[074d3d]: / mne / preprocessing / maxwell.py

Download this file

3011 lines (2749 with data), 115.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from collections import Counter
from functools import partial
from math import factorial
from os import path as op
from pathlib import Path
import numpy as np
from scipy import linalg
from scipy.special import lpmv
from .. import __version__
from .._fiff.compensator import make_compensator
from .._fiff.constants import FIFF, FWD
from .._fiff.meas_info import Info, _simplify_info
from .._fiff.pick import pick_info, pick_types
from .._fiff.proc_history import _read_ctc
from .._fiff.proj import Projection
from .._fiff.tag import _coil_trans_to_loc, _loc_to_coil_trans
from .._fiff.write import DATE_NONE, _generate_meas_id
from .._ola import _COLA, _Interp2, _Storer
from ..annotations import _annotations_starts_stops
from ..bem import _check_origin
from ..channels.channels import _get_T1T2_mag_inds, fix_mag_coil_types
from ..fixes import _safe_svd, bincount, sph_harm_y
from ..forward import _concatenate_coils, _create_meg_coils, _prep_meg_channels
from ..io import BaseRaw, RawArray
from ..surface import _normalize_vectors
from ..transforms import (
Transform,
_average_quats,
_cart_to_sph,
_deg_ord_idx,
_find_vector_rotation,
_get_n_moments,
_get_trans,
_sh_complex_to_real,
_sh_negate,
_sh_real_to_complex,
_sph_to_cart_partials,
_str_to_frame,
apply_trans,
quat_to_rot,
rot_to_quat,
)
from ..utils import (
_check_option,
_clean_names,
_ensure_int,
_pl,
_time_mask,
_validate_type,
_verbose_safe_false,
logger,
use_log_level,
verbose,
warn,
)
# Note: MF uses single precision and some algorithms might use
# truncated versions of constants (e.g., μ0), which could lead to small
# differences between algorithms
@verbose
def maxwell_filter_prepare_emptyroom(
raw_er,
*,
raw,
bads="from_raw",
annotations="from_raw",
meas_date="keep",
emit_warning=False,
verbose=None,
):
"""Prepare an empty-room recording for Maxwell filtering.
Empty-room data by default lacks certain properties that are required to
ensure running :func:`~mne.preprocessing.maxwell_filter` will process the
empty-room recording the same way as the experimental data. This function
preconditions an empty-room raw data instance accordingly so it can be used
for Maxwell filtering. Please see the ``Notes`` section for details.
Parameters
----------
raw_er : instance of Raw
The empty-room recording. It will not be modified.
raw : instance of Raw
The experimental recording, typically this will be the reference run
used for Maxwell filtering.
bads : 'from_raw' | 'union' | 'keep'
How to populate the list of bad channel names to be injected into
the empty-room recording. If ``'from_raw'`` (default) the list of bad
channels will be overwritten with that of ``raw``. If ``'union'``, will
use the union of bad channels in ``raw`` and ``raw_er``. Note that
this may lead to additional bad channels in the empty-room in
comparison to the experimental recording. If ``'keep'``, don't alter
the existing list of bad channels.
.. note::
Non-MEG channels are silently dropped from the list of bads.
annotations : 'from_raw' | 'union' | 'keep'
Whether to copy the annotations over from ``raw`` (default),
use the union of the annotations, or to keep them unchanged.
meas_date : 'keep' | 'from_raw'
Whether to transfer the measurement date from ``raw`` or to keep
it as is (default). If you intend to manually transfer annotations
from ``raw`` **after** running this function, you should set this to
``'from_raw'``.
%(emit_warning)s
Unlike :meth:`raw.set_annotations <mne.io.Raw.set_annotations>`, the
default here is ``False``, as empty-room recordings are often shorter
than raw.
%(verbose)s
Returns
-------
raw_er_prepared : instance of Raw
A copy of the passed empty-room recording, ready for Maxwell filtering.
Notes
-----
This function will:
* Compile the list of bad channels according to the ``bads`` parameter.
* Inject the device-to-head transformation matrix from the experimental
recording into the empty-room recording.
* Set the following properties of the empty-room recording to match the
experimental recording:
* Montage
* ``raw.first_time`` and ``raw.first_samp``
* Adjust annotations according to the ``annotations`` parameter.
* Adjust the measurement date according to the ``meas_date`` parameter.
.. versionadded:: 1.1
""" # noqa: E501
_validate_type(item=raw_er, types=BaseRaw, item_name="raw_er")
_validate_type(item=raw, types=BaseRaw, item_name="raw")
_validate_type(item=bads, types=str, item_name="bads")
_check_option(
parameter="bads", value=bads, allowed_values=["from_raw", "union", "keep"]
)
_validate_type(item=annotations, types=str, item_name="annotations")
_check_option(
parameter="annotations",
value=annotations,
allowed_values=["from_raw", "union", "keep"],
)
_validate_type(item=meas_date, types=str, item_name="meas_date")
_check_option(
parameter="meas_date", value=annotations, allowed_values=["from_raw", "keep"]
)
raw_er_prepared = raw_er.copy()
del raw_er # just to be sure
# handle bads; only keep MEG channels
if bads == "from_raw":
bads = raw.info["bads"]
elif bads == "union":
bads = sorted(set(raw.info["bads"] + raw_er_prepared.info["bads"]))
elif bads == "keep":
bads = raw_er_prepared.info["bads"]
bads = [ch_name for ch_name in bads if ch_name.startswith("MEG")]
raw_er_prepared.info["bads"] = bads
# handle dev_head_t
raw_er_prepared.info["dev_head_t"] = raw.info["dev_head_t"]
# handle montage
montage = raw.get_montage()
raw_er_prepared.set_montage(montage)
# handle first_samp
raw_er_prepared.annotations.onset += raw.first_time - raw_er_prepared.first_time
# don't copy _cropped_samp directly, as sfreqs may differ
raw_er_prepared._cropped_samp = raw_er_prepared.time_as_index(raw.first_time).item()
# handle annotations
if annotations != "keep":
er_annot = raw_er_prepared.annotations
if annotations == "from_raw":
er_annot.delete(np.arange(len(er_annot)))
er_annot.append(
raw.annotations.onset,
raw.annotations.duration,
raw.annotations.description,
raw.annotations.ch_names,
)
if raw_er_prepared.info["meas_date"] is None:
er_annot.onset -= raw_er_prepared.first_time
raw_er_prepared.set_annotations(er_annot, emit_warning)
# handle measurement date
if meas_date == "from_raw":
raw_er_prepared.set_meas_date(raw.info["meas_date"])
return raw_er_prepared
# Changes to arguments here should also be made in find_bad_channels_maxwell
@verbose
def maxwell_filter(
raw,
origin="auto",
int_order=8,
ext_order=3,
calibration=None,
cross_talk=None,
st_duration=None,
st_correlation=0.98,
coord_frame="head",
destination=None,
regularize="in",
ignore_ref=False,
bad_condition="error",
head_pos=None,
st_fixed=True,
st_only=False,
mag_scale=100.0,
skip_by_annotation=("edge", "bad_acq_skip"),
extended_proj=(),
st_overlap=None,
mc_interp=None,
verbose=None,
):
"""Maxwell filter data using multipole moments.
Parameters
----------
raw : instance of Raw
Data to be filtered.
.. warning:: It is critical to mark bad channels in
``raw.info['bads']`` prior to processing in order to
prevent artifact spreading. Manual inspection and use
of :func:`~find_bad_channels_maxwell` is recommended.
%(origin_maxwell)s
%(int_order_maxwell)s
%(ext_order_maxwell)s
%(calibration_maxwell_cal)s
%(cross_talk_maxwell)s
st_duration : float | None
If not None, apply spatiotemporal SSS with specified buffer duration
(in seconds). MaxFilter™'s default is 10.0 seconds in v2.2.
Spatiotemporal SSS acts as implicitly as a high-pass filter where the
cut-off frequency is 1/st_duration Hz. For this (and other) reasons,
longer buffers are generally better as long as your system can handle
the higher memory usage. To ensure that each window is processed
identically, choose a buffer length that divides evenly into your data.
Any data at the trailing edge that doesn't fit evenly into a whole
buffer window will be lumped into the previous buffer.
st_correlation : float
Correlation limit between inner and outer subspaces used to reject
overlapping intersecting inner/outer signals during spatiotemporal SSS.
%(coord_frame_maxwell)s
%(destination_maxwell_dest)s
%(regularize_maxwell_reg)s
%(ignore_ref_maxwell)s
%(bad_condition_maxwell_cond)s
%(head_pos_maxwell)s
.. versionadded:: 0.12
%(st_fixed_maxwell_only)s
%(mag_scale_maxwell)s
.. versionadded:: 0.13
%(skip_by_annotation_maxwell)s
.. versionadded:: 0.17
%(extended_proj_maxwell)s
st_overlap : bool
If True (default in 1.11), tSSS processing will use a constant
overlap-add method. If False (default in 1.10), then
non-overlapping windows will be used.
.. versionadded:: 1.10
%(maxwell_mc_interp)s
%(verbose)s
Returns
-------
raw_sss : instance of Raw
The raw data with Maxwell filtering applied.
See Also
--------
mne.preprocessing.annotate_amplitude
mne.preprocessing.find_bad_channels_maxwell
mne.chpi.filter_chpi
mne.chpi.read_head_pos
mne.epochs.average_movements
Notes
-----
.. versionadded:: 0.11
Some of this code was adapted and relicensed (with BSD form) with
permission from Jussi Nurminen. These algorithms are based on work
from :footcite:`TauluKajola2005` and :footcite:`TauluSimola2006`.
It will likely use multiple CPU cores, see the :ref:`FAQ <faq_cpu>`
for more information.
.. warning:: Maxwell filtering in MNE is not designed or certified
for clinical use.
Compared to the MEGIN MaxFilter™ 2.2.11 software, the MNE Maxwell filtering
routines currently provide the following features:
.. table::
:widths: auto
+-----------------------------------------------------------------------------+-----+-----------+
| Feature | MNE | MaxFilter |
+=============================================================================+=====+===========+
| Maxwell filtering software shielding | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Bad channel reconstruction | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Cross-talk cancellation | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Fine calibration correction (1D) | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Fine calibration correction (3D) | ✓ | |
+-----------------------------------------------------------------------------+-----+-----------+
| Spatio-temporal SSS (tSSS) | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Coordinate frame translation | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Regularization using information theory | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Movement compensation (raw) | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Movement compensation (:func:`epochs <mne.epochs.average_movements>`) | ✓ | |
+-----------------------------------------------------------------------------+-----+-----------+
| :func:`cHPI subtraction <mne.chpi.filter_chpi>` | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Double floating point precision | ✓ | |
+-----------------------------------------------------------------------------+-----+-----------+
| Seamless processing of split (``-1.fif``) and concatenated files | ✓ | |
+-----------------------------------------------------------------------------+-----+-----------+
| Automatic bad channel detection (:func:`~find_bad_channels_maxwell`) | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Head position estimation (:func:`~mne.chpi.compute_head_pos`) | ✓ | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Overlap-add processing for spatio-temporal projections | ✓ | |
+-----------------------------------------------------------------------------+-----+-----------+
| Smooth interpolation in movement compensation | ✓ | |
+-----------------------------------------------------------------------------+-----+-----------+
| Certified for clinical use | | ✓ |
+-----------------------------------------------------------------------------+-----+-----------+
| Extended external basis (eSSS) | ✓ | |
+-----------------------------------------------------------------------------+-----+-----------+
Epoch-based movement compensation is described in :footcite:`TauluKajola2005`.
Use of Maxwell filtering routines with non-Neuromag systems is currently
**experimental**. Worse results for non-Neuromag systems are expected due
to (at least):
* Missing fine-calibration and cross-talk cancellation data for
other systems.
* Processing with reference sensors has not been vetted.
* Regularization of components may not work well for all systems.
* Coil integration has not been optimized using Abramowitz/Stegun
definitions.
.. note:: Various Maxwell filtering algorithm components are covered by
patents owned by MEGIN. These patents include, but may not be
limited to:
- US2006031038 (Signal Space Separation)
- US6876196 (Head position determination)
- WO2005067789 (DC fields)
- WO2005078467 (MaxShield)
- WO2006114473 (Temporal Signal Space Separation)
These patents likely preclude the use of Maxwell filtering code
in commercial applications. Consult a lawyer if necessary.
Currently, in order to perform Maxwell filtering, the raw data must not
have any projectors applied. During Maxwell filtering, the spatial
structure of the data is modified, so projectors are discarded (unless
in ``st_only=True`` mode).
