[074d3d]: / mne / preprocessing / ica.py

Download this file

3551 lines (3123 with data), 129.6 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
#
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from __future__ import annotations # only needed for Python ≤ 3.9
import json
import math
import warnings
from collections import namedtuple
from collections.abc import Sequence
from copy import deepcopy
from dataclasses import dataclass, is_dataclass
from inspect import Parameter, isfunction, signature
from numbers import Integral
from time import time
from typing import Literal
import numpy as np
from scipy import stats
from scipy.spatial import distance
from scipy.special import expit
from .._fiff.constants import FIFF
from .._fiff.meas_info import ContainsMixin, read_meas_info, write_meas_info
from .._fiff.open import fiff_open
from .._fiff.pick import (
_DATA_CH_TYPES_SPLIT,
_contains_ch_type,
_picks_by_type,
_picks_to_idx,
pick_channels,
pick_channels_regexp,
pick_info,
pick_types,
)
from .._fiff.proj import make_projector
from .._fiff.tag import read_tag
from .._fiff.tree import dir_tree_find
from .._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_double_matrix,
write_id,
write_int,
write_name_list,
write_string,
)
from ..channels.layout import _find_topomap_coords
from ..cov import Covariance, compute_whitener
from ..defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..filter import filter_data
from ..fixes import _safe_svd
from ..html_templates import _get_html_template
from ..io import BaseRaw
from ..io.eeglab.eeglab import _check_load_mat, _get_info
from ..utils import (
_PCA,
Bunch,
_check_all_same_channel_names,
_check_ch_locs,
_check_compensation_grade,
_check_fname,
_check_on_missing,
_check_option,
_check_preload,
_ensure_int,
_get_inst_data,
_on_missing,
_pl,
_reject_data_segments,
_require_version,
_validate_type,
check_fname,
check_random_state,
compute_corr,
copy_function_doc_to_method_doc,
fill_doc,
int_like,
logger,
pinv,
repr_html,
verbose,
warn,
)
from ..viz import (
plot_ica_components,
plot_ica_overlay,
plot_ica_scores,
plot_ica_sources,
)
from ..viz.ica import plot_ica_properties
from ..viz.topomap import _plot_corrmap
from .bads import _find_outliers
from .ctps_ import ctps
from .ecg import _get_ecg_channel_index, _make_ecg, create_ecg_epochs, qrs_detector
from .eog import _find_eog_events, _get_eog_channel_index
from .infomax_ import infomax
__all__ = (
"ICA",
"ica_find_ecg_events",
"ica_find_eog_events",
"get_score_funcs",
"read_ica",
"read_ica_eeglab",
)
def _make_xy_sfunc(func, ndim_output=False):
"""Aux function."""
def sfunc(x, y, ndim_output=ndim_output):
out = [func(a, y.ravel()) for a in x]
if len(out) and is_dataclass(out[0]): # PermutationTestResult
out = [(o.statistic, o.pvalue) for o in out]
if ndim_output:
out = np.array(out)[:, 0]
return out
sfunc.__name__ = ".".join(["score_func", func.__module__, func.__name__])
sfunc.__doc__ = func.__doc__
return sfunc
# Violate our assumption that the output is 1D so can't be used.
# Could eventually be added but probably not worth the effort unless someone
# requests it.
_BLOCKLIST = {"somersd"}
# makes score funcs attr accessible for users
def get_score_funcs():
"""Get the score functions.
Returns
-------
score_funcs : dict
The score functions.
"""
score_funcs = Bunch()
xy_arg_dist_funcs = [
(n, f)
for n, f in vars(distance).items()
if isfunction(f) and not n.startswith("_") and n not in _BLOCKLIST
]
xy_arg_stats_funcs = [
(n, f)
for n, f in vars(stats).items()
if isfunction(f) and not n.startswith("_") and n not in _BLOCKLIST
]
score_funcs.update(
{
n: _make_xy_sfunc(f)
for n, f in xy_arg_dist_funcs
if signature(f).parameters == ["u", "v"]
}
)
# In SciPy 1.9+, pearsonr has (x, y, *, alternative='two-sided'), so we
# should just look at the positional_only and positional_or_keyword entries
for n, f in xy_arg_stats_funcs:
params = [
name
for name, param in signature(f).parameters.items()
if param.kind
in (Parameter.POSITIONAL_ONLY, Parameter.POSITIONAL_OR_KEYWORD)
]
if params == ["x", "y"]:
score_funcs.update({n: _make_xy_sfunc(f, ndim_output=True)})
assert "pearsonr" in score_funcs
return score_funcs
def _check_for_unsupported_ica_channels(picks, info, allow_ref_meg=False):
"""Check for channels in picks that are not considered valid channels.
