q], n_vertices)
The data to be clustered. Each array in ``X`` should contain the
observations for one group. The first dimension of each array is the
number of observations from that group (and may vary between groups).
The second, and optionally third, dimensions correspond to the
time or time-frequency data. And, the last dimension should be spatial.
All dimensions except the first should match across all groups.
%(threshold_clust_f)s
%(n_permutations_clust_int)s
%(tail_clust)s
%(stat_fun_clust_f)s
%(adjacency_clust_stn)s
%(n_jobs)s
%(seed)s
%(max_step_clust)s
spatial_exclude : list of int or None
List of spatial indices to exclude from clustering.
%(step_down_p_clust)s
%(f_power_clust)s
%(out_type_clust)s
%(check_disjoint_clust)s
%(buffer_size_clust)s
%(verbose)s
Returns
-------
F_obs : array, shape (p[, q], n_vertices)
Statistic (F by default) observed for all variables.
clusters : list
List type defined by out_type above.
cluster_pv: array
P-value for each cluster.
H0 : array, shape (n_permutations,)
Max cluster level stats observed under permutation.
Notes
-----
%(threshold_clust_f_notes)s
References
----------
.. footbibliography::
"""
# convert spatial_exclude before passing on if necessary
if spatial_exclude is not None:
exclude = _st_mask_from_s_inds(
np.prod(X[0].shape[1:-1]), X[0].shape[-1], spatial_exclude, True
)
else:
exclude = None
return permutation_cluster_test(
X,
threshold=threshold,
stat_fun=stat_fun,
tail=tail,
n_permutations=n_permutations,
adjacency=adjacency,
n_jobs=n_jobs,
seed=seed,
max_step=max_step,
exclude=exclude,
step_down_p=step_down_p,
t_power=t_power,
out_type=out_type,
check_disjoint=check_disjoint,
buffer_size=buffer_size,
)
def _st_mask_from_s_inds(n_times, n_vertices, vertices, set_as=True):
"""Compute mask to apply to a spatio-temporal adjacency matrix.
This can be used to include (or exclude) certain spatial coordinates.
This is useful for excluding certain regions from analysis (e.g.,
medial wall vertices).
Parameters
----------
n_times : int
Number of time points.
n_vertices : int
Number of spatial points.
vertices : list or array of int
Vertex numbers to set.
set_as : bool
If True, all points except "vertices" are set to False (inclusion).
If False, all points except "vertices" are set to True (exclusion).
Returns
-------
mask : array of bool
A (n_times * n_vertices) array of boolean values for masking
"""
mask = np.zeros((n_times, n_vertices), dtype=bool)
mask[:, vertices] = True
mask = mask.ravel()
if set_as is False:
mask = np.logical_not(mask)
return mask
@verbose
def _get_partitions_from_adjacency(adjacency, n_times, verbose=None):
"""Specify disjoint subsets (e.g., hemispheres) based on adjacency."""
if isinstance(adjacency, list):
test = np.ones(len(adjacency))
test_adj = np.zeros((len(adjacency), len(adjacency)), dtype="bool")
for vi in range(len(adjacency)):
test_adj[adjacency[vi], vi] = True
test_adj = sparse.coo_array(test_adj, dtype="float")
else:
test = np.ones(adjacency.shape[0])
test_adj = adjacency
part_clusts = _find_clusters(test, 0, 1, test_adj)[0]
if len(part_clusts) > 1:
logger.info(f"{len(part_clusts)} disjoint adjacency sets found")
partitions = np.zeros(len(test), dtype="int")
for ii, pc in enumerate(part_clusts):
partitions[pc] = ii
if isinstance(adjacency, list):
partitions = np.tile(partitions, n_times)
else:
logger.info("No disjoint adjacency sets found")
partitions = None
return partitions
def _reshape_clusters(clusters, sample_shape):
"""Reshape cluster masks or indices to be of the correct shape."""
# format of the bool mask and indices are ndarrays
if len(clusters) > 0 and isinstance(clusters[0], np.ndarray):
if clusters[0].dtype == np.dtype(bool): # format of mask
clusters = [c.reshape(sample_shape) for c in clusters]
else: # format of indices
clusters = [np.unravel_index(c, sample_shape) for c in clusters]
return clusters
def summarize_clusters_stc(
clu, p_thresh=0.05, tstep=1.0, tmin=0, subject="fsaverage", vertices=None
):
"""Assemble summary SourceEstimate from spatiotemporal cluster results.
This helps visualizing results from spatio-temporal-clustering
permutation tests.
Parameters
----------
clu : tuple
The output from clustering permutation tests.
p_thresh : float
The significance threshold for inclusion of clusters.
tstep : float
The time step between samples of the original :class:`STC
<mne.SourceEstimate>`, in seconds (i.e., ``1 / stc.sfreq``). Defaults
to ``1``, which will yield a colormap indicating cluster duration
measured in *samples* rather than *seconds*.
tmin : float | int
The time of the first sample.
subject : str
The name of the subject.
vertices : list of array | instance of SourceSpaces | None
The vertex numbers associated with the source space locations. Defaults
to None. If None, equals ``[np.arange(10242), np.arange(10242)]``.
Can also be an instance of SourceSpaces to get vertex numbers from.
.. versionchanged:: 0.21
Added support for SourceSpaces.
Returns
-------
out : instance of SourceEstimate
A summary of the clusters. The first time point in this SourceEstimate
object is the summation of all the clusters. Subsequent time points
contain each individual cluster. The magnitude of the activity
corresponds to the duration spanned by the cluster (duration units are
determined by ``tstep``).
.. versionchanged:: 0.21
Added support for volume and mixed source estimates.
"""
_validate_type(vertices, (None, list, SourceSpaces), "vertices")
if vertices is None:
vertices = [np.arange(10242), np.arange(10242)]
klass = SourceEstimate
elif isinstance(vertices, SourceSpaces):
klass = dict(
surface=SourceEstimate, volume=VolSourceEstimate, mixed=MixedSourceEstimate
)[vertices.kind]
vertices = [s["vertno"] for s in vertices]
else:
klass = {1: VolSourceEstimate, 2: SourceEstimate}.get(
len(vertices), MixedSourceEstimate
)
n_vertices_need = sum(len(v) for v in vertices)
t_obs, clusters, clu_pvals, _ = clu
n_times, n_vertices = t_obs.shape
if n_vertices != n_vertices_need:
raise ValueError(
f"Number of cluster vertices ({n_vertices}) did not match the "
f"provided vertices ({n_vertices_need})"
)
good_cluster_inds = np.where(clu_pvals < p_thresh)[0]
# Build a convenient representation of each cluster, where each
# cluster becomes a "time point" in the SourceEstimate
if len(good_cluster_inds) == 0:
raise RuntimeError(
"No significant clusters available. Please adjust "
"your threshold or check your statistical "
"analysis."
)
data = np.zeros((n_vertices, n_times))
data_summary = np.zeros((n_vertices, len(good_cluster_inds) + 1))
for ii, cluster_ind in enumerate(good_cluster_inds):
data.fill(0)
t_inds, v_inds = clusters[cluster_ind]
data[v_inds, t_inds] = t_obs[t_inds, v_inds]
# Store a nice visualization of the cluster by summing across time
data_summary[:, ii + 1] = np.sum(_sum_cluster_data(data, tstep), axis=1)
# Make the first "time point" a sum across all clusters for easy
# visualization
data_summary[:, 0] = np.sum(data_summary, axis=1)
return klass(data_summary, vertices, tmin, tstep, subject)