References
----------
.. footbibliography::
""" # noqa: E501
logger.info("Maxwell filtering raw data")
params = _prep_maxwell_filter(
raw=raw,
origin=origin,
int_order=int_order,
ext_order=ext_order,
calibration=calibration,
cross_talk=cross_talk,
st_duration=st_duration,
st_correlation=st_correlation,
coord_frame=coord_frame,
destination=destination,
regularize=regularize,
ignore_ref=ignore_ref,
bad_condition=bad_condition,
head_pos=head_pos,
st_fixed=st_fixed,
st_only=st_only,
mag_scale=mag_scale,
skip_by_annotation=skip_by_annotation,
extended_proj=extended_proj,
st_overlap=st_overlap,
mc_interp=mc_interp,
)
raw_sss = _run_maxwell_filter(raw, **params)
# Update info
_update_sss_info(raw_sss, **params["update_kwargs"])
logger.info("[done]")
return raw_sss
@verbose
def _prep_maxwell_filter(
raw,
origin="auto",
int_order=8,
ext_order=3,
calibration=None,
cross_talk=None,
st_duration=None,
st_correlation=0.98,
coord_frame="head",
destination=None,
regularize="in",
ignore_ref=False,
bad_condition="error",
head_pos=None,
st_fixed=True,
st_only=False,
mag_scale=100.0,
skip_by_annotation=("edge", "bad_acq_skip"),
extended_proj=(),
reconstruct="in",
st_overlap=False,
mc_interp="zero",
verbose=None,
):
# There are an absurd number of different possible notations for spherical
# coordinates, which confounds the notation for spherical harmonics. Here,
# we purposefully stay away from shorthand notation in both and use
# explicit terms (like 'azimuth' and 'polar') to avoid confusion.
# See mathworld.wolfram.com/SphericalHarmonic.html for more discussion.
# Our code follows the same standard that ``scipy`` uses for ``sph_harm_y``.
# triage inputs ASAP to avoid late-thrown errors
_validate_type(raw, BaseRaw, "raw")
_check_usable(raw, ignore_ref)
_check_regularize(regularize)
st_correlation = float(st_correlation)
if st_correlation <= 0.0 or st_correlation > 1.0:
raise ValueError(f"Need 0 < st_correlation <= 1., got {st_correlation}")
_check_option("coord_frame", coord_frame, ["head", "meg"])
recon_trans = _check_destination(destination, raw.info, coord_frame)
if st_duration is not None:
st_duration = float(st_duration)
st_correlation = float(st_correlation)
st_duration = int(round(st_duration * raw.info["sfreq"]))
if not 0.0 < st_correlation <= 1:
raise ValueError("st_correlation must be between 0. and 1.")
_check_option(
"bad_condition", bad_condition, ["error", "warning", "ignore", "info"]
)
if raw.info["dev_head_t"] is None and coord_frame == "head":
raise RuntimeError(
'coord_frame cannot be "head" because '
'info["dev_head_t"] is None; if this is an '
"empty room recording, consider using "
'coord_frame="meg"'
)
if st_only and st_duration is None:
raise ValueError("st_duration must not be None if st_only is True")
if st_overlap is None:
if st_duration is not None:
# TODO VERSION 1.10/1.11 deprecation
warn(
"st_overlap defaults to False in 1.10 but will change to "
"True in 1.11. Set it explicitly to avoid this warning.",
DeprecationWarning,
)
st_overlap = False
add_channels = head_pos is not None and not st_only
if mc_interp is None:
if head_pos is not None:
# TODO VERSION 1.10/1.11 deprecation
warn(
'mc_interp defaults to "zero" in 1.10 but will change '
'to "hann" in 1.11, set it explicitly to avoid this '
"message.",
DeprecationWarning,
)
mc_interp = "zero"
add_channels = (head_pos is not None) and (not st_only)
head_pos = _check_pos(head_pos, coord_frame, raw, st_fixed)
mc = _MoveComp(head_pos, coord_frame, raw, mc_interp, reconstruct)
_check_info(
raw.info,
sss=not st_only,
tsss=st_duration is not None,
calibration=not st_only and calibration is not None,
ctc=not st_only and cross_talk is not None,
)
# Now we can actually get moving
info = raw.info.copy()
meg_picks, mag_picks, grad_picks, good_mask, mag_or_fine = _get_mf_picks_fix_mags(
info, int_order, ext_order, ignore_ref
)
# Magnetometers are scaled to improve numerical stability
coil_scale, mag_scale = _get_coil_scale(
meg_picks, mag_picks, grad_picks, mag_scale, info
)
#
# Extended projection vectors
#
_validate_type(extended_proj, (list, tuple), "extended_proj")
good_names = [info["ch_names"][c] for c in meg_picks[good_mask]]
if len(extended_proj) > 0:
extended_proj_ = list()
for pi, proj in enumerate(extended_proj):
item = f"extended_proj[{pi}]"
_validate_type(proj, Projection, item)
got_names = proj["data"]["col_names"]
missing = sorted(set(good_names) - set(got_names))
if missing:
raise ValueError(
f"{item} channel names were missing some "
f"good MEG channel names:\n{', '.join(missing)}"
)
idx = [got_names.index(name) for name in good_names]
extended_proj_.append(proj["data"]["data"][:, idx])
extended_proj = np.concatenate(extended_proj_)
logger.info(
" Extending external SSS basis using %d projection vectors",
len(extended_proj),
)
#
# Fine calibration processing (load fine cal and overwrite sensor geometry)
#
sss_cal = dict()
if calibration is not None:
# Modifies info in place, so make a copy for recon later
info_recon = info.copy()
calibration, sss_cal = _update_sensor_geometry(info, calibration, ignore_ref)
mag_or_fine.fill(True) # all channels now have some mag-type data
else:
info_recon = info
# Determine/check the origin of the expansion
origin = _check_origin(origin, info, coord_frame, disp=True)
# Convert to the head frame
if coord_frame == "meg" and info["dev_head_t"] is not None:
origin_head = apply_trans(info["dev_head_t"], origin)
else:
origin_head = origin
update_kwargs = dict(
origin=origin,
coord_frame=coord_frame,
sss_cal=sss_cal,
int_order=int_order,
ext_order=ext_order,
extended_proj=extended_proj,
)
del origin, coord_frame, sss_cal
origin_head.setflags(write=False)
#
# Cross-talk processing
#
meg_ch_names = [info["ch_names"][p] for p in meg_picks]
ctc, sss_ctc = _read_cross_talk(cross_talk, meg_ch_names)
update_kwargs["sss_ctc"] = sss_ctc
del sss_ctc
#
# Translate to destination frame (always use non-fine-cal bases)
#
exp = dict(origin=origin_head, int_order=int_order, ext_order=0)
all_coils = _prep_mf_coils(info, ignore_ref)
all_coils_recon = _prep_mf_coils(info_recon, ignore_ref)
S_recon = _trans_sss_basis(exp, all_coils_recon, recon_trans, coil_scale)
exp["ext_order"] = ext_order
exp["extended_proj"] = extended_proj
del extended_proj
# Reconstruct data from internal space only (Eq. 38), and rescale S_recon
if recon_trans is not None:
# warn if we have translated too far
diff = 1000 * (info["dev_head_t"]["trans"][:3, 3] - recon_trans["trans"][:3, 3])
dist = np.sqrt(np.sum(_sq(diff)))
if dist > 25.0:
warn(
f"Head position change is over 25 mm "
f"({', '.join(f'{x:0.1f}' for x in diff)}) = {dist:0.1f} mm"
)
# Reconstruct raw file object with spatiotemporal processed data
max_st = dict()
if st_duration is not None:
if st_only:
job = FIFF.FIFFV_SSS_JOB_TPROJ
else:
job = FIFF.FIFFV_SSS_JOB_ST
max_st.update(
job=job, subspcorr=st_correlation, buflen=st_duration / info["sfreq"]
)
logger.info(
f" Processing data using tSSS with st_duration={max_st['buflen']}"
)
st_when = "before" if st_fixed else "after" # relative to movecomp
else:
# st_duration from here on will act like the chunk size
st_duration = min(max(int(round(10.0 * info["sfreq"])), 1), len(raw.times))
st_correlation = None
st_when = "never"
update_kwargs["max_st"] = max_st
del max_st
# Figure out which transforms we need for each tSSS block
# (and transform pos[1] to times)
# Compute the first bit of pos_data for cHPI reporting
if info["dev_head_t"] is not None and head_pos[0] is not None:
this_pos_quat = np.concatenate(
[
rot_to_quat(info["dev_head_t"]["trans"][:3, :3]),
info["dev_head_t"]["trans"][:3, 3],
np.zeros(3),
]
)
else:
this_pos_quat = None
# Figure out our linear operator
mult = _get_sensor_operator(raw, meg_picks)
if mult is not None:
S_recon = mult @ S_recon
S_recon /= coil_scale
_get_this_decomp_trans = partial(
_get_decomp,
all_coils=all_coils,
cal=calibration,
regularize=regularize,
exp=exp,
ignore_ref=ignore_ref,
coil_scale=coil_scale,
grad_picks=grad_picks,
mag_picks=mag_picks,
good_mask=good_mask,
mag_or_fine=mag_or_fine,
bad_condition=bad_condition,
mag_scale=mag_scale,
mult=mult,
)
update_kwargs.update(
nchan=good_mask.sum(), st_only=st_only, recon_trans=recon_trans
)
params = dict(
skip_by_annotation=skip_by_annotation,
st_duration=st_duration,
st_correlation=st_correlation,
st_only=st_only,
st_when=st_when,
ctc=ctc,
coil_scale=coil_scale,
this_pos_quat=this_pos_quat,
meg_picks=meg_picks,
good_mask=good_mask,
grad_picks=grad_picks,
head_pos=head_pos,
info=info,
_get_this_decomp_trans=_get_this_decomp_trans,
S_recon=S_recon,
update_kwargs=update_kwargs,
ignore_ref=ignore_ref,
add_channels=add_channels,
st_fixed=st_fixed,
st_overlap=st_overlap,
mc=mc,
)
return params
def _run_maxwell_filter(
raw,
skip_by_annotation,
st_duration,
st_correlation,
st_only,
st_when,
ctc,
coil_scale,
this_pos_quat,
meg_picks,
good_mask,
grad_picks,
head_pos,
info,
_get_this_decomp_trans,
S_recon,
update_kwargs,
*,
ignore_ref=False,
reconstruct="in",
copy=True,
add_channels,
st_fixed,
st_overlap,
mc,
):
# Eventually find_bad_channels_maxwell could be sped up by moving this
# outside the loop (e.g., in the prep function) but regularization depends
# on which channels are being used, so easier just to include it here.
# The time it takes to recompute S and pS themselves is roughly on par
# with the np.dot with the data, so not a huge gain to be made there.
if ctc is not None:
ctc = ctc[good_mask][:, good_mask]
add_channels = add_channels and copy
raw_sss, pos_picks = _copy_preload_add_channels(raw, add_channels, copy, info)
sfreq = info["sfreq"]
del raw
if not st_only:
# remove MEG projectors, they won't apply now
_remove_meg_projs_comps(raw_sss, ignore_ref)
# Figure out smooth overlap-add and interp params
if st_fixed and not st_only:
these_picks = meg_picks[good_mask]
else:
these_picks = meg_picks
# Figure out which segments of data we can use
onsets, ends = _annotations_starts_stops(raw_sss, skip_by_annotation, invert=True)
max_samps = (ends - onsets).max()
if not 0.0 < st_duration <= max_samps + 1.0:
raise ValueError(
f"st_duration ({st_duration / sfreq:0.1f}s) must be between 0 and the "
"longest contiguous duration of the data "
"({max_samps / sfreq:0.1f}s)."
)
# This must be initialized inside _run_maxwell_filter because
# find_bad_channels_maxwell modifies good_mask
mc.initialize(_get_this_decomp_trans, info["dev_head_t"], S_recon)
update_kwargs.update(reg_moments=mc.reg_moments_0)
# Process each valid block of data separately
for onset, end in zip(onsets, ends):
n = end - onset
assert n > 0
tsss_valid = n >= st_duration
if st_overlap and tsss_valid:
n_overlap = st_duration // 2
window = "hann"
else:
n_overlap = 0
window = "boxcar"
if st_fixed and st_correlation is not None:
fun = partial(_do_tSSS_on_avg_trans, mc=mc)
else:
fun = _do_tSSS
tsss = _COLA(
partial(
fun,
st_correlation=st_correlation,
tsss_valid=tsss_valid,
sfreq=sfreq,
),
_Storer(raw_sss._data[:, onset:end], picks=these_picks),
n,
min(st_duration, n),
n_overlap,
sfreq,
window,
name="tSSS-COLA",
)
# Generate time points to break up data into equal-length windows
use_n = int(round(raw_sss.buffer_size_sec * raw_sss.info["sfreq"]))
read_lims = list(range(onset, end, use_n)) + [end]
assert len(read_lims) >= 2
assert read_lims[0] == onset and read_lims[-1] == end
# First pass: cross_talk, st_fixed=True
for start, stop in zip(read_lims[:-1], read_lims[1:]):
if start == stop:
continue # Skip zero-length annotations
# Get original data and apply cross-talk correction
ctc_data = raw_sss._data[meg_picks[good_mask], start:stop]
if ctc is not None:
ctc_data = ctc.dot(ctc_data)
# Apply the average transform and feed data to the tSSS pre-mc
# operator, which will pass its results to raw_sss._data
if st_fixed and st_correlation is not None:
if st_only:
proc = raw_sss._data[meg_picks, start:stop]
else:
proc = ctc_data
tsss.feed(
proc,
ctc_data,
sfreq=info["sfreq"],
)
else:
raw_sss._data[meg_picks[good_mask], start:stop] = ctc_data
# Second pass: movement compensation, st_fixed=False
for start, stop in zip(read_lims[:-1], read_lims[1:]):
data, orig_in_data, resid, pos_data, n_positions = mc.feed(
raw_sss._data[meg_picks, start:stop], good_mask, st_only
)
raw_sss._data[meg_picks, start:stop] = data
if len(pos_picks) > 0:
raw_sss._data[pos_picks, start:stop] = pos_data
if not st_fixed and st_correlation is not None:
tsss.feed(
raw_sss._data[meg_picks, start:stop],
orig_in_data,
resid,
n_positions=n_positions,
sfreq=info["sfreq"],
)
return raw_sss
class _MoveComp:
"""Perform movement compensation."""
