[074d3d]: / mne / preprocessing / tests / test_realign.py

Download this file

190 lines (165 with data), 8.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy.interpolate import interp1d
from mne import Annotations, Epochs, create_info, find_events
from mne.io import RawArray
from mne.preprocessing import realign_raw
@pytest.mark.parametrize("ratio_other", (0.9, 0.999, 1, 1.001, 1.1)) # drifts
@pytest.mark.parametrize("start_raw, start_other", [(0, 0), (0, 3), (3, 0)])
@pytest.mark.parametrize("stop_raw, stop_other", [(0, 0), (0, 3), (3, 0)])
def test_realign(ratio_other, start_raw, start_other, stop_raw, stop_other):
"""Test realigning raw."""
# construct a true signal
sfreq = 100.0
duration = 50
stop_raw = duration - stop_raw
stop_other = duration - stop_other
signal_len = 0.2
box_len = 0.5
signal = np.zeros(int(round((duration + 1) * sfreq)))
orig_events = np.round(
np.arange(max(start_raw, start_other) + 2, min(stop_raw, stop_other) - 2)
* sfreq
).astype(int)
signal[orig_events] = 1.0
n_events = len(orig_events)
times = np.arange(len(signal)) / sfreq
stim = np.convolve(signal, np.ones(int(round(box_len * sfreq))))[: len(times)]
signal = np.convolve(signal, np.hanning(int(round(signal_len * sfreq))))[
: len(times)
]
# construct our sampled versions of these signals (linear interp is fine)
sfreq_raw = sfreq
sfreq_other = ratio_other * sfreq
raw_times = np.arange(start_raw, stop_raw, 1.0 / sfreq_raw)
other_times = np.arange(start_other, stop_other, 1.0 / sfreq_other)
assert raw_times[0] >= times[0]
assert raw_times[-1] <= times[-1]
assert other_times[0] >= times[0]
assert other_times[-1] <= times[-1]
data_raw = np.array(
[
interp1d(times, d, kind)(raw_times)
for d, kind in (
(stim, "nearest"),
(signal, "linear"),
)
]
)
data_other = np.array(
[
interp1d(times, d, kind)(other_times)
for d, kind in (
(stim, "nearest"),
(signal, "linear"),
)
]
)
info_raw = create_info(["raw_stim", "raw_signal"], sfreq, ["stim", "eeg"])
info_other = create_info(["other_stim", "other_signal"], sfreq, ["stim", "eeg"])
raw = RawArray(data_raw, info_raw, first_samp=111) # first_samp shouldn't matter
other = RawArray(data_other, info_other, first_samp=222)
raw.set_meas_date((0, 0)) # meas_date shouldn't matter
other.set_meas_date((100, 0))
# find events and do basic checks
evoked_raw, events_raw, _, events_other = _assert_similarity(
raw, other, n_events, ratio_other
)
# construct annotations
onsets_raw = (events_raw[:, 0] - raw.first_samp) / raw.info["sfreq"]
dur_raw = [box_len] * len(onsets_raw)
desc_raw = ["raw_box"] * len(onsets_raw)
annot_raw = Annotations(onsets_raw, dur_raw, desc_raw)
raw.set_annotations(annot_raw)
onsets_other = (events_other[:, 0] - other.first_samp) / other.info["sfreq"]
dur_other = [box_len * ratio_other] * len(onsets_other)
desc_other = ["other_box"] * len(onsets_other)
annot_other = Annotations(onsets_other, dur_other, desc_other)
other.set_annotations(annot_other)
# onsets/offsets correspond to 0/1 transition in boxcar signals
_assert_boxcar_annot_similarity(raw, other)
# realign
t_raw = (events_raw[:, 0] - raw.first_samp) / raw.info["sfreq"]
t_other = (events_other[:, 0] - other.first_samp) / other.info["sfreq"]
assert duration - 10 <= len(events_raw) < duration
raw_orig, other_orig = raw.copy(), other.copy()
realign_raw(raw, other, t_raw, t_other)
# old events should still work for raw and produce the same evoked data
evoked_raw_2, events_raw, _, events_other = _assert_similarity(
raw, other, n_events, ratio_other, events_raw=events_raw
)
assert_allclose(evoked_raw.data, evoked_raw_2.data)
assert_allclose(raw.times, other.times)
