[074d3d]: / mne / preprocessing / tests / test_maxwell.py

Download this file

2074 lines (1915 with data), 78.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import pathlib
import re
from contextlib import contextmanager
from functools import partial
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_equal
from scipy import sparse
import mne
from mne import compute_raw_covariance, concatenate_raws, pick_info, pick_types
from mne._fiff.constants import FIFF
from mne.annotations import _annotations_starts_stops
from mne.chpi import filter_chpi, read_head_pos
from mne.datasets import testing
from mne.fixes import sph_harm_y
from mne.forward import _prep_meg_channels, use_coil_def
from mne.io import (
BaseRaw,
read_info,
read_raw_bti,
read_raw_ctf,
read_raw_fif,
read_raw_kit,
)
from mne.preprocessing import (
annotate_amplitude,
annotate_movement,
compute_maxwell_basis,
find_bad_channels_maxwell,
maxwell_filter_prepare_emptyroom,
)
from mne.preprocessing import (
maxwell_filter as _maxwell_filter_ola,
)
from mne.preprocessing.maxwell import (
_bases_complex_to_real,
_bases_real_to_complex,
_get_n_moments,
_prep_mf_coils,
_sh_complex_to_real,
_sh_negate,
_sh_real_to_complex,
_sss_basis_basic,
_trans_sss_basis,
)
from mne.rank import _compute_rank_int, _get_rank_sss, compute_rank
from mne.utils import (
_record_warnings,
assert_meg_snr,
buggy_mkl_svd,
catch_logging,
object_diff,
use_log_level,
)
io_path = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_small_fname = io_path / "test_raw.fif"
data_path = testing.data_path(download=False)
sss_path = data_path / "SSS"
raw_fname = sss_path / "test_move_anon_raw.fif"
sss_std_fname = sss_path / "test_move_anon_stdOrigin_raw_sss.fif"
sss_nonstd_fname = sss_path / "test_move_anon_nonStdOrigin_raw_sss.fif"
sss_bad_recon_fname = sss_path / "test_move_anon_badRecon_raw_sss.fif"
sss_reg_in_fname = sss_path / "test_move_anon_regIn_raw_sss.fif"
sss_fine_cal_fname = sss_path / "test_move_anon_fineCal_raw_sss.fif"
sss_ctc_fname = sss_path / "test_move_anon_crossTalk_raw_sss.fif"
sss_trans_default_fname = sss_path / "test_move_anon_transDefault_raw_sss.fif"
sss_trans_sample_fname = sss_path / "test_move_anon_transSample_raw_sss.fif"
sss_st1FineCalCrossTalkRegIn_fname = (
sss_path / "test_move_anon_st1FineCalCrossTalkRegIn_raw_sss.fif"
)
sss_st1FineCalCrossTalkRegInTransSample_fname = (
sss_path / "test_move_anon_st1FineCalCrossTalkRegInTransSample_raw_sss.fif"
)
sss_movecomp_fname = sss_path / "test_move_anon_movecomp_raw_sss.fif"
sss_movecomp_reg_in_fname = sss_path / "test_move_anon_movecomp_regIn_raw_sss.fif"
sss_movecomp_reg_in_st4s_fname = (
sss_path / "test_move_anon_movecomp_regIn_st4s_raw_sss.fif"
)
skip_fname = data_path / "misc" / "intervalrecording_raw.fif"
erm_fname = sss_path / "test_move_anon_erm_raw.fif"
sss_erm_std_fname = sss_path / "test_move_anon_erm_devOrigin_raw_sss.fif"
sss_erm_reg_in_fname = sss_path / "test_move_anon_erm_regIn_raw_sss.fif"
sss_erm_fine_cal_fname = sss_path / "test_move_anon_erm_fineCal_raw_sss.fif"
sss_erm_ctc_fname = sss_path / "test_move_anon_erm_crossTalk_raw_sss.fif"
sss_erm_st_fname = sss_path / "test_move_anon_erm_st1_raw_sss.fif"
sss_erm_st1FineCalCrossTalk_fname = (
sss_path / "test_move_anon_erm_st1FineCalCrossTalk_raw_sss.fif"
)
sss_erm_st1FineCalCrossTalkRegIn_fname = (
sss_path / "test_move_anon_erm_st1FineCalCrossTalkRegIn_raw_sss.fif"
)
sample_fname = data_path / "MEG" / "sample" / "sample_audvis_trunc_raw.fif"
sss_samp_reg_in_fname = data_path / "SSS" / "sample_audvis_trunc_regIn_raw_sss.fif"
sss_samp_fname = data_path / "SSS" / "sample_audvis_trunc_raw_sss.fif"
pos_fname = data_path / "SSS" / "test_move_anon_raw.pos"
bases_fname = sss_path / "sss_data.mat"
fine_cal_fname = sss_path / "sss_cal_3053.dat"
fine_cal_fname_3d = sss_path / "sss_cal_3053_3d.dat"
ctc_fname = sss_path / "ct_sparse.fif"
fine_cal_mgh_fname = sss_path / "sss_cal_mgh.dat"
ctc_mgh_fname = sss_path / "ct_sparse_mgh.fif"
triux_path = data_path / "SSS" / "TRIUX"
tri_fname = triux_path / "triux_bmlhus_erm_raw.fif"
tri_sss_fname = triux_path / "triux_bmlhus_erm_raw_sss.fif"
tri_sss_reg_fname = triux_path / "triux_bmlhus_erm_regIn_raw_sss.fif"
tri_sss_st4_fname = triux_path / "triux_bmlhus_erm_st4_raw_sss.fif"
tri_sss_ctc_fname = triux_path / "triux_bmlhus_erm_ctc_raw_sss.fif"
tri_sss_cal_fname = triux_path / "triux_bmlhus_erm_cal_raw_sss.fif"
tri_sss_ctc_cal_fname = triux_path / "triux_bmlhus_erm_ctc_cal_raw_sss.fif"
tri_sss_ctc_cal_reg_in_fname = triux_path / "triux_bmlhus_erm_ctc_cal_regIn_raw_sss.fif"
tri_ctc_fname = triux_path / "ct_sparse_BMLHUS.fif"
tri_cal_fname = triux_path / "sss_cal_BMLHUS.dat"
io_dir = Path(__file__).parents[2] / "io"
fname_ctf_raw = io_dir / "tests" / "data" / "test_ctf_comp_raw.fif"
ctf_fname_continuous = data_path / "CTF" / "testdata_ctf.ds"
# In some of the tests, use identical coil defs to what is used in
# MaxFilter
elekta_def_fname = Path(mne.__file__).parent / "data" / "coil_def_Elekta.dat"
int_order, ext_order = 8, 3
mf_head_origin = (0.0, 0.0, 0.04)
mf_meg_origin = (0.0, 0.013, -0.006)
# 30 random bad MEG channels (20 grad, 10 mag) that were used in generation
bads = [
"MEG0912",
"MEG1722",
"MEG2213",
"MEG0132",
"MEG1312",
"MEG0432",
"MEG2433",
"MEG1022",
"MEG0442",
"MEG2332",
"MEG0633",
"MEG1043",
"MEG1713",
"MEG0422",
"MEG0932",
"MEG1622",
"MEG1343",
"MEG0943",
"MEG0643",
"MEG0143",
"MEG2142",
"MEG0813",
"MEG2143",
"MEG1323",
"MEG0522",
"MEG1123",
"MEG0423",
"MEG2122",
"MEG2532",
"MEG0812",
]
def _assert_n_free(raw_sss, lower, upper=None):
"""Check the DOF."""
__tracebackhide__ = True
upper = lower if upper is None else upper
n_free = raw_sss.info["proc_history"][0]["max_info"]["sss_info"]["nfree"]
assert lower <= n_free <= upper, f"nfree fail: {lower} <= {n_free} <= {upper}"
def _assert_mag_coil_type(info, coil_type):
__tracebackhide__ = True
picks = pick_types(info, meg="mag", exclude=())
coil_types = set(info["chs"][pick]["coil_type"] for pick in picks)
assert coil_types == {coil_type}
def read_crop(fname, lims=(0, None)):
"""Read and crop."""
return read_raw_fif(fname, allow_maxshield="yes").crop(*lims)
# For backward compat and to be most like MaxFilter, we make "maxwell_filter"
# the one that behaves like MaxFilter. _maxwell_filter is left to
# be the advanced/better one.
maxwell_filter = partial(_maxwell_filter_ola, st_overlap=False, mc_interp="zero")
@pytest.mark.slowtest
@testing.requires_testing_data
def test_movement_compensation_basic(tmp_path):
"""Test movement compensation."""
