[074d3d]: / mne / preprocessing / tests / test_fine_cal.py

Download this file

304 lines (285 with data), 11.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_less
from mne import pick_types
from mne._fiff.tag import _loc_to_coil_trans
from mne.datasets import testing
from mne.io import read_raw_ctf, read_raw_fif, read_raw_fil, read_raw_kit
from mne.preprocessing import (
compute_fine_calibration,
maxwell_filter,
read_fine_calibration,
write_fine_calibration,
)
from mne.preprocessing.tests.test_maxwell import _assert_shielding
from mne.transforms import _angle_dist_between_rigid
from mne.utils import catch_logging, object_diff
# Define fine calibration filepaths
data_path = testing.data_path(download=False)
fine_cal_fname = data_path / "SSS" / "sss_cal_3053.dat"
fine_cal_fname_3d = data_path / "SSS" / "sss_cal_3053_3d.dat"
erm_fname = data_path / "SSS" / "141027_cropped_90Hz_raw.fif"
ctc = data_path / "SSS" / "ct_sparse.fif"
cal_mf_fname = data_path / "SSS" / "141027.dat"
triux_path = data_path / "SSS" / "TRIUX"
tri_fname = triux_path / "triux_bmlhus_erm_raw.fif"
tri_cal_fname = triux_path / "sss_cal_BMLHUS.dat"
ctf_fname_continuous = data_path / "CTF" / "testdata_ctf.ds"
io_dir = Path(__file__).parents[2] / "io"
kit_dir = io_dir / "kit" / "tests" / "data"
sqd_path = kit_dir / "test.sqd"
mrk_path = kit_dir / "test_mrk.sqd"
elp_path = kit_dir / "test_elp.txt"
hsp_path = kit_dir / "test_hsp.txt"
fil_fname = data_path / "FIL" / "sub-noise_ses-001_task-noise220622_run-001_meg.bin"
td_mark = testing._pytest_mark()
@pytest.mark.parametrize("fname", (cal_mf_fname, fine_cal_fname, fine_cal_fname_3d))
@testing.requires_testing_data
def test_fine_cal_io(tmp_path, fname):
"""Test round trip reading/writing of fine calibration .dat file."""
temp_fname = tmp_path / "fine_cal_temp.dat"
# Load fine calibration file
fine_cal_dict = read_fine_calibration(fname)
# Save temp version of fine calibration file
write_fine_calibration(temp_fname, fine_cal_dict)
fine_cal_dict_reload = read_fine_calibration(temp_fname)
# Load temp version of fine calibration file and compare hashes
assert object_diff(fine_cal_dict, fine_cal_dict_reload) == ""
@testing.requires_testing_data
@pytest.mark.parametrize(
"kind",
[
pytest.param("VectorView", marks=pytest.mark.ultraslowtest), # ~7s
pytest.param("TRIUX", marks=pytest.mark.ultraslowtest), # ~14s
],
)
def test_compute_fine_cal(kind):
"""Test computing fine calibration coefficients."""
cl = dict(mag=(0.99, 1.01), grad=(0.99, 1.01))
if kind == "VectorView":
erm = erm_fname
cal = cal_mf_fname
err_limit = 5
angle_limit = 5
gwoma = [66, 68]
ggoma = [55, 150]
ggwma = [60, 86]
sfs = [26, 27, 61, 63, 61, 63, 68, 70]
cl3 = [0.6, 0.7]
else:
assert kind == "TRIUX"
erm = tri_fname
cal = tri_cal_fname
err_limit = 10
angle_limit = 10
cl["grad"] = (0.0, 0.1)
gwoma = [48, 52]
ggoma = [13, 67]
ggwma = [13, 120]
sfs = [34, 35, 27, 28, 50, 53, 75, 79] # ours is better!
cl3 = [-0.3, -0.1]
raw = read_raw_fif(erm)
want_cal = read_fine_calibration(cal)
with pytest.raises(ValueError, match="err_limit.*greater.*0"):
compute_fine_calibration(raw, err_limit=-1)
with pytest.raises(ValueError, match="angle_limit.*greater.*0"):
compute_fine_calibration(raw, angle_limit=-1)
got_cal, counts = compute_fine_calibration(
raw,
cross_talk=ctc,
n_imbalance=1,
err_limit=err_limit,
angle_limit=angle_limit,
verbose=True,
)
assert counts == 1
assert set(got_cal.keys()) == set(want_cal.keys())
assert got_cal["ch_names"] == want_cal["ch_names"]
