[074d3d]: / mne / source_space / _source_space.py

Download this file

3321 lines (2940 with data), 121.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# Many of the computations in this code were derived from Matti Hämäläinen's
# C code.
import os
import os.path as op
from copy import deepcopy
from functools import partial
import numpy as np
from scipy.sparse import csr_array, triu
from scipy.sparse.csgraph import dijkstra
from scipy.spatial.distance import cdist
from .._fiff.constants import FIFF
from .._fiff.meas_info import Info, create_info
from .._fiff.open import fiff_open
from .._fiff.pick import _picks_to_idx, channel_type
from .._fiff.tag import find_tag, read_tag
from .._fiff.tree import dir_tree_find
from .._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_coord_trans,
write_float_matrix,
write_float_sparse_rcs,
write_id,
write_int,
write_int_matrix,
write_string,
)
from .._freesurfer import (
_check_mri,
_get_atlas_values,
_get_mri_info_data,
get_volume_labels_from_aseg,
read_freesurfer_lut,
)
from ..bem import ConductorModel, read_bem_surfaces
from ..fixes import _get_img_fdata
from ..parallel import parallel_func
from ..surface import (
_CheckInside,
_compute_nearest,
_create_surf_spacing,
_get_ico_surface,
_get_surf_neighbors,
_normalize_vectors,
_tessellate_sphere_surf,
_triangle_neighbors,
complete_surface_info,
fast_cross_3d,
mesh_dist,
read_surface,
)
from ..transforms import (
Transform,
_coord_frame_name,
_ensure_trans,
_get_trans,
_print_coord_trans,
_str_to_frame,
apply_trans,
combine_transforms,
invert_transform,
)
from ..utils import (
_check_fname,
_check_option,
_check_sphere,
_ensure_int,
_get_call_line,
_import_nibabel,
_is_numeric,
_path_like,
_pl,
_suggest,
_validate_type,
check_fname,
fill_doc,
get_subjects_dir,
logger,
object_size,
sizeof_fmt,
verbose,
warn,
)
from ..viz import plot_alignment
_src_kind_dict = {
"vol": "volume",
"surf": "surface",
"discrete": "discrete",
}
class SourceSpaces(list):
"""Represent a list of source space.
This class acts like a list of dictionaries containing the source
space information, one entry in the list per source space type. See
Notes for details.
.. warning::
This class should not be created or modified by the end user. Use
:func:`mne.setup_source_space`, :func:`mne.setup_volume_source_space`,
or :func:`mne.read_source_spaces` to create :class:`SourceSpaces`.
Parameters
----------
source_spaces : list
A list of dictionaries containing the source space information.
info : dict | None
Dictionary with information about the creation of the source space
file. Has keys ``'working_dir'`` and ``'command_line'``.
Attributes
----------
kind : ``'surface'`` | ``'volume'`` | ``'discrete'`` | ``'mixed'``
The kind of source space.
info : dict
Dictionary with information about the creation of the source space
file. Has keys ``'working_dir'`` and ``'command_line'``.
See Also
--------
mne.setup_source_space : Setup a surface source space.
mne.setup_volume_source_space : Setup a volume source space.
mne.read_source_spaces : Read source spaces from a file.
Notes
-----
Each element in SourceSpaces (e.g., ``src[0]``) is a dictionary. For
example, a surface source space will have ``len(src) == 2``, one entry for
each hemisphere. A volume source space will have ``len(src) == 1`` if it
uses a single monolithic grid, or ``len(src) == len(volume_label)`` when
created with a list-of-atlas-labels. A mixed source space consists of both
surface and volumetric source spaces in a single SourceSpaces object.
Each of those dictionaries can be accessed using standard Python
:class:`python:dict` access using the string keys listed below (e.g.,
``src[0]['type'] == 'surf'``). The relevant key/value pairs depend on
the source space type:
**Relevant to all source spaces**
The following are always present:
id : int
The FIF ID, either ``FIFF.FIFFV_MNE_SURF_LEFT_HEMI`` or
``FIFF.FIFFV_MNE_SURF_RIGHT_HEMI`` for surfaces, or
``FIFF.FIFFV_MNE_SURF_UNKNOWN`` for volume source spaces.
type : str
The type of source space, one of ``{'surf', 'vol', 'discrete'}``.
np : int
Number of vertices in the dense surface or complete volume.
coord_frame : int
The coordinate frame, usually ``FIFF.FIFFV_COORD_MRI``.
rr : ndarray, shape (np, 3)
The dense surface or complete volume vertex locations.
nn : ndarray, shape (np, 3)
The dense surface or complete volume normals.
nuse : int
The number of points in the subsampled surface.
inuse : ndarray, shape (np,)
An integer array defining whether each dense surface vertex is used
(``1``) or unused (``0``).
vertno : ndarray, shape (n_src,)
The vertex numbers of the dense surface or complete volume that are
used (i.e., ``np.where(src[0]['inuse'])[0]``).
subject_his_id : str
The FreeSurfer subject name.
**Surface source spaces**
Surface source spaces created using :func:`mne.setup_source_space` can have
the following additional entries (which will be missing, or have values of
``None`` or ``0`` for volumetric source spaces):
ntri : int
Number of triangles in the dense surface triangulation.
tris : ndarray, shape (ntri, 3)
The dense surface triangulation.
nuse_tri : int
The number of triangles in the subsampled surface.
use_tris : ndarray, shape (nuse_tri, 3)
The subsampled surface triangulation.
dist : scipy.sparse.csr_array, shape (n_src, n_src) | None
The distances (euclidean for volume, along the cortical surface for
surfaces) between source points.
dist_limit : float
The maximum distance allowed for inclusion in ``nearest``.
pinfo : list of ndarray
For each vertex in the subsampled surface, the indices of the
vertices in the dense surface that it represents (i.e., is closest
to of all subsampled indices), e.g. for the left hemisphere
(here constructed for ``sample`` with ``spacing='oct-6'``),
which vertices did we choose? Note the first is 14::
>>> src[0]['vertno'] # doctest:+SKIP
array([ 14, 54, 59, ..., 155295, 155323, 155330])
And which dense surface verts did our vertno[0] (14 on dense) represent? ::
>>> src[0]['pinfo'][0] # doctest:+SKIP
array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 39, 134, 135,
136, 137, 138, 139, 141, 142, 143, 144, 149, 150, 151, 152, 156,
162, 163, 173, 174, 185, 448, 449, 450, 451, 452, 453, 454, 455,
456, 462, 463, 464, 473, 474, 475, 485, 496, 497, 512, 864, 876,
881, 889, 890, 904])
patch_inds : ndarray, shape (n_src_remaining,)
The patch indices that have been retained (if relevant, following
forward computation. After just :func:`mne.setup_source_space`,
this will be ``np.arange(src[0]['nuse'])``. After forward
computation, some vertices can be excluded, in which case this
tells you which patches (of the original ``np.arange(nuse)``)
are still in use. So if some vertices have been excluded, the
line above for ``pinfo`` for completeness should be (noting that
the first subsampled vertex ([0]) represents the following dense
vertices)::
>>> src[0]['pinfo'][src[0]['patch_inds'][0]] # doctest:+SKIP
array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 29, 30, 31, 39, 134, 135,
136, 137, 138, 139, 141, 142, 143, 144, 149, 150, 151, 152, 156,
162, 163, 173, 174, 185, 448, 449, 450, 451, 452, 453, 454, 455,
456, 462, 463, 464, 473, 474, 475, 485, 496, 497, 512, 864, 876,
881, 889, 890, 904])
nearest : ndarray, shape (np,)
For each vertex on the dense surface, this gives the vertex index
(in the dense surface) that each dense surface vertex is closest to
of the vertices chosen for subsampling. This is essentially the
reverse map off ``pinfo``, e.g.::
>>> src[0]['nearest'].shape # doctest:+SKIP
(115407,)
Based on ``pinfo`` above, this should be 14:
>>> src[0]['nearest'][6] # doctest:+SKIP
14
nearest_dist : ndarray, shape (np,)
The distances corresponding to ``nearest``.
**Volume source spaces**
Volume source spaces created using :func:`mne.setup_volume_source_space`
can have the following additional entries (which will be missing, or
have values of ``None`` or ``0`` for surface source spaces):
mri_width, mri_height, mri_depth : int
The MRI dimensions (in voxels).
neighbor_vert : ndarray
The 26-neighborhood information for each vertex.
interpolator : scipy.sparse.csr_array | None
The linear interpolator to go from the subsampled volume vertices
to the high-resolution volume.
shape : tuple of int
The shape of the subsampled grid.
mri_ras_t : instance of :class:`~mne.transforms.Transform`
The transformation from MRI surface RAS (``FIFF.FIFFV_COORD_MRI``)
to MRI scanner RAS (``FIFF.FIFFV_MNE_COORD_RAS``).
src_mri_t : instance of :class:`~mne.transforms.Transform`
The transformation from subsampled source space voxel to MRI
surface RAS.
vox_mri_t : instance of :class:`~mne.transforms.Transform`
The transformation from the original MRI voxel
(``FIFF.FIFFV_MNE_COORD_MRI_VOXEL``) space to MRI surface RAS.
mri_volume_name : str
The MRI volume name, e.g. ``'subjects_dir/subject/mri/T1.mgz'``.
seg_name : str
The MRI atlas segmentation name (e.g., ``'Left-Cerebellum-Cortex'``
from the parameter ``volume_label``).
Source spaces also have some attributes that are accessible via ``.``
access, like ``src.kind``.
""" # noqa: E501
def __init__(self, source_spaces, info=None):
# First check the types is actually a valid config
_validate_type(source_spaces, list, "source_spaces")
super().__init__(source_spaces) # list
self.kind # will raise an error if there is a problem
if info is None:
self.info = dict()
else:
self.info = dict(info)
@property
def kind(self):
types = list()
for si, s in enumerate(self):
_validate_type(s, dict, f"source_spaces[{si}]")
types.append(s.get("type", None))
_check_option(
f'source_spaces[{si}]["type"]',
types[-1],
("surf", "discrete", "vol"),
)
if all(k == "surf" for k in types[:2]):
surf_check = 2
if len(types) == 2:
kind = "surface"
else:
kind = "mixed"
else:
surf_check = 0
if all(k == "discrete" for k in types):
kind = "discrete"
else:
kind = "volume"
if any(k == "surf" for k in types[surf_check:]):
raise RuntimeError(f"Invalid source space with kinds {types}")
return kind
@verbose
def plot(
self,
head=False,
brain=None,
skull=None,
subjects_dir=None,
trans=None,
verbose=None,
):
"""Plot the source space.
Parameters
----------
head : bool
If True, show head surface.
brain : bool | str
If True, show the brain surfaces. Can also be a str for
surface type (e.g., ``'pial'``, same as True). Default is None,
which means ``'white'`` for surface source spaces and ``False``
otherwise.
skull : bool | str | list of str | list of dict | None
Whether to plot skull surface. If string, common choices would be
``'inner_skull'``, or ``'outer_skull'``. Can also be a list to plot
multiple skull surfaces. If a list of dicts, each dict must
contain the complete surface info (such as you get from
:func:`mne.make_bem_model`). True is an alias of 'outer_skull'.
The subjects bem and bem/flash folders are searched for the 'surf'
files. Defaults to None, which is False for surface source spaces,
and True otherwise.
subjects_dir : path-like | None
Path to ``SUBJECTS_DIR`` if it is not set in the environment.
trans : path-like | ``'auto'`` | dict | None
The full path to the head<->MRI transform ``*-trans.fif`` file
produced during coregistration. If trans is None, an identity
matrix is assumed. This is only needed when the source space is in
head coordinates.
%(verbose)s
Returns
-------
fig : instance of Figure3D
The figure.
"""
surfaces = list()
bem = None
if brain is None:
brain = "white" if any(ss["type"] == "surf" for ss in self) else False
if isinstance(brain, str):
surfaces.append(brain)
elif brain:
surfaces.append("brain")
if skull is None:
skull = False if self.kind == "surface" else True
if isinstance(skull, str):
surfaces.append(skull)
elif skull is True:
surfaces.append("outer_skull")
elif skull is not False: # list
if isinstance(skull[0], dict): # bem
skull_map = {
FIFF.FIFFV_BEM_SURF_ID_BRAIN: "inner_skull",
FIFF.FIFFV_BEM_SURF_ID_SKULL: "outer_skull",
FIFF.FIFFV_BEM_SURF_ID_HEAD: "outer_skin",
}
for this_skull in skull:
surfaces.append(skull_map[this_skull["id"]])
bem = skull
else: # list of str
for surf in skull:
surfaces.append(surf)
if head:
surfaces.append("head")
if self[0]["coord_frame"] == FIFF.FIFFV_COORD_HEAD:
coord_frame = "head"
if trans is None:
raise ValueError(
"Source space is in head coordinates, but no "
"head<->MRI transform was given. Please "
"specify the full path to the appropriate "
'*-trans.fif file as the "trans" parameter.'