def __init__(self, pos, head_frame, raw, interp, reconstruct):
self.pos = pos
self.sfreq = raw.info["sfreq"]
self.interp = interp
assert reconstruct in ("orig", "in")
self.reconstruct = reconstruct
def get_decomp_by_offset(self, offset):
idx = np.where(self.pos[1] == offset)[0][0]
dev_head_t = self.pos[0][idx]
t = offset / self.sfreq
S_decomp, S_decomp_full, pS_decomp, reg_moments, n_use_in = self.get_decomp(
dev_head_t, t=t
)
S_recon_reg = self.S_recon.take(reg_moments[:n_use_in], axis=1)
if self.reconstruct == "orig":
op_sss = np.dot(S_decomp_full, pS_decomp)
else:
assert self.reconstruct == "in"
op_sss = np.dot(S_recon_reg, pS_decomp[:n_use_in])
assert op_sss.shape[1] == self.n_good
op_in = np.dot(S_decomp[:, :n_use_in], pS_decomp[:n_use_in])
op_resid = np.eye(S_decomp.shape[0]) - op_in
op_resid -= np.dot(S_decomp[:, n_use_in:], pS_decomp[n_use_in:])
return op_sss, op_in, op_resid
def initialize(self, get_decomp, dev_head_t, S_recon):
"""Secondary initialization."""
self.smooth = _Interp2(
self.pos[1],
self.get_decomp_by_offset,
interp=self.interp,
name="MC",
)
_, _, pS_decomp, self.reg_moments_0, _ = get_decomp(dev_head_t, t=0.0)
self.n_good = pS_decomp.shape[1]
self.S_recon = S_recon
self.offset = 0
self.get_decomp = get_decomp
# For the average passes
self.last_avg_quat = np.nan * np.ones(6)
def get_avg_op(self, *, start, stop):
"""Apply an average transformation over the next interval."""
n_positions, avg_quat = _trans_lims(self.pos, start, stop)[1:]
if not np.allclose(avg_quat, self.last_avg_quat, atol=1e-7):
self.last_avg_quat = avg_quat
avg_trans = np.vstack(
[
np.hstack([quat_to_rot(avg_quat[:3]), avg_quat[3:][:, np.newaxis]]),
[[0.0, 0.0, 0.0, 1.0]],
]
)
S_decomp_st, _, pS_decomp_st, _, n_use_in_st = self.get_decomp(
avg_trans, t=start / self.sfreq
)
self.op_in_avg = np.dot(
S_decomp_st[:, :n_use_in_st], pS_decomp_st[:n_use_in_st]
)
self.op_resid_avg = (
np.eye(len(self.op_in_avg))
- self.op_in_avg
- np.dot(S_decomp_st[:, n_use_in_st:], pS_decomp_st[n_use_in_st:])
)
return self.op_in_avg, self.op_resid_avg, n_positions
def feed(self, data, good_mask, st_only):
n_samp = data.shape[1]
pos_data, n_pos = _trans_lims(
self.pos, self.offset, self.offset + data.shape[-1]
)[:2]
self.offset += data.shape[-1]
# Do movement compensation on the data, with optional smoothing
in_data = resid_data = None
for sl, left, right, l_interp in self.smooth.feed_generator(n_samp):
good_data = data[good_mask, sl]
l_sss, l_in, l_resid = left
assert l_sss.shape[1] == good_data.shape[0]
if in_data is None:
in_data = np.empty((l_in.shape[0], data.shape[1]))
resid_data = np.empty((l_resid.shape[0], data.shape[1]))
r_interp = 1.0 - l_interp if l_interp is not None else None
if not st_only:
data[:, sl] = np.dot(l_sss, good_data)
if l_interp is not None:
data[:, sl] *= l_interp
data[:, sl] += r_interp * np.dot(right[0], good_data)
# Reconstruct data using original location from external
# and internal spaces and compute residual
in_data[:, sl] = np.dot(l_in, good_data)
resid_data[:, sl] = np.dot(l_resid, good_data)
if l_interp is not None:
in_data[:, sl] *= l_interp
resid_data[:, sl] *= l_interp
in_data[:, sl] += r_interp * np.dot(right[1], good_data)
resid_data[:, sl] += r_interp * np.dot(right[2], good_data)
return data, in_data, resid_data, pos_data, n_pos
def _trans_lims(pos, start, stop):
"""Get all trans and limits we need."""
pos_idx = np.arange(*np.searchsorted(pos[1], [start, stop]))
used = np.zeros(stop - start, bool)
quats = np.empty((9, stop - start))
n_positions = len(pos_idx)
for ti in range(-1, len(pos_idx)):
# first iteration for this block of data
if ti < 0:
rel_start = 0
rel_stop = pos[1][pos_idx[0]] if len(pos_idx) > 0 else stop
rel_stop = rel_stop - start
if rel_start == rel_stop:
continue # our first pos occurs on first time sample
this_quat = pos[2][max(pos_idx[0] - 1 if len(pos_idx) else 0, 0)]
n_positions += 1
else:
rel_start = pos[1][pos_idx[ti]] - start
if ti == len(pos_idx) - 1:
rel_stop = stop - start
else:
rel_stop = pos[1][pos_idx[ti + 1]] - start
this_quat = pos[2][pos_idx[ti]]
quats[:, rel_start:rel_stop] = this_quat[:, np.newaxis]
assert 0 <= rel_start
assert rel_start < rel_stop
assert rel_stop <= stop - start
assert not used[rel_start:rel_stop].any()
used[rel_start:rel_stop] = True
assert used.all()
quats = np.array(quats)
avg_quat = _average_quats(quats[:3].T)
avg_t = np.mean(quats[3:6], axis=1)
avg_quat = np.concatenate([avg_quat, avg_t])
return quats, n_positions, avg_quat
def _get_coil_scale(meg_picks, mag_picks, grad_picks, mag_scale, info):
"""Get the magnetometer scale factor."""
if isinstance(mag_scale, str):
if mag_scale != "auto":
raise ValueError(f'mag_scale must be a float or "auto", got "{mag_scale}"')
if len(mag_picks) in (0, len(meg_picks)):
mag_scale = 100.0 # only one coil type, doesn't matter
logger.info(
f" Setting mag_scale={mag_scale:0.2f} because only one "
"coil type is present"
)
else:
# Find our physical distance between gradiometer pickup loops
# ("base line")
coils = _create_meg_coils(
[info["chs"][pick] for pick in meg_picks], "accurate"
)
grad_base = {coils[pick]["base"] for pick in grad_picks}
if len(grad_base) != 1 or list(grad_base)[0] <= 0:
raise RuntimeError(
"Could not automatically determine "
"mag_scale, could not find one "
f"proper gradiometer distance from: {list(grad_base)}"
)
grad_base = list(grad_base)[0]
mag_scale = 1.0 / grad_base
logger.info(
f" Setting mag_scale={mag_scale:0.2f} based on gradiometer "
f"distance {1000 * grad_base:0.2f} mm"
)
mag_scale = float(mag_scale)
coil_scale = np.ones((len(meg_picks), 1))
coil_scale[mag_picks] = mag_scale
return coil_scale, mag_scale
def _get_sensor_operator(raw, meg_picks):
comp = raw.compensation_grade
if comp not in (0, None):
mult = make_compensator(raw.info, 0, comp)
logger.info(f" Accounting for compensation grade {comp}")
assert mult.shape[0] == mult.shape[1] == len(raw.ch_names)
mult = mult[np.ix_(meg_picks, meg_picks)]
else:
mult = None
return mult
def _remove_meg_projs_comps(inst, ignore_ref):
"""Remove inplace existing MEG projectors (assumes inactive)."""
meg_picks = pick_types(inst.info, meg=True, exclude=[])
meg_channels = [inst.ch_names[pi] for pi in meg_picks]
non_meg_proj = list()
for proj in inst.info["projs"]:
if not any(c in meg_channels for c in proj["data"]["col_names"]):
non_meg_proj.append(proj)
inst.add_proj(non_meg_proj, remove_existing=True, verbose=False)
if ignore_ref and inst.info["comps"]:
assert inst.compensation_grade in (None, 0)
with inst.info._unlock():
inst.info["comps"] = []
def _check_destination(destination, info, coord_frame):
"""Triage our reconstruction trans."""
if destination is None:
return info["dev_head_t"]
if coord_frame != "head":
raise RuntimeError(
"destination can only be set if using the head coordinate frame"
)
if isinstance(destination, str | Path):
recon_trans = _get_trans(destination, "meg", "head")[0]
elif isinstance(destination, Transform):
recon_trans = destination
else:
destination = np.array(destination, float)
if destination.shape != (3,):
raise ValueError("destination must be a 3-element vector, str, or None")
recon_trans = np.eye(4)
recon_trans[:3, 3] = destination
recon_trans = Transform("meg", "head", recon_trans)
if recon_trans.to_str != "head" or recon_trans.from_str != "MEG device":
raise RuntimeError(
"Destination transform is not MEG device -> head, "
f"got {recon_trans.from_str} -> {recon_trans.to_str}"
)
return recon_trans
@verbose
def _prep_mf_coils(info, ignore_ref=True, *, accuracy="accurate", verbose=None):
"""Get all coil integration information loaded and sorted."""
meg_sensors = _prep_meg_channels(
info, head_frame=False, ignore_ref=ignore_ref, accuracy=accuracy, verbose=False
)
coils = meg_sensors["defs"]
mag_mask = _get_mag_mask(coils)
# Now coils is a sorted list of coils. Time to do some vectorization.
n_coils = len(coils)
rmags = np.concatenate([coil["rmag"] for coil in coils])
cosmags = np.concatenate([coil["cosmag"] for coil in coils])
ws = np.concatenate([coil["w"] for coil in coils])
cosmags *= ws[:, np.newaxis]
del ws
n_int = np.array([len(coil["rmag"]) for coil in coils])
bins = np.repeat(np.arange(len(n_int)), n_int)
bd = np.concatenate(([0], np.cumsum(n_int)))
slice_map = {
ii: slice(start, stop) for ii, (start, stop) in enumerate(zip(bd[:-1], bd[1:]))
}
return rmags, cosmags, bins, n_coils, mag_mask, slice_map
def _do_tSSS_on_avg_trans(
clean_data,
orig_data,
*,
st_correlation,
tsss_valid,
mc,
start,
stop,
sfreq,
):
# Get the average transformation over the start, stop interval and split data
op_in, op_resid, n_positions = mc.get_avg_op(start=start, stop=stop)
orig_in_data = op_in @ orig_data
resid = op_resid @ orig_data
return _do_tSSS(
clean_data,
orig_in_data,
resid,
st_correlation=st_correlation,
n_positions=n_positions,
tsss_valid=tsss_valid,
start=start,
stop=stop,
sfreq=sfreq,
)
def _do_tSSS(
clean_data,
orig_in_data,
resid,
st_correlation,
n_positions,
tsss_valid,
*,
start,
stop,
sfreq,
):
"""Compute and apply SSP-like projection vectors based on min corr."""
if not tsss_valid:
t_proj = np.empty((clean_data.shape[1], 0))
else:
np.asarray_chkfinite(resid)
t_proj = _overlap_projector(orig_in_data, resid, st_correlation)
# Apply projector according to Eq. 12 in :footcite:`TauluSimola2006`
start, stop = start / sfreq, (stop - 1) / sfreq
t_str = f"{start:8.3f} - {stop:8.3f} s"
msg = (
f" Projecting {t_proj.shape[1]:2d} intersecting tSSS "
f"component{_pl(t_proj.shape[1], ' ')} for {t_str}"
)
if n_positions > 1:
msg += f" (across {n_positions:2d} position{_pl(n_positions, ' ')})"
logger.info(msg)
return (clean_data - np.dot(np.dot(clean_data, t_proj), t_proj.T),)
def _copy_preload_add_channels(raw, add_channels, copy, info):
"""Load data for processing and (maybe) add cHPI pos channels."""
if copy:
raw = raw.copy()
with raw.info._unlock():
raw.info["chs"] = info["chs"] # updated coil types
if add_channels:
kinds = [
FIFF.FIFFV_QUAT_1,
FIFF.FIFFV_QUAT_2,
FIFF.FIFFV_QUAT_3,
FIFF.FIFFV_QUAT_4,
FIFF.FIFFV_QUAT_5,
FIFF.FIFFV_QUAT_6,
FIFF.FIFFV_HPI_G,
FIFF.FIFFV_HPI_ERR,
FIFF.FIFFV_HPI_MOV,
]
out_shape = (len(raw.ch_names) + len(kinds), len(raw.times))
out_data = np.zeros(out_shape, np.float64)
msg = " Appending head position result channels and "
if raw.preload:
logger.info(msg + "copying original raw data")
out_data[: len(raw.ch_names)] = raw._data
raw._data = out_data
else:
logger.info(msg + "loading raw data from disk")
with use_log_level(_verbose_safe_false()):
raw._preload_data(out_data[: len(raw.ch_names)])
raw._data = out_data
assert raw.preload is True
off = len(raw.ch_names)
chpi_chs = [
dict(
ch_name=f"CHPI{ii:03d}",
logno=ii + 1,
scanno=off + ii + 1,
unit_mul=-1,
range=1.0,
unit=-1,
kind=kinds[ii],
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
cal=1e-4,
coil_type=FWD.COIL_UNKNOWN,
loc=np.zeros(12),
)
for ii in range(len(kinds))
]
raw.info["chs"].extend(chpi_chs)
raw.info._update_redundant()
raw.info._check_consistency()
assert raw._data.shape == (raw.info["nchan"], len(raw.times))
# Return the pos picks
pos_picks = np.arange(len(raw.ch_names) - len(chpi_chs), len(raw.ch_names))
return raw, pos_picks
else:
if copy:
if not raw.preload:
logger.info(" Loading raw data from disk")
raw.load_data(verbose=False)
else:
logger.info(" Using loaded raw data")
return raw, np.array([], int)
def _check_pos(pos, coord_frame, raw, st_fixed):
"""Check for a valid pos array and transform it to a more usable form."""
