[074d3d]: / mne / preprocessing / nirs / tests / test_nirs.py

Download this file

556 lines (496 with data), 20.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
import pytest
from numpy.testing import assert_allclose, assert_array_almost_equal, assert_array_equal
from mne import create_info
from mne._fiff.constants import FIFF
from mne._fiff.pick import _picks_to_idx
from mne.datasets import testing
from mne.datasets.testing import data_path
from mne.io import RawArray, read_raw_nirx
from mne.preprocessing.nirs import (
_channel_chromophore,
_channel_frequencies,
_check_channels_ordered,
_fnirs_optode_names,
_fnirs_spread_bads,
_optode_position,
_validate_nirs_info,
beer_lambert_law,
optical_density,
scalp_coupling_index,
tddr,
)
fname_nirx_15_0 = (
data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_0_recording"
)
fname_nirx_15_2 = (
data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_2_recording"
)
fname_nirx_15_2_short = (
data_path(download=False) / "NIRx" / "nirscout" / "nirx_15_2_recording_w_short"
)
@testing.requires_testing_data
def test_fnirs_picks():
"""Test picking of fnirs types after different conversions."""
raw = read_raw_nirx(fname_nirx_15_0)
picks = _picks_to_idx(raw.info, "fnirs_cw_amplitude")
assert len(picks) == len(raw.ch_names)
raw_subset = raw.copy().pick(picks="fnirs_cw_amplitude")
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od", "hbr"])
assert len(picks) == len(raw.ch_names)
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_od")
pytest.raises(ValueError, _picks_to_idx, raw.info, "hbo")
pytest.raises(ValueError, _picks_to_idx, raw.info, ["hbr"])
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_fd_phase")
pytest.raises(ValueError, _picks_to_idx, raw.info, "junk")
raw = optical_density(raw)
picks = _picks_to_idx(raw.info, "fnirs_od")
assert len(picks) == len(raw.ch_names)
raw_subset = raw.copy().pick(picks="fnirs_od")
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_OD
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["fnirs_cw_amplitude", "fnirs_od", "hbr"])
assert len(picks) == len(raw.ch_names)
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_cw_amplitude")
pytest.raises(ValueError, _picks_to_idx, raw.info, "hbo")
pytest.raises(ValueError, _picks_to_idx, raw.info, "hbr")
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_fd_phase")
pytest.raises(ValueError, _picks_to_idx, raw.info, "junk")
raw = beer_lambert_law(raw)
picks = _picks_to_idx(raw.info, "hbo")
assert len(picks) == len(raw.ch_names) / 2
raw_subset = raw.copy().pick(picks="hbo")
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_HBO
picks = _picks_to_idx(raw.info, ["hbr"])
assert len(picks) == len(raw.ch_names) / 2
raw_subset = raw.copy().pick(picks=["hbr"])
for ch in raw_subset.info["chs"]:
assert ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_HBR
picks = _picks_to_idx(raw.info, ["hbo", "hbr"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["hbo", "fnirs_od", "hbr"])
assert len(picks) == len(raw.ch_names)
picks = _picks_to_idx(raw.info, ["hbo", "fnirs_od"])
assert len(picks) == len(raw.ch_names) / 2
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_cw_amplitude")
pytest.raises(ValueError, _picks_to_idx, raw.info, ["fnirs_od"])
pytest.raises(ValueError, _picks_to_idx, raw.info, "junk")
pytest.raises(ValueError, _picks_to_idx, raw.info, "fnirs_fd_phase")
# Backward compat wrapper for simplicity below
def _fnirs_check_bads(info):
_validate_nirs_info(info)
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname", ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])
)
def test_fnirs_check_bads(fname):
"""Test checking of bad markings."""