)
else:
coord_frame = "mri"
info = create_info(0, 1000.0, "eeg")
return plot_alignment(
info,
trans=trans,
subject=self._subject,
subjects_dir=subjects_dir,
surfaces=surfaces,
coord_frame=coord_frame,
meg=(),
eeg=False,
dig=False,
ecog=False,
bem=bem,
src=self,
)
def __getitem__(self, *args, **kwargs):
"""Get an item."""
out = super().__getitem__(*args, **kwargs)
if isinstance(out, list):
out = SourceSpaces(out)
return out
def __repr__(self): # noqa: D105
ss_repr = []
extra = []
for si, ss in enumerate(self):
ss_type = ss["type"]
r = _src_kind_dict[ss_type]
if ss_type == "vol":
if "seg_name" in ss:
r += f" ({ss['seg_name']})"
else:
r += f", shape={ss['shape']}"
elif ss_type == "surf":
r += f" ({_get_hemi(ss)[0]}), n_vertices={ss['np']}"
r += f", n_used={ss['nuse']}"
if si == 0:
extra += [_coord_frame_name(int(ss["coord_frame"])) + " coords"]
ss_repr.append(f"<{r}>")
subj = self._subject
if subj is not None:
extra += [f"subject {repr(subj)}"]
sz = object_size(self)
if sz is not None:
extra += [f"~{sizeof_fmt(sz)}"]
return f"<SourceSpaces: [{', '.join(ss_repr)}] {', '.join(extra)}>"
@property
def _subject(self):
return self[0].get("subject_his_id", None)
def __add__(self, other):
"""Combine source spaces."""
out = self.copy()
out += other
return SourceSpaces(out)
def copy(self):
"""Make a copy of the source spaces.
Returns
-------
src : instance of SourceSpaces
The copied source spaces.
"""
return deepcopy(self)
def __deepcopy__(self, memodict):
"""Make a deepcopy."""
# don't copy read-only views (saves a ton of mem for split-vol src)
info = deepcopy(self.info, memodict)
ss = list()
for s in self:
for key in ("rr", "nn"):
if key in s:
arr = s[key]
id_ = id(arr)
if id_ not in memodict:
if not arr.flags.writeable:
memodict[id_] = arr
ss.append(deepcopy(s, memodict))
return SourceSpaces(ss, info)
@verbose
def save(self, fname, overwrite=False, *, verbose=None):
"""Save the source spaces to a fif file.
Parameters
----------
fname : path-like
File to write, which should end with ``-src.fif`` or ``-src.fif.gz``.
%(overwrite)s
%(verbose)s
"""
write_source_spaces(fname, self, overwrite=overwrite)
@verbose
def export_volume(
self,
fname,
include_surfaces=True,
include_discrete=True,
dest="mri",
trans=None,
mri_resolution=False,
use_lut=True,
overwrite=False,
verbose=None,
):
"""Export source spaces to nifti or mgz file.
Parameters
----------
fname : path-like
Name of nifti or mgz file to write.
include_surfaces : bool
If True, include surface source spaces.
include_discrete : bool
If True, include discrete source spaces.
dest : ``'mri'`` | ``'surf'``
If ``'mri'`` the volume is defined in the coordinate system of the
original T1 image. If ``'surf'`` the coordinate system of the
FreeSurfer surface is used (Surface RAS).
trans : dict, str, or None
Either a transformation filename (usually made using mne_analyze)
or an info dict (usually opened using read_trans()). If string, an
ending of ``.fif`` or ``.fif.gz`` will be assumed to be in FIF
format, any other ending will be assumed to be a text file with a
4x4 transformation matrix (like the ``--trans`` MNE-C option.
Must be provided if source spaces are in head coordinates and
include_surfaces and mri_resolution are True.
mri_resolution : bool | str
If True, the image is saved in MRI resolution
(e.g. 256 x 256 x 256), and each source region (surface or
segmentation volume) filled in completely. If "sparse", only a
single voxel in the high-resolution MRI is filled in for each
source point.
.. versionchanged:: 0.21.0
Support for ``"sparse"`` was added.
use_lut : bool
If True, assigns a numeric value to each source space that
corresponds to a color on the freesurfer lookup table.
%(overwrite)s
.. versionadded:: 0.19
%(verbose)s
Notes
-----
This method requires nibabel.
"""
_check_fname(fname, overwrite)
_validate_type(mri_resolution, (bool, str), "mri_resolution")
if isinstance(mri_resolution, str):
_check_option(
"mri_resolution",
mri_resolution,
["sparse"],
extra="when mri_resolution is a string",
)
else:
mri_resolution = bool(mri_resolution)
fname = str(fname)
nib = _import_nibabel()
# Check coordinate frames of each source space
coord_frames = np.array([s["coord_frame"] for s in self])
# Raise error if trans is not provided when head coordinates are used
# and mri_resolution and include_surfaces are true
if (coord_frames == FIFF.FIFFV_COORD_HEAD).all():
coords = "head" # all sources in head coordinates
if mri_resolution and include_surfaces:
if trans is None:
raise ValueError(
"trans containing mri to head transform "
"must be provided if mri_resolution and "
"include_surfaces are true and surfaces "
"are in head coordinates"
)
elif trans is not None:
logger.info(
"trans is not needed and will not be used unless "
"include_surfaces and mri_resolution are True."
)
elif (coord_frames == FIFF.FIFFV_COORD_MRI).all():
coords = "mri" # all sources in mri coordinates
if trans is not None:
logger.info(
"trans is not needed and will not be used unless "
"sources are in head coordinates."
)
# Raise error if all sources are not in the same space, or sources are
# not in mri or head coordinates
else:
raise ValueError(
"All sources must be in head coordinates or all "
"sources must be in mri coordinates."
)
# use lookup table to assign values to source spaces
logger.info("Reading FreeSurfer lookup table")
# read the lookup table
lut, _ = read_freesurfer_lut()
# Setup a dictionary of source types
src_types = dict(volume=[], surface_discrete=[])
# Populate dictionary of source types
for src in self:
# volume sources
if src["type"] == "vol":
src_types["volume"].append(src)
# surface and discrete sources
elif src["type"] in ("surf", "discrete"):
src_types["surface_discrete"].append(src)
else:
raise ValueError(f"Unrecognized source type: {src['type']}.")
# Raise error if there are no volume source spaces
if len(src_types["volume"]) == 0:
raise ValueError("Source spaces must contain at least one volume.")
# Get shape, inuse array and interpolation matrix from volume sources
src = src_types["volume"][0]
aseg_data = None
if mri_resolution:
# read the mri file used to generate volumes
if mri_resolution is True:
aseg_data = _get_img_fdata(nib.load(src["mri_file"]))
# get the voxel space shape
shape3d = (src["mri_width"], src["mri_depth"], src["mri_height"])
else:
# get the volume source space shape
# read the shape in reverse order
# (otherwise results are scrambled)
shape3d = src["shape"]
# calculate affine transform for image (MRI_VOXEL to RAS)
if mri_resolution:
# MRI_VOXEL to MRI transform
transform = src["vox_mri_t"]
else:
# MRI_VOXEL to MRI transform
# NOTE: 'src' indicates downsampled version of MRI_VOXEL
transform = src["src_mri_t"]
# Figure out how to get from our input source space to output voxels
fro_dst_t = invert_transform(transform)
if coords == "head":
head_mri_t = _get_trans(trans, "head", "mri")[0]
fro_dst_t = combine_transforms(
head_mri_t, fro_dst_t, "head", transform["to"]
)
else:
fro_dst_t = fro_dst_t
# Fill in the volumes
img = np.zeros(shape3d)
for ii, vs in enumerate(src_types["volume"]):
# read the lookup table value for segmented volume
if "seg_name" not in vs:
raise ValueError(
"Volume sources should be segments, not the entire volume."
)
# find the color value for this volume
use_id = 1.0
if mri_resolution is True or use_lut:
id_ = lut[vs["seg_name"]]
if use_lut:
use_id = id_
if mri_resolution == "sparse":
idx = apply_trans(fro_dst_t, vs["rr"][vs["vertno"]])
idx = tuple(idx.round().astype(int).T)
elif mri_resolution is True: # fill the represented vol
# get the values for this volume
idx = aseg_data == id_
else:
assert mri_resolution is False
idx = vs["inuse"].reshape(shape3d, order="F").astype(bool)
img[idx] = use_id
# loop through the surface and discrete source spaces
# get the surface names (assumes left, right order. may want
# to add these names during source space generation
for src in src_types["surface_discrete"]:
val = 1
if src["type"] == "surf":
if not include_surfaces:
continue
if use_lut:
surf_name = {
FIFF.FIFFV_MNE_SURF_LEFT_HEMI: "Left",
FIFF.FIFFV_MNE_SURF_RIGHT_HEMI: "Right",
}[src["id"]] + "-Cerebral-Cortex"
val = lut[surf_name]
else:
assert src["type"] == "discrete"
if not include_discrete:
continue
if use_lut:
logger.info(
"Discrete sources do not have values on "
"the lookup table. Defaulting to 1."
)
# convert vertex positions from their native space
# (either HEAD or MRI) to MRI_VOXEL space
if mri_resolution is True:
use_rr = src["rr"]
else:
assert mri_resolution is False or mri_resolution == "sparse"
use_rr = src["rr"][src["vertno"]]
srf_vox = apply_trans(fro_dst_t["trans"], use_rr)
# convert to numeric indices
ix_, iy_, iz_ = srf_vox.T.round().astype(int)
# clip indices outside of volume space
ix = (np.clip(ix_, 0, shape3d[0] - 1),)
iy = np.clip(iy_, 0, shape3d[1] - 1)
iz = np.clip(iz_, 0, shape3d[2] - 1)
# compare original and clipped indices
n_diff = ((ix_ != ix) | (iy_ != iy) | (iz_ != iz)).sum()
# generate use warnings for clipping
if n_diff > 0:
warn(
f"{n_diff} {src['type']} vertices lay outside of volume "
f"space. Consider using a larger volume space."
)
# get surface id or use default value
# update image to include surface voxels
img[ix, iy, iz] = val
if dest == "mri":
# combine with MRI to RAS transform
transform = combine_transforms(
transform, vs["mri_ras_t"], transform["from"], vs["mri_ras_t"]["to"]
)
# now setup the affine for volume image
affine = transform["trans"].copy()
# make sure affine converts from m to mm
affine[:3] *= 1e3
# setup image for file
if fname.endswith((".nii", ".nii.gz")): # save as nifit
# setup the nifti header
hdr = nib.Nifti1Header()
hdr.set_xyzt_units("mm")
# save the nifti image
img = nib.Nifti1Image(img, affine, header=hdr)
elif fname.endswith(".mgz"): # save as mgh
# convert to float32 (float64 not currently supported)
img = img.astype("float32")
# save the mgh image
img = nib.freesurfer.mghformat.MGHImage(img, affine)
else:
raise ValueError("Unrecognized file extension")
# write image to file
nib.save(img, fname)
def _add_patch_info(s):
"""Patch information in a source space.
Generate the patch information from the 'nearest' vector in
a source space. For vertex in the source space it provides
the list of neighboring vertices in the high resolution
triangulation.
Parameters
----------
s : dict
The source space.
"""
nearest = s["nearest"]
if nearest is None:
s["pinfo"] = None
s["patch_inds"] = None
return
logger.info(" Computing patch statistics...")
indn = np.argsort(nearest)
nearest_sorted = nearest[indn]
steps = np.where(nearest_sorted[1:] != nearest_sorted[:-1])[0] + 1
starti = np.r_[[0], steps]
stopi = np.r_[steps, [len(nearest)]]
pinfo = list()
for start, stop in zip(starti, stopi):
pinfo.append(np.sort(indn[start:stop]))
s["pinfo"] = pinfo
# compute patch indices of the in-use source space vertices
patch_verts = nearest_sorted[steps - 1]
s["patch_inds"] = np.searchsorted(patch_verts, s["vertno"])
logger.info(" Patch information added...")
@verbose
def _read_source_spaces_from_tree(fid, tree, patch_stats=False, verbose=None):
"""Read the source spaces from a FIF file.
Parameters
----------
fid : file descriptor
An open file descriptor.
tree : dict
The FIF tree structure if source is a file id.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
%(verbose)s
Returns
-------
src : SourceSpaces
The source spaces.
"""
# Find all source spaces
spaces = dir_tree_find(tree, FIFF.FIFFB_MNE_SOURCE_SPACE)
if len(spaces) == 0:
raise ValueError("No source spaces found")
src = list()
for s in spaces:
logger.info(" Reading a source space...")
this = _read_one_source_space(fid, s)
logger.info(" [done]")
if patch_stats:
_complete_source_space_info(this)
src.append(this)
logger.info(" %d source spaces read", len(spaces))
return SourceSpaces(src)
@verbose
def read_source_spaces(fname, patch_stats=False, verbose=None):
"""Read the source spaces from a FIF file.
Parameters
----------
fname : path-like
The name of the file, which should end with ``-src.fif`` or
``-src.fif.gz``.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
%(verbose)s
Returns
-------
src : SourceSpaces
The source spaces.