Accepted channels are the data channels
('seeg', 'dbs', 'ecog', 'eeg', 'hbo', 'hbr', 'mag', and 'grad'), 'eog'
and 'ref_meg'.
This prevents the program from crashing without
feedback when a bad channel is provided to ICA whitening.
"""
types = _DATA_CH_TYPES_SPLIT + ("eog",)
types += ("ref_meg",) if allow_ref_meg else ()
chs = info.get_channel_types(picks, unique=True, only_data_chs=False)
check = all([ch in types for ch in chs])
if not check:
raise ValueError(
f"Invalid channel type{_pl(chs)} passed for ICA: {chs}."
f"Only the following types are supported: {types}"
)
_KNOWN_ICA_METHODS = ("fastica", "infomax", "picard")
@fill_doc
class ICA(ContainsMixin):
"""Data decomposition using Independent Component Analysis (ICA).
This object estimates independent components from :class:`mne.io.Raw`,
:class:`mne.Epochs`, or :class:`mne.Evoked` objects. Components can
optionally be removed (for artifact repair) prior to signal reconstruction.
.. warning:: ICA is sensitive to low-frequency drifts and therefore
requires the data to be high-pass filtered prior to fitting.
Typically, a cutoff frequency of 1 Hz is recommended.
Parameters
----------
n_components : int | float | None
Number of principal components (from the pre-whitening PCA step) that
are passed to the ICA algorithm during fitting:
- :class:`int`
Must be greater than 1 and less than or equal to the number of
channels.
- :class:`float` between 0 and 1 (exclusive)
Will select the smallest number of components required to explain
the cumulative variance of the data greater than ``n_components``.
Consider this hypothetical example: we have 3 components, the first
explaining 70%%, the second 20%%, and the third the remaining 10%%
of the variance. Passing 0.8 here (corresponding to 80%% of
explained variance) would yield the first two components,
explaining 90%% of the variance: only by using both components the
requested threshold of 80%% explained variance can be exceeded. The
third component, on the other hand, would be excluded.
- ``None``
``0.999999`` will be used. This is done to avoid numerical
stability problems when whitening, particularly when working with
rank-deficient data.
Defaults to ``None``. The actual number used when executing the
:meth:`ICA.fit` method will be stored in the attribute
``n_components_`` (note the trailing underscore).
.. versionchanged:: 0.22
For a :class:`python:float`, the number of components will account
for *greater than* the given variance level instead of *less than or
equal to* it. The default (None) will also take into account the
rank deficiency of the data.
noise_cov : None | instance of Covariance
Noise covariance used for pre-whitening. If None (default), channels
are scaled to unit variance ("z-standardized") as a group by channel
type prior to the whitening by PCA.
%(random_state)s
method : 'fastica' | 'infomax' | 'picard'
The ICA method to use in the fit method. Use the ``fit_params`` argument
to set additional parameters. Specifically, if you want Extended
Infomax, set ``method='infomax'`` and ``fit_params=dict(extended=True)``
(this also works for ``method='picard'``). Defaults to ``'fastica'``.
For reference, see :footcite:`Hyvarinen1999,BellSejnowski1995,LeeEtAl1999,AblinEtAl2018`.
fit_params : dict | None
Additional parameters passed to the ICA estimator as specified by
``method``. Allowed entries are determined by the various algorithm
implementations: see :class:`~sklearn.decomposition.FastICA`,
:func:`~picard.picard`, :func:`~mne.preprocessing.infomax`.
max_iter : int | 'auto'
Maximum number of iterations during fit. If ``'auto'``, it
will set maximum iterations to ``1000`` for ``'fastica'``
and to ``500`` for ``'infomax'`` or ``'picard'``. The actual number of
iterations it took :meth:`ICA.fit` to complete will be stored in the
``n_iter_`` attribute.
allow_ref_meg : bool
Allow ICA on MEG reference channels. Defaults to False.
.. versionadded:: 0.18
%(verbose)s
Attributes
----------
current_fit : 'unfitted' | 'raw' | 'epochs'
Which data type was used for the fit.
ch_names : list-like
Channel names resulting from initial picking.
n_components_ : int
If fit, the actual number of PCA components used for ICA decomposition.
pre_whitener_ : ndarray, shape (n_channels, 1) or (n_channels, n_channels)
If fit, array used to pre-whiten the data prior to PCA.
pca_components_ : ndarray, shape ``(n_channels, n_channels)``
If fit, the PCA components.
pca_mean_ : ndarray, shape (n_channels,)
If fit, the mean vector used to center the data before doing the PCA.
pca_explained_variance_ : ndarray, shape ``(n_channels,)``
If fit, the variance explained by each PCA component.
mixing_matrix_ : ndarray, shape ``(n_components_, n_components_)``
If fit, the whitened mixing matrix to go back from ICA space to PCA
space.