# No bad channels, so these should all pass
raw = read_raw_nirx(fname)
_fnirs_check_bads(raw.info)
raw = optical_density(raw)
_fnirs_check_bads(raw.info)
raw = beer_lambert_law(raw)
_fnirs_check_bads(raw.info)
# Mark pairs of bad channels, so these should all pass
raw = read_raw_nirx(fname)
raw.info["bads"] = raw.ch_names[0:2]
_fnirs_check_bads(raw.info)
raw = optical_density(raw)
_fnirs_check_bads(raw.info)
raw = beer_lambert_law(raw)
_fnirs_check_bads(raw.info)
# Mark single channel as bad, so these should all fail
raw = read_raw_nirx(fname)
raw.info["bads"] = raw.ch_names[0:1]
pytest.raises(RuntimeError, _fnirs_check_bads, raw.info)
with pytest.raises(RuntimeError, match="bad labelling"):
raw = optical_density(raw)
raw.info["bads"] = []
raw = optical_density(raw)
raw.info["bads"] = raw.ch_names[0:1]
pytest.raises(RuntimeError, _fnirs_check_bads, raw.info)
with pytest.raises(RuntimeError, match="bad labelling"):
raw = beer_lambert_law(raw)
pytest.raises(RuntimeError, _fnirs_check_bads, raw.info)
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname", ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])
)
def test_fnirs_spread_bads(fname):
"""Test checking of bad markings."""
# Test spreading upwards in frequency and on raw data
raw = read_raw_nirx(fname)
raw.info["bads"] = ["S1_D1 760"]
info = _fnirs_spread_bads(raw.info)
assert info["bads"] == ["S1_D1 760", "S1_D1 850"]
# Test spreading downwards in frequency and on od data
raw = optical_density(raw)
raw.info["bads"] = raw.ch_names[5:6]
info = _fnirs_spread_bads(raw.info)
assert info["bads"] == raw.ch_names[4:6]
# Test spreading multiple bads and on chroma data
raw = beer_lambert_law(raw)
raw.info["bads"] = [raw.ch_names[x] for x in [1, 8]]
info = _fnirs_spread_bads(raw.info)
assert info["bads"] == [info.ch_names[x] for x in [0, 1, 8, 9]]
@testing.requires_testing_data
@pytest.mark.parametrize(
"fname", ([fname_nirx_15_2_short, fname_nirx_15_2, fname_nirx_15_0])
)
def test_fnirs_channel_naming_and_order_readers(fname):
"""Ensure fNIRS channel checking on standard readers."""
# fNIRS data requires specific channel naming and ordering.
# All standard readers should pass tests
raw = read_raw_nirx(fname)
freqs = np.unique(_channel_frequencies(raw.info))
assert_array_equal(freqs, [760, 850])
chroma = np.unique(_channel_chromophore(raw.info))
assert len(chroma) == 0
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names) # as all fNIRS only data
# Check that dropped channels are detected
# For each source detector pair there must be two channels,
# removing one should throw an error.
raw_dropped = raw.copy().drop_channels(raw.ch_names[4])
with pytest.raises(ValueError, match="not ordered correctly"):
_check_channels_ordered(raw_dropped.info, freqs)
# The ordering must be increasing for the pairs, if provided
raw_names_reversed = raw.copy().ch_names
raw_names_reversed.reverse()
raw_reversed = raw.copy().pick(raw_names_reversed)
with pytest.raises(ValueError, match="The frequencies.*sorted.*"):
_check_channels_ordered(raw_reversed.info, [850, 760])
# So if we flip the second argument it should pass again
picks = _check_channels_ordered(raw_reversed.info, freqs)
got_first = set(raw_reversed.ch_names[pick].split()[1] for pick in picks[::2])
assert got_first == {"760"}
got_second = set(raw_reversed.ch_names[pick].split()[1] for pick in picks[1::2])
assert got_second == {"850"}
# Check on OD data
raw = optical_density(raw)
freqs = np.unique(_channel_frequencies(raw.info))
assert_array_equal(freqs, [760, 850])
chroma = np.unique(_channel_chromophore(raw.info))
assert len(chroma) == 0
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names) # as all fNIRS only data
# Check on haemoglobin data
raw = beer_lambert_law(raw)
freqs = np.unique(_channel_frequencies(raw.info))
assert len(freqs) == 0
assert len(_channel_chromophore(raw.info)) == len(raw.ch_names)
chroma = np.unique(_channel_chromophore(raw.info))
assert_array_equal(chroma, ["hbo", "hbr"])
picks = _check_channels_ordered(raw.info, chroma)
assert len(picks) == len(raw.ch_names)
with pytest.raises(ValueError, match="chromophore in info"):
_check_channels_ordered(raw.info, ["hbr", "hbo"])
def test_fnirs_channel_naming_and_order_custom_raw():
"""Ensure fNIRS channel checking on manually created data."""
