[074d3d]: / mne / preprocessing / tests / test_regress.py

Download this file

184 lines (162 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal, assert_array_less
from mne import pick_types
from mne.datasets import testing
from mne.io import read_raw_fif
from mne.preprocessing import (
EOGRegression,
create_eog_epochs,
read_eog_regression,
regress_artifact,
)
data_path = testing.data_path(download=False)
raw_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
@testing.requires_testing_data
def test_regress_artifact():
"""Test regressing artifact data."""
raw = read_raw_fif(raw_fname).pick(["eeg", "eog"])
raw.load_data()
epochs = create_eog_epochs(raw)
epochs.apply_baseline((None, None))
orig_data = epochs.get_data("eeg")
orig_norm = np.linalg.norm(orig_data)
epochs_clean, betas = regress_artifact(epochs)
regress_artifact(epochs, betas=betas, copy=False) # inplace, and w/betas
assert_allclose(epochs_clean.get_data(copy=False), epochs.get_data(copy=False))
clean_data = epochs_clean.get_data("eeg")
clean_norm = np.linalg.norm(clean_data)
assert orig_norm / 2 > clean_norm > orig_norm / 10
with pytest.raises(ValueError, match=r"Invalid value.*betas\.shape.*"):
regress_artifact(epochs, betas=betas[:-1])
# Regressing channels onto themselves should work
epochs, betas = regress_artifact(epochs, picks="eog", picks_artifact="eog")
assert np.ptp(epochs.get_data("eog")) < 1e-15 # constant value
assert_allclose(betas, 1)
# proj should only be required of channels being processed
raw = read_raw_fif(raw_fname).crop(0, 1).load_data()
raw.del_proj()
raw.set_eeg_reference(projection=True)
model = EOGRegression(proj=False, picks="meg", picks_artifact="eog")
model.fit(raw)
model.apply(raw)
model = EOGRegression(proj=False, picks="eeg", picks_artifact="eog")
with pytest.raises(RuntimeError, match="Projections need to be applied"):
model.fit(raw)
raw.del_proj()
with pytest.raises(RuntimeError, match="No average reference for the EEG"):
model.fit(raw)
@testing.requires_testing_data
def test_eog_regression():
"""Test regressing artifact data using the EOGRegression class."""
raw_meg_eeg = read_raw_fif(raw_fname)
raw = raw_meg_eeg.copy().pick(["eeg", "eog", "stim"])
# Test various errors
with pytest.raises(RuntimeError, match="Projections need to be applied"):
model = EOGRegression(proj=False).fit(raw)
with pytest.raises(RuntimeError, match="requires raw data to be loaded"):
model = EOGRegression().fit(raw)
raw.load_data()
# Test regression on raw data
model = EOGRegression()
assert str(model) == "<EOGRegression | not fitted>"
model.fit(raw)
assert str(model) == "<EOGRegression | fitted to 1 artifact channel>"
assert model.coef_.shape == (59, 1) # 59 EEG channels, 1 EOG channel
raw_clean = model.apply(raw)
# Some signal must have been removed
assert np.ptp(raw_clean.get_data("eeg")) < np.ptp(raw.get_data("eeg"))
# Test regression on epochs
epochs = create_eog_epochs(raw)
model = EOGRegression().fit(epochs)
epochs = model.apply(epochs)
# Since these were blinks, they should be mostly gone
assert np.ptp(epochs.get_data("eeg")) < 1e-4
# Test regression on evoked
evoked = epochs.average("all")
model = EOGRegression().fit(evoked)
evoked = model.apply(evoked)
assert model.coef_.shape == (59, 1)