It is, in combination with the ``pca_components_``, used by
:meth:`ICA.apply` and :meth:`ICA.get_components` to re-mix/project
a subset of the ICA components into the observed channel space.
The former method also removes the pre-whitening (z-scaling) and the
de-meaning.
unmixing_matrix_ : ndarray, shape ``(n_components_, n_components_)``
If fit, the whitened matrix to go from PCA space to ICA space.
Used, in combination with the ``pca_components_``, by the methods
:meth:`ICA.get_sources` and :meth:`ICA.apply` to unmix the observed
data.
exclude : array-like of int
List or np.array of sources indices to exclude when re-mixing the data
in the :meth:`ICA.apply` method, i.e. artifactual ICA components.
The components identified manually and by the various automatic
artifact detection methods should be (manually) appended
(e.g. ``ica.exclude.extend(eog_inds)``).
(There is also an ``exclude`` parameter in the :meth:`ICA.apply`
method.) To scrap all marked components, set this attribute to an empty
list.
%(info)s
n_samples_ : int
The number of samples used on fit.
labels_ : dict
A dictionary of independent component indices, grouped by types of
independent components. This attribute is set by some of the artifact
detection functions.
n_iter_ : int
If fit, the number of iterations required to complete ICA.
Notes
-----
.. versionchanged:: 0.23
Version 0.23 introduced the ``max_iter='auto'`` settings for maximum
iterations. With version 0.24 ``'auto'`` will be the new
default, replacing the current ``max_iter=200``.
.. versionchanged:: 0.23
Warn if `~mne.Epochs` were baseline-corrected.
.. note:: If you intend to fit ICA on `~mne.Epochs`, it is recommended to
high-pass filter, but **not** baseline correct the data for good
ICA performance. A warning will be emitted otherwise.
A trailing ``_`` in an attribute name signifies that the attribute was
added to the object during fitting, consistent with standard scikit-learn
practice.
ICA :meth:`fit` in MNE proceeds in two steps:
1. :term:`Whitening <whitening>` the data by means of a pre-whitening step
(using ``noise_cov`` if provided, or the standard deviation of each
channel type) and then principal component analysis (PCA).
2. Passing the ``n_components`` largest-variance components to the ICA
algorithm to obtain the unmixing matrix (and by pseudoinversion, the
mixing matrix).
ICA :meth:`apply` then:
1. Unmixes the data with the ``unmixing_matrix_``.
2. Includes ICA components based on ``ica.include`` and ``ica.exclude``.
3. Re-mixes the data with ``mixing_matrix_``.
4. Restores any data not passed to the ICA algorithm, i.e., the PCA
components between ``n_components`` and ``n_pca_components``.
``n_pca_components`` determines how many PCA components will be kept when
reconstructing the data when calling :meth:`apply`. This parameter can be
used for dimensionality reduction of the data, or dealing with low-rank
data (such as those with projections, or MEG data processed by SSS). It is
important to remove any numerically-zero-variance components in the data,
otherwise numerical instability causes problems when computing the mixing
matrix. Alternatively, using ``n_components`` as a float will also avoid
numerical stability problems.
The ``n_components`` parameter determines how many components out of
the ``n_channels`` PCA components the ICA algorithm will actually fit.
This is not typically used for EEG data, but for MEG data, it's common to
use ``n_components < n_channels``. For example, full-rank
306-channel MEG data might use ``n_components=40`` to find (and
later exclude) only large, dominating artifacts in the data, but still
reconstruct the data using all 306 PCA components. Setting
``n_pca_components=40``, on the other hand, would actually reduce the
rank of the reconstructed data to 40, which is typically undesirable.
If you are migrating from EEGLAB and intend to reduce dimensionality via
PCA, similarly to EEGLAB's ``runica(..., 'pca', n)`` functionality,
pass ``n_components=n`` during initialization and then
``n_pca_components=n`` during :meth:`apply`. The resulting reconstructed
data after :meth:`apply` will have rank ``n``.
.. note:: Commonly used for reasons of i) computational efficiency and
ii) additional noise reduction, it is a matter of current debate
whether pre-ICA dimensionality reduction could decrease the
reliability and stability of the ICA, at least for EEG data and
especially during preprocessing :footcite:`ArtoniEtAl2018`.