_validate_type(pos, (np.ndarray, None), "head_pos")
if pos is None:
pos = np.empty((0, 10))
elif coord_frame != "head":
raise ValueError('positions can only be used if coord_frame="head"')
if not st_fixed:
warn("st_fixed=False is untested, use with caution!")
_validate_type(pos, np.ndarray, "head_pos")
if pos.ndim != 2 or pos.shape[1] != 10:
raise ValueError("pos must be an array of shape (N, 10)")
t = pos[:, 0]
if not np.array_equal(t, np.unique(t)):
raise ValueError("Time points must unique and in ascending order")
# We need an extra 1e-3 (1 ms) here because MaxFilter outputs values
# only out to 3 decimal places
if len(pos) > 0:
if not _time_mask(
t, tmin=raw._first_time - 1e-3, tmax=None, sfreq=raw.info["sfreq"]
).all():
raise ValueError(
"Head position time points must be greater than "
f"first sample offset, but found {t[0]:0.4f} < {raw._first_time:0.4f}"
)
t = t - raw._first_time
if len(t) == 0 or t[0] >= 0.5 / raw.info["sfreq"]:
# Prepend the existing dev_head_t to make movecomp easier
t = np.concatenate([[0.0], t])
trans = raw.info["dev_head_t"]
trans = np.eye(4) if trans is None else trans["trans"]
dev_head_pos = np.concatenate(
[t[[0]], rot_to_quat(trans[:3, :3]), trans[:3, 3], [0, 0, 0]]
)
pos = np.concatenate([dev_head_pos[np.newaxis], pos])
# now that we've either prepended dev_head_t or know it's zero-like, make it zero
t[0] = 0
max_dist = np.sqrt(np.sum(pos[:, 4:7] ** 2, axis=1)).max()
if max_dist > 1.0:
warn(
f"Found a distance greater than 1 m ({max_dist:0.3g} m) from the device "
"origin, positions may be invalid and Maxwell filtering could "
"fail"
)
t[0] = 0
dev_head_ts = np.zeros((len(t), 4, 4))
dev_head_ts[:, 3, 3] = 1.0
dev_head_ts[:, :3, 3] = pos[:, 4:7]
dev_head_ts[:, :3, :3] = quat_to_rot(pos[:, 1:4])
t = raw.time_as_index(t, use_rounding=True)
pos = [dev_head_ts, t, pos[:, 1:]]
assert all(len(p) == len(pos[0]) for p in pos)
return pos
def _get_decomp(
trans,
*,
all_coils,
cal,
regularize,
exp,
ignore_ref,
coil_scale,
grad_picks,
mag_picks,
good_mask,
mag_or_fine,
bad_condition,
t,
mag_scale,
mult,
):
"""Get a decomposition matrix and pseudoinverse matrices."""
#
# Fine calibration processing (point-like magnetometers and calib. coeffs)
#
S_decomp_full = _get_s_decomp(
exp,
all_coils,
trans,
coil_scale,
cal,
ignore_ref,
grad_picks,
mag_picks,
mag_scale,
)
if mult is not None:
S_decomp_full = mult @ S_decomp_full
S_decomp = S_decomp_full[good_mask]
#
# Extended SSS basis (eSSS)
#
extended_proj = exp.get("extended_proj", ())
if len(extended_proj) > 0:
rcond = 1e-4
thresh = 1e-4
extended_proj = extended_proj.T * coil_scale[good_mask]
extended_proj /= np.linalg.norm(extended_proj, axis=0)
n_int = _get_n_moments(exp["int_order"])
if S_decomp.shape[1] > n_int:
S_ext = S_decomp[:, n_int:].copy()
S_ext /= np.linalg.norm(S_ext, axis=0)
S_ext_orth = linalg.orth(S_ext, rcond=rcond)
assert S_ext_orth.shape[1] == S_ext.shape[1]
extended_proj -= np.dot(S_ext_orth, np.dot(S_ext_orth.T, extended_proj))
scale = np.mean(np.linalg.norm(S_decomp[n_int:], axis=0))
else:
scale = np.mean(np.linalg.norm(S_decomp[:n_int], axis=0))
mask = np.linalg.norm(extended_proj, axis=0) > thresh
extended_remove = list(np.where(~mask)[0] + S_decomp.shape[1])
logger.debug(" Reducing %d -> %d", extended_proj.shape[1], mask.sum())
extended_proj /= np.linalg.norm(extended_proj, axis=0) / scale
S_decomp = np.concatenate([S_decomp, extended_proj], axis=-1)
if extended_proj.shape[1]:
S_decomp_full = np.pad(
S_decomp_full, ((0, 0), (0, extended_proj.shape[1])), "constant"
)
S_decomp_full[good_mask, -extended_proj.shape[1] :] = extended_proj
else:
extended_remove = list()
del extended_proj
#
# Regularization
#
S_decomp, reg_moments, n_use_in = _regularize(
regularize, exp, S_decomp, mag_or_fine, extended_remove, t=t
)
S_decomp_full = S_decomp_full.take(reg_moments, axis=1)
#
# Pseudo-inverse of total multipolar moment basis set (Part of Eq. 37)
#
pS_decomp, sing = _col_norm_pinv(S_decomp.copy())
cond = sing[0] / sing[-1]
if bad_condition != "ignore" and cond >= 1000.0:
msg = f"Matrix is badly conditioned: {cond:0.0f} >= 1000"
if bad_condition == "error":
raise RuntimeError(msg)
elif bad_condition == "warning":
warn(msg)
else: # condition == 'info'
logger.info(msg)
# Build in our data scaling here
pS_decomp *= coil_scale[good_mask].T
S_decomp /= coil_scale[good_mask]
S_decomp_full /= coil_scale
assert pS_decomp.shape[1] == S_decomp.shape[0] == good_mask.sum()
return S_decomp, S_decomp_full, pS_decomp, reg_moments, n_use_in
def _get_s_decomp(
exp, all_coils, trans, coil_scale, cal, ignore_ref, grad_picks, mag_picks, mag_scale
):
"""Get S_decomp."""
S_decomp = _trans_sss_basis(exp, all_coils, trans, coil_scale)
if cal is not None:
# Compute point-like mags to incorporate gradiometer imbalance
grad_cals = _sss_basis_point(exp, trans, cal, ignore_ref, mag_scale)
# Add point like magnetometer data to bases.
if len(grad_picks) > 0:
S_decomp[grad_picks, :] += grad_cals
# Scale magnetometers by calibration coefficient
if len(mag_picks) > 0:
S_decomp[mag_picks, :] /= cal["mag_cals"]
# We need to be careful about KIT gradiometers
return S_decomp
@verbose
def _regularize(
regularize, exp, S_decomp, mag_or_fine, extended_remove, t, verbose=None
):
"""Regularize a decomposition matrix."""
# ALWAYS regularize the out components according to norm, since
# gradiometer-only setups (e.g., KIT) can have zero first-order
# (homogeneous field) components
int_order, ext_order = exp["int_order"], exp["ext_order"]
n_in = _get_n_moments(int_order)
n_out = S_decomp.shape[1] - n_in
t_str = f"{t:8.3f}"
if regularize is not None: # regularize='in'
in_removes, out_removes = _regularize_in(
int_order, ext_order, S_decomp, mag_or_fine, extended_remove
)
else:
in_removes = []
out_removes = _regularize_out(
int_order, ext_order, mag_or_fine, extended_remove
)
reg_in_moments = np.setdiff1d(np.arange(n_in), in_removes)
reg_out_moments = np.setdiff1d(np.arange(n_in, S_decomp.shape[1]), out_removes)
n_use_in = len(reg_in_moments)
n_use_out = len(reg_out_moments)
reg_moments = np.concatenate((reg_in_moments, reg_out_moments))
S_decomp = S_decomp.take(reg_moments, axis=1)
if regularize is not None or n_use_out != n_out:
logger.info(
f" Using {n_use_in + n_use_out}/{n_in + n_out} harmonic components "
f"for {t_str} ({n_use_in}/{n_in} in, {n_use_out}/{n_out} out)"
)
return S_decomp, reg_moments, n_use_in
@verbose
def _get_mf_picks_fix_mags(info, int_order, ext_order, ignore_ref=False, verbose=None):
"""Pick types for Maxwell filtering and fix magnetometers."""
# Check for T1/T2 mag types
mag_inds_T1T2 = _get_T1T2_mag_inds(info, use_cal=True)
if len(mag_inds_T1T2) > 0:
fix_mag_coil_types(info, use_cal=True)
# Get indices of channels to use in multipolar moment calculation
ref = not ignore_ref
meg_picks = pick_types(info, meg=True, ref_meg=ref, exclude=[])
meg_info = pick_info(_simplify_info(info), meg_picks)
del info
good_mask = np.zeros(
len(
meg_picks,
),
bool,
)
good_mask[pick_types(meg_info, meg=True, ref_meg=ref, exclude="bads")] = 1
n_bases = _get_n_moments([int_order, ext_order]).sum()
if n_bases > good_mask.sum():
raise ValueError(
f"Number of requested bases ({n_bases}) exceeds number of "
f"good sensors ({good_mask.sum()})"
)
recons = [ch for ch in meg_info["bads"]]
if len(recons) > 0:
msg = f" Bad MEG channels being reconstructed: {recons}"
else:
msg = " No bad MEG channels"
logger.info(msg)
ref_meg = False if ignore_ref else "mag"
mag_picks = pick_types(meg_info, meg="mag", ref_meg=ref_meg, exclude=[])
ref_meg = False if ignore_ref else "grad"
grad_picks = pick_types(meg_info, meg="grad", ref_meg=ref_meg, exclude=[])
assert len(mag_picks) + len(grad_picks) == len(meg_info["ch_names"])
# Determine which are magnetometers for external basis purposes
mag_or_fine = np.zeros(len(meg_picks), bool)
mag_or_fine[mag_picks] = True
# KIT gradiometers are marked as having units T, not T/M (argh)
# We need a separate variable for this because KIT grads should be
# treated mostly like magnetometers (e.g., scaled by 100) for reg
coil_types = np.array([ch["coil_type"] for ch in meg_info["chs"]])
mag_or_fine[(coil_types & 0xFFFF) == FIFF.FIFFV_COIL_KIT_GRAD] = False
# The same thing goes for CTF gradiometers...
ctf_grads = [
FIFF.FIFFV_COIL_CTF_GRAD,
FIFF.FIFFV_COIL_CTF_REF_GRAD,
FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD,
]
mag_or_fine[np.isin(coil_types, ctf_grads)] = False
msg = (
f" Processing {len(grad_picks)} gradiometers "
f"and {len(mag_picks)} magnetometers"
)
n_kit = len(mag_picks) - mag_or_fine.sum()
if n_kit > 0:
msg += f" (of which {n_kit} are actually KIT gradiometers)"
logger.info(msg)
return meg_picks, mag_picks, grad_picks, good_mask, mag_or_fine
def _check_regularize(regularize):
"""Ensure regularize is valid."""
if not (
regularize is None or (isinstance(regularize, str) and regularize in ("in",))
):
raise ValueError('regularize must be None or "in"')
def _check_usable(inst, ignore_ref):
"""Ensure our data are clean."""
if inst.proj:
raise RuntimeError(
"Projectors cannot be applied to data during Maxwell filtering."
)
current_comp = inst.compensation_grade
if current_comp not in (0, None) and ignore_ref:
raise RuntimeError(
"Maxwell filter cannot be done on compensated "
"channels (data have been compensated with "
"grade {current_comp}) when ignore_ref=True"
)
def _col_norm_pinv(x):
"""Compute the pinv with column-normalization to stabilize calculation.
Note: will modify/overwrite x.
"""
norm = np.sqrt(np.sum(x * x, axis=0))
x /= norm
u, s, v = _safe_svd(x, full_matrices=False, **check_disable)
v /= norm
return np.dot(v.T * 1.0 / s, u.T), s
def _sq(x):
"""Square quickly."""
return x * x
def _sph_harm_norm(order, degree):
"""Compute normalization factor for spherical harmonics."""