data = np.random.normal(size=(6, 10))
# Start with a correctly named raw intensity dataset
# These are the steps required to build an fNIRS Raw object from scratch
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
freqs = np.unique(_channel_frequencies(raw.info))
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Different systems use different frequencies, so ensure that works
ch_names = [
"S1_D1 920",
"S1_D1 850",
"S2_D1 920",
"S2_D1 850",
"S3_D1 920",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([920, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
picks = _check_channels_ordered(raw.info, [850, 920])
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Catch expected errors
# The frequencies named in the channel names must match the info loc field
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([920, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
with pytest.raises(ValueError, match="not ordered"):
_check_channels_ordered(raw.info, [850, 920])
# Catch if someone doesn't set the info field
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
with pytest.raises(ValueError, match="missing wavelength information"):
_check_channels_ordered(raw.info, [850, 920])
# I have seen data encoded not in alternating frequency, but blocked.
ch_names = [
"S1_D1 760",
"S2_D1 760",
"S3_D1 760",
"S1_D1 850",
"S2_D1 850",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_cw_amplitude", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.repeat([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
_check_channels_ordered(raw.info, [760, 850])
def test_fnirs_channel_naming_and_order_custom_optical_density():
"""Ensure fNIRS channel checking on manually created data."""
data = np.random.normal(size=(6, 10))
# Start with a correctly named raw intensity dataset
# These are the steps required to build an fNIRS Raw object from scratch
ch_names = [
"S1_D1 760",
"S1_D1 850",
"S2_D1 760",
"S2_D1 850",
"S3_D1 760",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_od", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.tile([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
freqs = np.unique(_channel_frequencies(raw.info))
picks = _check_channels_ordered(raw.info, freqs)
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Check block naming for optical density
ch_names = [
"S1_D1 760",
"S2_D1 760",
"S3_D1 760",
"S1_D1 850",
"S2_D1 850",
"S3_D1 850",
]
ch_types = np.repeat("fnirs_od", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
freqs = np.repeat([760, 850], 3)
for idx, f in enumerate(freqs):
raw.info["chs"][idx]["loc"][9] = f
# no problems here
_check_channels_ordered(raw.info, [760, 850])
# or with this (nirx) reordering
raw.pick(picks=[0, 3, 1, 4, 2, 5])
_check_channels_ordered(raw.info, [760, 850])
# Check that if you mix types you get an error
ch_names = [
"S1_D1 hbo",
"S1_D1 hbr",
"S2_D1 hbo",
"S2_D1 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw2 = RawArray(data, info, verbose=True)
raw.add_channels([raw2])
with pytest.raises(ValueError, match="does not support a combination"):
_check_channels_ordered(raw.info, [760, 850])
def test_fnirs_channel_naming_and_order_custom_chroma():
"""Ensure fNIRS channel checking on manually created data."""
data = np.random.RandomState(0).randn(6, 10)
# Start with a correctly named raw intensity dataset
# These are the steps required to build an fNIRS Raw object from scratch
ch_names = [
"S1_D1 hbo",
"S1_D1 hbr",
"S2_D1 hbo",
"S2_D1 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
chroma = np.unique(_channel_chromophore(raw.info))
picks = _check_channels_ordered(raw.info, chroma)
assert len(picks) == len(raw.ch_names)
assert len(picks) == 6
# Test block creation fails
ch_names = [
"S1_D1 hbo",
"S2_D1 hbo",
"S3_D1 hbo",
"S1_D1 hbr",
"S2_D1 hbr",
"S3_D1 hbr",
]
ch_types = np.repeat(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
# no issue here
_check_channels_ordered(raw.info, ["hbo", "hbr"])
# reordering okay, too
raw.pick(picks=[0, 3, 1, 4, 2, 5])
_check_channels_ordered(raw.info, ["hbo", "hbr"])
# Wrong names should fail
with pytest.raises(ValueError, match="chromophore in info"):
_check_channels_ordered(raw.info, ["hbb", "hbr"])
# Test weird naming
ch_names = [
"S1_D1 hbb",
"S1_D1 hbr",
"S2_D1 hbb",
"S2_D1 hbr",
"S3_D1 hbb",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
with pytest.raises(ValueError, match="naming conventions"):
_check_channels_ordered(raw.info, ["hbo", "hbr"])
# Check more weird naming
ch_names = [
"S1_DX hbo",
"S1_DX hbr",
"S2_D1 hbo",
"S2_D1 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
raw = RawArray(data, info, verbose=True)
with pytest.raises(ValueError, match="can not be parsed"):
_check_channels_ordered(raw.info, ["hbo", "hbr"])
def test_optode_names():
"""Ensure optode name extraction is correct."""