(But see also :footcite:`Montoya-MartinezEtAl2017` for a
possibly confounding effect of the different whitening/sphering
methods used in this paper (ZCA vs. PCA).)
On the other hand, for rank-deficient data such as EEG data after
average reference or interpolation, it is recommended to reduce
the dimensionality (by 1 for average reference and 1 for each
interpolated channel) for optimal ICA performance (see the
`EEGLAB wiki <eeglab_wiki_>`_).
Caveat! If supplying a noise covariance, keep track of the projections
available in the cov or in the raw object. For example, if you are
interested in EOG or ECG artifacts, EOG and ECG projections should be
temporally removed before fitting ICA, for example::
>> projs, raw.info['projs'] = raw.info['projs'], []
>> ica.fit(raw)
>> raw.info['projs'] = projs
Methods currently implemented are FastICA (default), Infomax, and Picard.
Standard Infomax can be quite sensitive to differences in floating point
arithmetic. Extended Infomax seems to be more stable in this respect,
enhancing reproducibility and stability of results; use Extended Infomax
via ``method='infomax', fit_params=dict(extended=True)``. Allowed entries
in ``fit_params`` are determined by the various algorithm implementations:
see :class:`~sklearn.decomposition.FastICA`, :func:`~picard.picard`,
:func:`~mne.preprocessing.infomax`.
.. note:: Picard can be used to solve the same problems as FastICA,
Infomax, and extended Infomax, but typically converges faster
than either of those methods. To make use of Picard's speed while
still obtaining the same solution as with other algorithms, you
need to specify ``method='picard'`` and ``fit_params`` as a
dictionary with the following combination of keys:
- ``dict(ortho=False, extended=False)`` for Infomax
- ``dict(ortho=False, extended=True)`` for extended Infomax
- ``dict(ortho=True, extended=True)`` for FastICA
Reducing the tolerance (set in ``fit_params``) speeds up estimation at the
cost of consistency of the obtained results. It is difficult to directly
compare tolerance levels between Infomax and Picard, but for Picard and
FastICA a good rule of thumb is ``tol_fastica == tol_picard ** 2``.
.. _eeglab_wiki: https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html#how-to-deal-with-corrupted-ica-decompositions
References
----------
.. footbibliography::
""" # noqa: E501
@verbose
def __init__(
self,
n_components=None,
*,
noise_cov=None,
random_state=None,
method="fastica",
fit_params=None,
max_iter="auto",
allow_ref_meg=False,
verbose=None,
):
_validate_type(method, str, "method")
_validate_type(n_components, (float, "int-like", None))
if method != "imported_eeglab": # internal use only
_check_option("method", method, _KNOWN_ICA_METHODS)
self.noise_cov = noise_cov
for kind, val in [("n_components", n_components)]:
if isinstance(val, float) and not 0 < val < 1:
raise ValueError(
"Selecting ICA components by explained "
"variance needs values between 0.0 and 1.0 "
f"(exclusive), got {kind}={val}"
)
if isinstance(val, int_like) and val == 1:
raise ValueError(
f"Selecting one component with {kind}={val} is not supported"
)
self.current_fit = "unfitted"
self.n_components = n_components
# In newer ICAs this should always be None, but keep it for
# backward compat with older versions of MNE that used it
self._max_pca_components = None
self.n_pca_components = None
self.ch_names = None
self.random_state = random_state
if fit_params is None:
fit_params = {}
fit_params = deepcopy(fit_params) # avoid side effects
if method == "fastica":
update = {"algorithm": "parallel", "fun": "logcosh", "fun_args": None}
fit_params.update({k: v for k, v in update.items() if k not in fit_params})
elif method == "infomax":
# extended=True is default in underlying function, but we want
# default False here unless user specified True:
fit_params.setdefault("extended", False)
_validate_type(max_iter, (str, "int-like"), "max_iter")
if isinstance(max_iter, str):
_check_option("max_iter", max_iter, ("auto",), "when str")
if method == "fastica":
max_iter = 1000
elif method in ["infomax", "picard"]:
max_iter = 500
fit_params.setdefault("max_iter", max_iter)
self.max_iter = max_iter
self.fit_params = fit_params
self.exclude = []
self.info = None
self.method = method
self.labels_ = dict()
self.allow_ref_meg = allow_ref_meg
def _get_infos_for_repr(self):
@dataclass
class _InfosForRepr:
fit_on: Literal["raw data", "epochs"] | None
fit_method: Literal["fastica", "infomax", "extended-infomax", "picard"]
fit_params: dict[str, str | float]
fit_n_iter: int | None
fit_n_samples: int | None
fit_n_components: int | None
fit_n_pca_components: int | None
ch_types: list[str]
excludes: list[str]
if self.current_fit == "unfitted":
fit_on = None
elif self.current_fit == "raw":
fit_on = "raw data"
else:
fit_on = "epochs"
fit_method = self.method
fit_params = self.fit_params
fit_n_iter = getattr(self, "n_iter_", None)
fit_n_samples = getattr(self, "n_samples_", None)
fit_n_components = getattr(self, "n_components_", None)
fit_n_pca_components = getattr(self, "pca_components_", None)
if fit_n_pca_components is not None:
fit_n_pca_components = len(self.pca_components_)
if self.info is not None:
ch_types = [c for c in _DATA_CH_TYPES_SPLIT if c in self]
else:
ch_types = []
if self.exclude:
excludes = [self._ica_names[i] for i in self.exclude]
else:
excludes = []
infos_for_repr = _InfosForRepr(
fit_on=fit_on,
fit_method=fit_method,
fit_params=fit_params,
fit_n_iter=fit_n_iter,
fit_n_samples=fit_n_samples,
fit_n_components=fit_n_components,
fit_n_pca_components=fit_n_pca_components,
ch_types=ch_types,
excludes=excludes,
)
return infos_for_repr
def __repr__(self):
"""ICA fit information."""