lims = (0, 4)
raw = read_crop(raw_fname, lims).load_data()
head_pos = read_head_pos(pos_fname)
#
# Movement compensation, no regularization, no tSSS
#
_assert_mag_coil_type(raw.info, FIFF.FIFFV_COIL_VV_MAG_T3)
assert_allclose(raw.info["chs"][2]["cal"], 4.14e-11, rtol=1e-6)
raw.info["chs"][2]["coil_type"] = FIFF.FIFFV_COIL_VV_MAG_T2
raw_sss = maxwell_filter(
raw,
head_pos=head_pos,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
)
_assert_mag_coil_type(raw_sss.info, FIFF.FIFFV_COIL_VV_MAG_T3)
assert_meg_snr(
raw_sss, read_crop(sss_movecomp_fname, lims), 4.6, 12.4, chpi_med_tol=58
)
# IO
temp_fname = tmp_path / "test_raw_sss.fif"
raw_sss.save(temp_fname)
raw_sss = read_crop(temp_fname)
assert_meg_snr(
raw_sss, read_crop(sss_movecomp_fname, lims), 4.6, 12.4, chpi_med_tol=58
)
#
# Movement compensation, regularization, no tSSS
#
raw_sss = maxwell_filter(raw, head_pos=head_pos, origin=mf_head_origin)
assert_meg_snr(
raw_sss, read_crop(sss_movecomp_reg_in_fname, lims), 0.5, 1.9, chpi_med_tol=121
)
#
# Movement compensation, regularization, tSSS at the end
#
raw_nohpi = filter_chpi(raw.copy(), t_window=0.2)
with pytest.warns(RuntimeWarning, match="untested"):
raw_sss_mv = maxwell_filter(
raw_nohpi,
head_pos=head_pos,
st_duration=4.0,
origin=mf_head_origin,
st_fixed=False,
)
# Neither match is particularly good because our algorithm actually differs
assert_meg_snr(
raw_sss_mv, read_crop(sss_movecomp_reg_in_st4s_fname, lims), 0.6, 1.3
)
tSSS_fname = sss_path / "test_move_anon_st4s_raw_sss.fif"
assert_meg_snr(raw_sss_mv, read_crop(tSSS_fname, lims), 0.6, 1.0, chpi_med_tol=None)
assert_meg_snr(
read_crop(sss_movecomp_reg_in_st4s_fname),
read_crop(tSSS_fname),
0.8,
1.0,
chpi_med_tol=None,
)
#
# Movement compensation, regularization, tSSS at the beginning
#
raw_sss_mc = maxwell_filter(
raw_nohpi, head_pos=head_pos, st_duration=4.0, origin=mf_head_origin
)
assert_meg_snr(raw_sss_mc, read_crop(tSSS_fname, lims), 0.6, 1.0, chpi_med_tol=None)
assert_meg_snr(raw_sss_mc, raw_sss_mv, 0.6, 1.4)
# some degenerate cases
raw_erm = read_crop(erm_fname)
with pytest.raises(ValueError, match="positions can only be used"):
maxwell_filter(raw_erm, coord_frame="meg", head_pos=head_pos)
with pytest.raises(ValueError, match=r"of shape \(N, 10\)"):
maxwell_filter(raw, head_pos=head_pos[:, :9])
with pytest.raises(TypeError, match="instance of ndarray"):
maxwell_filter(raw, head_pos="foo")
with pytest.raises(ValueError, match="ascending"):
maxwell_filter(raw, head_pos=head_pos[::-1])
head_pos_bad = head_pos.copy()
head_pos_bad[0, 0] = raw._first_time - 1e-2
with pytest.raises(ValueError, match="greater than"):
maxwell_filter(raw, head_pos=head_pos_bad)
head_pos_bad = head_pos.copy()
head_pos_bad[0, 4] = 1.0 # off by more than 1 m
with pytest.warns(RuntimeWarning, match="greater than 1 m"):
maxwell_filter(
raw.copy().crop(0, 0.1), head_pos=head_pos_bad, bad_condition="ignore"
)
# make sure numerical error doesn't screw it up, though
head_pos_bad = head_pos.copy()
head_pos_bad[0, 0] = raw._first_time - 5e-4
raw_sss_tweak = maxwell_filter(
raw.copy().crop(0, 0.05), head_pos=head_pos_bad, origin=mf_head_origin
)
assert_meg_snr(
raw_sss_tweak, raw_sss.copy().crop(0, 0.05), 1.4, 8.0, chpi_med_tol=5
)
# smoke test a zero-like t[0]
head_pos_bad[0, 0] = raw._first_time + 0.1 / raw.info["sfreq"]
maxwell_filter(
raw.copy().crop(0, 0.05), head_pos=head_pos_bad, origin=mf_head_origin
)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_movement_compensation_smooth():
"""Test movement compensation with smooth interpolation."""
lims = (0, 10)
raw = read_crop(raw_fname, lims).load_data()
mag_picks = pick_types(raw.info, meg="mag", exclude=())
power = np.sqrt(np.sum(raw[mag_picks][0] ** 2))
head_pos = read_head_pos(pos_fname)
kwargs = dict(
head_pos=head_pos,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
)
# Naive MC increases noise relative to raw
raw_sss = maxwell_filter(raw, **kwargs)
_assert_shielding(raw_sss, power, 0.258, max_factor=0.259)
# OLA MC decreases noise relative to raw
raw_sss_smooth = _maxwell_filter_ola(raw, mc_interp="hann", **kwargs)
_assert_shielding(raw_sss_smooth, raw_sss, 1.01, max_factor=1.02)
# now with time-varying regularization
kwargs["regularize"] = "in"
raw_sss = maxwell_filter(raw, **kwargs)
_assert_shielding(raw_sss, power, 0.84, max_factor=0.85)
raw_sss_smooth = _maxwell_filter_ola(raw, mc_interp="hann", **kwargs)
_assert_shielding(raw_sss_smooth, raw_sss, 1.008, max_factor=1.012)
# now with tSSS
kwargs["st_duration"] = 10
with catch_logging() as log:
raw_tsss = maxwell_filter(raw, verbose=True, **kwargs)
log = log.getvalue()
want_re = re.compile(".*Projecting 25 intersecting.*across 24 pos.*", re.DOTALL)
assert want_re.match(log) is not None, log
_assert_shielding(raw_tsss, power, 31.2, max_factor=31.3)
with catch_logging() as log:
raw_tsss_smooth = _maxwell_filter_ola(
raw, mc_interp="hann", st_overlap=True, verbose=True, **kwargs
)
log = log.getvalue()
assert want_re.match(log) is not None, log
_assert_shielding(raw_tsss_smooth, power, 31.5, max_factor=31.7)
@pytest.mark.slowtest
def test_other_systems():
"""Test Maxwell filtering on KIT, BTI, and CTF files."""
# KIT
kit_dir = io_dir / "kit" / "tests" / "data"
sqd_path = kit_dir / "test.sqd"
mrk_path = kit_dir / "test_mrk.sqd"
elp_path = kit_dir / "test_elp.txt"
hsp_path = kit_dir / "test_hsp.txt"
raw_kit = read_raw_kit(sqd_path, str(mrk_path), str(elp_path), str(hsp_path))
with (
pytest.raises(NotImplementedError, match="Cannot create forward solution with"),
):
maxwell_filter(raw_kit, verbose=True)
with catch_logging() as log:
raw_sss = maxwell_filter(
raw_kit, origin=(0.0, 0.0, 0.04), ignore_ref=True, verbose=True
)
assert "12/15 out" in log.getvalue() # homogeneous fields removed
_assert_n_free(raw_sss, 65, 65)
raw_sss_auto = maxwell_filter(
raw_kit, origin=(0.0, 0.0, 0.04), ignore_ref=True, mag_scale="auto"
)
assert_allclose(raw_sss._data, raw_sss_auto._data)
with catch_logging() as log:
pytest.raises(
RuntimeError, maxwell_filter, raw_kit, ignore_ref=True, regularize=None
) # bad condition
raw_sss = maxwell_filter(
raw_kit,
origin="auto",
ignore_ref=True,
bad_condition="info",
verbose=True,
)
log = log.getvalue()
assert "badly conditioned" not in log
assert "more than 20 mm from" not in log
_assert_n_free(raw_sss, 67, 67)
# Let's set the origin
with catch_logging() as log:
raw_sss = maxwell_filter(
raw_kit,
origin=(0.0, 0.0, 0.04),
ignore_ref=True,
bad_condition="info",
regularize=None,
verbose=True,
)
log = log.getvalue()
assert "badly conditioned" in log
assert "80/80 in, 12/15 out" in log
_assert_n_free(raw_sss, 80)
# Now with reg
with catch_logging() as log:
raw_sss = maxwell_filter(
raw_kit, origin=(0.0, 0.0, 0.04), ignore_ref=True, verbose=True
)
log = log.getvalue()
assert "badly conditioned" not in log
assert "12/15 out" in log
_assert_n_free(raw_sss, 65)
# BTi
bti_dir = io_dir / "bti" / "tests" / "data"
bti_pdf = bti_dir / "test_pdf_linux"
bti_config = bti_dir / "test_config_linux"
bti_hs = bti_dir / "test_hs_linux"
raw_bti = read_raw_bti(bti_pdf, bti_config, bti_hs, preload=False)
picks = pick_types(raw_bti.info, meg="mag", exclude=())
power = np.sqrt(np.sum(raw_bti[picks][0] ** 2))
raw_sss = maxwell_filter(raw_bti)
_assert_n_free(raw_sss, 70)
_assert_shielding(raw_sss, power, 0.5)
raw_sss_auto = maxwell_filter(raw_bti, mag_scale="auto", verbose=True)
_assert_shielding(raw_sss_auto, power, 0.7)
# CTF
raw_ctf_3 = read_crop(fname_ctf_raw)
assert raw_ctf_3.compensation_grade == 3
raw_ctf_0 = raw_ctf_3.copy().apply_gradient_compensation(0)
assert raw_ctf_0.compensation_grade == 0
# 3rd-order gradient compensation works really well (better than MF here)
_assert_shielding(raw_ctf_3, raw_ctf_0, 20, 21)
origin = (0.0, 0.0, 0.04)
raw_sss_3 = maxwell_filter(raw_ctf_3, origin=origin, verbose=True)
_assert_n_free(raw_sss_3, 70)
_assert_shielding(raw_sss_3, raw_ctf_3, 0.12, 0.14)
_assert_shielding(raw_sss_3, raw_ctf_0, 2.63, 2.66)
assert raw_sss_3.compensation_grade == 3
raw_sss_3.apply_gradient_compensation(0)
assert raw_sss_3.compensation_grade == 0
_assert_shielding(raw_sss_3, raw_ctf_3, 0.15, 0.17)
_assert_shielding(raw_sss_3, raw_ctf_0, 3.18, 3.20)
with pytest.raises(ValueError, match="digitization points"):
maxwell_filter(raw_ctf_0)
raw_sss_0 = maxwell_filter(raw_ctf_0, origin=origin, verbose=True)
_assert_n_free(raw_sss_0, 68)
_assert_shielding(raw_sss_0, raw_ctf_3, 0.07, 0.09)
_assert_shielding(raw_sss_0, raw_ctf_0, 1.8, 1.9)
raw_sss_0.apply_gradient_compensation(3)
_assert_shielding(raw_sss_0, raw_ctf_3, 0.07, 0.09)
_assert_shielding(raw_sss_0, raw_ctf_0, 1.63, 1.67)
with pytest.raises(RuntimeError, match="ignore_ref"):
maxwell_filter(raw_ctf_3, ignore_ref=True)
# ignoring ref outperforms including it in maxwell filtering
with catch_logging() as log:
raw_sss = maxwell_filter(
raw_ctf_0, origin=origin, ignore_ref=True, verbose=True
)
assert ", 12/15 out" in log.getvalue() # homogeneous fields removed
_assert_n_free(raw_sss, 70)
_assert_shielding(raw_sss, raw_ctf_0, 12, 13)
# if ignore_ref=True, we remove compensators because they will not
# work the way people expect (it puts noise back in the data!)
with pytest.raises(ValueError, match="Desired compensation.*not found"):
raw_sss.copy().apply_gradient_compensation(3)
raw_sss_auto = maxwell_filter(
raw_ctf_0, origin=origin, ignore_ref=True, mag_scale="auto"
)
assert_allclose(raw_sss._data, raw_sss_auto._data)
with catch_logging() as log:
maxwell_filter(
raw_ctf_0, origin=origin, regularize=None, ignore_ref=True, verbose=True
)
assert "80/80 in, 12/15 out" in log.getvalue() # homogeneous fields
def test_spherical_conversions():
"""Test spherical harmonic conversions."""