See Also
--------
write_source_spaces, setup_source_space, setup_volume_source_space
"""
# be more permissive on read than write (fwd/inv can contain src)
fname = _check_fname(fname, overwrite="read", must_exist=True)
check_fname(
fname,
"source space",
(
"-src.fif",
"-src.fif.gz",
"_src.fif",
"_src.fif.gz",
"-fwd.fif",
"-fwd.fif.gz",
"_fwd.fif",
"_fwd.fif.gz",
"-inv.fif",
"-inv.fif.gz",
"_inv.fif",
"_inv.fif.gz",
),
)
ff, tree, _ = fiff_open(fname)
with ff as fid:
src = _read_source_spaces_from_tree(
fid, tree, patch_stats=patch_stats, verbose=verbose
)
src.info["fname"] = fname
node = dir_tree_find(tree, FIFF.FIFFB_MNE_ENV)
if node:
node = node[0]
for p in range(node["nent"]):
kind = node["directory"][p].kind
pos = node["directory"][p].pos
tag = read_tag(fid, pos)
if kind == FIFF.FIFF_MNE_ENV_WORKING_DIR:
src.info["working_dir"] = tag.data
elif kind == FIFF.FIFF_MNE_ENV_COMMAND_LINE:
src.info["command_line"] = tag.data
return src
def _read_one_source_space(fid, this):
"""Read one source space."""
res = dict()
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_ID)
if tag is None:
res["id"] = int(FIFF.FIFFV_MNE_SURF_UNKNOWN)
else:
res["id"] = int(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE)
if tag is None:
raise ValueError("Unknown source space type")
else:
src_type = int(tag.data.item())
if src_type == FIFF.FIFFV_MNE_SPACE_SURFACE:
res["type"] = "surf"
elif src_type == FIFF.FIFFV_MNE_SPACE_VOLUME:
res["type"] = "vol"
elif src_type == FIFF.FIFFV_MNE_SPACE_DISCRETE:
res["type"] = "discrete"
else:
raise ValueError(f"Unknown source space type ({src_type})")
if res["type"] == "vol":
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS)
if tag is not None:
res["shape"] = tuple(tag.data)
tag = find_tag(fid, this, FIFF.FIFF_COORD_TRANS)
if tag is not None:
res["src_mri_t"] = tag.data
parent_mri = dir_tree_find(this, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
if len(parent_mri) == 0:
# MNE 2.7.3 (and earlier) didn't store necessary information
# about volume coordinate translations. Although there is a
# FFIF_COORD_TRANS in the higher level of the FIFF file, this
# doesn't contain all the info we need. Safer to return an
# error unless a user really wants us to add backward compat.
raise ValueError(
"Can not find parent MRI location. The volume "
"source space may have been made with an MNE "
"version that is too old (<= 2.7.3). Consider "
"updating and regenerating the inverse."
)
mri = parent_mri[0]
for d in mri["directory"]:
if d.kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, d.pos)
trans = tag.data
if trans["from"] == FIFF.FIFFV_MNE_COORD_MRI_VOXEL:
res["vox_mri_t"] = trans
if trans["to"] == FIFF.FIFFV_MNE_COORD_RAS:
res["mri_ras_t"] = trans
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR)
if tag is not None:
res["interpolator"] = tag.data
if tag.data.data.size == 0:
del res["interpolator"]
else:
logger.info("Interpolation matrix for MRI not found.")
tag = find_tag(fid, mri, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE)
if tag is not None:
res["mri_file"] = tag.data
tag = find_tag(fid, mri, FIFF.FIFF_MRI_WIDTH)
if tag is not None:
res["mri_width"] = int(tag.data.item())
tag = find_tag(fid, mri, FIFF.FIFF_MRI_HEIGHT)
if tag is not None:
res["mri_height"] = int(tag.data.item())
tag = find_tag(fid, mri, FIFF.FIFF_MRI_DEPTH)
if tag is not None:
res["mri_depth"] = int(tag.data.item())
tag = find_tag(fid, mri, FIFF.FIFF_MNE_FILE_NAME)
if tag is not None:
res["mri_volume_name"] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS)
if tag is not None:
nneighbors = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS)
offset = 0
neighbors = []
for n in nneighbors:
neighbors.append(tag.data[offset : offset + n])
offset += n
res["neighbor_vert"] = neighbors
tag = find_tag(fid, this, FIFF.FIFF_COMMENT)
if tag is not None:
res["seg_name"] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS)
if tag is None:
raise ValueError("Number of vertices not found")
res["np"] = int(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI)
if tag is None:
res["ntri"] = 0
else:
res["ntri"] = int(tag.data.item())
else:
res["ntri"] = tag.data
tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
raise ValueError("Coordinate frame information not found")
res["coord_frame"] = tag.data[0]
# Vertices, normals, and triangles
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS)
if tag is None:
raise ValueError("Vertex data not found")
res["rr"] = tag.data.astype(np.float64)
if res["rr"].shape[0] != res["np"]:
raise ValueError("Vertex information is incorrect")
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
if tag is None:
raise ValueError("Vertex normals not found")
res["nn"] = tag.data.copy()
if res["nn"].shape[0] != res["np"]:
raise ValueError("Vertex normal information is incorrect")
if res["ntri"] > 0:
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES)
if tag is None:
raise ValueError("Triangulation not found")
else:
res["tris"] = tag.data - 1 # index start at 0 in Python
else:
res["tris"] = tag.data - 1 # index start at 0 in Python
if res["tris"].shape[0] != res["ntri"]:
raise ValueError("Triangulation information is incorrect")
else:
res["tris"] = None
# Which vertices are active
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE)
if tag is None:
res["nuse"] = 0
res["inuse"] = np.zeros(res["nuse"], dtype=np.int64)
res["vertno"] = None
else:
res["nuse"] = int(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION)
if tag is None:
raise ValueError("Source selection information missing")
res["inuse"] = tag.data.astype(np.int64).T
if len(res["inuse"]) != res["np"]:
raise ValueError("Incorrect number of entries in source space selection")
res["vertno"] = np.where(res["inuse"])[0]
# Use triangulation
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES)
if tag1 is None or tag2 is None:
res["nuse_tri"] = 0
res["use_tris"] = None
else:
res["nuse_tri"] = tag1.data
res["use_tris"] = tag2.data - 1 # index start at 0 in Python
# Patch-related information
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST)
if tag1 is None or tag2 is None:
res["nearest"] = None
res["nearest_dist"] = None
else:
res["nearest"] = tag1.data
res["nearest_dist"] = tag2.data.T
_add_patch_info(res)
# Distances
tag1 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST)
tag2 = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT)
if tag1 is None or tag2 is None:
res["dist"] = None
res["dist_limit"] = None
else:
res["dist"] = tag1.data
res["dist_limit"] = tag2.data.item()
# Add the upper triangle
res["dist"] = res["dist"] + res["dist"].T
if res["dist"] is not None:
logger.info(" Distance information added...")
tag = find_tag(fid, this, FIFF.FIFF_SUBJ_HIS_ID)
if tag is None:
res["subject_his_id"] = None
else:
res["subject_his_id"] = tag.data
return res
@verbose
def _complete_source_space_info(this, verbose=None):
"""Add more info on surface."""
# Main triangulation
logger.info(" Completing triangulation info...")
this["tri_area"] = np.zeros(this["ntri"])
r1 = this["rr"][this["tris"][:, 0], :]
r2 = this["rr"][this["tris"][:, 1], :]
r3 = this["rr"][this["tris"][:, 2], :]
this["tri_cent"] = (r1 + r2 + r3) / 3.0
this["tri_nn"] = fast_cross_3d((r2 - r1), (r3 - r1))
this["tri_area"] = _normalize_vectors(this["tri_nn"]) / 2.0
logger.info("[done]")
# Selected triangles
logger.info(" Completing selection triangulation info...")
if this["nuse_tri"] > 0:
r1 = this["rr"][this["use_tris"][:, 0], :]
r2 = this["rr"][this["use_tris"][:, 1], :]
r3 = this["rr"][this["use_tris"][:, 2], :]
this["use_tri_cent"] = (r1 + r2 + r3) / 3.0
this["use_tri_nn"] = fast_cross_3d((r2 - r1), (r3 - r1))
this["use_tri_area"] = np.linalg.norm(this["use_tri_nn"], axis=1) / 2.0
logger.info("[done]")
def find_source_space_hemi(src):
"""Return the hemisphere id for a source space.
Parameters
----------
src : dict
The source space to investigate.
Returns
-------
hemi : int
Deduced hemisphere id.
"""
xave = src["rr"][:, 0].sum()
if xave < 0:
hemi = int(FIFF.FIFFV_MNE_SURF_LEFT_HEMI)
else:
hemi = int(FIFF.FIFFV_MNE_SURF_RIGHT_HEMI)
return hemi
def label_src_vertno_sel(label, src):
"""Find vertex numbers and indices from label.
Parameters
----------
label : Label
Source space label.
src : dict
Source space.
Returns
-------
vertices : list of length 2
Vertex numbers for lh and rh.
src_sel : array of int (len(idx) = len(vertices[0]) + len(vertices[1]))
Indices of the selected vertices in sourse space.
"""
if src[0]["type"] != "surf":
raise ValueError(
"Labels are only supported with surface source spaces, "
f"got {_src_kind_dict[src[0]['type']]} source space"
)
vertno = [src[0]["vertno"], src[1]["vertno"]]
if label.hemi == "lh":
vertno_sel = np.intersect1d(vertno[0], label.vertices)
src_sel = np.searchsorted(vertno[0], vertno_sel)
vertno[0] = vertno_sel
vertno[1] = np.array([], int)
elif label.hemi == "rh":
vertno_sel = np.intersect1d(vertno[1], label.vertices)
src_sel = np.searchsorted(vertno[1], vertno_sel) + len(vertno[0])
vertno[0] = np.array([], int)
vertno[1] = vertno_sel
elif label.hemi == "both":
vertno_sel_lh = np.intersect1d(vertno[0], label.lh.vertices)
src_sel_lh = np.searchsorted(vertno[0], vertno_sel_lh)
vertno_sel_rh = np.intersect1d(vertno[1], label.rh.vertices)
src_sel_rh = np.searchsorted(vertno[1], vertno_sel_rh) + len(vertno[0])
src_sel = np.hstack((src_sel_lh, src_sel_rh))
vertno = [vertno_sel_lh, vertno_sel_rh]
else:
raise Exception("Unknown hemisphere type")
return vertno, src_sel
def _get_vertno(src):
return [s["vertno"] for s in src]
###############################################################################
# Write routines
@verbose
def _write_source_spaces_to_fid(fid, src, verbose=None):
"""Write the source spaces to a FIF file.
Parameters
----------
fid : file descriptor
An open file descriptor.
src : list
The list of source spaces.
%(verbose)s
"""
for s in src:
logger.info(" Write a source space...")
start_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
_write_one_source_space(fid, s, verbose)
end_block(fid, FIFF.FIFFB_MNE_SOURCE_SPACE)
logger.info(" [done]")
logger.info(" %d source spaces written", len(src))
@verbose
def write_source_spaces(fname, src, *, overwrite=False, verbose=None):
"""Write source spaces to a file.
Parameters
----------
fname : path-like
The name of the file, which should end with ``-src.fif`` or
``-src.fif.gz``.
src : instance of SourceSpaces
The source spaces (as returned by read_source_spaces).
%(overwrite)s
%(verbose)s
See Also
--------
read_source_spaces
"""
_validate_type(src, SourceSpaces, "src")
check_fname(
fname, "source space", ("-src.fif", "-src.fif.gz", "_src.fif", "_src.fif.gz")
)
_check_fname(fname, overwrite=overwrite)
with start_and_end_file(fname) as fid:
_write_source_spaces(fid, src)
def _write_source_spaces(fid, src):
start_block(fid, FIFF.FIFFB_MNE)
if src.info:
start_block(fid, FIFF.FIFFB_MNE_ENV)
write_id(fid, FIFF.FIFF_BLOCK_ID)
data = src.info.get("working_dir", None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_WORKING_DIR, data)
data = src.info.get("command_line", None)
if data:
write_string(fid, FIFF.FIFF_MNE_ENV_COMMAND_LINE, data)
end_block(fid, FIFF.FIFFB_MNE_ENV)
_write_source_spaces_to_fid(fid, src)
end_block(fid, FIFF.FIFFB_MNE)
def _write_one_source_space(fid, this, verbose=None):
"""Write one source space."""