# Since this was a blink evoked, signal should be mostly gone
assert np.ptp(evoked.get_data("eeg")) < 1e-4
# Test regression on evoked and applying to raw, with different ordering of
# channels. This should not work.
raw_ = raw.copy().drop_channels(["EEG 001"])
raw_ = raw_.add_channels([raw.copy().pick(["EEG 001"])])
model = EOGRegression().fit(evoked)
with pytest.raises(ValueError, match="data channels are not compatible"):
model.apply(raw_)
# Test in-place operation
raw_ = model.apply(raw, copy=False)
assert raw_ is raw
assert raw_._data is raw._data
raw_ = model.apply(raw, copy=True)
assert raw_ is not raw
assert raw_._data is not raw._data
# Test plotting with one channel type
fig = model.plot()
assert len(fig.axes) == 2 # (one topomap and one colorbar)
assert fig.axes[0].title.get_text() == "eeg/EOG 061"
# Test plotting with multiple channel types
raw_meg_eeg.load_data()
fig = EOGRegression().fit(raw_meg_eeg).plot()
assert len(fig.axes) == 6 # (3 topomaps and 3 colorbars)
assert fig.axes[0].title.get_text() == "grad/EOG 061"
assert fig.axes[1].title.get_text() == "mag/EOG 061"
assert fig.axes[2].title.get_text() == "eeg/EOG 061"
# Test plotting with multiple channel types, multiple regressors)
m = EOGRegression(picks_artifact=["EEG 001", "EOG 061"]).fit(raw_meg_eeg)
assert str(m) == "<EOGRegression | fitted to 2 artifact channels>"
fig = m.plot()
assert len(fig.axes) == 12 # (6 topomaps and 3 colorbars)
assert fig.axes[0].title.get_text() == "grad/EEG 001"
assert fig.axes[1].title.get_text() == "mag/EEG 001"
assert fig.axes[4].title.get_text() == "mag/EOG 061"
assert fig.axes[5].title.get_text() == "eeg/EOG 061"
@testing.requires_testing_data
def test_read_eog_regression(tmp_path):
"""Test saving and loading an EOGRegression object."""
pytest.importorskip("h5io")
raw = read_raw_fif(raw_fname).pick(["eeg", "eog"])
raw.load_data()
model = EOGRegression().fit(raw)
model.save(tmp_path / "weights.h5", overwrite=True)
model2 = read_eog_regression(tmp_path / "weights.h5")
assert_array_equal(model.picks, model2.picks)
assert_array_equal(model.picks_artifact, model2.picks_artifact)
assert_array_equal(model.exclude, model2.exclude)
assert_array_equal(model.coef_, model2.coef_)
assert model.proj == model2.proj
assert model.info_.keys() == model2.info_.keys()
@testing.requires_testing_data
def test_regress_artifact_bads():
"""Test that bad channels are handled properly."""
# Pick the first few EEG channels
raw = read_raw_fif(raw_fname).del_proj().set_eeg_reference(projection=True)
picks_all = np.concatenate(
[
pick_types(raw.info, meg=True)[:4],
pick_types(raw.info, eeg=True)[:8],
pick_types(raw.info, eog=True)[:1],
]
)
raw.pick(picks_all).load_data()
assert len(raw.ch_names) == 13 # 4 MEG, 8 EEG, 1 EOG
del picks_all
picks = pick_types(raw.info, eeg=True)
assert_array_equal(picks, np.arange(4, 12))
norms = np.linalg.norm(raw.get_data(picks), axis=1)
raw_reg, _ = regress_artifact(raw, picks=picks, picks_artifact="eog")
assert_allclose(raw_reg.get_data("meg"), raw.get_data("meg")) # unchanged
data_reg = raw_reg.get_data()
norms_reg = np.linalg.norm(data_reg[picks], axis=1)
suppression = 20 * np.log10(norms / norms_reg)
assert_array_less(3, suppression) # at least 3 dB suppression
# Adding some bad channels shouldn't affect anything when we supply picks
raw.info["bads"] = raw.ch_names[:2] + raw.ch_names[-2:-1]
raw_reg, _ = regress_artifact(raw, picks=picks, picks_artifact="eog")
data_reg_new = raw_reg.get_data()
assert_allclose(data_reg, data_reg_new)