# Test our real<->complex conversion functions
az, pol = np.meshgrid(np.linspace(0, 2 * np.pi, 30), np.linspace(0, np.pi, 20))
for degree in range(1, int_order):
for order in range(0, degree + 1):
sph = sph_harm_y(degree, order, pol, az)
# ensure that we satisfy the conjugation property
assert_allclose(_sh_negate(sph, order), sph_harm_y(degree, -order, pol, az))
# ensure our conversion functions work
sph_real_pos = _sh_complex_to_real(sph, order)
sph_real_neg = _sh_complex_to_real(sph, -order)
sph_2 = _sh_real_to_complex([sph_real_pos, sph_real_neg], order)
assert_allclose(sph, sph_2, atol=1e-7)
@testing.requires_testing_data
def test_multipolar_bases():
"""Test multipolar moment basis calculation using sensor information."""
from scipy.io import loadmat
# Test our basis calculations
info = read_info(raw_fname)
with use_coil_def(elekta_def_fname):
coils = _prep_meg_channels(info, do_es=True)["defs"]
# Check against a known benchmark
sss_data = loadmat(bases_fname)
exp = dict(int_order=int_order, ext_order=ext_order)
for origin in ((0, 0, 0.04), (0, 0.02, 0.02)):
o_str = "".join(f"{int(1000 * n)}" for n in origin)
exp.update(origin=origin)
S_tot = _sss_basis_basic(exp, coils, method="alternative")
# Test our real<->complex conversion functions
S_tot_complex = _bases_real_to_complex(S_tot, int_order, ext_order)
S_tot_round = _bases_complex_to_real(S_tot_complex, int_order, ext_order)
assert_allclose(S_tot, S_tot_round, atol=1e-7)
S_tot_mat = np.concatenate(
[sss_data["Sin" + o_str], sss_data["Sout" + o_str]], axis=1
)
S_tot_mat_real = _bases_complex_to_real(S_tot_mat, int_order, ext_order)
S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real, int_order, ext_order)
assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7)
assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8)
assert_allclose(S_tot, S_tot_mat_real, rtol=1e-4, atol=1e-8)
# Now normalize our columns
S_tot /= np.sqrt(np.sum(S_tot * S_tot, axis=0))[np.newaxis]
S_tot_complex /= np.sqrt(
np.sum((S_tot_complex * S_tot_complex.conj()).real, axis=0)
)[np.newaxis]
# Check against a known benchmark
S_tot_mat = np.concatenate(
[sss_data["SNin" + o_str], sss_data["SNout" + o_str]], axis=1
)
# Check this roundtrip
S_tot_mat_real = _bases_complex_to_real(S_tot_mat, int_order, ext_order)
S_tot_mat_round = _bases_real_to_complex(S_tot_mat_real, int_order, ext_order)
assert_allclose(S_tot_mat, S_tot_mat_round, atol=1e-7)
assert_allclose(S_tot_complex, S_tot_mat, rtol=1e-4, atol=1e-8)
# Now test our optimized version
S_tot = _sss_basis_basic(exp, coils)
with use_coil_def(elekta_def_fname):
S_tot_fast = _trans_sss_basis(
exp, all_coils=_prep_mf_coils(info), trans=info["dev_head_t"]
)
# there are some sign differences for columns (order/degrees)
# in here, likely due to Condon-Shortley. Here we use a
# Magnetometer channel to figure out the flips because the
# gradiometer channels have effectively zero values for first three
# external components (i.e., S_tot[grad_picks, 80:83])
flips = np.sign(S_tot_fast[2]) != np.sign(S_tot[2])
flips = 1 - 2 * flips
assert_allclose(S_tot, S_tot_fast * flips, atol=1e-16)
@testing.requires_testing_data
def test_basic():
"""Test Maxwell filter basic version."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
raw = read_crop(raw_fname, (0.0, 1.0))
raw_err = read_crop(raw_fname).apply_proj()
raw_erm = read_crop(erm_fname)
with pytest.raises(RuntimeError, match="cannot be applied"):
maxwell_filter(raw_err)
with pytest.raises(TypeError, match="instance of BaseRaw"):
maxwell_filter(1.0)
with pytest.raises(ValueError, match="Number of requested bases"):
maxwell_filter(raw, int_order=20) # too many
n_int_bases = int_order**2 + 2 * int_order
n_ext_bases = ext_order**2 + 2 * ext_order
nbases = n_int_bases + n_ext_bases
# Check number of bases computed correctly
assert _get_n_moments([int_order, ext_order]).sum() == nbases
# Test SSS computation at the standard head origin
assert len(raw.info["projs"]) == 12 # 11 MEG projs + 1 AVG EEG
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(
raw, origin=mf_head_origin, regularize=None, bad_condition="ignore"
)
assert len(raw_sss.info["projs"]) == 1 # avg EEG
assert raw_sss.info["projs"][0]["desc"] == "Average EEG reference"
assert_meg_snr(raw_sss, read_crop(sss_std_fname), 200.0, 1000.0)
py_cal = raw_sss.info["proc_history"][0]["max_info"]["sss_cal"]
assert len(py_cal) == 0
py_ctc = raw_sss.info["proc_history"][0]["max_info"]["sss_ctc"]
assert len(py_ctc) == 0
py_st = raw_sss.info["proc_history"][0]["max_info"]["max_st"]
assert len(py_st) == 0
with pytest.raises(RuntimeError, match="cannot reapply"):
maxwell_filter(raw_sss)
# Test SSS computation at non-standard head origin
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(
raw, origin=[0.0, 0.02, 0.02], regularize=None, bad_condition="ignore"
)
assert_meg_snr(raw_sss, read_crop(sss_nonstd_fname), 250.0, 700.0)
# Test SSS computation at device origin
sss_erm_std = read_crop(sss_erm_std_fname)
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
origin=mf_meg_origin,
regularize=None,
bad_condition="ignore",
)
assert_meg_snr(raw_sss, sss_erm_std, 70.0, 260.0)
for key in ("job", "frame"):
vals = [
x.info["proc_history"][0]["max_info"]["sss_info"][key]
for x in [raw_sss, sss_erm_std]
]
assert vals[0] == vals[1]
# Two equivalent things: at device origin in device coords (0., 0., 0.)
# and at device origin at head coords info['dev_head_t'][:3, 3]
raw_sss_meg = maxwell_filter(raw, coord_frame="meg", origin=(0.0, 0.0, 0.0))
raw_sss_head = maxwell_filter(raw, origin=raw.info["dev_head_t"]["trans"][:3, 3])
assert_meg_snr(raw_sss_meg, raw_sss_head, 100.0, 900.0)
# Check against SSS functions from proc_history
assert _get_n_moments(int_order) == _get_rank_sss(raw_sss)
# Degenerate cases
with pytest.raises(ValueError, match="Invalid value"):
maxwell_filter(raw, coord_frame="foo")
with pytest.raises(ValueError, match="numerical array"):
maxwell_filter(raw, origin="foo")
with pytest.raises(ValueError, match="3-element array"):
maxwell_filter(raw, origin=[0] * 4)
with pytest.raises(ValueError, match="must be a float"):
maxwell_filter(raw, mag_scale="foo")
raw_missing = raw.copy().load_data()
raw_missing.info["bads"] = ["MEG0111"]
raw_missing.pick("meg", exclude="bads") # will be missing the bad
maxwell_filter(raw_missing)
with pytest.warns(RuntimeWarning, match="not in data"):
maxwell_filter(raw_missing, calibration=fine_cal_fname)
@testing.requires_testing_data
def test_maxwell_filter_additional(tmp_path):
"""Test processing of Maxwell filtered data."""
# TODO: Future tests integrate with mne/io/tests/test_proc_history
# Load testing data (raw, SSS std origin, SSS non-standard origin)
file_name = "test_move_anon"
raw_fname = data_path / "SSS" / (file_name + "_raw.fif")
# Use 2.0 seconds of data to get stable cov. estimate
raw = read_crop(raw_fname, (0.0, 2.0))
# Get MEG channels, compute Maxwell filtered data
raw.load_data()
raw.pick("meg")
int_order = 8
raw_sss = maxwell_filter(
raw, origin=mf_head_origin, regularize=None, bad_condition="ignore"
)
# Test io on processed data
test_outname = tmp_path / "test_raw_sss.fif"
raw_sss.save(test_outname)
raw_sss_loaded = read_crop(test_outname).load_data()
# Some numerical imprecision since save uses 'single' fmt
assert_allclose(raw_sss_loaded[:][0], raw_sss[:][0], rtol=1e-6, atol=1e-20)
# Test rank of covariance matrices for raw and SSS processed data
cov_raw = compute_raw_covariance(raw)
cov_sss = compute_raw_covariance(raw_sss)
scalings = None
cov_raw_rank = _compute_rank_int(
cov_raw, scalings=scalings, info=raw.info, proj=False
)
cov_sss_rank = _compute_rank_int(
cov_sss, scalings=scalings, info=raw_sss.info, proj=False
)
assert cov_raw_rank == raw.info["nchan"]
assert cov_sss_rank == _get_n_moments(int_order)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_bads_reconstruction():
"""Test Maxwell filter reconstruction of bad channels."""
raw = read_crop(raw_fname, (0.0, 1.0))
raw.info["bads"] = bads
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(
raw, origin=mf_head_origin, regularize=None, bad_condition="ignore"
)
assert_meg_snr(raw_sss, read_crop(sss_bad_recon_fname), 300.0)
@pytest.mark.slowtest
@buggy_mkl_svd
@testing.requires_testing_data
def test_spatiotemporal():
"""Test Maxwell filter (tSSS) spatiotemporal processing."""