if this["type"] == "surf":
src_type = FIFF.FIFFV_MNE_SPACE_SURFACE
elif this["type"] == "vol":
src_type = FIFF.FIFFV_MNE_SPACE_VOLUME
elif this["type"] == "discrete":
src_type = FIFF.FIFFV_MNE_SPACE_DISCRETE
else:
raise ValueError(f"Unknown source space type ({this['type']})")
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TYPE, src_type)
if this["id"] >= 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_ID, this["id"])
data = this.get("subject_his_id", None)
if data:
write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, data)
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, this["coord_frame"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NPOINTS, this["np"])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_POINTS, this["rr"])
write_float_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS, this["nn"])
# Which vertices are active
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_SELECTION, this["inuse"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE, this["nuse"])
if this["ntri"] > 0:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NTRI, this["ntri"])
write_int_matrix(fid, FIFF.FIFF_MNE_SOURCE_SPACE_TRIANGLES, this["tris"] + 1)
if this["type"] != "vol" and this["use_tris"] is not None:
# Use triangulation
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NUSE_TRI, this["nuse_tri"])
write_int_matrix(
fid, FIFF.FIFF_MNE_SOURCE_SPACE_USE_TRIANGLES, this["use_tris"] + 1
)
if this["type"] == "vol":
neighbor_vert = this.get("neighbor_vert", None)
if neighbor_vert is not None:
nneighbors = np.array([len(n) for n in neighbor_vert])
neighbors = np.concatenate(neighbor_vert)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NNEIGHBORS, nneighbors)
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEIGHBORS, neighbors)
write_coord_trans(fid, this["src_mri_t"])
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_VOXEL_DIMS, this["shape"])
start_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
write_coord_trans(fid, this["mri_ras_t"])
write_coord_trans(fid, this["vox_mri_t"])
mri_volume_name = this.get("mri_volume_name", None)
if mri_volume_name is not None:
write_string(fid, FIFF.FIFF_MNE_FILE_NAME, mri_volume_name)
mri_width, mri_height, mri_depth, nvox = _src_vol_dims(this)
interpolator = this.get("interpolator")
if interpolator is None:
interpolator = csr_array((nvox, this["np"]))
write_float_sparse_rcs(
fid, FIFF.FIFF_MNE_SOURCE_SPACE_INTERPOLATOR, interpolator
)
if "mri_file" in this and this["mri_file"] is not None:
write_string(fid, FIFF.FIFF_MNE_SOURCE_SPACE_MRI_FILE, this["mri_file"])
write_int(fid, FIFF.FIFF_MRI_WIDTH, mri_width)
write_int(fid, FIFF.FIFF_MRI_HEIGHT, mri_height)
write_int(fid, FIFF.FIFF_MRI_DEPTH, mri_depth)
end_block(fid, FIFF.FIFFB_MNE_PARENT_MRI_FILE)
# Patch-related information
if this["nearest"] is not None:
write_int(fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST, this["nearest"])
write_float_matrix(
fid, FIFF.FIFF_MNE_SOURCE_SPACE_NEAREST_DIST, this["nearest_dist"]
)
# Distances
if this["dist"] is not None:
# Save only upper triangular portion of the matrix
dists = this["dist"].copy()
# Shouldn't need this cast but on SciPy 1.9.3 at least this returns a csr_matrix
# instead of csr_array
dists = csr_array(triu(dists, format=dists.format))
write_float_sparse_rcs(fid, FIFF.FIFF_MNE_SOURCE_SPACE_DIST, dists)
write_float_matrix(
fid,
FIFF.FIFF_MNE_SOURCE_SPACE_DIST_LIMIT,
np.array(this["dist_limit"], float),
)
# Segmentation data
if this["type"] == "vol" and ("seg_name" in this):
# Save the name of the segment
write_string(fid, FIFF.FIFF_COMMENT, this["seg_name"])
###############################################################################
# Creation and decimation
@verbose
def _check_spacing(spacing, verbose=None):
"""Check spacing parameter."""
# check to make sure our parameters are good, parse 'spacing'
types = 'a string with values "ico#", "oct#", "all", or an int >= 2'
space_err = f'"spacing" must be {types}, got type {type(spacing)} ({repr(spacing)})'
if isinstance(spacing, str):
if spacing == "all":
stype = "all"
sval = ""
elif isinstance(spacing, str) and spacing[:3] in ("ico", "oct"):
stype = spacing[:3]
sval = spacing[3:]
try:
sval = int(sval)
except Exception:
raise ValueError(
f"{stype} subdivision must be an integer, got {repr(sval)}"
)
lim = 0 if stype == "ico" else 1
if sval < lim:
raise ValueError(f"{stype} subdivision must be >= {lim}, got {sval}")
else:
raise ValueError(space_err)
else:
stype = "spacing"
sval = _ensure_int(spacing, "spacing", types)
if sval < 2:
raise ValueError(f"spacing must be >= 2, got {sval}.")
if stype == "all":
logger.info("Include all vertices")
ico_surf = None
src_type_str = "all"
else:
src_type_str = f"{stype} = {sval}"
if stype == "ico":
logger.info(f"Icosahedron subdivision grade {sval}")
ico_surf = _get_ico_surface(sval)
elif stype == "oct":
logger.info(f"Octahedron subdivision grade {sval}")
ico_surf = _tessellate_sphere_surf(sval)
else:
assert stype == "spacing"
logger.info(f"Approximate spacing {sval} mm")
ico_surf = sval
return stype, sval, ico_surf, src_type_str
@verbose
def setup_source_space(
subject,
spacing="oct6",
surface="white",
subjects_dir=None,
add_dist=True,
n_jobs=None,
*,
verbose=None,
):
"""Set up bilateral hemisphere surface-based source space with subsampling.
Parameters
----------
%(subject)s
spacing : str
The spacing to use. Can be ``'ico#'`` for a recursively subdivided
icosahedron, ``'oct#'`` for a recursively subdivided octahedron,
``'all'`` for all points, or an integer to use approximate
distance-based spacing (in mm).
.. versionchanged:: 0.18
Support for integers for distance-based spacing.
surface : str
The surface to use.
%(subjects_dir)s
add_dist : bool | str
Add distance and patch information to the source space. This takes some
time so precomputing it is recommended. Can also be 'patch' to only
compute patch information.
.. versionchanged:: 0.20
Support for ``add_dist='patch'``.
%(n_jobs)s
Ignored if ``add_dist=='patch'``.
%(verbose)s
Returns
-------
src : SourceSpaces
The source space for each hemisphere.
See Also
--------
setup_volume_source_space
"""
cmd = (
f"setup_source_space({subject}, spacing={spacing}, surface={surface}, "
f"subjects_dir={subjects_dir}, add_dist={add_dist}, verbose={verbose})"
)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
surfs = [
subjects_dir / subject / "surf" / f"{hemi}.{surface}" for hemi in ["lh", "rh"]
]
for surf, hemi in zip(surfs, ["LH", "RH"]):
if surf is not None and not op.isfile(surf):
raise OSError(f"Could not find the {hemi} surface {surf}")
logger.info("Setting up the source space with the following parameters:\n")
logger.info(f"SUBJECTS_DIR = {subjects_dir}")
logger.info(f"Subject = {subject}")
logger.info(f"Surface = {surface}")
stype, sval, ico_surf, src_type_str = _check_spacing(spacing)
logger.info("")
del spacing
logger.info(">>> 1. Creating the source space...\n")
# mne_make_source_space ... actually make the source spaces
src = []
# pre-load ico/oct surf (once) for speed, if necessary
if stype not in ("spacing", "all"):
logger.info(
f"Doing the {dict(ico='icosa', oct='octa')[stype]}hedral vertex picking..."
)
for hemi, surf in zip(["lh", "rh"], surfs):
logger.info(f"Loading {surf}...")
# Setup the surface spacing in the MRI coord frame
if stype != "all":
logger.info("Mapping %s %s -> %s (%d) ...", hemi, subject, stype, sval)
s = _create_surf_spacing(surf, hemi, subject, stype, ico_surf, subjects_dir)
logger.info(
"loaded %s %d/%d selected to source space (%s)",
op.split(surf)[1],
s["nuse"],
s["np"],
src_type_str,
)
src.append(s)
logger.info("") # newline after both subject types are run
# Fill in source space info
hemi_ids = [FIFF.FIFFV_MNE_SURF_LEFT_HEMI, FIFF.FIFFV_MNE_SURF_RIGHT_HEMI]
for s, s_id in zip(src, hemi_ids):
# Add missing fields
s.update(
dict(
dist=None,
dist_limit=None,
nearest=None,
type="surf",
nearest_dist=None,
pinfo=None,
patch_inds=None,
id=s_id,
coord_frame=FIFF.FIFFV_COORD_MRI,
)
)
s["rr"] /= 1000.0
del s["tri_area"]
del s["tri_cent"]
del s["tri_nn"]
del s["neighbor_tri"]
# upconvert to object format from lists
src = SourceSpaces(src, dict(working_dir=os.getcwd(), command_line=cmd))
if add_dist:
dist_limit = 0.0 if add_dist == "patch" else np.inf
add_source_space_distances(
src, dist_limit=dist_limit, n_jobs=n_jobs, verbose=verbose
)
# write out if requested, then return the data
logger.info("You are now one step closer to computing the gain matrix")
return src
def _check_volume_labels(volume_label, mri, name="volume_label"):
_validate_type(mri, "path-like", f"mri when {name} is not None")
mri = str(_check_fname(mri, overwrite="read", must_exist=True))
if isinstance(volume_label, str):
volume_label = [volume_label]
_validate_type(volume_label, (list, tuple, dict), name) # should be
if not isinstance(volume_label, dict):
# Turn it into a dict
if not mri.endswith("aseg.mgz"):
raise RuntimeError(
f"Must use a *aseg.mgz file unless {name} is a dict, "
f"got {op.basename(mri)}"
)
lut, _ = read_freesurfer_lut()
use_volume_label = dict()
for label in volume_label:
if label not in lut:
raise ValueError(
f"Volume {repr(label)} not found in file {mri}. Double check "
f"FreeSurfer lookup table.{_suggest(label, lut)}"
)
use_volume_label[label] = lut[label]
volume_label = use_volume_label
for label, id_ in volume_label.items():
_validate_type(label, str, "volume_label keys")
_validate_type(id_, "int-like", f"volume_labels[{repr(label)}]")
volume_label = {k: _ensure_int(v) for k, v in volume_label.items()}
return volume_label
@verbose
def setup_volume_source_space(
subject=None,
pos=5.0,
mri=None,
sphere=None,
bem=None,
surface=None,
mindist=5.0,
exclude=0.0,
subjects_dir=None,
volume_label=None,
add_interpolator=True,
sphere_units="m",
single_volume=False,
*,
n_jobs=None,
verbose=None,
):
"""Set up a volume source space with grid spacing or discrete source space.
Parameters
----------
subject : str | None
Subject to process. If None, the path to the MRI volume must be
absolute to get a volume source space. If a subject name
is provided the ``T1.mgz`` file will be found automatically.
Defaults to None.
pos : float | dict
Positions to use for sources. If float, a grid will be constructed
with the spacing given by ``pos`` in mm, generating a volume source
space. If dict, ``pos['rr']`` and ``pos['nn']`` will be used as the source
space locations (in meters) and normals, respectively, creating a
discrete source space.
.. note:: For a discrete source space (``pos`` is a dict),
``mri`` must be None.
mri : path-like | None
The filename of an MRI volume (mgh or mgz) to create the
interpolation matrix over. Source estimates obtained in the
volume source space can then be morphed onto the MRI volume
using this interpolator. If pos is a dict, this cannot be None.
If subject name is provided, ``pos`` is a float or ``volume_label``
are not provided then the ``mri`` parameter will default to ``'T1.mgz'``
or ``aseg.mgz``, respectively, else it will stay None.
sphere : ndarray, shape (4,) | ConductorModel | None
Define spherical source space bounds using origin and radius given
by ``(Ox, Oy, Oz, rad)`` in ``sphere_units``.
Only used if ``bem`` and ``surface`` are both None. Can also be a
spherical ConductorModel, which will use the origin and radius.
None (the default) uses a head-digitization fit.
bem : path-like | None | ConductorModel
Define source space bounds using a BEM file (specifically the inner
skull surface) or a :class:`~mne.bem.ConductorModel` for a 1-layer of 3-layers
BEM. See :func:`~mne.make_bem_model` and :func:`~mne.make_bem_solution` to
create a :class:`~mne.bem.ConductorModel`. If provided, ``surface`` must be
None.
surface : path-like | dict | None
Define source space bounds using a FreeSurfer surface file. Can
also be a dictionary with entries ``'rr'`` and ``'tris'``, such as
those returned by :func:`mne.read_surface`. If provided, ``bem`` must be None.
mindist : float
Exclude points closer than this distance (mm) to the bounding surface.
exclude : float
Exclude points closer than this distance (mm) from the center of mass
of the bounding surface.
%(subjects_dir)s
volume_label : str | dict | list | None
Region(s) of interest to use. None (default) will create a single
whole-brain source space. Otherwise, a separate source space will be
created for each entry in the list or dict (str will be turned into
a single-element list). If list of str, standard Freesurfer labels
are assumed. If dict, should be a mapping of region names to atlas
id numbers, allowing the use of other atlases.
.. versionchanged:: 0.21.0
Support for dict added.
add_interpolator : bool
If True and ``mri`` is not None, then an interpolation matrix
will be produced.
sphere_units : str
Defaults to ``"m"``.
.. versionadded:: 0.20
single_volume : bool
If True, multiple values of ``volume_label`` will be merged into a
a single source space instead of occupying multiple source spaces
(one for each sub-volume), i.e., ``len(src)`` will be ``1`` instead of
``len(volume_label)``. This can help conserve memory and disk space
when many labels are used.
.. versionadded:: 0.21
%(n_jobs)s
.. versionadded:: 1.6
%(verbose)s
Returns
-------
src : SourceSpaces
A :class:`SourceSpaces` object containing one source space for each
entry of ``volume_labels``, or a single source space if
``volume_labels`` was not specified.
See Also
--------
setup_source_space
Notes
-----
Volume source spaces are related to an MRI image such as T1 and allow to
visualize source estimates overlaid on MRIs and to morph estimates
to a template brain for group analysis. Discrete source spaces
don't allow this. If you provide a subject name the T1 MRI will be
used by default.
When you work with a source space formed from a grid you need to specify
the domain in which the grid will be defined. There are three ways
of specifying this:
(i) sphere, (ii) bem model, and (iii) surface.
The default behavior is to use sphere model
(``sphere=(0.0, 0.0, 0.0, 90.0)``) if ``bem`` or ``surface`` is not
``None`` then ``sphere`` is ignored.
If you're going to use a BEM conductor model for forward model
it is recommended to pass it here.
To create a discrete source space, ``pos`` must be a dict, ``mri`` must be
None, and ``volume_label`` must be None. To create a whole brain volume
source space, ``pos`` must be a float and 'mri' must be provided.