# in practice these should never be exactly 1.
assert sum([(ic == 1.0).any() for ic in want_cal["imb_cals"]]) == 0
assert sum([(ic == 1.0).any() for ic in got_cal["imb_cals"]]) < 2
got_imb = np.array(got_cal["imb_cals"], float)
want_imb = np.array(want_cal["imb_cals"], float)
assert got_imb.shape == want_imb.shape == (306, 1)
got_imb, want_imb = got_imb[:, 0], want_imb[:, 0]
meg_picks = pick_types(raw.info, meg=True, ref_meg=False, exclude=())
orig_locs = np.array([raw.info["chs"][pick]["loc"] for pick in meg_picks])
want_locs = want_cal["locs"]
got_locs = got_cal["locs"]
assert want_locs.shape == got_locs.shape
orig_trans = _loc_to_coil_trans(orig_locs)
want_trans = _loc_to_coil_trans(want_locs)
got_trans = _loc_to_coil_trans(got_locs)
want_orig_angles, want_orig_dist = _angle_dist_between_rigid(
want_trans,
orig_trans,
angle_units="deg",
distance_units="mm",
)
got_want_angles, got_want_dist = _angle_dist_between_rigid(
got_trans,
want_trans,
angle_units="deg",
distance_units="mm",
)
got_orig_angles, got_orig_dist = _angle_dist_between_rigid(
got_trans,
orig_trans,
angle_units="deg",
distance_units="mm",
)
assert_array_less(got_want_dist, 0.01)
assert_array_less(got_orig_dist, 0.01)
for key in ("mag", "grad"):
# imb_cals value
p = np.searchsorted(meg_picks, pick_types(raw.info, meg=key, exclude=()))
r2 = np.dot(got_imb[p], want_imb[p]) / (
np.linalg.norm(want_imb[p]) * np.linalg.norm(got_imb[p])
)
assert cl[key][0] < r2 <= cl[key][1], f"{key}: {r2:0.3f}"
# rotation angles
want_orig_max_angle = want_orig_angles[p].max()
got_orig_max_angle = got_orig_angles[p].max()
got_want_max_angle = got_want_angles[p].max()
if key == "mag":
assert 8 < want_orig_max_angle < 11, want_orig_max_angle
assert 1 < got_orig_max_angle < 8, got_orig_max_angle
assert 8 < got_want_max_angle < 11, got_want_max_angle
else:
# Some of these angles are large, but mostly this has to do with
# processing a very short (one 10-s segment), downsampled (90 Hz)
# file
assert gwoma[0] < want_orig_max_angle < gwoma[1]
assert ggoma[0] < got_orig_max_angle < ggoma[1]
assert ggwma[0] < got_want_max_angle < ggwma[1]
kwargs = dict(bad_condition="warning", cross_talk=ctc, coord_frame="meg")
raw_sss = maxwell_filter(raw, **kwargs)
raw_sss_mf = maxwell_filter(raw, calibration=cal_mf_fname, **kwargs)
raw_sss_py = maxwell_filter(raw, calibration=got_cal, **kwargs)
_assert_shielding(raw_sss, raw, *sfs[0:2])
_assert_shielding(raw_sss_mf, raw, *sfs[2:4])
_assert_shielding(raw_sss_py, raw, *sfs[4:6])
# redoing with given mag data should yield same result
got_cal_redo, _ = compute_fine_calibration(
raw, cross_talk=ctc, n_imbalance=1, calibration=got_cal, verbose="debug"
)
assert got_cal["ch_names"] == got_cal_redo["ch_names"]
assert_allclose(got_cal["imb_cals"], got_cal_redo["imb_cals"], atol=5e-5)
assert_allclose(got_cal["locs"], got_cal_redo["locs"], atol=1e-6)
assert sum((ic == 1.0).any() for ic in got_cal["imb_cals"]) < 2
# redoing with 3 imlabance parameters should improve the shielding factor
grad_subpicks = np.searchsorted(meg_picks, pick_types(raw.info, meg="grad"))
assert len(grad_subpicks) == 204 and grad_subpicks[0] in (0, 1)
got_grad_imbs = np.array([got_cal["imb_cals"][pick] for pick in grad_subpicks])
assert got_grad_imbs.shape == (204, 1)
got_cal_3, _ = compute_fine_calibration(
raw, cross_talk=ctc, n_imbalance=3, calibration=got_cal, verbose="debug"
)
got_grad_3_imbs = np.array([got_cal_3["imb_cals"][pick] for pick in grad_subpicks])
assert got_grad_3_imbs.shape == (204, 3)
corr = np.corrcoef(got_grad_3_imbs[:, 0], got_grad_imbs[:, 0])[0, 1]
assert cl3[0] < corr < cl3[1]
raw_sss_py = maxwell_filter(raw, calibration=got_cal_3, **kwargs)
_assert_shielding(raw_sss_py, raw, *sfs[6:8])
@pytest.mark.parametrize(
"system",
[
pytest.param("kit", marks=[pytest.mark.ultraslowtest]), # ~6s
pytest.param("ctf", marks=[td_mark, pytest.mark.ultraslowtest]), # ~13s
pytest.param("fil", marks=[td_mark]), # ~3s
pytest.param("triux", marks=[td_mark, pytest.mark.slowtest]), # ~7s
],
)
def test_fine_cal_systems(system, tmp_path):
"""Test fine calibration with different systems."""