# Load raw testing data
raw = read_crop(raw_fname)
mag_picks = pick_types(raw.info, meg="mag", exclude=())
power = np.sqrt(np.sum(raw[mag_picks][0] ** 2))
# Test that window is less than length of data
with pytest.raises(ValueError, match="must be"):
maxwell_filter(raw, st_duration=1000.0)
# We could check both 4 and 10 seconds because Elekta handles them
# differently (to ensure that std/non-std tSSS windows are correctly
# handled), but the 4-s case should hopefully be sufficient.
st_durations = [4.0] # , 10.]
tols = [(80, 100)] # , 200.]
kwargs = dict(origin=mf_head_origin, regularize=None, bad_condition="ignore")
for st_duration, tol in zip(st_durations, tols):
# Load tSSS data depending on st_duration and get data
tSSS_fname = sss_path / f"test_move_anon_st{int(st_duration)}s_raw_sss.fif"
tsss_bench = read_crop(tSSS_fname)
# Because Elekta's tSSS sometimes(!) lumps the tail window of data
# onto the previous buffer if it's shorter than st_duration, we have to
# crop the data here to compensate for Elekta's tSSS behavior.
# if st_duration == 10.:
# tsss_bench.crop(0, st_duration)
# raw.crop(0, st_duration)
# Test sss computation at the standard head origin. Same cropping issue
# as mentioned above.
raw_tsss = maxwell_filter(raw, st_duration=st_duration, **kwargs)
assert _compute_rank_int(raw_tsss, proj=False) == 140
assert_meg_snr(raw_tsss, tsss_bench, *tol)
py_st = raw_tsss.info["proc_history"][0]["max_info"]["max_st"]
assert len(py_st) > 0
assert py_st["buflen"] == st_duration
assert py_st["subspcorr"] == 0.98
_assert_shielding(raw_tsss, power, 20.8)
# Degenerate cases
with pytest.raises(ValueError, match="Need 0 < st_correlation"):
maxwell_filter(raw, st_duration=10.0, st_correlation=0.0)
@buggy_mkl_svd
@testing.requires_testing_data
def test_st_overlap():
"""Test st_overlap."""
raw = read_crop(raw_fname).crop(0, 1.0)
mag_picks = pick_types(raw.info, meg="mag", exclude=())
power = np.sqrt(np.sum(raw[mag_picks][0] ** 2))
kwargs = dict(
origin=mf_head_origin, regularize=None, bad_condition="ignore", st_duration=0.5
)
raw_tsss = maxwell_filter(raw, **kwargs)
assert _compute_rank_int(raw_tsss, proj=False) == 140
_assert_shielding(raw_tsss, power, 35.8, max_factor=35.9)
raw_tsss = _maxwell_filter_ola(raw, st_overlap=True, **kwargs)
assert _compute_rank_int(raw_tsss, proj=False) == 140
_assert_shielding(raw_tsss, power, 35.6, max_factor=35.7)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_spatiotemporal_only():
"""Test tSSS-only processing."""
# Load raw testing data
tmax = 0.5
raw = read_crop(raw_fname, (0, tmax)).load_data()
picks = pick_types(raw.info, meg=True, exclude="bads")[::2]
raw.pick([raw.ch_names[pick] for pick in picks])
mag_picks = pick_types(raw.info, meg="mag", exclude=())
power = np.sqrt(np.sum(raw[mag_picks][0] ** 2))
# basics
raw_tsss = maxwell_filter(raw, st_duration=tmax / 2.0, st_only=True)
assert len(raw.info["projs"]) == len(raw_tsss.info["projs"])
assert _compute_rank_int(raw_tsss, proj=False) == len(picks)
_assert_shielding(raw_tsss, power, 9.2)
# with movement
head_pos = read_head_pos(pos_fname)
raw_tsss = maxwell_filter(
raw, st_duration=tmax / 2.0, st_only=True, head_pos=head_pos
)
assert _compute_rank_int(raw_tsss, proj=False) == len(picks)
_assert_shielding(raw_tsss, power, 9.2)
with pytest.warns(RuntimeWarning, match="st_fixed"):
raw_tsss = maxwell_filter(
raw, st_duration=tmax / 2.0, st_only=True, head_pos=head_pos, st_fixed=False
)
assert _compute_rank_int(raw_tsss, proj=False) == len(picks)
_assert_shielding(raw_tsss, power, 9.2, max_factor=9.4)
# COLA
raw_tsss = maxwell_filter(
raw,
st_duration=tmax / 2.0,
st_only=True,
head_pos=head_pos,
st_overlap=True,
mc_interp="hann",
)
assert _compute_rank_int(raw_tsss, proj=False) == len(picks)
_assert_shielding(raw_tsss, power, 9.5, max_factor=9.6)
# should do nothing
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_correlation=1.0, st_only=True)
assert_allclose(raw[:][0], raw_tsss[:][0])
# degenerate
with pytest.raises(ValueError, match="must not be None if st_only"):
maxwell_filter(raw, st_only=True)
# two-step process equivalent to single-step process
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_only=True)
raw_tsss = maxwell_filter(raw_tsss)
raw_tsss_2 = maxwell_filter(raw, st_duration=tmax)
assert_meg_snr(raw_tsss, raw_tsss_2, 1e5)
# now also with head movement, and a bad MEG channel
assert len(raw.info["bads"]) == 0
bads = [raw.ch_names[0]]
raw.info["bads"] = list(bads)
raw_tsss = maxwell_filter(raw, st_duration=tmax, st_only=True, head_pos=head_pos)
assert raw.info["bads"] == bads
assert raw_tsss.info["bads"] == bads # don't reset
raw_tsss = maxwell_filter(raw_tsss, head_pos=head_pos)
assert raw_tsss.info["bads"] == [] # do reset MEG bads
raw_tsss_2 = maxwell_filter(raw, st_duration=tmax, head_pos=head_pos)
assert raw_tsss_2.info["bads"] == []
assert_meg_snr(raw_tsss, raw_tsss_2, 1e5)
@testing.requires_testing_data
def test_fine_calibration():
"""Test Maxwell filter fine calibration."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
raw = read_crop(raw_fname, (0.0, 1.0))
sss_fine_cal = read_crop(sss_fine_cal_fname)
# Test 1D SSS fine calibration
with use_coil_def(elekta_def_fname):
with catch_logging() as log:
raw_sss = maxwell_filter(
raw,
calibration=fine_cal_fname,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
verbose=True,
)
log = log.getvalue()
assert "Using fine calibration" in log
assert fine_cal_fname.stem in log
assert_meg_snr(raw_sss, sss_fine_cal, 1.3, 180) # similar to MaxFilter
py_cal = raw_sss.info["proc_history"][0]["max_info"]["sss_cal"]
assert py_cal is not None
assert len(py_cal) > 0
mf_cal = sss_fine_cal.info["proc_history"][0]["max_info"]["sss_cal"]
# we identify these differently
mf_cal["cal_chans"][mf_cal["cal_chans"][:, 1] == 3022, 1] = 3024
assert_allclose(py_cal["cal_chans"], mf_cal["cal_chans"])
assert_allclose(py_cal["cal_corrs"], mf_cal["cal_corrs"], rtol=1e-3, atol=1e-3)
# with missing channels
raw_missing = raw.copy().load_data()
raw_missing.info["bads"] = ["MEG0111", "MEG0943"] # 1 mag, 1 grad
raw_missing.info._check_consistency()
raw_sss_bad = maxwell_filter(
raw_missing,
calibration=fine_cal_fname,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
)
raw_missing.pick("meg", exclude="bads") # actually remove bads
raw_sss_bad.pick(raw_missing.ch_names) # remove them here, too
with pytest.warns(RuntimeWarning, match="cal channels not in data"):
raw_sss_missing = maxwell_filter(
raw_missing,
calibration=fine_cal_fname,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
)
assert_meg_snr(raw_sss_missing, raw_sss_bad, 1000.0, 10000.0)
# Test 3D SSS fine calibration (no equivalent func in MaxFilter yet!)
# very low SNR as proc differs, eventually we should add a better test
raw_sss_3D = maxwell_filter(
raw,
calibration=fine_cal_fname_3d,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
)
assert_meg_snr(raw_sss_3D, sss_fine_cal, 0.9, 6.0)
assert_meg_snr(raw_sss_3D, raw_sss, 1.1, 6.0) # slightly better than 1D
raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
with pytest.raises(RuntimeError, match="Not all MEG channels"):
maxwell_filter(raw_ctf, origin=(0.0, 0.0, 0.04), calibration=fine_cal_fname)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_regularization():
"""Test Maxwell filter regularization."""
# Load testing data (raw, SSS std origin, SSS non-standard origin)
min_tols = (20.0, 2.6, 1.0)
med_tols = (200.0, 21.0, 3.7)
origins = ((0.0, 0.0, 0.04), (0.0,) * 3, (0.0, 0.02, 0.02))
coord_frames = ("head", "meg", "head")
raw_fnames = (raw_fname, erm_fname, sample_fname)
sss_fnames = (sss_reg_in_fname, sss_erm_reg_in_fname, sss_samp_reg_in_fname)
comp_tols = [0, 1, 4]
for ii, rf in enumerate(raw_fnames):
raw = read_crop(rf, (0.0, 1.0))
sss_reg_in = read_crop(sss_fnames[ii])
# Test "in" regularization
raw_sss = maxwell_filter(raw, coord_frame=coord_frames[ii], origin=origins[ii])
assert_meg_snr(raw_sss, sss_reg_in, min_tols[ii], med_tols[ii], msg=rf)
# check components match
_check_reg_match(raw_sss, sss_reg_in, comp_tols[ii])
def _check_reg_match(sss_py, sss_mf, comp_tol):
"""Check regularization."""
info_py = sss_py.info["proc_history"][0]["max_info"]["sss_info"]
assert info_py is not None
assert len(info_py) > 0
info_mf = sss_mf.info["proc_history"][0]["max_info"]["sss_info"]
n_in = None
for inf in (info_py, info_mf):
if n_in is None:
n_in = _get_n_moments(inf["in_order"])
else:
assert n_in == _get_n_moments(inf["in_order"])
assert inf["components"][:n_in].sum() == inf["nfree"]
assert_allclose(
info_py["nfree"], info_mf["nfree"], atol=comp_tol, err_msg=sss_py.filenames[0]
)
@testing.requires_testing_data
def test_cross_talk(tmp_path):
"""Test Maxwell filter cross-talk cancellation."""