# raw data now aligned
corr = np.corrcoef(raw.get_data("data"), other.get_data("data"))
assert 0.99 < corr[0, 1] <= 1.0
# onsets derived from stim and annotations are the same
atol = 2 / sfreq
assert_allclose(
raw.annotations.onset, events_raw[:, 0] / raw.info["sfreq"], atol=atol
)
assert_allclose(
other.annotations.onset, events_other[:, 0] / other.info["sfreq"], atol=atol
)
# onsets/offsets still correspond to 0/1 transition in boxcar signals
_assert_boxcar_annot_similarity(raw, other)
# onsets and durations now aligned
onsets_raw, dur_raw, onsets_other, dur_other = _annot_to_onset_dur(raw, other)
assert len(onsets_raw) == len(onsets_other) == len(events_raw)
assert_allclose(onsets_raw, onsets_other, atol=atol)
assert_allclose(dur_raw, dur_other, atol=atol)
# Degenerate conditions -- only test in one run
test_degenerate = (
start_raw == start_other and stop_raw == stop_other and ratio_other == 1
)
if not test_degenerate:
return
# these alignments will not be correct but it shouldn't matter
with pytest.warns(RuntimeWarning, match="^Fewer.*may be unreliable.*"):
realign_raw(raw, other, raw_times[:5], other_times[:5])
with pytest.raises(ValueError, match="same shape"):
realign_raw(raw_orig, other_orig, raw_times[:5], other_times)
rand_times = np.random.RandomState(0).randn(len(other_times))
with pytest.raises(ValueError, match="cannot resample safely"):
realign_raw(raw_orig, other_orig, rand_times, other_times)
with pytest.warns(RuntimeWarning, match=".*computed as R=.*unreliable"):
realign_raw(raw_orig, other_orig, raw_times + rand_times * 1000, other_times)
def _assert_similarity(raw, other, n_events, ratio_other, events_raw=None):
if events_raw is None:
events_raw = find_events(raw, output="onset")
events_other = find_events(other, output="onset")
assert len(events_raw) == len(events_other) == n_events
kwargs = dict(baseline=None, tmin=0, tmax=0.2)
evoked_raw = Epochs(raw, events_raw, **kwargs).average()
evoked_other = Epochs(other, events_other, **kwargs).average()
assert evoked_raw.nave == evoked_other.nave == len(events_raw)
assert len(evoked_raw.data) == len(evoked_other.data) == 1 # just EEG
if 0.99 <= ratio_other <= 1.01: # when drift is not too large
corr = np.corrcoef(evoked_raw.data[0], evoked_other.data[0])[0, 1]
assert 0.9 <= corr <= 1.0
return evoked_raw, events_raw, evoked_other, events_other
def _assert_boxcar_annot_similarity(raw, other):
onsets_raw, dur_raw, onsets_other, dur_other = _annot_to_onset_dur(raw, other)
n_events = len(onsets_raw)
onsets_samp_raw = raw.time_as_index(onsets_raw)
offsets_samp_raw = raw.time_as_index(onsets_raw + dur_raw)
assert_allclose(raw.get_data("stim")[0, onsets_samp_raw - 2], [0] * n_events)
assert_allclose(raw.get_data("stim")[0, onsets_samp_raw + 2], [1] * n_events)
assert_allclose(raw.get_data("stim")[0, offsets_samp_raw - 2], [1] * n_events)
assert_allclose(raw.get_data("stim")[0, offsets_samp_raw + 2], [0] * n_events)
onsets_samp_other = other.time_as_index(onsets_other)
offsets_samp_other = other.time_as_index(onsets_other + dur_other)
assert_allclose(other.get_data("stim")[0, onsets_samp_other - 2], [0] * n_events)
assert_allclose(other.get_data("stim")[0, onsets_samp_other + 2], [1] * n_events)
assert_allclose(other.get_data("stim")[0, offsets_samp_other - 2], [1] * n_events)
assert_allclose(other.get_data("stim")[0, offsets_samp_other + 2], [0] * n_events)
def _annot_to_onset_dur(raw, other):
onsets_raw = raw.annotations.onset - raw.first_time
dur_raw = raw.annotations.duration
onsets_other = other.annotations.onset - other.first_time
dur_other = other.annotations.duration
return onsets_raw, dur_raw, onsets_other, dur_other