# we could use scipy.special.poch(degree + order + 1, -2 * order)
# here, but it's slower for our fairly small degree
norm = np.sqrt((2 * degree + 1.0) / (4 * np.pi))
if order != 0:
norm *= np.sqrt(factorial(degree - order) / float(factorial(degree + order)))
return norm
def _concatenate_sph_coils(coils):
"""Concatenate MEG coil parameters for spherical harmoncs."""
rs = np.concatenate([coil["r0_exey"] for coil in coils])
wcoils = np.concatenate([coil["w"] for coil in coils])
ezs = np.concatenate(
[np.tile(coil["ez"][np.newaxis, :], (len(coil["rmag"]), 1)) for coil in coils]
)
bins = np.repeat(np.arange(len(coils)), [len(coil["rmag"]) for coil in coils])
return rs, wcoils, ezs, bins
_mu_0 = 4e-7 * np.pi # magnetic permeability
def _get_mag_mask(coils):
"""Get the coil_scale for Maxwell filtering."""
return np.array([coil["coil_class"] == FWD.COILC_MAG for coil in coils])
def _sss_basis_basic(exp, coils, mag_scale=100.0, method="standard"):
"""Compute SSS basis using non-optimized (but more readable) algorithms."""
int_order, ext_order = exp["int_order"], exp["ext_order"]
origin = exp["origin"]
assert "extended_proj" not in exp # advanced option not supported
# Compute vector between origin and coil, convert to spherical coords
if method == "standard":
# Get position, normal, weights, and number of integration pts.
rmags, cosmags, ws, bins = _concatenate_coils(coils)
rmags -= origin
# Convert points to spherical coordinates
rad, az, pol = _cart_to_sph(rmags).T
cosmags *= ws[:, np.newaxis]
del rmags, ws
out_type = np.float64
else: # testing equivalence method
rs, wcoils, ezs, bins = _concatenate_sph_coils(coils)
rs -= origin
rad, az, pol = _cart_to_sph(rs).T
ezs *= wcoils[:, np.newaxis]
del rs, wcoils
out_type = np.complex128
del origin
# Set up output matrices
n_in, n_out = _get_n_moments([int_order, ext_order])
S_tot = np.empty((len(coils), n_in + n_out), out_type)
S_in = S_tot[:, :n_in]
S_out = S_tot[:, n_in:]
coil_scale = np.ones((len(coils), 1))
coil_scale[_get_mag_mask(coils)] = mag_scale
# Compute internal/external basis vectors (exclude degree 0; L/RHS Eq. 5)
for degree in range(1, max(int_order, ext_order) + 1):
# Only loop over positive orders, negative orders are handled
# for efficiency within
for order in range(degree + 1):
S_in_out = list()
grads_in_out = list()
# Same spherical harmonic is used for both internal and external
sph = sph_harm_y(degree, order, pol, az)
sph_norm = _sph_harm_norm(order, degree)
# Compute complex gradient for all integration points
# in spherical coordinates (Eq. 6). The gradient for rad, az, pol
# is obtained by taking the partial derivative of Eq. 4 w.r.t. each
# coordinate.
az_factor = 1j * order * sph / np.sin(np.maximum(pol, 1e-16))
pol_factor = (
-sph_norm
* np.sin(pol)
* np.exp(1j * order * az)
* _alegendre_deriv(order, degree, np.cos(pol))
)
if degree <= int_order:
S_in_out.append(S_in)
in_norm = _mu_0 * rad ** -(degree + 2)
g_rad = in_norm * (-(degree + 1.0) * sph)
g_az = in_norm * az_factor
g_pol = in_norm * pol_factor
grads_in_out.append(_sph_to_cart_partials(az, pol, g_rad, g_az, g_pol))
if degree <= ext_order:
S_in_out.append(S_out)
out_norm = _mu_0 * rad ** (degree - 1)
g_rad = out_norm * degree * sph
g_az = out_norm * az_factor
g_pol = out_norm * pol_factor
grads_in_out.append(_sph_to_cart_partials(az, pol, g_rad, g_az, g_pol))
for spc, grads in zip(S_in_out, grads_in_out):
# We could convert to real at the end, but it's more efficient
# to do it now
if method == "standard":
grads_pos_neg = [_sh_complex_to_real(grads, order)]
orders_pos_neg = [order]
# Deal with the negative orders
if order > 0:
# it's faster to use the conjugation property for
# our normalized spherical harmonics than recalculate
grads_pos_neg.append(
_sh_complex_to_real(_sh_negate(grads, order), -order)
)
orders_pos_neg.append(-order)
for gr, oo in zip(grads_pos_neg, orders_pos_neg):
# Gradients dotted w/integration point weighted normals
gr = np.einsum("ij,ij->i", gr, cosmags)
vals = np.bincount(bins, gr, len(coils))
spc[:, _deg_ord_idx(degree, oo)] = -vals
else:
grads = np.einsum("ij,ij->i", grads, ezs)
v = np.bincount(bins, grads.real, len(coils)) + 1j * np.bincount(
bins, grads.imag, len(coils)
)
spc[:, _deg_ord_idx(degree, order)] = -v
if order > 0:
spc[:, _deg_ord_idx(degree, -order)] = -_sh_negate(v, order)
# Scale magnetometers
S_tot *= coil_scale
if method != "standard":
# Eventually we could probably refactor this for 2x mem (and maybe CPU)
# savings by changing how spc/S_tot is assigned above (real only)
S_tot = _bases_complex_to_real(S_tot, int_order, ext_order)
return S_tot
def _sss_basis(exp, all_coils):
"""Compute SSS basis for given conditions.
Parameters
----------
exp : dict
Must contain the following keys:
origin : ndarray, shape (3,)
Origin of the multipolar moment space in meters
int_order : int
Order of the internal multipolar moment space
ext_order : int
Order of the external multipolar moment space
coils : list
List of MEG coils. Each should contain coil information dict specifying
position, normals, weights, number of integration points and channel
type. All coil geometry must be in the same coordinate frame
as ``origin`` (``head`` or ``meg``).
Returns
-------
bases : ndarray, shape (n_coils, n_mult_moments)
Internal and external basis sets as a single ndarray.
Notes
-----
Does not incorporate magnetometer scaling factor or normalize spaces.
Adapted from code provided by Jukka Nenonen.
"""
rmags, cosmags, bins, n_coils = all_coils[:4]
int_order, ext_order = exp["int_order"], exp["ext_order"]
n_in, n_out = _get_n_moments([int_order, ext_order])
rmags = rmags - exp["origin"]
# do the heavy lifting
max_order = max(int_order, ext_order)
L = _tabular_legendre(rmags, max_order)
phi = np.arctan2(rmags[:, 1], rmags[:, 0])
r_n = np.sqrt(np.sum(rmags * rmags, axis=1))
r_xy = np.sqrt(rmags[:, 0] * rmags[:, 0] + rmags[:, 1] * rmags[:, 1])
cos_pol = rmags[:, 2] / r_n # cos(theta); theta 0...pi
sin_pol = np.sqrt(1.0 - cos_pol * cos_pol) # sin(theta)
z_only = r_xy <= 1e-16
sin_pol_nz = sin_pol.copy()
sin_pol_nz[z_only] = 1.0 # will be overwritten later
r_xy[z_only] = 1.0
cos_az = rmags[:, 0] / r_xy # cos(phi)
cos_az[z_only] = 1.0
sin_az = rmags[:, 1] / r_xy # sin(phi)
sin_az[z_only] = 0.0
# Appropriate vector spherical harmonics terms
# JNE 2012-02-08: modified alm -> 2*alm, blm -> -2*blm
r_nn2 = r_n.copy()
r_nn1 = 1.0 / (r_n * r_n)
S_tot = np.empty((n_coils, n_in + n_out), np.float64)
S_in = S_tot[:, :n_in]
S_out = S_tot[:, n_in:]
for degree in range(max_order + 1):
if degree <= ext_order:
r_nn1 *= r_n # r^(l-1)
if degree <= int_order:
r_nn2 *= r_n # r^(l+2)
# mu_0*sqrt((2l+1)/4pi (l-m)!/(l+m)!)
mult = 2e-7 * np.sqrt((2 * degree + 1) * np.pi)
if degree > 0:
idx = _deg_ord_idx(degree, 0)
# alpha
if degree <= int_order:
b_r = mult * (degree + 1) * L[degree][0] / r_nn2
b_pol = -mult * L[degree][1] / r_nn2
S_in[:, idx] = _integrate_points(
cos_az,
sin_az,
cos_pol,
sin_pol,
b_r,
0.0,
b_pol,
cosmags,
bins,
n_coils,
)
# beta
if degree <= ext_order:
b_r = -mult * degree * L[degree][0] * r_nn1
b_pol = -mult * L[degree][1] * r_nn1
S_out[:, idx] = _integrate_points(
cos_az,
sin_az,
cos_pol,
sin_pol,
b_r,
0.0,
b_pol,
cosmags,
bins,
n_coils,
)
for order in range(1, degree + 1):
ord_phi = order * phi
sin_order = np.sin(ord_phi)
cos_order = np.cos(ord_phi)
mult /= np.sqrt((degree - order + 1) * (degree + order))
factor = mult * np.sqrt(2) # equivalence fix (MF uses 2.)
# Real
idx = _deg_ord_idx(degree, order)
r_fact = factor * L[degree][order] * cos_order
az_fact = factor * order * sin_order * L[degree][order]
pol_fact = (
-factor
* (
L[degree][order + 1]
- (degree + order) * (degree - order + 1) * L[degree][order - 1]
)
* cos_order
)
# alpha
if degree <= int_order:
b_r = (degree + 1) * r_fact / r_nn2
b_az = az_fact / (sin_pol_nz * r_nn2)
b_az[z_only] = 0.0
b_pol = pol_fact / (2 * r_nn2)
S_in[:, idx] = _integrate_points(
cos_az,
sin_az,
cos_pol,
sin_pol,
b_r,
b_az,
b_pol,
cosmags,
bins,
n_coils,
)
# beta
if degree <= ext_order:
b_r = -degree * r_fact * r_nn1
b_az = az_fact * r_nn1 / sin_pol_nz
b_az[z_only] = 0.0
b_pol = pol_fact * r_nn1 / 2.0
S_out[:, idx] = _integrate_points(
cos_az,
sin_az,
cos_pol,
sin_pol,
b_r,
b_az,
b_pol,
cosmags,
bins,
n_coils,
)
# Imaginary
idx = _deg_ord_idx(degree, -order)
r_fact = factor * L[degree][order] * sin_order
az_fact = factor * order * cos_order * L[degree][order]
pol_fact = (
factor
* (
L[degree][order + 1]
- (degree + order) * (degree - order + 1) * L[degree][order - 1]
)
* sin_order
)
# alpha
if degree <= int_order:
b_r = -(degree + 1) * r_fact / r_nn2
b_az = az_fact / (sin_pol_nz * r_nn2)
b_az[z_only] = 0.0
b_pol = pol_fact / (2 * r_nn2)
S_in[:, idx] = _integrate_points(
cos_az,
sin_az,
cos_pol,
sin_pol,
b_r,
b_az,
b_pol,
cosmags,
bins,
n_coils,
)
# beta
if degree <= ext_order:
b_r = degree * r_fact * r_nn1
b_az = az_fact * r_nn1 / sin_pol_nz
b_az[z_only] = 0.0
b_pol = pol_fact * r_nn1 / 2.0
S_out[:, idx] = _integrate_points(
cos_az,
sin_az,
cos_pol,
sin_pol,
b_r,
b_az,
b_pol,
cosmags,
bins,
n_coils,
)
return S_tot
def _integrate_points(
cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol, cosmags, bins, n_coils
):
"""Integrate points in spherical coords."""
grads = _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol).T
grads = (grads * cosmags).sum(axis=1)
return bincount(bins, grads, n_coils)
def _tabular_legendre(r, nind):
"""Compute associated Legendre polynomials."""
r_n = np.sqrt(np.sum(r * r, axis=1))
x = r[:, 2] / r_n # cos(theta)
L = list()
for degree in range(nind + 1):
L.append(np.zeros((degree + 2, len(r))))
L[0][0] = 1.0
pnn = np.ones(x.shape)
fact = 1.0
sx2 = np.sqrt((1.0 - x) * (1.0 + x))
for degree in range(nind + 1):
L[degree][degree] = pnn
pnn *= -fact * sx2
fact += 2.0
if degree < nind:
L[degree + 1][degree] = x * (2 * degree + 1) * L[degree][degree]
if degree >= 2:
for order in range(degree - 1):
L[degree][order] = (
x * (2 * degree - 1) * L[degree - 1][order]
- (degree + order - 1) * L[degree - 2][order]
) / (degree - order)
return L
def _sp_to_cart(cos_az, sin_az, cos_pol, sin_pol, b_r, b_az, b_pol):
"""Convert spherical coords to cartesian."""
out = np.empty((3,) + sin_pol.shape)
out[0] = sin_pol * cos_az * b_r + cos_pol * cos_az * b_pol - sin_az * b_az
out[1] = sin_pol * sin_az * b_r + cos_pol * sin_az * b_pol + cos_az * b_az
out[2] = cos_pol * b_r - sin_pol * b_pol
return out
def _get_degrees_orders(order):
"""Get the set of degrees used in our basis functions."""
degrees = np.zeros(_get_n_moments(order), int)
orders = np.zeros_like(degrees)
for degree in range(1, order + 1):
# Only loop over positive orders, negative orders are handled
# for efficiency within
for order in range(degree + 1):
ii = _deg_ord_idx(degree, order)
degrees[ii] = degree
orders[ii] = order
ii = _deg_ord_idx(degree, -order)
degrees[ii] = degree
orders[ii] = -order
return degrees, orders
def _alegendre_deriv(order, degree, val):
"""Compute the derivative of the associated Legendre polynomial at a value.