ch_names = [
"S11_D2 760",
"S11_D2 850",
"S3_D1 760",
"S3_D1 850",
"S2_D13 760",
"S2_D13 850",
]
ch_types = np.repeat("fnirs_od", 6)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
src_names, det_names = _fnirs_optode_names(info)
assert_array_equal(src_names, [f"S{n}" for n in ["2", "3", "11"]])
assert_array_equal(det_names, [f"D{n}" for n in ["1", "2", "13"]])
ch_names = [
"S1_D11 hbo",
"S1_D11 hbr",
"S2_D17 hbo",
"S2_D17 hbr",
"S3_D1 hbo",
"S3_D1 hbr",
]
ch_types = np.tile(["hbo", "hbr"], 3)
info = create_info(ch_names=ch_names, ch_types=ch_types, sfreq=1.0)
src_names, det_names = _fnirs_optode_names(info)
assert_array_equal(src_names, [f"S{n}" for n in range(1, 4)])
assert_array_equal(det_names, [f"D{n}" for n in ["1", "11", "17"]])
@testing.requires_testing_data
def test_optode_loc():
"""Ensure optode location extraction is correct."""
raw = read_raw_nirx(fname_nirx_15_2_short)
loc = _optode_position(raw.info, "D3")
assert_array_almost_equal(loc, [0.082804, 0.01573, 0.024852])
def test_order_agnostic(nirx_snirf):
"""Test that order does not matter to (pre)processing results."""
raw_nirx, raw_snirf = nirx_snirf
raw_random = raw_nirx.copy().pick(
np.random.RandomState(0).permutation(len(raw_nirx.ch_names))
)
raws = dict(nirx=raw_nirx, snirf=raw_snirf, random=raw_random)
del raw_nirx, raw_snirf, raw_random
orders = dict()
# continuous wave
for key, r in raws.items():
assert set(r.get_channel_types()) == {"fnirs_cw_amplitude"}
orders[key] = [r.ch_names.index(name) for name in raws["nirx"].ch_names]
assert_array_equal(raws["nirx"].ch_names, np.array(r.ch_names)[orders[key]])
assert_allclose(raws["nirx"].get_data(), r.get_data(orders[key]), err_msg=key)
assert_array_equal(orders["nirx"], np.arange(len(raws["nirx"].ch_names)))
# optical density
for key, r in raws.items():
raws[key] = r = optical_density(r)
assert_allclose(raws["nirx"].get_data(), r.get_data(orders[key]), err_msg=key)
assert set(r.get_channel_types()) == {"fnirs_od"}
# scalp-coupling index
sci = dict()
for key, r in raws.items():
sci[key] = r = scalp_coupling_index(r)
assert_allclose(sci["nirx"], r[orders[key]], err_msg=key, rtol=0.01)
# TDDR (on optical)
tddrs = dict()
for key, r in raws.items():
tddrs[key] = r = tddr(r)
assert_allclose(
tddrs["nirx"].get_data(), r.get_data(orders[key]), err_msg=key, atol=1e-4
)
assert set(r.get_channel_types()) == {"fnirs_od"}
# beer-lambert
for key, r in raws.items():
raws[key] = r = beer_lambert_law(r)
assert_allclose(
raws["nirx"].get_data(), r.get_data(orders[key]), err_msg=key, rtol=2e-7
)
assert set(r.get_channel_types()) == {"hbo", "hbr"}
# TDDR (on haemo)
tddrs = dict()
for key, r in raws.items():
tddrs[key] = r = tddr(r)
assert_allclose(
tddrs["nirx"].get_data(), r.get_data(orders[key]), err_msg=key, atol=1e-9
)
assert set(r.get_channel_types()) == {"hbo", "hbr"}