raw = read_crop(raw_fname, (0.0, 1.0))
raw.info["bads"] = bads
sss_ctc = read_crop(sss_ctc_fname)
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(
raw,
cross_talk=pathlib.Path(ctc_fname),
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
)
assert_meg_snr(raw_sss, sss_ctc, 275.0)
py_ctc = raw_sss.info["proc_history"][0]["max_info"]["sss_ctc"]
assert len(py_ctc) > 0
with pytest.raises(TypeError, match="path-like"):
maxwell_filter(raw, cross_talk=raw)
with pytest.raises(ValueError, match="Invalid cross-talk FIF"):
maxwell_filter(raw, cross_talk=raw_fname)
mf_ctc = sss_ctc.info["proc_history"][0]["max_info"]["sss_ctc"]
del mf_ctc["block_id"] # we don't write this
assert isinstance(py_ctc["decoupler"], sparse.csc_array)
assert isinstance(mf_ctc["decoupler"], sparse.csc_array)
assert_array_equal(py_ctc["decoupler"].toarray(), mf_ctc["decoupler"].toarray())
# I/O roundtrip
fname = tmp_path / "test_sss_raw.fif"
sss_ctc.save(fname)
sss_ctc_read = read_raw_fif(fname)
mf_ctc_read = sss_ctc_read.info["proc_history"][0]["max_info"]["sss_ctc"]
assert isinstance(mf_ctc_read["decoupler"], sparse.csc_array)
assert_array_equal(
mf_ctc_read["decoupler"].toarray(), mf_ctc["decoupler"].toarray()
)
assert object_diff(py_ctc, mf_ctc) == ""
raw_ctf = read_crop(fname_ctf_raw).apply_gradient_compensation(0)
raw_sss = maxwell_filter(raw_ctf, origin=(0.0, 0.0, 0.04))
_assert_n_free(raw_sss, 68)
raw_sss = maxwell_filter(raw_ctf, origin=(0.0, 0.0, 0.04), ignore_ref=True)
_assert_n_free(raw_sss, 70)
raw_missing = (
raw.copy()
.crop(0, 0.1)
.load_data()
.pick(
[raw.ch_names[pi] for pi in pick_types(raw.info, meg=True, exclude=())[3:]]
)
)
with pytest.warns(RuntimeWarning, match="Not all cross-talk channels"):
maxwell_filter(raw_missing, cross_talk=ctc_fname)
# MEG channels not in cross-talk
with pytest.raises(RuntimeError, match="Missing MEG channels"):
maxwell_filter(raw_ctf, origin=(0.0, 0.0, 0.04), cross_talk=ctc_fname)
@testing.requires_testing_data
def test_head_translation():
"""Test Maxwell filter head translation."""
raw = read_crop(raw_fname, (0.0, 1.0))
# First try with an unchanged destination
with use_coil_def(elekta_def_fname):
raw_sss = maxwell_filter(
raw,
destination=raw_fname,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
)
assert_meg_snr(raw_sss, read_crop(sss_std_fname, (0.0, 1.0)), 200.0)
# Now with default
with use_coil_def(elekta_def_fname):
with pytest.warns(RuntimeWarning, match="over 25 mm"):
raw_sss = maxwell_filter(
raw,
destination=mf_head_origin,
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
verbose=True,
)
assert_meg_snr(raw_sss, read_crop(sss_trans_default_fname), 125.0)
destination = np.eye(4)
destination[2, 3] = 0.04
assert_allclose(raw_sss.info["dev_head_t"]["trans"], destination)
# Now to sample's head pos
with pytest.warns(RuntimeWarning, match="= 25.6 mm"):
raw_sss = maxwell_filter(
raw,
destination=str(sample_fname),
origin=mf_head_origin,
regularize=None,
bad_condition="ignore",
verbose=True,
)
assert_meg_snr(raw_sss, read_crop(sss_trans_sample_fname), 13.0, 100.0)
assert_allclose(
raw_sss.info["dev_head_t"]["trans"],
read_info(sample_fname)["dev_head_t"]["trans"],
)
# Degenerate cases
with pytest.raises(RuntimeError, match=".* can only be set .* head .*"):
maxwell_filter(raw, destination=mf_head_origin, coord_frame="meg")
with pytest.raises(ValueError, match="destination must be"):
maxwell_filter(raw, destination=[0.0] * 4)
# TODO: Eventually add simulation tests mirroring Taulu's original paper
# that calculates the localization error:
# http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1495874
def _assert_shielding(raw_sss, erm_power, min_factor, max_factor=np.inf, meg="mag"):
"""Assert a minimum shielding factor using empty-room power."""
__tracebackhide__ = True
picks = pick_types(raw_sss.info, meg=meg, ref_meg=False)
if isinstance(erm_power, BaseRaw):
picks_erm = pick_types(raw_sss.info, meg=meg, ref_meg=False)
assert_allclose(picks, picks_erm)
erm_power = np.sqrt((erm_power[picks_erm][0] ** 2).sum())
sss_power = raw_sss[picks][0].ravel()
sss_power = np.sqrt(np.sum(sss_power * sss_power))
factor = erm_power / sss_power
assert min_factor <= factor < max_factor, (
f"Shielding factor not {min_factor:0.3f} <= {factor:0.3f} < {max_factor:0.3f}"
)
@buggy_mkl_svd
@testing.requires_testing_data
@pytest.mark.parametrize("regularize", ("in", None))
@pytest.mark.parametrize("bads", ([], ["MEG0111"]))
def test_esss(regularize, bads):
"""Test extended-basis SSS."""
# Make some fake "projectors" that actually contain external SSS bases
raw_erm = read_crop(erm_fname).load_data().pick("meg")
raw_erm.info["bads"] = bads
proj_sss = mne.compute_proj_raw(
raw_erm, meg="combined", verbose="error", n_mag=15, n_grad=15
)
good_info = pick_info(raw_erm.info, pick_types(raw_erm.info, meg=True))
S_tot = _trans_sss_basis(
dict(int_order=0, ext_order=3, origin=(0.0, 0.0, 0.0)),
all_coils=_prep_mf_coils(good_info),
coil_scale=1.0,
trans=None,
)
assert S_tot.shape[-1] == len(proj_sss)
for a, b in zip(proj_sss, S_tot.T):
a["data"]["data"][:] = b
with catch_logging() as log:
raw_sss = maxwell_filter(
raw_erm, coord_frame="meg", regularize=regularize, verbose=True
)
log = log.getvalue()
assert "xtend" not in log
with catch_logging() as log:
raw_sss_2 = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=regularize,
ext_order=0,
extended_proj=proj_sss,
verbose=True,
)
log = log.getvalue()
assert "Extending external SSS basis using 15 projection" in log
assert_allclose(raw_sss_2._data, raw_sss._data, atol=1e-20)
# This should work, as the projectors should be a superset
raw_erm.info["bads"] = raw_erm.info["bads"] + ["MEG0112"]
maxwell_filter(raw_erm, coord_frame="meg", extended_proj=proj_sss)
# Degenerate condititons
proj_sss = proj_sss[:2]
proj_sss[0]["data"]["col_names"] = proj_sss[0]["data"]["col_names"][:-1]
with pytest.raises(ValueError, match="were missing"):
maxwell_filter(raw_erm, coord_frame="meg", extended_proj=proj_sss)
proj_sss[0] = 1.0
with pytest.raises(TypeError, match=r"extended_proj\[0\] must be an inst"):
maxwell_filter(raw_erm, coord_frame="meg", extended_proj=proj_sss)
with pytest.raises(TypeError, match="extended_proj must be an inst"):
maxwell_filter(raw_erm, coord_frame="meg", extended_proj=1.0)
@contextmanager
def get_n_projected():
"""Get the number of projected tSSS components from the log."""
count = list()
with use_log_level(True):
with catch_logging() as log:
yield count
log = log.getvalue()
assert "Processing data using tSSS" in log
log = log.splitlines()
reg = re.compile(r"\s+Projecting\s+([0-9])+\s+intersecting tSSS .*")
for line in log:
m = reg.match(line)
if m:
count.append(int(m.group(1)))
@buggy_mkl_svd
@pytest.mark.slowtest
@testing.requires_testing_data
def test_shielding_factor(tmp_path):
"""Test Maxwell filter shielding factor using empty room."""