Parameters
----------
order : int
Order of spherical harmonic. (Usually) corresponds to 'm'.
degree : int
Degree of spherical harmonic. (Usually) corresponds to 'l'.
val : float
Value to evaluate the derivative at.
Returns
-------
dPlm : float
Associated Legendre function derivative
"""
assert order >= 0
return (
order * val * lpmv(order, degree, val)
+ (degree + order)
* (degree - order + 1.0)
* np.sqrt(1.0 - val * val)
* lpmv(order - 1, degree, val)
) / (1.0 - val * val)
def _bases_complex_to_real(complex_tot, int_order, ext_order):
"""Convert complex spherical harmonics to real."""
n_in, n_out = _get_n_moments([int_order, ext_order])
complex_in = complex_tot[:, :n_in]
complex_out = complex_tot[:, n_in:]
real_tot = np.empty(complex_tot.shape, np.float64)
real_in = real_tot[:, :n_in]
real_out = real_tot[:, n_in:]
for comp, real, exp_order in zip(
[complex_in, complex_out], [real_in, real_out], [int_order, ext_order]
):
for deg in range(1, exp_order + 1):
for order in range(deg + 1):
idx_pos = _deg_ord_idx(deg, order)
idx_neg = _deg_ord_idx(deg, -order)
real[:, idx_pos] = _sh_complex_to_real(comp[:, idx_pos], order)
if order != 0:
# This extra mult factor baffles me a bit, but it works
# in round-trip testing, so we'll keep it :(
mult = -1 if order % 2 == 0 else 1
real[:, idx_neg] = mult * _sh_complex_to_real(
comp[:, idx_neg], -order
)
return real_tot
def _bases_real_to_complex(real_tot, int_order, ext_order):
"""Convert real spherical harmonics to complex."""
n_in, n_out = _get_n_moments([int_order, ext_order])
real_in = real_tot[:, :n_in]
real_out = real_tot[:, n_in:]
comp_tot = np.empty(real_tot.shape, np.complex128)
comp_in = comp_tot[:, :n_in]
comp_out = comp_tot[:, n_in:]
for real, comp, exp_order in zip(
[real_in, real_out], [comp_in, comp_out], [int_order, ext_order]
):
for deg in range(1, exp_order + 1):
# only loop over positive orders, figure out neg from pos
for order in range(deg + 1):
idx_pos = _deg_ord_idx(deg, order)
idx_neg = _deg_ord_idx(deg, -order)
this_comp = _sh_real_to_complex(
[real[:, idx_pos], real[:, idx_neg]], order
)
comp[:, idx_pos] = this_comp
comp[:, idx_neg] = _sh_negate(this_comp, order)
return comp_tot
def _check_info(info, sss=True, tsss=True, calibration=True, ctc=True):
"""Ensure that Maxwell filtering has not been applied yet."""
for ent in info["proc_history"]:
for msg, key, doing in (
("SSS", "sss_info", sss),
("tSSS", "max_st", tsss),
("fine calibration", "sss_cal", calibration),
("cross-talk cancellation", "sss_ctc", ctc),
):
if not doing:
continue
if len(ent["max_info"][key]) > 0:
raise RuntimeError(
f"Maxwell filtering {msg} step has already "
"been applied, cannot reapply"
)
def _update_sss_info(
raw,
origin,
int_order,
ext_order,
nchan,
coord_frame,
sss_ctc,
sss_cal,
max_st,
reg_moments,
st_only,
recon_trans,
extended_proj,
):
"""Update info inplace after Maxwell filtering.
Parameters
----------
raw : instance of Raw
Data to be filtered
origin : array-like, shape (3,)
Origin of internal and external multipolar moment space in head coords
(in meters)
int_order : int
Order of internal component of spherical expansion
ext_order : int
Order of external component of spherical expansion
nchan : int
Number of sensors
sss_ctc : dict
The cross talk information.
sss_cal : dict
The calibration information.
max_st : dict
The tSSS information.
reg_moments : ndarray | slice
The moments that were used.
st_only : bool
Whether tSSS only was performed.
recon_trans : instance of Transform
The reconstruction trans.
extended_proj : ndarray
Extended external bases.
"""
n_in, n_out = _get_n_moments([int_order, ext_order])
with raw.info._unlock():
raw.info["maxshield"] = False
components = np.zeros(n_in + n_out + len(extended_proj)).astype("int32")
components[reg_moments] = 1
sss_info_dict = dict(
in_order=int_order,
out_order=ext_order,
nchan=nchan,
origin=origin.astype("float32"),
job=FIFF.FIFFV_SSS_JOB_FILTER,
nfree=np.sum(components[:n_in]),
frame=_str_to_frame[coord_frame],
components=components,
)
max_info_dict = dict(max_st=max_st)
if st_only:
max_info_dict.update(sss_info=dict(), sss_cal=dict(), sss_ctc=dict())
else:
max_info_dict.update(sss_info=sss_info_dict, sss_cal=sss_cal, sss_ctc=sss_ctc)
# Reset 'bads' for any MEG channels since they've been reconstructed
_reset_meg_bads(raw.info)
# set the reconstruction transform
with raw.info._unlock():
raw.info["dev_head_t"] = recon_trans
block_id = _generate_meas_id()
with raw.info._unlock():
raw.info["proc_history"].insert(
0,
dict(
max_info=max_info_dict,
block_id=block_id,
date=DATE_NONE,
creator=f"mne-python v{__version__}",
experimenter="",
),
)
def _reset_meg_bads(info):
"""Reset MEG bads."""
meg_picks = pick_types(info, meg=True, exclude=[])
info["bads"] = [
bad for bad in info["bads"] if info["ch_names"].index(bad) not in meg_picks
]
check_disable = dict(check_finite=False)
def _orth_overwrite(A):
"""Create a slightly more efficient 'orth'."""
# adapted from scipy/linalg/decomp_svd.py
u, s = _safe_svd(A, full_matrices=False, **check_disable)[:2]
M, N = A.shape
eps = np.finfo(float).eps
tol = max(M, N) * np.amax(s) * eps
num = np.sum(s > tol, dtype=int)
return u[:, :num]
def _overlap_projector(data_int, data_res, corr):
"""Calculate projector for removal of subspace intersection in tSSS."""
# corr necessary to deal with noise when finding identical signal
# directions in the subspace. See the end of the Results section in
# :footcite:`TauluSimola2006`
# Note that the procedure here is an updated version of
# :footcite:`TauluSimola2006` (and used in MF's tSSS) that uses residuals
# instead of internal/external spaces directly. This provides more degrees
# of freedom when analyzing for intersections between internal and
# external spaces.
# Normalize data, then compute orth to get temporal bases. Matrices
# must have shape (n_samps x effective_rank) when passed into svd
# computation
# we use np.linalg.norm instead of sp.linalg.norm here: ~2x faster!
n = np.linalg.norm(data_int)
n = 1.0 if n == 0 else n # all-zero data should gracefully continue
data_int = _orth_overwrite((data_int / n).T)
n = np.linalg.norm(data_res)
n = 1.0 if n == 0 else n
data_res = _orth_overwrite((data_res / n).T)
if data_int.shape[1] == 0 or data_res.shape[1] == 0:
return np.empty((data_int.shape[0], 0))
Q_int = linalg.qr(data_int, overwrite_a=True, mode="economic", **check_disable)[0].T
Q_res = linalg.qr(data_res, overwrite_a=True, mode="economic", **check_disable)[0]
C_mat = np.dot(Q_int, Q_res)
del Q_int
# Compute angles between subspace and which bases to keep
S_intersect, Vh_intersect = _safe_svd(C_mat, full_matrices=False, **check_disable)[
1:
]
del C_mat
intersect_mask = S_intersect >= corr
del S_intersect
# Compute projection operator as (I-LL_T) Eq. 12 in
# :footcite:`TauluSimola2006` V_principal should be shape
# (n_time_pts x n_retained_inds)
Vh_intersect = Vh_intersect[intersect_mask].T
V_principal = np.dot(Q_res, Vh_intersect)
return V_principal
def _prep_fine_cal(info, fine_cal, *, ignore_ref):
from ._fine_cal import read_fine_calibration
_validate_type(fine_cal, (dict, "path-like"))
if not isinstance(fine_cal, dict):
extra = op.basename(str(fine_cal))
fine_cal = read_fine_calibration(fine_cal)
else:
extra = "dict"
logger.info(f" Using fine calibration {extra}")
ch_names = _clean_names(info["ch_names"], remove_whitespace=True)
info_to_cal = dict()
missing = list()
names_clean = _clean_names(fine_cal["ch_names"], remove_whitespace=True)
for ci, (name, name_clean) in enumerate(zip(fine_cal["ch_names"], names_clean)):
if name_clean not in ch_names:
missing.append(name)
else:
oi = ch_names.index(name_clean)
info_to_cal[oi] = ci
meg_picks = pick_types(info, meg=True, exclude=[], ref_meg=not ignore_ref)
if len(info_to_cal) != len(meg_picks):
bad = sorted({ch_names[pick] for pick in meg_picks} - set(names_clean))
raise RuntimeError(
f"Not all MEG channels found in fine calibration file, missing:\n{bad}"
)
if len(missing):
warn(f"Found cal channel{_pl(missing)} not in data: {missing}")
return info_to_cal, fine_cal, ch_names
def _update_sensor_geometry(info, fine_cal, ignore_ref):
"""Replace sensor geometry information and reorder cal_chs."""
info_to_cal, fine_cal, _ = _prep_fine_cal(info, fine_cal, ignore_ref=ignore_ref)
grad_picks = pick_types(info, meg="grad", exclude=(), ref_meg=not ignore_ref)
mag_picks = pick_types(info, meg="mag", exclude=(), ref_meg=not ignore_ref)
# Determine gradiometer imbalances and magnetometer calibrations
grad_imbalances = np.array(
[fine_cal["imb_cals"][info_to_cal[gi]] for gi in grad_picks]
).T
if grad_imbalances.shape[0] not in [0, 1, 3]:
raise ValueError(
"Must have 1 (x) or 3 (x, y, z) point-like "
f"magnetometers. Currently have {grad_imbalances.shape[0]}."
)
mag_cals = np.array([fine_cal["imb_cals"][info_to_cal[mi]] for mi in mag_picks])
# Now let's actually construct our point-like adjustment coils for grads
grad_coilsets = _get_grad_point_coilsets(
info, n_types=len(grad_imbalances), ignore_ref=ignore_ref
)
calibration = dict(
grad_imbalances=grad_imbalances, grad_coilsets=grad_coilsets, mag_cals=mag_cals
)
# Replace sensor locations (and track differences) for fine calibration
ang_shift = list()
used = np.zeros(len(info["chs"]), bool)
cal_corrs = list()
cal_chans = list()
adjust_logged = False
for oi, ci in info_to_cal.items():
assert not used[oi]
used[oi] = True
info_ch = info["chs"][oi]
# This only works for VV-like names
try:
ch_num = int(fine_cal["ch_names"][ci].lstrip("MEG").lstrip("0"))
except ValueError: # invalid literal for int() with base 10
ch_num = oi
cal_chans.append([ch_num, info_ch["coil_type"]])
# Some .dat files might only rotate EZ, so we must check first that
# EX and EY are orthogonal to EZ. If not, we find the rotation between
# the original and fine-cal ez, and rotate EX and EY accordingly:
ch_coil_rot = _loc_to_coil_trans(info_ch["loc"])[:3, :3]
cal_loc = fine_cal["locs"][ci].copy()
cal_coil_rot = _loc_to_coil_trans(cal_loc)[:3, :3]
if (
np.max(
[
np.abs(np.dot(cal_coil_rot[:, ii], cal_coil_rot[:, 2]))
for ii in range(2)
]
)
> 1e-6
): # X or Y not orthogonal
if not adjust_logged:
logger.info(" Adjusting non-orthogonal EX and EY")
adjust_logged = True
# find the rotation matrix that goes from one to the other
this_trans = _find_vector_rotation(ch_coil_rot[:, 2], cal_coil_rot[:, 2])
cal_loc[3:] = np.dot(this_trans, ch_coil_rot).T.ravel()
# calculate shift angle
v1 = _loc_to_coil_trans(cal_loc)[:3, :3]
_normalize_vectors(v1)
v2 = _loc_to_coil_trans(info_ch["loc"])[:3, :3]
_normalize_vectors(v2)
ang_shift.append(np.sum(v1 * v2, axis=0))
if oi in grad_picks:
extra = [1.0, fine_cal["imb_cals"][ci][0]]
else:
extra = [fine_cal["imb_cals"][ci][0], 0.0]
cal_corrs.append(np.concatenate([extra, cal_loc]))
# Adjust channel normal orientations with those from fine calibration
# Channel positions are not changed
info_ch["loc"][3:] = cal_loc[3:]
assert info_ch["coord_frame"] == FIFF.FIFFV_COORD_DEVICE
meg_picks = pick_types(info, meg=True, exclude=(), ref_meg=not ignore_ref)
assert used[meg_picks].all()
assert not used[np.setdiff1d(np.arange(len(used)), meg_picks)].any()
# This gets written to the Info struct
sss_cal = dict(cal_corrs=np.array(cal_corrs), cal_chans=np.array(cal_chans))
# Log quantification of sensor changes
# Deal with numerical precision giving absolute vals slightly more than 1.
ang_shift = np.array(ang_shift)
np.clip(ang_shift, -1.0, 1.0, ang_shift)
np.rad2deg(np.arccos(ang_shift), ang_shift) # Convert to degrees
logger.info(
" Adjusted coil orientations by (μ ± σ): "
f"{np.mean(ang_shift):0.1f}° ± {np.std(ang_shift):0.1f}° "
f"(max: {np.max(np.abs(ang_shift)):0.1f}°)"
)
return calibration, sss_cal
def _get_grad_point_coilsets(info, n_types, ignore_ref):
"""Get point-type coilsets for gradiometers."""