int_order = 8
n_ref = 0
if system == "kit":
raw = read_raw_kit(sqd_path, mrk_path, elp_path, hsp_path)
angle_limit = 170
err_limit = 500
n_ref = 3
corrs = (0.58, 0.61, 0.57)
sfs = [0.9, 1.1, 2.1, 2.8]
corr_tol = 0.3
elif system == "ctf":
raw = read_raw_ctf(ctf_fname_continuous).crop(0, 1)
raw.apply_gradient_compensation(0)
angle_limit = 170
err_limit = 12600
n_ref = 28
corrs = (0.19, 0.41, 0.49)
sfs = [0.5, 0.7, 0.9, 1.55]
corr_tol = 0.55
elif system == "fil":
raw = read_raw_fil(fil_fname, verbose="error")
raw.info["bads"] = [f"G2-{a}-{b}" for a in ("MW", "DS", "DT") for b in "YZ"]
raw.pick("mag", exclude="bads") # no sensor positions
raw.crop(1, 2)
angle_limit = 55
err_limit = 15
int_order = 5
corrs = (0.13, 0.0, 0.12)
sfs = [4, 5, 125, 155]
corr_tol = 0.34
else:
assert system == "triux", f"Unknown system {system}"
raw = read_raw_fif(tri_fname)
angle_limit = 7
err_limit = 10
corrs = (-0.13, 0.01, 0.11)
sfs = [26, 28, 100, 110]
corr_tol = 0.05
raw.info["dev_head_t"] = None # fake empty-room even if it's not
# avoid line noise and speed up computation
raw.load_data().resample(50, method="polyphase")
fc, n = compute_fine_calibration(
raw,
angle_limit=angle_limit,
err_limit=err_limit,
verbose=True,
)
assert n == 1
# ensure ref sensors not in fine calibration
ref_picks = pick_types(raw.info, meg=False, ref_meg=True)
assert len(ref_picks) == n_ref
for pick in ref_picks:
assert raw.info["ch_names"][pick] not in fc["ch_names"]
# write it, read it back, ensure it can be applied
fname = tmp_path / "fc.dat"
write_fine_calibration(fname, fc)
fc_in = read_fine_calibration(fname)
kwargs = dict(
coord_frame="meg",
origin=(0.0, 0.0, 0.0),
ignore_ref=True,
regularize=None,
bad_condition="ignore",
int_order=int_order,
)
raw_sss = maxwell_filter(raw, **kwargs)
_assert_shielding(raw_sss, raw, *sfs[0:2])
raw_sss_cal = maxwell_filter(raw, calibration=fc_in, **kwargs)
_assert_shielding(raw_sss_cal, raw, *sfs[2:4])
raw_data = raw.get_data("mag").ravel()
raw_sss_data = raw_sss.get_data("mag").ravel()
raw_sss_cal_data = raw_sss_cal.get_data("mag").ravel()
got_corrs = np.corrcoef([raw_data, raw_sss_data, raw_sss_cal_data])
got_corrs = got_corrs[np.triu_indices(3, 1)]
assert_allclose(got_corrs, corrs, atol=corr_tol)
if system == "fil":
with catch_logging(verbose=True) as log:
compute_fine_calibration(
raw.copy().crop(0, 0.12).pick(raw.ch_names[:12]),
t_window=0.06, # 2 segments
angle_limit=angle_limit,
err_limit=err_limit,
ext_order=2,
verbose=True,
)
log = log.getvalue()
assert "(averaging over 2 time intervals)" in log, log