raw_erm = read_crop(erm_fname).load_data().pick("meg")
erm_power = raw_erm[pick_types(raw_erm.info, meg="mag")][0]
erm_power = np.sqrt(np.sum(erm_power * erm_power))
erm_power_grad = raw_erm[pick_types(raw_erm.info, meg="grad")][0]
erm_power_grad = np.sqrt(np.sum(erm_power * erm_power))
# Vanilla SSS (second value would be for meg=True instead of meg='mag')
_assert_shielding(read_crop(sss_erm_std_fname), erm_power, 10) # 1.5)
raw_sss = maxwell_filter(raw_erm, coord_frame="meg", regularize=None)
_assert_shielding(raw_sss, erm_power, 12, 13) # 1.5)
_assert_shielding(raw_sss, erm_power_grad, 0.45, 0.55, "grad") # 1.5)
# No external basis
raw_sss_0 = maxwell_filter(raw_erm, coord_frame="meg", regularize=None, ext_order=0)
_assert_shielding(raw_sss_0, erm_power, 1.0, 1.1)
del raw_sss_0
# Regularization
_assert_shielding(read_crop(sss_erm_std_fname), erm_power, 10) # 1.5)
raw_sss = maxwell_filter(raw_erm, coord_frame="meg")
_assert_shielding(raw_sss, erm_power, 14.5, 15.5)
#
# Extended (eSSS)
#
# Show that using empty-room projectors increase shielding factor
proj = mne.compute_proj_raw(
raw_erm, meg="combined", verbose="error", n_mag=15, n_grad=15
)
raw_sss = maxwell_filter(
raw_erm, coord_frame="meg", regularize=None, extended_proj=proj[:3]
)
_assert_shielding(raw_sss, erm_power, 38, 39)
raw_sss = maxwell_filter(
raw_erm, coord_frame="meg", regularize=None, extended_proj=proj
)
_assert_shielding(raw_sss, erm_power, 49, 51)
# Now with reg
raw_sss = maxwell_filter(raw_erm, coord_frame="meg", extended_proj=proj[:3])
_assert_shielding(raw_sss, erm_power, 42, 44)
raw_sss = maxwell_filter(raw_erm, coord_frame="meg", extended_proj=proj)
_assert_shielding(raw_sss, erm_power, 59, 61)
#
# Different mag_scale values
#
raw_sss = maxwell_filter(
raw_erm, coord_frame="meg", regularize=None, mag_scale="auto"
)
_assert_shielding(raw_sss, erm_power, 12, 13)
_assert_shielding(raw_sss, erm_power_grad, 0.48, 0.58, "grad")
raw_sss = maxwell_filter(
raw_erm, coord_frame="meg", regularize=None, mag_scale=1.0
) # not a good choice
_assert_shielding(raw_sss, erm_power, 7.3, 8.0)
_assert_shielding(raw_sss, erm_power_grad, 0.2, 0.3, "grad")
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
mag_scale=1000.0,
bad_condition="ignore",
)
_assert_shielding(raw_sss, erm_power, 4.0, 5.0)
_assert_shielding(raw_sss, erm_power_grad, 0.1, 0.2, "grad")
#
# Fine cal
#
_assert_shielding(read_crop(sss_erm_fine_cal_fname), erm_power, 12) # 2.0)
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
origin=mf_meg_origin,
calibration=pathlib.Path(fine_cal_fname),
)
_assert_shielding(raw_sss, erm_power, 12, 13) # 2.0)
#
# Crosstalk
#
_assert_shielding(read_crop(sss_erm_ctc_fname), erm_power, 12) # 2.1)
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
origin=mf_meg_origin,
cross_talk=ctc_fname,
)
_assert_shielding(raw_sss, erm_power, 12, 13) # 2.1)
# Fine cal + Crosstalk
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname,
)
_assert_shielding(raw_sss, erm_power, 13, 14) # 2.2)
# Fine cal + Crosstalk + Extended
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname,
extended_proj=proj,
)
_assert_shielding(raw_sss, erm_power, 28, 30)
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname,
extended_proj=proj[:3],
)
_assert_shielding(raw_sss, erm_power, 25, 27)
# tSSS
_assert_shielding(read_crop(sss_erm_st_fname), erm_power, 37) # 5.8)
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
origin=mf_meg_origin,
st_duration=1.0,
)
_assert_shielding(raw_sss, erm_power, 37, 38) # 5.8)
# Crosstalk + tSSS
with get_n_projected() as counts:
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
cross_talk=ctc_fname,
origin=mf_meg_origin,
st_duration=1.0,
)
_assert_shielding(raw_sss, erm_power, 38, 39) # 5.91)
assert counts[0] == 4
# Fine cal + tSSS
with get_n_projected() as counts:
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
st_duration=1.0,
)
_assert_shielding(raw_sss, erm_power, 38, 39) # 5.98)
assert counts[0] == 4
# Extended + tSSS
with get_n_projected() as counts:
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
origin=mf_meg_origin,
st_duration=1.0,
extended_proj=proj,
)
_assert_shielding(raw_sss, erm_power, 40, 42)
assert counts[0] == 0
with get_n_projected() as counts:
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
origin=mf_meg_origin,
st_duration=1.0,
extended_proj=proj[:3],
)
_assert_shielding(raw_sss, erm_power, 35, 37)
assert counts[0] == 1
# Fine cal + Crosstalk + tSSS
_assert_shielding(
read_crop(sss_erm_st1FineCalCrossTalk_fname), erm_power, 39, 40
) # 6.07)
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname,
st_duration=1.0,
)
_assert_shielding(raw_sss, erm_power, 39, 40) # 6.05)
# Fine cal + Crosstalk + tSSS + Extended (a bit worse)
_assert_shielding(
read_crop(sss_erm_st1FineCalCrossTalk_fname), erm_power, 39, 40
) # 6.07)
raw_sss = maxwell_filter(
raw_erm,
coord_frame="meg",
regularize=None,
calibration=fine_cal_fname,
origin=mf_meg_origin,
cross_talk=ctc_fname,
st_duration=1.0,
extended_proj=proj[:3],
)
_assert_shielding(raw_sss, erm_power, 34, 36)
# Fine cal + Crosstalk + tSSS + Reg-in
_assert_shielding(
read_crop(sss_erm_st1FineCalCrossTalkRegIn_fname), erm_power, 57, 58
) # 6.97)
raw_sss = maxwell_filter(
raw_erm,
calibration=fine_cal_fname,
cross_talk=ctc_fname,
st_duration=1.0,
origin=mf_meg_origin,
coord_frame="meg",
regularize="in",
)
_assert_shielding(raw_sss, erm_power, 53, 54) # 6.64)
with get_n_projected() as counts:
raw_sss = maxwell_filter(
raw_erm,
calibration=fine_cal_fname,
cross_talk=ctc_fname,
st_duration=1.0,
coord_frame="meg",
regularize="in",
)
_assert_shielding(raw_sss, erm_power, 58, 59) # 7.0)
_assert_shielding(raw_sss, erm_power_grad, 1.6, 1.7, "grad")
assert counts[0] == 4
with get_n_projected() as counts:
raw_sss = maxwell_filter(
raw_erm,
calibration=fine_cal_fname,
cross_talk=ctc_fname,
st_duration=1.0,
coord_frame="meg",
regularize="in",
mag_scale="auto",
)
_assert_shielding(raw_sss, erm_power, 51, 52)
_assert_shielding(raw_sss, erm_power_grad, 1.5, 1.6, "grad")
assert counts[0] == 3
with get_n_projected() as counts:
with _record_warnings(): # SVD convergence on arm64
raw_sss = maxwell_filter(
raw_erm,
calibration=fine_cal_fname_3d,
cross_talk=ctc_fname,
st_duration=1.0,
coord_frame="meg",
regularize="in",
)
# Our 3D cal has worse defaults for this ERM than the 1D file
_assert_shielding(raw_sss, erm_power, 57, 58)
assert counts[0] == 3
# Show it by rewriting the 3D as 1D and testing it
temp_fname = tmp_path / "test_cal.dat"
with open(fine_cal_fname_3d) as fid:
with open(temp_fname, "w") as fid_out:
for line in fid:
fid_out.write(" ".join(line.strip().split(" ")[:14]) + "\n")
with get_n_projected() as counts:
with _record_warnings(): # SVD convergence sometimes
raw_sss = maxwell_filter(
raw_erm,
calibration=temp_fname,
cross_talk=ctc_fname,
st_duration=1.0,
coord_frame="meg",
regularize="in",
)
# Our 3D cal has worse defaults for this ERM than the 1D file
_assert_shielding(raw_sss, erm_power, 44, 45)
assert counts[0] == 3
# Fine cal + Crosstalk + tSSS + Reg-in + Extended
with get_n_projected() as counts:
raw_sss = maxwell_filter(
raw_erm,
calibration=fine_cal_fname,
cross_talk=ctc_fname,
st_duration=1.0,
coord_frame="meg",
regularize="in",
extended_proj=proj[:3],
)
_assert_shielding(raw_sss, erm_power, 48, 50)
assert counts[0] == 1
@pytest.mark.slowtest
@testing.requires_testing_data
def test_all():
"""Test maxwell filter using all options."""
raw_fnames = (raw_fname, raw_fname, erm_fname, sample_fname)
sss_fnames = (
sss_st1FineCalCrossTalkRegIn_fname,
sss_st1FineCalCrossTalkRegInTransSample_fname,
sss_erm_st1FineCalCrossTalkRegIn_fname,
sss_samp_fname,
)
fine_cals = (fine_cal_fname, fine_cal_fname, fine_cal_fname, fine_cal_mgh_fname)
coord_frames = ("head", "head", "meg", "head")
ctcs = (ctc_fname, ctc_fname, ctc_fname, ctc_mgh_fname)
mins = (3.5, 3.5, 1.2, 0.9)
meds = (10.8, 10.2, 3.2, 5.9)
st_durs = (1.0, 1.0, 1.0, None)
destinations = (None, sample_fname, None, None)
origins = (mf_head_origin, mf_head_origin, mf_meg_origin, mf_head_origin)
for ii, rf in enumerate(raw_fnames):
raw = read_crop(rf, (0.0, 1.0))
with _record_warnings(): # sometimes the fit is bad
sss_py = maxwell_filter(
raw,
calibration=fine_cals[ii],
cross_talk=ctcs[ii],
st_duration=st_durs[ii],
coord_frame=coord_frames[ii],
destination=destinations[ii],
origin=origins[ii],
)
sss_mf = read_crop(sss_fnames[ii])
assert_meg_snr(sss_py, sss_mf, mins[ii], meds[ii], msg=rf)
@pytest.mark.slowtest
@testing.requires_testing_data
def test_triux():
"""Test TRIUX system support."""
raw = read_crop(tri_fname, (0, 0.999))
_assert_mag_coil_type(raw.info, FIFF.FIFFV_COIL_VV_MAG_T1)
assert_allclose(raw.info["chs"][2]["cal"], 1.33e-10, rtol=1e-6)
# standard
with use_coil_def(elekta_def_fname):
sss_py = maxwell_filter(raw, coord_frame="meg", regularize=None)
_assert_mag_coil_type(sss_py.info, FIFF.FIFFV_COIL_VV_MAG_T3)
assert_meg_snr(sss_py, read_crop(tri_sss_fname), 37, 700)
# cross-talk
sss_py = maxwell_filter(
raw, coord_frame="meg", regularize=None, cross_talk=tri_ctc_fname
)
assert_meg_snr(sss_py, read_crop(tri_sss_ctc_fname), 31, 250)
# fine cal
sss_py = maxwell_filter(
raw, coord_frame="meg", regularize=None, calibration=tri_cal_fname
)
assert_meg_snr(sss_py, read_crop(tri_sss_cal_fname), 5, 100)
# ctc+cal
sss_py = maxwell_filter(
raw,
coord_frame="meg",
regularize=None,
calibration=tri_cal_fname,
cross_talk=tri_ctc_fname,
)
assert_meg_snr(sss_py, read_crop(tri_sss_ctc_cal_fname), 5, 100)
# regularization
sss_py = maxwell_filter(raw, coord_frame="meg", regularize="in")
sss_mf = read_crop(tri_sss_reg_fname)
assert_meg_snr(sss_py, sss_mf, 0.6, 9)
_check_reg_match(sss_py, sss_mf, 1)
# all three
sss_py = maxwell_filter(
raw,
coord_frame="meg",
regularize="in",
calibration=tri_cal_fname,
cross_talk=tri_ctc_fname,
)
sss_mf = read_crop(tri_sss_ctc_cal_reg_in_fname)
assert_meg_snr(sss_py, sss_mf, 0.6, 9)
_check_reg_match(sss_py, sss_mf, 1)
# tSSS
raw = read_crop(tri_fname).fix_mag_coil_types()
with use_coil_def(elekta_def_fname):
sss_py = maxwell_filter(
raw, coord_frame="meg", regularize=None, st_duration=4.0, verbose=True
)
assert_meg_snr(sss_py, read_crop(tri_sss_st4_fname), 700.0, 1600)
@testing.requires_testing_data
def test_MGH_cross_talk():
"""Test cross-talk."""