_rotations = dict(
x=np.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1.0]]),
y=np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1.0]]),
z=np.eye(4),
)
grad_coilsets = list()
grad_picks = pick_types(info, meg="grad", exclude=[])
if len(grad_picks) == 0:
return grad_coilsets
grad_info = pick_info(_simplify_info(info), grad_picks)
# Coil_type values for x, y, z point magnetometers
# Note: 1D correction files only have x-direction corrections
for ch in grad_info["chs"]:
ch["coil_type"] = FIFF.FIFFV_COIL_POINT_MAGNETOMETER
orig_locs = [ch["loc"].copy() for ch in grad_info["chs"]]
for rot in "xyz"[:n_types]:
# Rotate the Z magnetometer orientation to the destination orientation
for ci, ch in enumerate(grad_info["chs"]):
ch["loc"][3:] = _coil_trans_to_loc(
np.dot(_loc_to_coil_trans(orig_locs[ci]), _rotations[rot])
)[3:]
grad_coilsets.append(_prep_mf_coils(grad_info, ignore_ref))
return grad_coilsets
def _sss_basis_point(exp, trans, cal, ignore_ref=False, mag_scale=100.0):
"""Compute multipolar moments for point-like mags (in fine cal)."""
# Loop over all coordinate directions desired and create point mags
S_tot = 0.0
# These are magnetometers, so use a uniform coil_scale of 100.
this_cs = np.array([mag_scale], float)
for imb, coils in zip(cal["grad_imbalances"], cal["grad_coilsets"]):
S_add = _trans_sss_basis(exp, coils, trans, this_cs)
# Scale spaces by gradiometer imbalance
S_add *= imb[:, np.newaxis]
S_tot += S_add
# Return point-like mag bases
return S_tot
def _regularize_out(int_order, ext_order, mag_or_fine, extended_remove):
"""Regularize out components based on norm."""
n_in = _get_n_moments(int_order)
remove_homog = ext_order > 0 and not mag_or_fine.any()
return list(range(n_in, n_in + 3 * remove_homog)) + extended_remove
def _regularize_in(int_order, ext_order, S_decomp, mag_or_fine, extended_remove):
"""Regularize basis set using idealized SNR measure."""
n_in, n_out = _get_n_moments([int_order, ext_order])
# The "signal" terms depend only on the inner expansion order
# (i.e., not sensor geometry or head position / expansion origin)
a_lm_sq, rho_i = _compute_sphere_activation_in(np.arange(int_order + 1))
degrees, orders = _get_degrees_orders(int_order)
a_lm_sq = a_lm_sq[degrees]
I_tots = np.zeros(n_in) # we might not traverse all, so use np.zeros
in_keepers = list(range(n_in))
out_removes = _regularize_out(int_order, ext_order, mag_or_fine, extended_remove)
out_keepers = list(np.setdiff1d(np.arange(n_in, S_decomp.shape[1]), out_removes))
remove_order = []
S_decomp = S_decomp.copy()
use_norm = np.sqrt(np.sum(S_decomp * S_decomp, axis=0))
S_decomp /= use_norm
eigs = np.zeros((n_in, 2))
# plot = False # for debugging
# if plot:
# import matplotlib.pyplot as plt
# fig, axs = plt.subplots(3, figsize=[6, 12])
# plot_ord = np.empty(n_in, int)
# plot_ord.fill(-1)
# count = 0
# # Reorder plot to match MF
# for degree in range(1, int_order + 1):
# for order in range(0, degree + 1):
# assert plot_ord[count] == -1
# plot_ord[count] = _deg_ord_idx(degree, order)
# count += 1
# if order > 0:
# assert plot_ord[count] == -1
# plot_ord[count] = _deg_ord_idx(degree, -order)
# count += 1
# assert count == n_in
# assert (plot_ord >= 0).all()
# assert len(np.unique(plot_ord)) == n_in
noise_lev = 5e-13 # noise level in T/m
noise_lev *= noise_lev # effectively what would happen by earlier multiply
for ii in range(n_in):
this_S = S_decomp.take(in_keepers + out_keepers, axis=1)
u, s, v = _safe_svd(this_S, full_matrices=False, **check_disable)
del this_S
eigs[ii] = s[[0, -1]]
v = v.T[: len(in_keepers)]
v /= use_norm[in_keepers][:, np.newaxis]
eta_lm_sq = np.dot(v * 1.0 / s, u.T)
del u, s, v
eta_lm_sq *= eta_lm_sq
eta_lm_sq = eta_lm_sq.sum(axis=1)
eta_lm_sq *= noise_lev
# Mysterious scale factors to match MF, likely due to differences
# in the basis normalizations...
eta_lm_sq[orders[in_keepers] == 0] *= 2
eta_lm_sq *= 0.0025
snr = a_lm_sq[in_keepers] / eta_lm_sq
I_tots[ii] = 0.5 * np.log2(snr + 1.0).sum()
remove_order.append(in_keepers[np.argmin(snr)])
in_keepers.pop(in_keepers.index(remove_order[-1]))
# heuristic to quit if we're past the peak to save cycles
if ii > 10 and (I_tots[ii - 1 : ii + 1] < 0.95 * I_tots.max()).all():
break
# if plot and ii == 0:
# axs[0].semilogy(snr[plot_ord[in_keepers]], color='k')
# if plot:
# axs[0].set(ylabel='SNR', ylim=[0.1, 500], xlabel='Component')
# axs[1].plot(I_tots)
# axs[1].set(ylabel='Information', xlabel='Iteration')
# axs[2].plot(eigs[:, 0] / eigs[:, 1])
# axs[2].set(ylabel='Condition', xlabel='Iteration')
# Pick the components that give at least 98% of max info
# This is done because the curves can be quite flat, and we err on the
# side of including rather than excluding components
if n_in:
max_info = np.max(I_tots)
lim_idx = np.where(I_tots >= 0.98 * max_info)[0][0]
in_removes = remove_order[:lim_idx]
for ii, ri in enumerate(in_removes):
eig = eigs[ii]
logger.debug(
f" Condition {eig[0]:0.3f} / {eig[1]:0.3f} = "
f"{eig[0] / eig[1]:03.1f}, Removing in component "
f"{ri}: l={degrees[ri]}, m={orders[ri]:+0.0f}"
)
logger.debug(
f" Resulting information: {I_tots[lim_idx]:0.1f} "
f"bits/sample ({100 * I_tots[lim_idx] / max_info:0.1f}% of peak "
f"{max_info:0.1f})"
)
else:
in_removes = remove_order[:0]
return in_removes, out_removes
def _compute_sphere_activation_in(degrees):
"""Compute the "in" power from random currents in a sphere.
Parameters
----------
degrees : ndarray
The degrees to evaluate.
Returns
-------
a_power : ndarray
The a_lm associated for the associated degrees (see
:footcite:`KnuutilaEtAl1993`).
rho_i : float
The current density.
References
----------
.. footbibliography::
"""
r_in = 0.080 # radius of the randomly-activated sphere
# set the observation point r=r_s, az=el=0, so we can just look at m=0 term
# compute the resulting current density rho_i
# This is the "surface" version of the equation:
# b_r_in = 100e-15 # fixed radial field amplitude at distance r_s = 100 fT
# r_s = 0.13 # 5 cm from the surface
# rho_degrees = np.arange(1, 100)
# in_sum = (rho_degrees * (rho_degrees + 1.) /
# ((2. * rho_degrees + 1.)) *
# (r_in / r_s) ** (2 * rho_degrees + 2)).sum() * 4. * np.pi
# rho_i = b_r_in * 1e7 / np.sqrt(in_sum)
# rho_i = 5.21334885574e-07 # value for r_s = 0.125
rho_i = 5.91107375632e-07 # deterministic from above, so just store it
a_power = _sq(rho_i) * (
degrees
* r_in ** (2 * degrees + 4)
/ (_sq(2.0 * degrees + 1.0) * (degrees + 1.0))
)
return a_power, rho_i
def _trans_sss_basis(exp, all_coils, trans=None, coil_scale=100.0):
"""Compute SSS basis (optionally) using a dev<->head trans."""
if trans is not None:
if not isinstance(trans, Transform):
trans = Transform("meg", "head", trans)
assert not np.isnan(trans["trans"]).any()
all_coils = (
apply_trans(trans, all_coils[0]),
apply_trans(trans, all_coils[1], move=False),
) + all_coils[2:]
if not isinstance(coil_scale, np.ndarray):
# Scale all magnetometers (with `coil_class` == 1.0) by `mag_scale`
cs = coil_scale
coil_scale = np.ones((all_coils[3], 1))
coil_scale[all_coils[4]] = cs
S_tot = _sss_basis(exp, all_coils)
S_tot *= coil_scale
return S_tot
# intentionally omitted: st_duration, st_correlation, destination, st_fixed,
# st_only, st_overlap
@verbose
def find_bad_channels_maxwell(
raw,
limit=7.0,
duration=5.0,
min_count=5,
return_scores=False,
origin="auto",
int_order=8,
ext_order=3,
calibration=None,
cross_talk=None,
coord_frame="head",
regularize="in",
ignore_ref=False,
bad_condition="error",
head_pos=None,
mag_scale=100.0,
skip_by_annotation=("edge", "bad_acq_skip"),
h_freq=40.0,
extended_proj=(),
mc_interp=None,
verbose=None,
):
r"""Find bad channels using Maxwell filtering.
Parameters
----------
raw : instance of Raw
Raw data to process.
limit : float
Detection limit for noisy segments (default is 7.). Smaller values will
find more bad channels at increased risk of including good ones. This
value can be interpreted as the standard score of differences between
the original and Maxwell-filtered data. See the ``Notes`` section for
details.
.. note:: This setting only concerns *noisy* channel detection.
The limit for *flat* channel detection currently cannot be
controlled by the user. Flat channel detection is always run
before noisy channel detection.
duration : float
Duration of the segments into which to slice the data for processing,
in seconds. Default is 5.
min_count : int
Minimum number of times a channel must show up as bad in a chunk.
Default is 5.
return_scores : bool
If ``True``, return a dictionary with scoring information for each
evaluated segment of the data. Default is ``False``.
.. warning:: This feature is experimental and may change in a future
version of MNE-Python without prior notice. Please
report any problems and enhancement proposals to the
developers.
.. versionadded:: 0.21
%(origin_maxwell)s
%(int_order_maxwell)s
%(ext_order_maxwell)s
%(calibration_maxwell_cal)s
%(cross_talk_maxwell)s
%(coord_frame_maxwell)s
%(regularize_maxwell_reg)s
%(ignore_ref_maxwell)s
%(bad_condition_maxwell_cond)s
%(head_pos_maxwell)s
%(mag_scale_maxwell)s
%(skip_by_annotation_maxwell)s
h_freq : float | None
The cutoff frequency (in Hz) of the low-pass filter that will be
applied before processing the data. This defaults to ``40.``, which
should provide similar results to MaxFilter. If you do not wish to
apply a filter, set this to ``None``.
%(extended_proj_maxwell)s
%(maxwell_mc_interp)s
%(verbose)s
Returns
-------
noisy_chs : list
List of bad MEG channels that were automatically detected as being
noisy among the good MEG channels.
flat_chs : list
List of MEG channels that were detected as being flat in at least
``min_count`` segments.
scores : dict
A dictionary with information produced by the scoring algorithms.
Only returned when ``return_scores`` is ``True``. It contains the
following keys:
- ``ch_names`` : ndarray, shape (n_meg,)
The names of the MEG channels. Their order corresponds to the
order of rows in the ``scores`` and ``limits`` arrays.
- ``ch_types`` : ndarray, shape (n_meg,)
The types of the MEG channels in ``ch_names`` (``'mag'``,
``'grad'``).
- ``bins`` : ndarray, shape (n_windows, 2)
The inclusive window boundaries (start and stop; in seconds) used
to calculate the scores.
- ``scores_flat`` : ndarray, shape (n_meg, n_windows)
The scores for testing whether MEG channels are flat. These values
correspond to the standard deviation of a segment.
See the ``Notes`` section for details.
- ``limits_flat`` : ndarray, shape (n_meg, 1)
The score thresholds (in standard deviation) above which a segment
was classified as "flat".
- ``scores_noisy`` : ndarray, shape (n_meg, n_windows)
The scores for testing whether MEG channels are noisy. These values
correspond to the standard score of a segment.
See the ``Notes`` section for details.
- ``limits_noisy`` : ndarray, shape (n_meg, 1)
The score thresholds (in standard scores) above which a segment was
classified as "noisy".