To create a volume source space from label, ``pos`` must be a float,
``volume_label`` must be provided, and 'mri' must refer to a .mgh or .mgz
file with values corresponding to the freesurfer lookup-table (typically
``aseg.mgz``).
"""
subjects_dir = get_subjects_dir(subjects_dir)
_validate_type(volume_label, (str, list, tuple, dict, None), "volume_label")
_validate_type(bem, ("path-like", ConductorModel, None), "bem")
_validate_type(surface, ("path-like", dict, None), "surface")
if bem is not None and not isinstance(bem, ConductorModel):
bem = str(
_check_fname(bem, overwrite="read", must_exist=True, name="bem filename")
)
if surface is not None and not isinstance(surface, dict):
surface = str(
_check_fname(
surface, overwrite="read", must_exist=True, name="surface filename"
)
)
if bem is not None and surface is not None:
raise ValueError("Only one of 'bem' and 'surface' should be specified.")
if mri is None and subject is not None:
if volume_label is not None:
mri = "aseg.mgz"
elif _is_numeric(pos):
mri = "T1.mgz"
if mri is not None:
mri = _check_mri(mri, subject, subjects_dir)
if isinstance(pos, dict):
raise ValueError(
"Cannot create interpolation matrix for discrete source space, mri "
"must be None if pos is a dict"
)
if volume_label is not None:
volume_label = _check_volume_labels(volume_label, mri)
assert volume_label is None or isinstance(volume_label, dict)
sphere = _check_sphere(sphere, sphere_units=sphere_units)
# triage bounding argument
if bem is not None:
logger.info("BEM : %s", bem)
elif surface is not None:
if isinstance(surface, dict):
if not all(key in surface for key in ["rr", "tris"]):
raise KeyError('surface, if dict, must have entries "rr" and "tris"')
# let's make sure we have geom info
complete_surface_info(surface, copy=False, verbose=False)
surf_extra = "dict()"
else:
if not op.isfile(surface):
raise OSError(f'surface file "{surface}" not found')
surf_extra = surface
logger.info("Boundary surface file : %s", surf_extra)
else:
logger.info(
f"Sphere : origin at ({1000 * sphere[0]:.1f} "
f"{1000 * sphere[1]:.1f} {1000 * sphere[2]:.1f}) mm"
)
logger.info(f" radius : {1000 * sphere[3]:.1f} mm")
# triage pos argument
if isinstance(pos, dict):
if not all(key in pos for key in ["rr", "nn"]):
raise KeyError('pos, if dict, must contain "rr" and "nn"')
pos_extra = "dict()"
else: # pos should be float-like
try:
pos = float(pos)
except (TypeError, ValueError):
raise ValueError(
"pos must be a dict, or something that can be cast to float()"
)
if not isinstance(pos, float):
logger.info("Source location file : %s", pos_extra)
logger.info("Assuming input in millimeters")
logger.info("Assuming input in MRI coordinates")
if isinstance(pos, float):
logger.info(f"grid : {pos:.1f} mm")
logger.info(f"mindist : {mindist:.1f} mm")
pos /= 1000.0 # convert pos from m to mm
if exclude > 0.0:
logger.info(f"Exclude : {exclude:.1f} mm")
vol_info = dict()
if mri is not None:
logger.info(f"MRI volume : {mri}")
logger.info("")
logger.info(f"Reading {mri}...")
vol_info = _get_mri_info_data(mri, data=volume_label is not None)
exclude /= 1000.0 # convert exclude from m to mm
logger.info("")
# Explicit list of points
if not isinstance(pos, float):
# Make the grid of sources
sp = [_make_discrete_source_space(pos)]
else:
# Load the brain surface as a template
if isinstance(bem, str):
# read bem surface in the MRI coordinate frame
surf = read_bem_surfaces(
bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN, verbose=False
)
logger.info("Loaded inner skull from %s (%d nodes)", bem, surf["np"])
elif bem is not None and bem.get("is_sphere") is False:
# read bem surface in the MRI coordinate frame
which = np.where(
[surf["id"] == FIFF.FIFFV_BEM_SURF_ID_BRAIN for surf in bem["surfs"]]
)[0]
if len(which) != 1:
raise ValueError("Could not get inner skull surface from BEM")
surf = bem["surfs"][which[0]]
assert surf["id"] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
if surf["coord_frame"] != FIFF.FIFFV_COORD_MRI:
raise ValueError(
f"BEM is not in MRI coordinates, got "
f"{_coord_frame_name(surf['coord_frame'])}"
)
logger.info(f"Taking inner skull from {bem}")
elif surface is not None:
if isinstance(surface, str):
# read the surface in the MRI coordinate frame
surf = read_surface(surface, return_dict=True)[-1]
else:
surf = surface
logger.info(
"Loaded bounding surface from %s (%d nodes)", surface, surf["np"]
)
surf = deepcopy(surf)
surf["rr"] *= 1e-3 # must be converted to meters
else: # Load an icosahedron and use that as the surface
logger.info("Setting up the sphere...")
surf = dict(R=sphere[3], r0=sphere[:3])
# Make the grid of sources in MRI space
sp = _make_volume_source_space(
surf,
pos,
exclude,
mindist,
mri,
volume_label,
n_jobs=n_jobs,
vol_info=vol_info,
single_volume=single_volume,
)
del sphere
assert isinstance(sp, list)
assert (
len(sp) == 1 if (volume_label is None or single_volume) else len(volume_label)
)
# Compute an interpolation matrix to show data in MRI_VOXEL coord frame
if mri is not None:
if add_interpolator:
_add_interpolator(sp)
elif sp[0]["type"] == "vol":
# If there is no interpolator, it's actually a discrete source space
sp[0]["type"] = "discrete"
# do some cleaning
if volume_label is None and "seg_name" in sp[0]:
del sp[0]["seg_name"]
for s in sp:
if "vol_dims" in s:
del s["vol_dims"]
# Save it
sp = _complete_vol_src(sp, subject)
return sp
def _complete_vol_src(sp, subject=None):
for s in sp:
s.update(
dict(
nearest=None,
dist=None,
use_tris=None,
patch_inds=None,
dist_limit=None,
pinfo=None,
ntri=0,
nearest_dist=None,
nuse_tri=0,
tris=None,
subject_his_id=subject,
)
)
sp = SourceSpaces(sp, dict(working_dir=os.getcwd(), command_line="None"))
return sp
def _make_voxel_ras_trans(move, ras, voxel_size):
"""Make a transformation from MRI_VOXEL to MRI surface RAS (i.e. MRI)."""
assert voxel_size.ndim == 1
assert voxel_size.size == 3
rot = ras.T * voxel_size[np.newaxis, :]
assert rot.ndim == 2
assert rot.shape[0] == 3
assert rot.shape[1] == 3
trans = np.c_[np.r_[rot, np.zeros((1, 3))], np.r_[move, 1.0]]
t = Transform("mri_voxel", "mri", trans)
return t
def _make_discrete_source_space(pos, coord_frame="mri"):
"""Use a discrete set of source locs/oris to make src space.
Parameters
----------
pos : dict
Must have entries "rr" and "nn". Data should be in meters.
coord_frame : str
The coordinate frame in which the positions are given; default: 'mri'.
The frame must be one defined in transforms.py:_str_to_frame
Returns
-------
src : dict
The source space.
"""
# Check that coordinate frame is valid
if coord_frame not in _str_to_frame: # will fail if coord_frame not string
raise KeyError(
f"coord_frame must be one of {list(_str_to_frame.keys())}, "
f'not "{coord_frame}"'
)
coord_frame = _str_to_frame[coord_frame] # now an int
# process points (copy and cast)
rr = np.array(pos["rr"], float)
nn = np.array(pos["nn"], float)
if not (
rr.ndim == nn.ndim == 2
and nn.shape[0] == nn.shape[0]
and rr.shape[1] == nn.shape[1]
and np.isfinite(rr).all()
and np.isfinite(nn).all()
):
raise RuntimeError(
'"rr" and "nn" must both be finite 2D arrays with '
"the same number of rows and 3 columns"
)
npts = rr.shape[0]
_normalize_vectors(nn)
nz = np.sum(np.sum(nn * nn, axis=1) == 0)
if nz != 0:
raise RuntimeError("%d sources have zero length normal", nz)
logger.info("Positions (in meters) and orientations")
logger.info("%d sources", npts)
# Ready to make the source space
sp = dict(
coord_frame=coord_frame,
type="discrete",
nuse=npts,
np=npts,
inuse=np.ones(npts, int),
vertno=np.arange(npts),
rr=rr,
nn=nn,
id=FIFF.FIFFV_MNE_SURF_UNKNOWN,
)
return sp
def _make_volume_source_space(
surf,
grid,
exclude,
mindist,
mri=None,
volume_labels=None,
do_neighbors=True,
n_jobs=None,
vol_info=None,
single_volume=False,
):
"""Make a source space which covers the volume bounded by surf."""
# Figure out the grid size in the MRI coordinate frame
vol_info = {} if vol_info is None else vol_info
if "rr" in surf:
mins = np.min(surf["rr"], axis=0)
maxs = np.max(surf["rr"], axis=0)
cm = np.mean(surf["rr"], axis=0) # center of mass
maxdist = np.linalg.norm(surf["rr"] - cm, axis=1).max()
else:
mins = surf["r0"] - surf["R"]
maxs = surf["r0"] + surf["R"]
cm = surf["r0"].copy()
maxdist = surf["R"]
# Define the sphere which fits the surface
logger.info(
f"Surface CM = ({1000 * cm[0]:6.1f} {1000 * cm[1]:6.1f} {1000 * cm[2]:6.1f}) mm"
)
logger.info("Surface fits inside a sphere with radius %6.1f mm" % (1000 * maxdist))
logger.info("Surface extent:")
for c, mi, ma in zip("xyz", mins, maxs):
logger.info(f" {c} = {1000 * mi:6.1f} ... {1000 * ma:6.1f} mm")
maxn = np.array(
[
np.floor(np.abs(m) / grid) + 1 if m > 0 else -np.floor(np.abs(m) / grid) - 1
for m in maxs
],
int,
)
minn = np.array(
[
np.floor(np.abs(m) / grid) + 1 if m > 0 else -np.floor(np.abs(m) / grid) - 1
for m in mins
],
int,
)
logger.info("Grid extent:")
for c, mi, ma in zip("xyz", minn, maxn):
logger.info(f" {c} = {1000 * mi * grid:6.1f} ... {1000 * ma * grid:6.1f} mm")
# Now make the initial grid
ns = tuple(maxn - minn + 1)
npts = np.prod(ns)
nrow = ns[0]
ncol = ns[1]
nplane = nrow * ncol
# x varies fastest, then y, then z (can use unravel to do this)
rr = np.meshgrid(
np.arange(minn[2], maxn[2] + 1),
np.arange(minn[1], maxn[1] + 1),
np.arange(minn[0], maxn[0] + 1),
indexing="ij",
)
x, y, z = rr[2].ravel(), rr[1].ravel(), rr[0].ravel()
rr = np.array([x * grid, y * grid, z * grid]).T
sp = dict(
np=npts,
nn=np.zeros((npts, 3)),
rr=rr,
inuse=np.ones(npts, bool),
type="vol",
nuse=npts,
coord_frame=FIFF.FIFFV_COORD_MRI,
id=FIFF.FIFFV_MNE_SURF_UNKNOWN,
shape=ns,
)
sp["nn"][:, 2] = 1.0
assert sp["rr"].shape[0] == npts
logger.info("%d sources before omitting any.", sp["nuse"])
# Exclude infeasible points
dists = np.linalg.norm(sp["rr"] - cm, axis=1)
bads = np.where(np.logical_or(dists < exclude, dists > maxdist))[0]
sp["inuse"][bads] = False
sp["nuse"] -= len(bads)
logger.info(
"%d sources after omitting infeasible sources not within %0.1f - %0.1f mm.",
sp["nuse"],
1000 * exclude,
1000 * maxdist,
)
if "rr" in surf:
_filter_source_spaces(surf, mindist, None, [sp], n_jobs)
else: # sphere
vertno = np.where(sp["inuse"])[0]
bads = (
np.linalg.norm(sp["rr"][vertno] - surf["r0"], axis=-1)
>= surf["R"] - mindist / 1000.0
)
sp["nuse"] -= bads.sum()
sp["inuse"][vertno[bads]] = False
sp["vertno"] = np.where(sp["inuse"])[0]
del vertno
del surf
logger.info(
"%d sources remaining after excluding the sources outside "
"the surface and less than %6.1f mm inside.",
sp["nuse"],
mindist,
)
# Restrict sources to volume of interest
if volume_labels is None:
sp["seg_name"] = "the whole brain"
sps = [sp]
else:
if not do_neighbors:
raise RuntimeError(
"volume_label cannot be None unless do_neighbors is True"
)
sps = list()
orig_sp = sp
# reduce the sizes when we deepcopy
for volume_label, id_ in volume_labels.items():
# this saves us some memory
memodict = dict()
for key in ("rr", "nn"):
if key in orig_sp:
arr = orig_sp[key]
memodict[id(arr)] = arr
sp = deepcopy(orig_sp, memodict)
good = _get_atlas_values(vol_info, sp["rr"][sp["vertno"]]) == id_
n_good = good.sum()
logger.info(
" Selected %d voxel%s from %s", n_good, _pl(n_good), volume_label
)
if n_good == 0:
warn(
"Found no usable vertices in volume label "
f"{repr(volume_label)} (id={id_}) using a "
f"{grid * 1000:0.1f} mm grid"
)
# Update source info
sp["inuse"][sp["vertno"][~good]] = False
sp["vertno"] = sp["vertno"][good]
sp["nuse"] = sp["inuse"].sum()
sp["seg_name"] = volume_label
sp["mri_file"] = mri
sps.append(sp)
del orig_sp
assert len(sps) == len(volume_labels)
# This will undo some of the work above, but the calculations are
# pretty trivial so allow it
if single_volume:
for sp in sps[1:]:
sps[0]["inuse"][sp["vertno"]] = True
sp = sps[0]
sp["seg_name"] = "+".join(s["seg_name"] for s in sps)
sps = sps[:1]
sp["vertno"] = np.where(sp["inuse"])[0]
sp["nuse"] = len(sp["vertno"])
del sp, volume_labels
if not do_neighbors:
return sps
k = np.arange(npts)
neigh = np.empty((26, npts), int)
neigh.fill(-1)
# Figure out each neighborhood:
# 6-neighborhood first
idxs = [
z > minn[2],
x < maxn[0],
y < maxn[1],
x > minn[0],
y > minn[1],
z < maxn[2],
]
offsets = [-nplane, 1, nrow, -1, -nrow, nplane]
for n, idx, offset in zip(neigh[:6], idxs, offsets):
n[idx] = k[idx] + offset
# Then the rest to complete the 26-neighborhood
# First the plane below
idx1 = z > minn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[6, idx2] = k[idx2] + 1 - nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[7, idx3] = k[idx3] + 1 + nrow - nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[8, idx2] = k[idx2] + nrow - nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[9, idx3] = k[idx3] - 1 + nrow - nplane
neigh[10, idx2] = k[idx2] - 1 - nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[11, idx3] = k[idx3] - 1 - nrow - nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[12, idx2] = k[idx2] - nrow - nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[13, idx3] = k[idx3] + 1 - nrow - nplane
# Then the same plane
idx1 = np.logical_and(x < maxn[0], y < maxn[1])
neigh[14, idx1] = k[idx1] + 1 + nrow
idx1 = x > minn[0]
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[15, idx2] = k[idx2] - 1 + nrow
idx2 = np.logical_and(idx1, y > minn[1])
neigh[16, idx2] = k[idx2] - 1 - nrow
idx1 = np.logical_and(y > minn[1], x < maxn[0])
neigh[17, idx1] = k[idx1] + 1 - nrow - nplane
# Finally one plane above
idx1 = z < maxn[2]
idx2 = np.logical_and(idx1, x < maxn[0])
neigh[18, idx2] = k[idx2] + 1 + nplane
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[19, idx3] = k[idx3] + 1 + nrow + nplane
idx2 = np.logical_and(idx1, y < maxn[1])
neigh[20, idx2] = k[idx2] + nrow + nplane
idx2 = np.logical_and(idx1, x > minn[0])
idx3 = np.logical_and(idx2, y < maxn[1])
neigh[21, idx3] = k[idx3] - 1 + nrow + nplane
neigh[22, idx2] = k[idx2] - 1 + nplane
idx3 = np.logical_and(idx2, y > minn[1])
neigh[23, idx3] = k[idx3] - 1 - nrow + nplane
idx2 = np.logical_and(idx1, y > minn[1])
neigh[24, idx2] = k[idx2] - nrow + nplane
idx3 = np.logical_and(idx2, x < maxn[0])
neigh[25, idx3] = k[idx3] + 1 - nrow + nplane
# Omit unused vertices from the neighborhoods
logger.info("Adjusting the neighborhood info.")
