[074d3d]: / mne / stats / _adjacency.py

Download this file

119 lines (108 with data), 4.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from scipy import sparse
from ..utils import _check_option, _validate_type
from ..utils.check import int_like
def combine_adjacency(*structure):
"""Create a sparse binary adjacency/neighbors matrix.
Parameters
----------
*structure : list
The adjacency along each dimension. Each entry can be:
- ndarray or scipy.sparse.sparray
A square binary adjacency matrix for the given dimension.
For example created by :func:`mne.channels.find_ch_adjacency`.
- int
The number of elements along the given dimension. A lattice
adjacency will be generated, which is a binary matrix
reflecting that element N of an array is adjacent to
elements at indices N - 1 and N + 1.
Returns
-------
adjacency : scipy.sparse.coo_array, shape (n_features, n_features)
The square adjacency matrix, where the shape ``n_features``
corresponds to the product of the length of all dimensions.
For example ``len(times) * len(freqs) * len(chans)``.
See Also
--------
mne.channels.find_ch_adjacency
mne.channels.read_ch_adjacency
Notes
-----
For 4-dimensional data with shape ``(n_obs, n_times, n_freqs, n_chans)``,
you can specify **no** connections among elements in a particular
dimension by passing a matrix of zeros. For example:
>>> import numpy as np
>>> from scipy.sparse import diags
>>> from mne.stats import combine_adjacency
>>> n_times, n_freqs, n_chans = (50, 7, 16)
>>> chan_adj = diags([1., 1.], offsets=(-1, 1), shape=(n_chans, n_chans))
>>> combine_adjacency(
... n_times, # regular lattice adjacency for times
... np.zeros((n_freqs, n_freqs)), # no adjacency between freq. bins
... chan_adj, # custom matrix, or use mne.channels.find_ch_adjacency
... ) # doctest: +SKIP
<5600x5600 sparse array of type '<class 'numpy.float64'>'
with 27076 stored elements in COOrdinate format>
"""
structure = list(structure)
for di, dim in enumerate(structure):
name = f"structure[{di}]"
_validate_type(dim, ("int-like", np.ndarray, "sparse"), name)
if isinstance(dim, int_like):
# Don't add the diagonal, because we explicitly remove it later
dim = sparse.dia_array(
(np.ones((2, dim)), [-1, 1]),
shape=(dim, dim),
).tocoo()
else:
_check_option(f"{name}.ndim", dim.ndim, [2])
if dim.shape[0] != dim.shape[1]:
raise ValueError(f"{name} must be square, got shape {dim.shape}")
if not isinstance(dim, sparse.coo_array):
dim = sparse.coo_array(dim)
else:
dim = dim.copy()
dim.data[dim.row == dim.col] = 0.0 # remove diagonal, will add later
dim.eliminate_zeros()
if not (dim.data == 1).all():
raise ValueError("All adjacency values must be 0 or 1")
structure[di] = dim
# list of coo
assert all(isinstance(dim, sparse.coo_array) for dim in structure)
shape = np.array([d.shape[0] for d in structure], int)
n_others = np.array(
[
np.prod(np.concatenate([shape[:di], shape[di + 1 :]]))
for di in range(len(structure))
],
int,
)
n_each = np.array([dim.data.size for dim in structure], int) * n_others
n_off = n_each.sum() # off-diagonal terms
n_diag = np.prod(shape)
vertices = np.arange(n_diag).reshape(shape)
edges = np.empty((2, n_off + n_diag), int)
used = np.zeros(n_off, bool)
weights = np.empty(n_off + n_diag, float) # even though just 0/1
offset = 0
for di, dim in enumerate(structure):
s_l = [slice(None)] * len(shape)
s_r = [slice(None)] * len(shape)
s_l[di] = dim.row
s_r[di] = dim.col
assert dim.row.shape == dim.col.shape == dim.data.shape
sl = slice(offset, offset + n_each[di])
edges[:, sl] = [vertices[tuple(s_l)].ravel(), vertices[tuple(s_r)].ravel()]
weights[sl] = np.tile(dim.data, n_others[di])
offset += n_each[di]
assert not used[sl].any()
used[sl] = True
assert used.all()
# Handle the diagonal separately at the end to avoid duplicate entries
edges[:, n_off:] = vertices.ravel()
weights[n_off:] = 1.0
graph = sparse.coo_array((weights, edges), (vertices.size, vertices.size))
return graph