.. note:: The scores and limits for channels marked as ``bad`` in the
input data will be set to ``np.nan``.
See Also
--------
annotate_amplitude
maxwell_filter
Notes
-----
All arguments after ``raw``, ``limit``, ``duration``, ``min_count``, and
``return_scores`` are the same as :func:`~maxwell_filter`, except that the
following are not allowed in this function because they are unused:
``st_duration``, ``st_correlation``, ``destination``, ``st_fixed``, and
``st_only``.
This algorithm, for a given chunk of data:
1. Runs SSS on the data, without removing external components.
2. Excludes channels as *flat* that have had low variability
(standard deviation < 0.01 fT or fT/cm in a 30 ms window) in the given
or any previous chunk.
3. For each channel :math:`k`, computes the *range* or peak-to-peak
:math:`d_k` of the difference between the reconstructed and original
data.
4. Computes the average :math:`\mu_d` and standard deviation
:math:`\sigma_d` of the differences (after scaling magnetometer data
to roughly match the scale of the gradiometer data using ``mag_scale``).
5. Marks channels as bad for the chunk when
:math:`d_k > \mu_d + \textrm{limit} \times \sigma_d`. Note that this
expression can be easily transformed into
:math:`(d_k - \mu_d) / \sigma_d > \textrm{limit}`, which is equivalent
to :math:`z(d_k) > \textrm{limit}`, with :math:`z(d_k)` being the
standard or z-score of the difference.
Data are processed in chunks of the given ``duration``, and channels that
are bad for at least ``min_count`` chunks are returned.
Channels marked as *flat* in step 2 are excluded from all subsequent steps
of noisy channel detection.
This algorithm gives results similar to, but not identical with,
MaxFilter. Differences arise because MaxFilter processes on a
buffer-by-buffer basis (using buffer-size-dependent downsampling logic),
uses different filtering characteristics, and possibly other factors.
Channels that are near the ``limit`` for a given ``min_count`` are
particularly susceptible to being different between the two
implementations.
.. versionadded:: 0.20
"""
if h_freq is not None:
if raw.info.get("lowpass") and raw.info["lowpass"] <= h_freq:
freq_loc = "below" if raw.info["lowpass"] < h_freq else "equal to"
msg = (
f"The input data has already been low-pass filtered with a "
f"{raw.info['lowpass']} Hz cutoff frequency, which is "
f"{freq_loc} the requested cutoff of {h_freq} Hz. Not "
f"applying low-pass filter."
)
logger.info(msg)
else:
logger.info(
f"Applying low-pass filter with {h_freq} Hz cutoff frequency ..."
)
raw = raw.copy().load_data().filter(l_freq=None, h_freq=h_freq)
limit = float(limit)
onsets, ends = _annotations_starts_stops(raw, skip_by_annotation, invert=True)
del skip_by_annotation
# operate on chunks
starts = list()
stops = list()
step = int(round(raw.info["sfreq"] * duration))
for onset, end in zip(onsets, ends):
if end - onset >= step:
ss = np.arange(onset, end - step + 1, step)
starts.extend(ss)
ss = ss + step
ss[-1] = end
stops.extend(ss)
min_count = min(_ensure_int(min_count, "min_count"), len(starts))
logger.info(
"Scanning for bad channels in %d interval%s (%0.1f s) ...",
len(starts),
_pl(starts),
step / raw.info["sfreq"],
)
params = _prep_maxwell_filter(
raw,
skip_by_annotation=[], # already accounted for
origin=origin,
int_order=int_order,
ext_order=ext_order,
calibration=calibration,
cross_talk=cross_talk,
coord_frame=coord_frame,
regularize=regularize,
ignore_ref=ignore_ref,
bad_condition=bad_condition,
head_pos=head_pos,
mag_scale=mag_scale,
extended_proj=extended_proj,
reconstruct="orig",
)
del origin, int_order, ext_order, calibration, cross_talk, coord_frame
del regularize, ignore_ref, bad_condition, head_pos, mag_scale
good_meg_picks = params["meg_picks"][params["good_mask"]]
assert len(params["meg_picks"]) == len(params["coil_scale"])
assert len(params["good_mask"]) == len(params["meg_picks"])
noisy_chs = Counter()
flat_chs = Counter()
flat_limits = dict(grad=0.01e-13, mag=0.01e-15)
these_limits = np.array(
[
flat_limits["grad"] if pick in params["grad_picks"] else flat_limits["mag"]
for pick in good_meg_picks
]
)
flat_step = max(20, int(30 * raw.info["sfreq"] / 1000.0))
all_flats = set()
# Prepare variables to return if `return_scores=True`.
bins = np.empty((len(starts), 2)) # To store start, stop of each segment
# We create ndarrays with one row per channel, regardless of channel type
# and whether the channel has been marked as "bad" in info or not. This
# makes indexing in the loop easier. We only filter this down to the subset
# of MEG channels after all processing is done.
ch_names = np.array(raw.ch_names)
ch_types = np.array(raw.get_channel_types())
scores_flat = np.full((len(ch_names), len(starts)), np.nan)
scores_noisy = np.full_like(scores_flat, fill_value=np.nan)
thresh_flat = np.full((len(ch_names), 1), np.nan)
thresh_noisy = np.full_like(thresh_flat, fill_value=np.nan)
for si, (start, stop) in enumerate(zip(starts, stops)):
n_iter = 0
orig_data = raw.get_data(None, start, stop, verbose=False)
chunk_raw = RawArray(
orig_data,
params["info"],
first_samp=raw.first_samp + start,
copy="data",
verbose=False,
)
t = chunk_raw.times[[0, -1]] + start / raw.info["sfreq"]
logger.info(f" Interval {si + 1:3d}: {t[0]:8.3f} - {t[-1]:8.3f}")
# Flat pass: SD < 0.01 fT/cm or 0.01 fT for at 30 ms (or 20 samples)
n = stop - start
flat_stop = n - (n % flat_step)
data = chunk_raw.get_data(good_meg_picks, 0, flat_stop)
data.shape = (data.shape[0], -1, flat_step)
delta = np.std(data, axis=-1).min(-1) # min std across segments
# We may want to return this later if `return_scores=True`.
bins[si, :] = t[0], t[-1]
scores_flat[good_meg_picks, si] = delta
thresh_flat[good_meg_picks] = these_limits.reshape(-1, 1)
chunk_flats = delta < these_limits
chunk_flats = np.where(chunk_flats)[0]
chunk_flats = [
raw.ch_names[good_meg_picks[chunk_flat]] for chunk_flat in chunk_flats
]
flat_chs.update(chunk_flats)
all_flats |= set(chunk_flats)
chunk_flats = sorted(all_flats)
these_picks = [
pick for pick in good_meg_picks if raw.ch_names[pick] not in chunk_flats
]
if len(these_picks) == 0:
logger.info(f" Flat ({len(chunk_flats):2d}): <all>")
warn(
"All-flat segment detected, all channels will be marked as "
f"flat and processing will stop (t={t[0]:0.3f}). "
"Consider using annotate_amplitude before calling this "
'function with skip_by_annotation="bad_flat" (or similar) to '
"properly process all segments."
)
break # no reason to continue
# Bad pass
chunk_noisy = list()
params["st_duration"] = int(round(chunk_raw.times[-1] * raw.info["sfreq"]))
for n_iter in range(1, 101): # iteratively exclude the worst ones
assert set(raw.info["bads"]) & set(chunk_noisy) == set()
params["good_mask"][:] = [
chunk_raw.ch_names[pick]
not in raw.info["bads"] + chunk_noisy + chunk_flats
for pick in params["meg_picks"]
]
chunk_raw._data[:] = orig_data
delta = chunk_raw.get_data(these_picks)
with use_log_level(_verbose_safe_false()):
_run_maxwell_filter(chunk_raw, copy=False, **params)
if n_iter == 1 and len(chunk_flats):
logger.info(
" Flat (%2d): %s",
len(chunk_flats),
" ".join(chunk_flats),
)
delta -= chunk_raw.get_data(these_picks)
# p2p
range_ = np.ptp(delta, axis=-1)
cs_picks = np.searchsorted(params["meg_picks"], these_picks)
range_ *= params["coil_scale"][cs_picks, 0]
mean, std = np.mean(range_), np.std(range_)
# z score
z = (range_ - mean) / std
idx = np.argmax(z)
max_ = z[idx]
# We may want to return this later if `return_scores=True`.
scores_noisy[these_picks, si] = z
thresh_noisy[these_picks] = limit
if max_ < limit:
break
name = raw.ch_names[these_picks[idx]]
logger.debug(f" Bad: {name} {max_:0.1f}")
these_picks.pop(idx)
chunk_noisy.append(name)
noisy_chs.update(chunk_noisy)
noisy_chs = sorted(
(b for b, c in noisy_chs.items() if c >= min_count),
key=lambda x: raw.ch_names.index(x),
)
flat_chs = sorted(
(f for f, c in flat_chs.items() if c >= min_count),
key=lambda x: raw.ch_names.index(x),
)
# Only include MEG channels.
ch_names = ch_names[params["meg_picks"]]
ch_types = ch_types[params["meg_picks"]]
scores_flat = scores_flat[params["meg_picks"]]
thresh_flat = thresh_flat[params["meg_picks"]]
scores_noisy = scores_noisy[params["meg_picks"]]
thresh_noisy = thresh_noisy[params["meg_picks"]]
logger.info(f" Static bad channels: {noisy_chs}")
logger.info(f" Static flat channels: {flat_chs}")
logger.info("[done]")
if return_scores:
scores = dict(
ch_names=ch_names,
ch_types=ch_types,
bins=bins,
scores_flat=scores_flat,
limits_flat=thresh_flat,
scores_noisy=scores_noisy,
limits_noisy=thresh_noisy,
)
return noisy_chs, flat_chs, scores
else:
return noisy_chs, flat_chs
def _read_cross_talk(cross_talk, ch_names):
sss_ctc = dict()
ctc = None
if cross_talk is not None:
sss_ctc = _read_ctc(cross_talk)
ctc_chs = sss_ctc["proj_items_chs"]
# checking for extra space ambiguity in channel names
# between old and new fif files
if ch_names[0] not in ctc_chs:
ctc_chs = _clean_names(ctc_chs, remove_whitespace=True)
ch_names = _clean_names(ch_names, remove_whitespace=True)
missing = sorted(list(set(ch_names) - set(ctc_chs)))
if len(missing) != 0:
raise RuntimeError(f"Missing MEG channels in cross-talk matrix:\n{missing}")
missing = sorted(list(set(ctc_chs) - set(ch_names)))
if len(missing) > 0:
warn(f"Not all cross-talk channels in raw:\n{missing}")
ctc_picks = [ctc_chs.index(name) for name in ch_names]
ctc = sss_ctc["decoupler"][ctc_picks][:, ctc_picks]
# I have no idea why, but MF transposes this for storage..
sss_ctc["decoupler"] = sss_ctc["decoupler"].T.tocsc()
return ctc, sss_ctc
@verbose
def compute_maxwell_basis(
info,
origin="auto",
int_order=8,
ext_order=3,
calibration=None,
coord_frame="head",
regularize="in",
ignore_ref=True,
bad_condition="error",
mag_scale=100.0,
extended_proj=(),
verbose=None,
):
r"""Compute the SSS basis for a given measurement info structure.
Parameters
----------
%(info_not_none)s
%(origin_maxwell)s
%(int_order_maxwell)s
%(ext_order_maxwell)s
%(calibration_maxwell_cal)s
%(coord_frame_maxwell)s
%(regularize_maxwell_reg)s
%(ignore_ref_maxwell)s
%(bad_condition_maxwell_cond)s
%(mag_scale_maxwell)s
%(extended_proj_maxwell)s
%(verbose)s
Returns
-------
S : ndarray, shape (n_meg, n_moments)
The basis that can be used to reconstruct the data.
pS : ndarray, shape (n_moments, n_good_meg)
The (stabilized) pseudoinverse of the S array.
reg_moments : ndarray, shape (n_moments,)
The moments that were kept after regularization.
n_use_in : int
The number of kept moments that were in the internal space.
Notes
-----
This outputs variants of :math:`\mathbf{S}` and :math:`\mathbf{S^\dagger}`
from equations 27 and 37 of :footcite:`TauluKajola2005` with the coil scale
for magnetometers already factored in so that the resulting denoising
transform of the data to obtain :math:`\hat{\phi}_{in}` from equation
38 would be::
phi_in = S[:, :n_use_in] @ pS[:n_use_in] @ data_meg_good
.. versionadded:: 0.23
References
----------
.. footbibliography::
"""
_validate_type(info, Info, "info")
raw = RawArray(np.zeros((len(info["ch_names"]), 1)), info.copy(), verbose=False)
logger.info("Computing Maxwell basis")
params = _prep_maxwell_filter(
raw=raw,
origin=origin,
int_order=int_order,
ext_order=ext_order,
calibration=calibration,
coord_frame=coord_frame,
destination=None,
regularize=regularize,
ignore_ref=ignore_ref,
bad_condition=bad_condition,
mag_scale=mag_scale,
extended_proj=extended_proj,
)
_, S_decomp_full, pS_decomp, reg_moments, n_use_in = params[
"_get_this_decomp_trans"
](info["dev_head_t"], t=0.0)
return S_decomp_full, pS_decomp, reg_moments, n_use_in