r0 = minn * grid
voxel_size = grid * np.ones(3)
ras = np.eye(3)
src_mri_t = _make_voxel_ras_trans(r0, ras, voxel_size)
neigh_orig = neigh
for sp in sps:
# remove non source-space points
neigh = neigh_orig.copy()
neigh[:, np.logical_not(sp["inuse"])] = -1
# remove these points from neigh
old_shape = neigh.shape
neigh = neigh.ravel()
checks = np.where(neigh >= 0)[0]
removes = np.logical_not(np.isin(checks, sp["vertno"]))
neigh[checks[removes]] = -1
neigh.shape = old_shape
neigh = neigh.T
# Thought we would need this, but C code keeps -1 vertices, so we will:
# neigh = [n[n >= 0] for n in enumerate(neigh[vertno])]
sp["neighbor_vert"] = neigh
# Set up the volume data (needed for creating the interpolation matrix)
sp["src_mri_t"] = src_mri_t
sp["vol_dims"] = maxn - minn + 1
for key in (
"mri_width",
"mri_height",
"mri_depth",
"mri_volume_name",
"vox_mri_t",
"mri_ras_t",
):
if key in vol_info:
sp[key] = vol_info[key]
_print_coord_trans(sps[0]["src_mri_t"], "Source space : ")
for key in ("vox_mri_t", "mri_ras_t"):
if key in sps[0]:
_print_coord_trans(sps[0][key], "MRI volume : ")
return sps
def _vol_vertex(width, height, jj, kk, pp):
return jj + width * kk + pp * (width * height)
def _src_vol_dims(s):
w, h, d = (s[f"mri_{key}"] for key in ("width", "height", "depth"))
return w, h, d, np.prod([w, h, d])
def _add_interpolator(sp):
"""Compute a sparse matrix to interpolate the data into an MRI volume."""
# extract transformation information from mri
mri_width, mri_height, mri_depth, nvox = _src_vol_dims(sp[0])
#
# Convert MRI voxels from destination (MRI volume) to source (volume
# source space subset) coordinates
#
combo_trans = combine_transforms(
sp[0]["vox_mri_t"],
invert_transform(sp[0]["src_mri_t"]),
"mri_voxel",
"mri_voxel",
)
logger.info("Setting up volume interpolation ...")
inuse = np.zeros(sp[0]["np"], bool)
for s_ in sp:
np.logical_or(inuse, s_["inuse"], out=inuse)
interp = _grid_interp(
sp[0]["vol_dims"],
(mri_width, mri_height, mri_depth),
combo_trans["trans"],
order=1,
inuse=inuse,
)
assert isinstance(interp, csr_array)
# Compose the sparse matrices
for si, s in enumerate(sp):
if len(sp) == 1: # no need to do these gymnastics
this_interp = interp
else: # limit it rows that have any contribution from inuse
# This is the same as the following, but more efficient:
# any_ = np.asarray(
# interp[:, s['inuse'].astype(bool)].sum(1)
# )[:, 0].astype(bool)
any_ = np.zeros(interp.indices.size + 1, np.int64)
any_[1:] = s["inuse"][interp.indices]
np.cumsum(any_, out=any_)
any_ = np.diff(any_[interp.indptr]) > 0
assert any_.shape == (interp.shape[0],)
indptr = np.empty_like(interp.indptr)
indptr[0] = 0
indptr[1:] = np.diff(interp.indptr)
indptr[1:][~any_] = 0
np.cumsum(indptr, out=indptr)
mask = np.repeat(any_, np.diff(interp.indptr))
indices = interp.indices[mask]
data = interp.data[mask]
assert data.shape == indices.shape == (indptr[-1],)
this_interp = csr_array((data, indices, indptr), shape=interp.shape)
s["interpolator"] = this_interp
logger.info(
" %d/%d nonzero values for %s",
len(s["interpolator"].data),
nvox,
s["seg_name"],
)
logger.info("[done]")
def _grid_interp(from_shape, to_shape, trans, order=1, inuse=None):
"""Compute a grid-to-grid linear or nearest interpolation given."""
from_shape = np.array(from_shape, int)
to_shape = np.array(to_shape, int)
trans = np.array(trans, np.float64) # to -> from
assert trans.shape == (4, 4) and np.array_equal(trans[3], [0, 0, 0, 1])
assert from_shape.shape == to_shape.shape == (3,)
shape = (np.prod(to_shape), np.prod(from_shape))
if inuse is None:
inuse = np.ones(shape[1], bool)
assert inuse.dtype == np.dtype(bool)
assert inuse.shape == (shape[1],)
data, indices, indptr = _grid_interp_jit(from_shape, to_shape, trans, order, inuse)
data = np.concatenate(data)
indices = np.concatenate(indices)
indptr = np.cumsum(indptr)
interp = csr_array((data, indices, indptr), shape=shape)
return interp
# This is all set up to do jit, but it's actually slower!
def _grid_interp_jit(from_shape, to_shape, trans, order, inuse):
# Loop over slices to save (lots of) memory
# Note that it is the slowest incrementing index
# This is equivalent to using mgrid and reshaping, but faster
assert order in (0, 1)
data = list()
indices = list()
nvox = np.prod(to_shape)
indptr = np.zeros(nvox + 1, np.int32)
mri_width, mri_height, mri_depth = to_shape
r0__ = np.empty((4, mri_height, mri_width), np.float64)
r0__[0, :, :] = np.arange(mri_width)
r0__[1, :, :] = np.arange(mri_height).reshape(1, mri_height, 1)
r0__[3, :, :] = 1
r0_ = np.reshape(r0__, (4, mri_width * mri_height))
width, height, _ = from_shape
trans = np.ascontiguousarray(trans)
maxs = (from_shape - 1).reshape(1, 3)
for p in range(mri_depth):
r0_[2] = p
# Transform our vertices from their MRI space into our source space's
# frame (this is labeled as FIFFV_MNE_COORD_MRI_VOXEL, but it's
# really a subset of the entire volume!)
r0 = (trans @ r0_)[:3].T
if order == 0:
rx = np.round(r0).astype(np.int32)
keep = np.where(
np.logical_and(np.all(rx >= 0, axis=1), np.all(rx <= maxs, axis=1))
)[0]
indptr[keep + p * mri_height * mri_width + 1] = 1
indices.append(_vol_vertex(width, height, *rx[keep].T))
data.append(np.ones(len(keep)))
continue
rn = np.floor(r0).astype(np.int32)
good = np.where(
np.logical_and(np.all(rn >= -1, axis=1), np.all(rn <= maxs, axis=1))
)[0]
if len(good) == 0:
continue
rns = rn[good]
r0s = r0[good]
jj_g, kk_g, pp_g = (rns >= 0).T
jjp1_g, kkp1_g, ppp1_g = (rns < maxs).T # same as rns + 1 <= maxs
# now we take each MRI voxel *in this space*, and figure out how
# to make its value the weighted sum of voxels in the volume source
# space. This is a trilinear interpolation based on the
# fact that we know we're interpolating from one volumetric grid
# into another.
jj = rns[:, 0]
kk = rns[:, 1]
pp = rns[:, 2]
vss = np.empty((len(jj), 8), np.int32)
jjp1 = jj + 1
kkp1 = kk + 1
ppp1 = pp + 1
mask = np.empty((len(jj), 8), bool)
vss[:, 0] = _vol_vertex(width, height, jj, kk, pp)
mask[:, 0] = jj_g & kk_g & pp_g
vss[:, 1] = _vol_vertex(width, height, jjp1, kk, pp)
mask[:, 1] = jjp1_g & kk_g & pp_g
vss[:, 2] = _vol_vertex(width, height, jjp1, kkp1, pp)
mask[:, 2] = jjp1_g & kkp1_g & pp_g
vss[:, 3] = _vol_vertex(width, height, jj, kkp1, pp)
mask[:, 3] = jj_g & kkp1_g & pp_g
vss[:, 4] = _vol_vertex(width, height, jj, kk, ppp1)
mask[:, 4] = jj_g & kk_g & ppp1_g
vss[:, 5] = _vol_vertex(width, height, jjp1, kk, ppp1)
mask[:, 5] = jjp1_g & kk_g & ppp1_g
vss[:, 6] = _vol_vertex(width, height, jjp1, kkp1, ppp1)
mask[:, 6] = jjp1_g & kkp1_g & ppp1_g
vss[:, 7] = _vol_vertex(width, height, jj, kkp1, ppp1)
mask[:, 7] = jj_g & kkp1_g & ppp1_g
# figure out weights for each vertex
xf = r0s[:, 0] - rns[:, 0].astype(np.float64)
yf = r0s[:, 1] - rns[:, 1].astype(np.float64)
zf = r0s[:, 2] - rns[:, 2].astype(np.float64)
omxf = 1.0 - xf
omyf = 1.0 - yf
omzf = 1.0 - zf
this_w = np.empty((len(good), 8), np.float64)
this_w[:, 0] = omxf * omyf * omzf
this_w[:, 1] = xf * omyf * omzf
this_w[:, 2] = xf * yf * omzf
this_w[:, 3] = omxf * yf * omzf
this_w[:, 4] = omxf * omyf * zf
this_w[:, 5] = xf * omyf * zf
this_w[:, 6] = xf * yf * zf
this_w[:, 7] = omxf * yf * zf
# eliminate zeros
mask[this_w <= 0] = False
# eliminate rows where none of inuse are actually present
row_mask = mask.copy()
row_mask[mask] = inuse[vss[mask]]
mask[~(row_mask.any(axis=-1))] = False
# construct the parts we need
indices.append(vss[mask])
indptr[good + p * mri_height * mri_width + 1] = mask.sum(1)
data.append(this_w[mask])
return data, indices, indptr
@verbose
def _filter_source_spaces(surf, limit, mri_head_t, src, n_jobs=None, verbose=None):
"""Remove all source space points closer than a given limit (in mm)."""
if src[0]["coord_frame"] == FIFF.FIFFV_COORD_HEAD and mri_head_t is None:
raise RuntimeError(
"Source spaces are in head coordinates and no "
"coordinate transform was provided!"