raw = read_crop(raw_fname, (0.0, 1.0))
raw_sss = maxwell_filter(raw, cross_talk=ctc_mgh_fname)
py_ctc = raw_sss.info["proc_history"][0]["max_info"]["sss_ctc"]
assert len(py_ctc) > 0
@testing.requires_testing_data
def test_mf_skips():
"""Test processing of data with skips."""
raw = read_raw_fif(skip_fname, preload=True)
raw.fix_mag_coil_types()
raw.pick(raw.ch_names[:50]) # fast and inaccurate
kwargs = dict(st_only=True, coord_frame="meg", int_order=4, ext_order=3)
# smoke test that this runs
maxwell_filter(raw, st_duration=17.0, skip_by_annotation=(), **kwargs)
# and this one, too, which will process some all-zero data
maxwell_filter(raw, st_duration=2.0, skip_by_annotation=(), **kwargs)
with pytest.raises(ValueError, match="duration"):
# skips decrease acceptable duration
maxwell_filter(raw, st_duration=17.0, **kwargs)
onsets, ends = _annotations_starts_stops(raw, ("edge", "bad_acq_skip"), invert=True)
assert (ends - onsets).min() / raw.info["sfreq"] == 2.0
assert (ends - onsets).max() / raw.info["sfreq"] == 3.0
for st_duration in (2.0, 3.0):
raw_sss = maxwell_filter(raw, st_duration=st_duration, **kwargs)
for start, stop in zip(onsets, ends):
orig_data = raw[:, start:stop][0]
new_data = raw_sss[:, start:stop][0]
if (stop - start) / raw.info["sfreq"] >= st_duration:
# Should be modified
assert not np.allclose(new_data, orig_data, atol=1e-20)
else:
# Should not be modified
assert_allclose(new_data, orig_data, atol=1e-20)
# Processing an individual file and concat should be equivalent to
# concat then process
raw.crop(0, 1)
raw_sss = maxwell_filter(raw, st_duration=1.0, **kwargs)
raw_sss_concat = concatenate_raws([raw_sss, raw_sss.copy()])
raw_concat = concatenate_raws([raw.copy(), raw.copy()])
raw_concat_sss = maxwell_filter(raw_concat, st_duration=1.0, **kwargs)
raw_concat_sss_bad = maxwell_filter(
raw_concat, st_duration=1.0, skip_by_annotation=(), **kwargs
)
data_c = raw_concat[:][0]
data_sc = raw_sss_concat[:][0]
data_cs = raw_concat_sss[:][0]
data_csb = raw_concat_sss_bad[:][0]
assert not np.allclose(data_cs, data_c, atol=1e-20)
assert not np.allclose(data_cs, data_csb, atol=1e-20)
assert_allclose(data_sc, data_cs, atol=1e-20)
@testing.requires_testing_data
@pytest.mark.parametrize(
(
"fname",
"bads",
"annot",
"add_ch",
"ignore_ref",
"want_bads",
"return_scores",
"h_freq",
"meas_date",
),
[
# Neuromag data tested against MF
(sample_fname, [], False, False, False, ["MEG 2443"], False, None, "raw"),
# add 0111 to test picking, add annot to test it, and prepend chs for
# idx
(
sample_fname,
["MEG 0111"],
True,
True,
False,
["MEG 2443"],
False,
None,
"raw",
),
# CTF data seems to be sensitive to linalg lib (?) because some
# channels are very close to the limit, so we just check that one shows
# up
(
ctf_fname_continuous,
[],
False,
False,
False,
{"BR1-4304"},
False,
None,
"raw",
),
# faked
(
ctf_fname_continuous,
[],
False,
False,
True,
["MLC24-4304"],
False,
None,
"raw",
),
# For `return_scores=True`
(sample_fname, ["MEG 0111"], True, True, False, ["MEG 2443"], True, 50, "raw"),
(sample_fname, ["MEG 0111"], True, True, False, ["MEG 2443"], True, 50, None),
],
)
def test_find_bad_channels_maxwell(
fname, bads, annot, add_ch, ignore_ref, want_bads, return_scores, h_freq, meas_date
):
"""Test automatic bad channel detection."""
if fname.suffix == ".ds":
raw = read_raw_ctf(fname).load_data()
flat_idx = 33
else:
raw = read_raw_fif(fname)
raw.fix_mag_coil_types().load_data().pick("meg", exclude=())
flat_idx = 1
if meas_date is None:
raw.set_meas_date(None)
else:
assert meas_date == "raw"
raw.filter(None, 40)
raw.info["bads"] = bads
raw._data[flat_idx] = 0 # MaxFilter didn't have this but doesn't affect it
want_flats = [raw.ch_names[flat_idx]]
raw.apply_gradient_compensation(0)
min_count = 5
if add_ch:
raw_eeg = read_raw_fif(fname)
raw_eeg.pick("eeg", exclude=()).load_data()
with raw_eeg.info._unlock():
raw_eeg.info["lowpass"] = 40.0
raw = raw_eeg.add_channels([raw]) # prepend the EEG channels
assert 0 in pick_types(raw.info, meg=False, eeg=True)
if ignore_ref:
# Fake a bad one, otherwise we don't find any
assert 42 in pick_types(raw.info, meg=True, ref_meg=False)
assert raw.ch_names[42:43] == want_bads
raw._data[42] += np.random.RandomState(0).randn(len(raw.times))
# maxfilter -autobad on -v -f test_raw.fif -force -cal off -ctc off -regularize off -list -o test_raw.fif -f ~/mne_data/MNE-testing-data/MEG/sample/sample_audvis_trunc_raw.fif # noqa: E501
if annot:
# do a problematic one (gh-7741): exactly one "step" unit
step = int(round(raw.info["sfreq"] * 5.0))
dt = 1.0 / raw.info["sfreq"]
assert step == 1502
raw.annotations.append(step * dt + raw._first_time, dt, "BAD")
with catch_logging() as log:
return_vals = find_bad_channels_maxwell(
raw,
origin=(0.0, 0.0, 0.04),
regularize=None,
bad_condition="ignore",
skip_by_annotation="BAD",
verbose=True,
ignore_ref=ignore_ref,
min_count=min_count,
return_scores=return_scores,
h_freq=h_freq,
)
if return_scores:
assert len(return_vals) == 3
got_bads, got_flats, got_scores = return_vals
else:
assert len(return_vals) == 2
got_bads, got_flats = return_vals
if isinstance(want_bads, list):
assert got_bads == want_bads # from MaxFilter
else:
assert want_bads.intersection(set(got_bads))
assert got_flats == want_flats
log = log.getvalue()
assert "Interval 1: 0.00" in log
assert "Interval 2: 5.00" in log
if h_freq is not None and h_freq > raw.info["lowpass"]:
assert "data has already been low-pass filtered" in log
if return_scores:
meg_chs = raw.copy().pick("meg", exclude=[]).ch_names
ch_types = raw.get_channel_types(meg_chs)
assert list(got_scores["ch_names"]) == meg_chs
assert list(got_scores["ch_types"]) == ch_types
# Check that time is monotonically increasing.
assert (np.diff(got_scores["bins"].flatten()) >= 0).all()
assert (
got_scores["scores_flat"].shape
== got_scores["scores_noisy"].shape
== (len(meg_chs), len(got_scores["bins"]))
)
assert (
got_scores["limits_flat"].shape
== got_scores["limits_noisy"].shape
== (len(meg_chs), 1)
)
# Check "flat" scores.
scores_flat = got_scores["scores_flat"]
limits_flat = got_scores["limits_flat"]
# Deal with NaN's in the scores (can't use np.less directly because of
# https://github.com/numpy/numpy/issues/17198)
scores_flat[np.isnan(scores_flat)] = np.inf
limits_flat[np.isnan(limits_flat)] = -np.inf
n_segments_below_limit = (scores_flat < limits_flat).sum(-1)
ch_idx = np.where(
n_segments_below_limit >= min(min_count, len(got_scores["bins"]))
)
flats = set(got_scores["ch_names"][ch_idx])
assert flats == set(want_flats)
# Check "noisy" scores.
scores_noisy = got_scores["scores_noisy"]
limits_noisy = got_scores["limits_noisy"]
scores_noisy[np.isnan(scores_noisy)] = -np.inf
limits_noisy[np.isnan(limits_noisy)] = np.inf
n_segments_beyond_limit = (scores_noisy > limits_noisy).sum(-1)
ch_idx = np.where(
n_segments_beyond_limit >= min(min_count, len(got_scores["bins"]))
)
bads = set(got_scores["ch_names"][ch_idx])
assert bads == set(want_bads)
def test_find_bads_maxwell_flat():
"""Test find_bads_maxwell when there are flat channels."""
