[074d3d]: / mne / preprocessing / tests / test_hfc.py

Download this file

151 lines (125 with data), 5.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose
from scipy.io import loadmat
from mne._fiff.pick import pick_channels, pick_info, pick_types
from mne.datasets import testing
from mne.io import read_info, read_raw_fil
from mne.preprocessing.hfc import compute_proj_hfc
fil_path = testing.data_path(download=False) / "FIL"
fname_root = "sub-noise_ses-001_task-noise220622_run-001"
io_dir = Path(__file__).parents[2] / "io"
ctf_fname = io_dir / "tests" / "data" / "test_ctf_raw.fif"
fif_fname = io_dir / "tests" / "data" / "test_raw.fif"
# The below channels in the test data do not have positions, set to bad
bads = ["G2-DS-Y", "G2-DS-Z", "G2-DT-Y", "G2-DT-Z", "G2-MW-Y", "G2-MW-Z"]
# TODO: Ignore this warning in all these tests until we deal with this properly
pytestmark = pytest.mark.filterwarnings(
"ignore:No fiducials.*problems later!:RuntimeWarning",
)
def _unpack_mat(matin):
"""Extract relevant entries from unstructred readmat."""
data = matin["data"]
grad = data[0][0]["grad"]
label = list()
coil_label = list()
for ii in range(len(data[0][0]["label"])):
label.append(str(data[0][0]["label"][ii][0][0]))
for ii in range(len(grad[0][0]["label"])):
coil_label.append(str(grad[0][0]["label"][ii][0][0]))
matout = {
"label": label,
"trial": data["trial"][0][0][0][0],
"coil_label": coil_label,
"coil_pos": grad[0][0]["coilpos"],
"coil_ori": grad[0][0]["coilori"],
}
return matout
def _angle_between_each(A):
"""Measure the angle between each row vector in a matrix."""
assert A.ndim == 2
A = A / np.linalg.norm(A, axis=1, keepdims=True)
d = (A @ A.T).ravel()
np.clip(d, -1, 1, out=d)
ang = np.abs(np.arccos(d))
return ang
@testing.requires_testing_data
@pytest.mark.parametrize("order", [1, 2, 3])
def test_correction(order):
"""Apply HFC and compare to previous computed solutions."""
binname = fil_path / "sub-noise_ses-001_task-noise220622_run-001_meg.bin"
raw = read_raw_fil(binname)
raw.load_data()
raw.info["bads"].extend([b for b in bads])
projs = compute_proj_hfc(raw.info, order=order, accuracy="point")
raw.add_proj(projs).apply_proj()
mat = _unpack_mat(loadmat(fil_path / f"{fname_root}_hfc_l{order}.mat"))
proj_list = projs[0]["data"]["col_names"]
picks = pick_channels(raw.ch_names, proj_list, ordered=True)
mat_list = mat["coil_label"]
mat_inds = pick_channels(mat_list, proj_list, ordered=True)
want = mat["trial"][mat_inds]
got = raw.copy().add_proj(projs).apply_proj()[picks, 0:300][0] * 1e15
assert_allclose(got, want, rtol=1e-7)
# Now with default accuracy: not super close with tol but corr is good
projs = compute_proj_hfc(raw.info, order=order)
got = raw.copy().add_proj(projs).apply_proj()[picks, 0:300][0] * 1e15
corr = np.corrcoef(got.ravel(), want.ravel())[0, 1]
assert 0.999999 < corr <= 1.0
@testing.requires_testing_data
def test_l1_basis_orientations():
"""Test that angles between the basis components matches orientations."""
binname = fil_path / "sub-noise_ses-001_task-noise220622_run-001_meg.bin"
raw = read_raw_fil(binname)
raw.info["bads"].extend([b for b in bads])
projs = compute_proj_hfc(raw.info, accuracy="point")
basis = np.hstack([p["data"]["data"].T for p in projs])
picks = pick_types(raw.info, meg="mag")
assert len(picks) == 68
assert basis.shape == (len(picks), 3)
ang_model = _angle_between_each(basis)
n_ang = len(picks) ** 2
assert ang_model.shape == (n_ang,)
chs = pick_info(raw.info, picks)["chs"]
ori_sens = np.array([ch["loc"][-3:] for ch in chs])
# match the normalization that our projectors get
ori_sens /= np.linalg.norm(ori_sens, axis=0, keepdims=True)
assert ori_sens.shape == (len(picks), 3)
ang_sens = _angle_between_each(ori_sens)
assert ang_sens.shape == (n_ang,)
assert_allclose(ang_sens, ang_model, atol=1e-7)
def test_ref_degenerate():
"""Test reference channel handling and degenerate conditions."""
info = read_info(ctf_fname)
# exclude ref by default
projs = compute_proj_hfc(info)
meg_names = [
info["ch_names"][pick]
for pick in pick_types(info, meg=True, ref_meg=False, exclude=[])
]
assert len(projs) == 3
assert projs[0]["desc"] == "HFC: l=1 m=-1"
assert projs[1]["desc"] == "HFC: l=1 m=0"
assert projs[2]["desc"] == "HFC: l=1 m=1"
assert projs[0]["data"]["col_names"] == meg_names
meg_ref_names = [
info["ch_names"][pick]
for pick in pick_types(info, meg=True, ref_meg=True, exclude=[])
]
projs = compute_proj_hfc(info, picks=("meg", "ref_meg"))
assert projs[0]["data"]["col_names"] == meg_ref_names
# Degenerate
info = read_info(fif_fname)
compute_proj_hfc(info) # smoke test
with pytest.raises(ValueError, match="Only.*could be interpreted as MEG"):
compute_proj_hfc(info, picks=[0, 330]) # one MEG, one EEG
info["chs"][0]["loc"][:] = np.nan # first MEG proj
with pytest.raises(ValueError, match="non-finite projectors"):
compute_proj_hfc(info)
info_eeg = pick_info(info, pick_types(info, meg=False, eeg=True))
with pytest.raises(ValueError, match=r"picks \(\'meg\'\) could not be"):
compute_proj_hfc(info_eeg)