)
# How close are the source points to the surface?
out_str = "Source spaces are in "
if src[0]["coord_frame"] == FIFF.FIFFV_COORD_HEAD:
inv_trans = invert_transform(mri_head_t)
out_str += "head coordinates."
elif src[0]["coord_frame"] == FIFF.FIFFV_COORD_MRI:
out_str += "MRI coordinates."
else:
out_str += f"unknown ({src[0]['coord_frame']}) coordinates."
logger.info(out_str)
out_str = "Checking that the sources are inside the surface"
if limit > 0.0:
out_str += f" and at least {limit:6.1f} mm away"
logger.info(out_str + " (will take a few...)")
# fit a sphere to a surf quickly
check_inside = _CheckInside(surf)
# Check that the source is inside surface (often the inner skull)
for s in src:
vertno = np.where(s["inuse"])[0] # can't trust s['vertno'] this deep
# Convert all points here first to save time
r1s = s["rr"][vertno]
if s["coord_frame"] == FIFF.FIFFV_COORD_HEAD:
r1s = apply_trans(inv_trans["trans"], r1s)
inside = check_inside(r1s, n_jobs)
omit_outside = (~inside).sum()
# vectorized nearest using BallTree (or cdist)
omit_limit = 0
if limit > 0.0:
# only check "inside" points
idx = np.where(inside)[0]
check_r1s = r1s[idx]
if check_inside.inner_r is not None:
# ... and those that are at least inner_sphere + limit away
mask = (
np.linalg.norm(check_r1s - check_inside.cm, axis=-1)
>= check_inside.inner_r - limit / 1000.0
)
idx = idx[mask]
check_r1s = check_r1s[mask]
dists = _compute_nearest(
surf["rr"], check_r1s, return_dists=True, method="KDTree"
)[1]
close = dists < limit / 1000.0
omit_limit = np.sum(close)
inside[idx[close]] = False
s["inuse"][vertno[~inside]] = False
del vertno
s["nuse"] -= omit_outside + omit_limit
s["vertno"] = np.where(s["inuse"])[0]
if omit_outside > 0:
extras = [omit_outside]
extras += ["s", "they are"] if omit_outside > 1 else ["", "it is"]
logger.info(
" %d source space point%s omitted because %s "
"outside the inner skull surface.",
*tuple(extras),
)
if omit_limit > 0:
extras = [omit_limit]
extras += ["s"] if omit_outside > 1 else [""]
extras += [limit]
logger.info(
" %d source space point%s omitted because of the "
"%6.1f-mm distance limit.",
*tuple(extras),
)
# Adjust the patch inds as well if necessary
if omit_limit + omit_outside > 0:
_adjust_patch_info(s)
return check_inside
@verbose
def _adjust_patch_info(s, verbose=None):
"""Adjust patch information in place after vertex omission."""
if s.get("patch_inds") is not None:
if s["nearest"] is None:
# This shouldn't happen, but if it does, we can probably come
# up with a more clever solution
raise RuntimeError(
"Cannot adjust patch information properly, "
"please contact the mne-python developers"
)
_add_patch_info(s)
@verbose
def _ensure_src(src, kind=None, extra="", verbose=None):
"""Ensure we have a source space."""
_check_option("kind", kind, (None, "surface", "volume", "mixed", "discrete"))
msg = f"src must be a string or instance of SourceSpaces{extra}"
if _path_like(src):
src = str(src)
if not op.isfile(src):
raise OSError(f'Source space file "{src}" not found')
logger.info(f"Reading {src}...")
src = read_source_spaces(src, verbose=False)
if not isinstance(src, SourceSpaces):
raise ValueError(f"{msg}, got {src} (type {type(src)})")
if kind is not None:
if src.kind != kind and src.kind == "mixed":
if kind == "surface":
src = src[:2]
elif kind == "volume":
src = src[2:]
if src.kind != kind:
raise ValueError(f"Source space must contain {kind} type, got {src.kind}")
return src
def _ensure_src_subject(src, subject):
src_subject = src._subject
if subject is None:
subject = src_subject
if subject is None:
raise ValueError("source space is too old, subject must be provided")
elif src_subject is not None and subject != src_subject:
raise ValueError(
f'Mismatch between provided subject "{subject}" and subject '
f'name "{src_subject}" in the source space'
)
return subject
_DIST_WARN_LIMIT = 10242 # warn for anything larger than ICO-5
@verbose
def add_source_space_distances(src, dist_limit=np.inf, n_jobs=None, *, verbose=None):
"""Compute inter-source distances along the cortical surface.
This function will also try to add patch info for the source space.
It will only occur if the ``dist_limit`` is sufficiently high that all
points on the surface are within ``dist_limit`` of a point in the
source space.
Parameters
----------
src : instance of SourceSpaces
The source spaces to compute distances for.
dist_limit : float
The upper limit of distances to include (in meters).
Note: if limit < np.inf, scipy > 0.13 (bleeding edge as of
10/2013) must be installed. If 0, then only patch (nearest vertex)
information is added.
%(n_jobs)s
Ignored if ``dist_limit==0.``.
%(verbose)s
Returns
-------
src : instance of SourceSpaces
The original source spaces, with distance information added.
The distances are stored in src[n]['dist'].
Note: this function operates in-place.
Notes
-----
This function can be memory- and CPU-intensive. On a high-end machine
(2012) running 6 jobs in parallel, an ico-5 (10242 per hemi) source space
takes about 10 minutes to compute all distances (``dist_limit = np.inf``).
With ``dist_limit = 0.007``, computing distances takes about 1 minute.
We recommend computing distances once per source space and then saving
the source space to disk, as the computed distances will automatically be
stored along with the source space data for future use.
"""
src = _ensure_src(src)
dist_limit = float(dist_limit)
if dist_limit < 0:
raise ValueError(f"dist_limit must be non-negative, got {dist_limit}")
patch_only = dist_limit == 0
if src.kind != "surface":
raise RuntimeError("Currently all source spaces must be of surface type")
parallel, p_fun, n_jobs = parallel_func(_do_src_distances, n_jobs)
min_dists = list()
min_idxs = list()
msg = "patch information" if patch_only else "source space distances"
logger.info(f"Calculating {msg} (limit={1000 * dist_limit} mm)...")
max_n = max(s["nuse"] for s in src)
if not patch_only and max_n > _DIST_WARN_LIMIT:
warn(
f"Computing distances for {max_n} source space points (in one "
"hemisphere) will be very slow, consider using add_dist=False"
)
for s in src:
adjacency = mesh_dist(s["tris"], s["rr"])
if patch_only:
min_dist, _, min_idx = dijkstra(
adjacency, indices=s["vertno"], min_only=True, return_predecessors=True
)
min_dists.append(min_dist.astype(np.float32))
min_idxs.append(min_idx)
for key in ("dist", "dist_limit"):
s[key] = None
else:
d = parallel(
p_fun(adjacency, s["vertno"], r, dist_limit)
for r in np.array_split(np.arange(len(s["vertno"])), n_jobs)
)
# deal with indexing so we can add patch info
min_idx = np.array([dd[1] for dd in d])
min_dist = np.array([dd[2] for dd in d])
midx = np.argmin(min_dist, axis=0)
range_idx = np.arange(len(s["rr"]))
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
min_dists.append(min_dist)
min_idxs.append(min_idx)
# convert to sparse representation
d = np.concatenate([dd[0] for dd in d]).ravel() # already float32
idx = d > 0
d = d[idx]
i, j = np.meshgrid(s["vertno"], s["vertno"])
i = i.ravel()[idx]
j = j.ravel()[idx]
s["dist"] = csr_array(
(d, (i, j)), shape=(s["np"], s["np"]), dtype=np.float32
)
s["dist_limit"] = np.array([dist_limit], np.float32)
# Let's see if our distance was sufficient to allow for patch info
if not any(np.any(np.isinf(md)) for md in min_dists):
# Patch info can be added!
for s, min_dist, min_idx in zip(src, min_dists, min_idxs):
s["nearest"] = min_idx
s["nearest_dist"] = min_dist
_add_patch_info(s)
else:
logger.info("Not adding patch information, dist_limit too small")
return src
def _do_src_distances(con, vertno, run_inds, limit):
"""Compute source space distances in chunks."""
func = partial(dijkstra, limit=limit)
chunk_size = 20 # save memory by chunking (only a little slower)
lims = np.r_[np.arange(0, len(run_inds), chunk_size), len(run_inds)]
n_chunks = len(lims) - 1
# eventually we want this in float32, so save memory by only storing 32-bit
d = np.empty((len(run_inds), len(vertno)), np.float32)
min_dist = np.empty((n_chunks, con.shape[0]))
min_idx = np.empty((n_chunks, con.shape[0]), np.int32)
range_idx = np.arange(con.shape[0])
for li, (l1, l2) in enumerate(zip(lims[:-1], lims[1:])):
idx = vertno[run_inds[l1:l2]]
out = func(con, indices=idx)
midx = np.argmin(out, axis=0)
min_idx[li] = idx[midx]
min_dist[li] = out[midx, range_idx]
d[l1:l2] = out[:, vertno]
midx = np.argmin(min_dist, axis=0)
min_dist = min_dist[midx, range_idx]
min_idx = min_idx[midx, range_idx]
d[d == np.inf] = 0 # scipy will give us np.inf for uncalc. distances
return d, min_idx, min_dist
# XXX this should probably be deprecated because it returns surface Labels,
# and probably isn't the way to go moving forward
# XXX this also assumes that the first two source spaces are surf without
# checking, which might not be the case (could be all volumes)
@fill_doc
def get_volume_labels_from_src(src, subject, subjects_dir):
"""Return a list of Label of segmented volumes included in the src space.
Parameters
----------
src : instance of SourceSpaces
The source space containing the volume regions.
%(subject)s
subjects_dir : str
Freesurfer folder of the subjects.
Returns
-------
labels_aseg : list of Label
List of Label of segmented volumes included in src space.
"""
from ..label import Label
# Read the aseg file
aseg_fname = op.join(subjects_dir, subject, "mri", "aseg.mgz")
all_labels_aseg = get_volume_labels_from_aseg(aseg_fname, return_colors=True)
# Create a list of Label
if len(src) < 2:
raise ValueError("No vol src space in src")
if any(np.any(s["type"] != "vol") for s in src[2:]):
raise ValueError("source spaces have to be of vol type")
labels_aseg = list()
for nr in range(2, len(src)):
vertices = src[nr]["vertno"]
pos = src[nr]["rr"][src[nr]["vertno"], :]
roi_str = src[nr]["seg_name"]
try:
ind = all_labels_aseg[0].index(roi_str)
color = np.array(all_labels_aseg[1][ind]) / 255
except ValueError:
pass
if "left" in roi_str.lower():
hemi = "lh"
roi_str = roi_str.replace("Left-", "") + "-lh"
elif "right" in roi_str.lower():
hemi = "rh"
roi_str = roi_str.replace("Right-", "") + "-rh"
else:
hemi = "both"
label = Label(
vertices=vertices,
pos=pos,
hemi=hemi,
name=roi_str,
color=color,
subject=subject,
)
labels_aseg.append(label)
return labels_aseg
def _get_hemi(s):
"""Get a hemisphere from a given source space."""
if s["type"] != "surf":
raise RuntimeError("Only surface source spaces supported")
if s["id"] == FIFF.FIFFV_MNE_SURF_LEFT_HEMI:
return "lh", 0, s["id"]
elif s["id"] == FIFF.FIFFV_MNE_SURF_RIGHT_HEMI:
return "rh", 1, s["id"]
else:
raise ValueError(f"unknown surface ID {s['id']}")
def _get_vertex_map_nn(
fro_src, subject_from, subject_to, hemi, subjects_dir, to_neighbor_tri=None
):
"""Get a nearest-neigbor vertex match for a given hemi src.
The to_neighbor_tri can optionally be passed in to avoid recomputation
if it's already available.
"""
# adapted from mne_make_source_space.c, knowing accurate=False (i.e.
# nearest-neighbor mode should be used)
logger.info(f"Mapping {hemi} {subject_from} -> {subject_to} (nearest neighbor)...")
regs = [
subjects_dir / s / "surf" / f"{hemi}.sphere.reg"
for s in (subject_from, subject_to)
]
reg_fro, reg_to = (read_surface(r, return_dict=True)[-1] for r in regs)
if to_neighbor_tri is not None:
reg_to["neighbor_tri"] = to_neighbor_tri
if "neighbor_tri" not in reg_to:
reg_to["neighbor_tri"] = _triangle_neighbors(reg_to["tris"], reg_to["np"])
morph_inuse = np.zeros(len(reg_to["rr"]), int)
best = np.zeros(fro_src["np"], int)
ones = _compute_nearest(reg_to["rr"], reg_fro["rr"][fro_src["vertno"]])
for v, one in zip(fro_src["vertno"], ones):
# if it were actually a proper morph map, we would do this, but since
# we know it's nearest neighbor list, we don't need to:
# this_mm = mm[v]
# one = this_mm.indices[this_mm.data.argmax()]
if morph_inuse[one]:
# Try the nearest neighbors
neigh = _get_surf_neighbors(reg_to, one) # on demand calc
was = one
one = neigh[np.where(~morph_inuse[neigh])[0]]
if len(one) == 0:
raise RuntimeError(f"vertex {one} would be used multiple times.")
one = one[0]
logger.info(
"Source space vertex moved from %d to %d because of double occupation.",
was,
one,
)
best[v] = one
morph_inuse[one] = True
return best
@verbose
def morph_source_spaces(
src_from,
subject_to,
surf="white",
subject_from=None,
subjects_dir=None,
verbose=None,
):
"""Morph an existing source space to a different subject.