# See gh-9479
raw = mne.io.read_raw_fif(raw_small_fname).load_data()
assert_allclose(raw.times[-1], 23.97, atol=1e-2)
noisy, flat = find_bad_channels_maxwell(raw, min_count=1)
assert noisy == ["MEG 1032", "MEG 2313", "MEG 2443"]
assert flat == []
n = int(round(raw.info["sfreq"] * 10))
assert (len(raw.times) - n) / raw.info["sfreq"] > 10 # at least 10 s
with catch_logging() as log:
want_noisy, want_flat = find_bad_channels_maxwell(
raw.copy().crop(n / raw.info["sfreq"], None), min_count=1, verbose="debug"
)
log = log.getvalue()
assert "in 2 intervals " in log
assert want_noisy == ["MEG 2313", "MEG 2443"]
assert want_flat == []
raw._data[:, :n] = 0
with pytest.warns(RuntimeWarning, match="All-flat segment detected"):
with catch_logging() as log:
noisy, flat = find_bad_channels_maxwell(raw, min_count=1, verbose="debug")
log = log.getvalue()
assert " in 4 intervals " in log
assert flat == raw.ch_names[:306]
assert noisy == [] # none found because all flat
# now do what we suggest in the warning
annot, _ = annotate_amplitude(raw, flat=0.0, bad_percent=100, min_duration=1.0)
assert_allclose(annot.duration, 10.0, atol=1e-2) # not even divisor sfreq
raw.info["bads"] = []
raw.set_annotations(annot)
data_good = raw.get_data(reject_by_annotation="omit")
assert data_good.shape[1] / raw.info["sfreq"] / 5.0 > 2 # at least 10 s
with catch_logging() as log:
noisy, flat = find_bad_channels_maxwell(
raw, min_count=1, skip_by_annotation="bad_flat", verbose="debug"
)
log = log.getvalue()
assert " in 2 intervals " in log, log
assert flat == want_flat
assert noisy == want_noisy
@pytest.mark.parametrize(
"regularize, n, int_order",
[
(None, 80, 8),
("in", 71, 8),
(None, 0, 0),
("in", 0, 0),
],
)
def test_compute_maxwell_basis(regularize, n, int_order):
"""Test compute_maxwell_basis."""
raw = read_raw_fif(raw_small_fname).crop(0, 2)
assert raw.info["bads"] == []
raw.del_proj()
rank = compute_rank(raw)["meg"]
assert rank == 306
raw.info["bads"] = ["MEG 2443"]
kwargs = dict(regularize=regularize, int_order=int_order, verbose=True)
raw_sss = maxwell_filter(raw, **kwargs)
want = raw_sss.get_data("meg")
rank = compute_rank(raw_sss)["meg"]
assert rank == n
S, pS, reg_moments, n_use_in = compute_maxwell_basis(raw.info, **kwargs)
assert n_use_in == n
assert n_use_in == len(reg_moments) - 15 # no externals removed
xform = S[:, :n_use_in] @ pS[:n_use_in]
got = xform @ raw.pick(picks="meg", exclude="bads").get_data()
assert_allclose(got, want, atol=1e-16)
@testing.requires_testing_data
@pytest.mark.parametrize("bads", ("from_raw", "union", "keep"))
def test_prepare_emptyroom_bads(bads):
"""Test prepare_emptyroom."""
raw = read_raw_fif(raw_fname, allow_maxshield="yes", verbose=False)
names = [name for name in raw.ch_names if "EEG" not in name]
raw.pick(names)
raw_er = read_raw_fif(erm_fname, allow_maxshield="yes", verbose=False)
raw_er.pick(names)
assert raw.ch_names == raw_er.ch_names
assert raw_er.info["dev_head_t"] is None
assert raw.info["dev_head_t"] is not None
raw_er.set_montage(None)
if bads == "from_raw":
raw_bads_orig = ["MEG0113", "MEG2313"]
raw_er_bads_orig = []
elif bads == "union":
raw_bads_orig = ["MEG0113"]
raw_er_bads_orig = ["MEG2313"]
elif bads == "keep":
raw_bads_orig = []
raw_er_bads_orig = ["MEG0113", "MEG2313"]
raw.info["bads"] = raw_bads_orig
raw_er.info["bads"] = raw_er_bads_orig
raw_er_prepared = maxwell_filter_prepare_emptyroom(
raw_er=raw_er, raw=raw, bads=bads
)
assert raw_er_prepared.info["bads"] == ["MEG0113", "MEG2313"]
assert raw_er_prepared.info["dev_head_t"] == raw.info["dev_head_t"]
montage_expected = raw.copy().pick(picks="meg").get_montage()
assert raw_er_prepared.get_montage() == montage_expected
# Ensure the originals were not modified
assert raw.info["bads"] == raw_bads_orig
assert raw_er.info["bads"] == raw_er_bads_orig
assert raw_er.info["dev_head_t"] is None
assert raw_er.get_montage() is None
@testing.requires_testing_data
@pytest.mark.slowtest # lots of params
@pytest.mark.parametrize("set_annot_when", ("before", "after"))
@pytest.mark.parametrize("raw_meas_date", ("orig", None))
@pytest.mark.parametrize("raw_er_meas_date", ("orig", None))
@pytest.mark.parametrize("equal_sfreq", (False, True))
def test_prepare_emptyroom_annot_first_samp(
set_annot_when, raw_meas_date, raw_er_meas_date, equal_sfreq
):
"""Test prepare_emptyroom."""
raw = read_raw_fif(raw_fname, allow_maxshield="yes", verbose=False)
raw_er = read_raw_fif(erm_fname, allow_maxshield="yes", verbose=False)
names = raw.ch_names[:3] # make it faster
raw.pick(names)
raw_er.pick(names)
assert raw.ch_names == raw_er.ch_names
assert raw.info["meas_date"] != raw_er.info["meas_date"]
if raw_meas_date is None:
raw.set_meas_date(None)
if raw_er_meas_date is None:
raw_er.set_meas_date(None)
# to make life easier, make it the same duration
n_rep = max(int(np.ceil(len(raw.times) / len(raw_er.times))), 1)
raw_er = mne.concatenate_raws([raw_er] * n_rep).crop(0, raw.times[-1])
assert_allclose(raw.times, raw_er.times)
raw_er_first_samp_orig = raw_er.first_samp
assert len(raw.annotations) == 0
pos = mne.chpi.read_head_pos(pos_fname)
annot, _ = annotate_movement(raw, pos, 1.0)
# Add an annotation right at the beginning and end to make sure nothing
# gets cropped
onset = raw.times[[0, -1]]
duration = 1.0 / raw.info["sfreq"]
annot.append(
onset + raw.first_time * (raw.info["meas_date"] is not None),
duration,
["BAD_CUSTOM"],
)
want_annot = 7 # 5 from annotate_movement plus our first and last samps
if set_annot_when == "before":
raw.set_annotations(annot)
meas_date = "keep"
want_date = raw_er.info["meas_date"]
else:
assert set_annot_when == "after"
meas_date = "from_raw"
want_date = raw.info["meas_date"]
if not equal_sfreq:
with raw_er.info._unlock():
raw_er.info["sfreq"] -= 100
raw_er_prepared = maxwell_filter_prepare_emptyroom(
raw_er=raw_er, raw=raw, meas_date=meas_date, emit_warning=True
)
assert raw_er.first_samp == raw_er_first_samp_orig
assert raw_er_prepared.info["meas_date"] == want_date
assert raw_er_prepared.first_time == raw.first_time
# Ensure (movement) annotations carry over regardless of whether they're
# set before or after preparation
assert len(annot) == want_annot
if set_annot_when == "after":
raw.set_annotations(annot)
raw_er_prepared.set_annotations(annot)
assert len(raw.annotations) == want_annot
prop_bad = np.isnan(raw.get_data([0], reject_by_annotation="nan")).mean()
assert 0.3 < prop_bad < 0.4
assert len(raw_er_prepared.annotations) == want_annot
if equal_sfreq:
prop_bad_er = np.isnan(
raw_er_prepared.get_data([0], reject_by_annotation="nan")
).mean()
assert_allclose(prop_bad, prop_bad_er)
@pytest.mark.slowtest
@testing.requires_testing_data
@pytest.mark.parametrize("mc_interp", ("zero", "hann", False))
@pytest.mark.parametrize("st_fixed", (False, True, False))
@pytest.mark.parametrize("st_only", (True, False))
@pytest.mark.filterwarnings("ignore:st_fixed=False is untested.*:RuntimeWarning")
def test_feed_avg(st_fixed, st_only, mc_interp):
"""Test that feed_avg gives the correct data for tSSS."""
if mc_interp is False:
movecomp = False
mc_interp = "zero"
else:
movecomp = True
raw = read_crop(raw_fname, (0, 3.0)).load_data() # 0-1, 0.5-1.5, ...
# Use every third mag just for speed
raw.pick("mag")
raw.pick(raw.ch_names[::3])
if movecomp:
head_pos = read_head_pos(pos_fname)
# Trim just to make debugging easier
head_pos = head_pos[head_pos[:, 0] < head_pos[0, 0] + 5]
else:
head_pos = None
kwargs = dict(
int_order=3, st_duration=1, st_fixed=st_fixed, st_only=st_only, verbose="debug"
)
# These were empirically determined -- the importart thing is that they
# only change under specific (expected) circumstances, e.g., not dependent
# on st_only at all
n = 8 if (movecomp and mc_interp == "hann" and not st_fixed) else 4
st_0_1 = f"Projecting {n} intersecting tSSS components for 0.000 - 0.999 s"
if st_fixed:
n = 4
else:
if movecomp:
n = 12 if mc_interp == "hann" else 8
else:
n = 4
st_0p5_1p5 = (
f"Projecting {n:2d} intersecting tSSS components for 0.000 - 0.999 s"
)
if movecomp and st_fixed:
st_0p5_1p5 += " (across 2 positions)\n"
n = 8 if (movecomp and mc_interp == "hann" and not st_fixed) else 4
log_1_2 = (
f"Projecting {n} intersecting tSSS components for 1.000 - 1.999 s\n"
)
with catch_logging() as log:
_maxwell_filter_ola(
raw, head_pos=head_pos, st_overlap=False, mc_interp=mc_interp, **kwargs
)
log = log.getvalue()
# Leave these print statements in because they'll be captured by pytest but
# are valuable during failures
print(log)
assert st_0_1 in log
assert log_1_2 in log
assert "Eval @ 0 (0)" in log
if movecomp:
assert raw.first_time == 9.0
this_head_pos = head_pos[np.where(head_pos[:, 0] >= 9.5)[0][0] - 1 :].copy()
this_head_pos[0, 0] = 9.5
assert this_head_pos[1, 0] > this_head_pos[0, 0]
else:
this_head_pos = None
with catch_logging() as log_crop:
_maxwell_filter_ola(
raw.copy().crop(0.5, None),
head_pos=this_head_pos,
st_overlap=False,
mc_interp=mc_interp,
**kwargs,
)
log_crop = log_crop.getvalue()
print(log_crop)
assert st_0p5_1p5 in log_crop
# The full / OLA version of this will reflect the actual offset
st_0p5_1p5 = st_0p5_1p5.replace("0.000", "0.500").replace("0.999", "1.499")
with catch_logging() as log_ola:
_maxwell_filter_ola(
raw,
st_overlap=True,
mc_interp=mc_interp,
head_pos=head_pos,
**kwargs,
)
log_ola = log_ola.getvalue()
print(log_ola)
assert st_0_1 in log_ola
assert log_1_2 in log_ola
assert st_0p5_1p5 in log_ola