.. warning:: This can be used in place of morphing source estimates for
multiple subjects, but there may be consequences in terms
of dipole topology.
Parameters
----------
src_from : instance of SourceSpaces
Surface source spaces to morph.
subject_to : str
The destination subject.
surf : str
The brain surface to use for the new source space.
subject_from : str | None
The "from" subject. For most source spaces this shouldn't need
to be provided, since it is stored in the source space itself.
subjects_dir : path-like | None
Path to ``SUBJECTS_DIR`` if it is not set in the environment.
%(verbose)s
Returns
-------
src : instance of SourceSpaces
The morphed source spaces.
Notes
-----
.. versionadded:: 0.10.0
"""
# adapted from mne_make_source_space.c
src_from = _ensure_src(src_from)
subject_from = _ensure_src_subject(src_from, subject_from)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
src_out = list()
for fro in src_from:
hemi, idx, id_ = _get_hemi(fro)
to = subjects_dir / subject_to / "surf" / f"{hemi}.{surf}"
logger.info(f"Reading destination surface {to}")
to = read_surface(to, return_dict=True, verbose=False)[-1]
complete_surface_info(to, copy=False)
# Now we morph the vertices to the destination
# The C code does something like this, but with a nearest-neighbor
# mapping instead of the weighted one::
#
# >>> mm = read_morph_map(subject_from, subject_to, subjects_dir)
#
# Here we use a direct NN calculation, since picking the max from the
# existing morph map (which naively one might expect to be equivalent)
# differs for ~3% of vertices.
best = _get_vertex_map_nn(
fro, subject_from, subject_to, hemi, subjects_dir, to["neighbor_tri"]
)
for key in ("neighbor_tri", "tri_area", "tri_cent", "tri_nn", "use_tris"):
del to[key]
to["vertno"] = np.sort(best[fro["vertno"]])
to["inuse"] = np.zeros(len(to["rr"]), int)
to["inuse"][to["vertno"]] = True
to["use_tris"] = best[fro["use_tris"]]
to.update(
nuse=len(to["vertno"]),
nuse_tri=len(to["use_tris"]),
nearest=None,
nearest_dist=None,
patch_inds=None,
pinfo=None,
dist=None,
id=id_,
dist_limit=None,
type="surf",
coord_frame=FIFF.FIFFV_COORD_MRI,
subject_his_id=subject_to,
rr=to["rr"] / 1000.0,
)
src_out.append(to)
logger.info("[done]\n")
info = dict(working_dir=os.getcwd(), command_line=_get_call_line())
return SourceSpaces(src_out, info=info)
@verbose
def _get_morph_src_reordering(
vertices, src_from, subject_from, subject_to, subjects_dir=None, verbose=None
):
"""Get the reordering indices for a morphed source space.
Parameters
----------
vertices : list
The vertices for the left and right hemispheres.
src_from : instance of SourceSpaces
The original source space.
subject_from : str
The source subject.
subject_to : str
The destination subject.
%(subjects_dir)s
%(verbose)s
Returns
-------
data_idx : ndarray, shape (n_vertices,)
The array used to reshape the data.
from_vertices : list
The right and left hemisphere vertex numbers for the "from" subject.
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
from_vertices = list()
data_idxs = list()
offset = 0
for ii, hemi in enumerate(("lh", "rh")):
# Get the mapping from the original source space to the destination
# subject's surface vertex numbers
best = _get_vertex_map_nn(
src_from[ii], subject_from, subject_to, hemi, subjects_dir
)
full_mapping = best[src_from[ii]["vertno"]]
# Tragically, we might not have all of our vertno left (e.g. because
# some are omitted during fwd calc), so we must do some indexing magic:
# From all vertices, a subset could be chosen by fwd calc:
used_vertices = np.isin(full_mapping, vertices[ii])
from_vertices.append(src_from[ii]["vertno"][used_vertices])
remaining_mapping = full_mapping[used_vertices]
if (
not np.array_equal(np.sort(remaining_mapping), vertices[ii])
or not np.isin(vertices[ii], full_mapping).all()
):
raise RuntimeError(
"Could not map vertices, perhaps the wrong "
f'subject "{subject_from}" was provided?'
)
# And our data have been implicitly remapped by the forced ascending
# vertno order in source spaces
implicit_mapping = np.argsort(remaining_mapping) # happens to data
data_idx = np.argsort(implicit_mapping) # to reverse the mapping
data_idx += offset # hemisphere offset
data_idxs.append(data_idx)
offset += len(implicit_mapping)
data_idx = np.concatenate(data_idxs)
# this one is really just a sanity check for us, should never be violated
# by users
assert np.array_equal(np.sort(data_idx), np.arange(sum(len(v) for v in vertices)))
return data_idx, from_vertices
def _compare_source_spaces(src0, src1, mode="exact", nearest=True, dist_tol=1.5e-3):
"""Compare two source spaces.
Note: this function is also used by forward/tests/test_make_forward.py
"""
from numpy.testing import (
assert_,
assert_allclose,
assert_array_equal,
assert_array_less,
assert_equal,
)
if mode != "exact" and "approx" not in mode: # 'nointerp' can be appended
raise RuntimeError(f"unknown mode {mode}")
for si, (s0, s1) in enumerate(zip(src0, src1)):
# first check the keys
a, b = set(s0.keys()), set(s1.keys())
assert_equal(a, b, str(a ^ b))
for name in ["nuse", "ntri", "np", "type", "id"]:
a, b = s0[name], s1[name]
if name == "id": # workaround for old NumPy bug
a, b = int(a), int(b)
assert_equal(a, b, name)
for name in ["subject_his_id"]:
if name in s0 or name in s1:
assert_equal(s0[name], s1[name], name)
for name in ["interpolator"]:
if name in s0 or name in s1:
assert name in s0, f"{name} in s1 but not s0"
assert name in s1, f"{name} in s1 but not s0"
n = np.prod(s0["interpolator"].shape)
diffs = (s0["interpolator"] - s1["interpolator"]).data
if len(diffs) > 0 and "nointerp" not in mode:
# 0.1%
assert_array_less(
np.sqrt(np.sum(diffs * diffs) / n),
0.001,
err_msg=f"{name} > 0.1%",
)
for name in ["nn", "rr", "nuse_tri", "coord_frame", "tris"]:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
if mode == "exact":
assert_array_equal(s0[name], s1[name], name)
else: # 'approx' in mode
atol = 1e-3 if name == "nn" else 1e-4
assert_allclose(
s0[name], s1[name], rtol=1e-3, atol=atol, err_msg=name
)
for name in ["seg_name"]:
if name in s0 or name in s1:
assert_equal(s0[name], s1[name], name)
# these fields will exist if patch info was added
if nearest:
for name in ["nearest", "nearest_dist", "patch_inds"]:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
atol = 0 if mode == "exact" else 1e-6
assert_allclose(s0[name], s1[name], atol=atol, err_msg=name)
for name in ["pinfo"]:
if s0[name] is None:
assert_(s1[name] is None, name)
else:
assert_(len(s0[name]) == len(s1[name]), name)
for p1, p2 in zip(s0[name], s1[name]):
assert_(all(p1 == p2), name)
if mode == "exact":
for name in ["inuse", "vertno", "use_tris"]:
assert_array_equal(s0[name], s1[name], err_msg=name)
for name in ["dist_limit"]:
assert_(s0[name] == s1[name], name)
for name in ["dist"]:
if s0[name] is not None:
assert_equal(s1[name].shape, s0[name].shape)
assert_(len((s0["dist"] - s1["dist"]).data) == 0)
else: # 'approx' in mode:
# deal with vertno, inuse, and use_tris carefully
for ii, s in enumerate((s0, s1)):
assert_array_equal(
s["vertno"],
np.where(s["inuse"])[0],
f'src{ii}[{si}]["vertno"] != np.where(src{ii}[{si}]["inuse"])[0]',
)
assert_equal(len(s0["vertno"]), len(s1["vertno"]))
agreement = np.mean(s0["inuse"] == s1["inuse"])
assert_(agreement >= 0.99, f"{agreement} < 0.99")
if agreement < 1.0:
# make sure mismatched vertno are within 1.5mm
v0 = np.setdiff1d(s0["vertno"], s1["vertno"])
v1 = np.setdiff1d(s1["vertno"], s0["vertno"])
dists = cdist(s0["rr"][v0], s1["rr"][v1])
assert_allclose(
np.min(dists, axis=1),
np.zeros(len(v0)),
atol=dist_tol,
err_msg="mismatched vertno",
)
if s0["use_tris"] is not None: # for "spacing"
assert_array_equal(s0["use_tris"].shape, s1["use_tris"].shape)
else:
assert_(s1["use_tris"] is None)
assert_(np.mean(s0["use_tris"] == s1["use_tris"]) > 0.99)
# The above "if s0[name] is not None" can be removed once the sample
# dataset is updated to have a source space with distance info
for name in ["working_dir", "command_line"]:
if mode == "exact":
assert_equal(src0.info[name], src1.info[name])
else: # 'approx' in mode:
if name in src0.info:
assert_(name in src1.info, f'"{name}" missing')
else:
assert_(name not in src1.info, f'"{name}" should not exist')
def _set_source_space_vertices(src, vertices):
"""Reset the list of source space vertices."""
assert len(src) == len(vertices)
for s, v in zip(src, vertices):
s["inuse"].fill(0)
s["nuse"] = len(v)
s["vertno"] = np.array(v)
s["inuse"][s["vertno"]] = 1
s["use_tris"] = np.array([[]], int)
s["nuse_tri"] = np.array([0])
# This will fix 'patch_info' and 'pinfo'
_adjust_patch_info(s, verbose=False)
return src
def _get_src_nn(s, use_cps=True, vertices=None):
vertices = s["vertno"] if vertices is None else vertices
if use_cps and s.get("patch_inds") is not None:
nn = np.empty((len(vertices), 3))
for vp, p in enumerate(np.searchsorted(s["vertno"], vertices)):
assert s["vertno"][p] == vertices[vp]
# Project out the surface normal and compute SVD
nn[vp] = np.sum(s["nn"][s["pinfo"][s["patch_inds"][p]], :], axis=0)
nn /= np.linalg.norm(nn, axis=-1, keepdims=True)
else:
nn = s["nn"][vertices, :]
return nn
@verbose
def compute_distance_to_sensors(src, info, picks=None, trans=None, verbose=None):
"""Compute distances between vertices and sensors.
Parameters
----------
src : instance of SourceSpaces
The object with vertex positions for which to compute distances to
sensors.
%(info)s Must contain sensor positions to which distances shall
be computed.
%(picks_good_data)s
%(trans_not_none)s
%(verbose)s
Returns
-------
depth : array of shape (n_vertices, n_channels)
The Euclidean distances of source space vertices with respect to
sensors.
"""
assert isinstance(src, SourceSpaces)
_validate_type(info, (Info,), "info")
# Load the head<->MRI transform if necessary
if src[0]["coord_frame"] == FIFF.FIFFV_COORD_MRI:
src_trans, _ = _get_trans(trans, allow_none=False)
else:
src_trans = Transform("head", "head") # Identity transform
# get vertex position in same coordinates as for sensors below
src_pos = np.vstack(
[apply_trans(src_trans, s["rr"][s["inuse"].astype(bool)]) for s in src]
)
# Select channels to be used for distance calculations
picks = _picks_to_idx(info, picks, "data", exclude=())
# get sensor positions
sensor_pos = []
dev_to_head = None
for ch in picks:
# MEG channels are in device coordinates, translate them to head
if channel_type(info, ch) in ["mag", "grad"]:
if dev_to_head is None:
dev_to_head = _ensure_trans(info["dev_head_t"], "meg", "head")
sensor_pos.append(apply_trans(dev_to_head, info["chs"][ch]["loc"][:3]))
else:
sensor_pos.append(info["chs"][ch]["loc"][:3])
sensor_pos = np.array(sensor_pos)
depths = cdist(src_pos, sensor_pos)
return depths
def get_decimated_surfaces(src):
"""Get the decimated surfaces from a source space.
Parameters
----------
src : instance of SourceSpaces | path-like
The source space with decimated surfaces.
Returns
-------
surfaces : list of dict
The decimated surfaces present in the source space. Each dict
which contains 'rr' and 'tris' keys for vertices positions and
triangle indices.
Notes
-----
.. versionadded:: 1.0
"""
src = _ensure_src(src)
surfaces = []
for s in src:
if s["type"] != "surf":
continue
rr = s["rr"]
use_tris = s["use_tris"]
vertno = s["vertno"]
ss = {}
ss["rr"] = rr[vertno]
reindex = np.full(len(rr), -1, int)
reindex[vertno] = np.arange(len(vertno))
ss["tris"] = reindex[use_tris]
assert (ss["tris"] >= 0).all()
surfaces.append(ss)
return surfaces