infos = self._get_infos_for_repr()
s = f"{infos.fit_on or 'no'} decomposition, method: {infos.fit_method}"
if infos.fit_on is not None:
s += (
f" (fit in {infos.fit_n_iter} iterations on "
f"{infos.fit_n_samples} samples), "
f"{infos.fit_n_components} ICA components "
f"({infos.fit_n_pca_components} PCA components available), "
f"channel types: {', '.join(infos.ch_types)}, "
f"{len(infos.excludes) or 'no'} sources marked for exclusion"
)
return f"<ICA | {s}>"
@repr_html
def _repr_html_(self):
infos = self._get_infos_for_repr()
t = _get_html_template("repr", "ica.html.jinja")
html = t.render(
fit_on=infos.fit_on,
method=infos.fit_method,
fit_params=infos.fit_params,
n_iter=infos.fit_n_iter,
n_samples=infos.fit_n_samples,
n_components=infos.fit_n_components,
n_pca_components=infos.fit_n_pca_components,
ch_types=infos.ch_types,
excludes=infos.excludes,
)
return html
@verbose
def fit(
self,
inst,
picks=None,
start=None,
stop=None,
decim=None,
reject=None,
flat=None,
tstep=2.0,
reject_by_annotation=True,
verbose=None,
):
"""Run the ICA decomposition on raw data.
Caveat! If supplying a noise covariance keep track of the projections
available in the cov, the raw or the epochs object. For example,
if you are interested in EOG or ECG artifacts, EOG and ECG projections
should be temporally removed before fitting the ICA.
Parameters
----------
inst : instance of Raw or Epochs
The data to be decomposed.
%(picks_good_data_noref)s
This selection remains throughout the initialized ICA solution.
start, stop : int | float | None
First and last sample to include. If float, data will be
interpreted as time in seconds. If ``None``, data will be used from
the first sample and to the last sample, respectively.
.. note:: These parameters only have an effect if ``inst`` is
`~mne.io.Raw` data.
decim : int | None
Increment for selecting only each n-th sampling point. If ``None``,
all samples between ``start`` and ``stop`` (inclusive) are used.
reject, flat : dict | None
Rejection parameters based on peak-to-peak amplitude (PTP)
in the continuous data. Signal periods exceeding the thresholds
in ``reject`` or less than the thresholds in ``flat`` will be
removed before fitting the ICA.
.. note:: These parameters only have an effect if ``inst`` is
`~mne.io.Raw` data. For `~mne.Epochs`, perform PTP
rejection via :meth:`~mne.Epochs.drop_bad`.
Valid keys are all channel types present in the data. Values must
be integers or floats.
If ``None``, no PTP-based rejection will be performed. Example::
reject = dict(
grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
eeg=40e-6, # V (EEG channels)
eog=250e-6 # V (EOG channels)
)
flat = None # no rejection based on flatness
tstep : float
Length of data chunks for artifact rejection in seconds.
.. note:: This parameter only has an effect if ``inst`` is
`~mne.io.Raw` data.
%(reject_by_annotation_raw)s
.. versionadded:: 0.14.0
%(verbose)s
Returns
-------
self : instance of ICA
Returns the modified instance.
"""
req_map = dict(fastica="sklearn", picard="picard")
for method, mod in req_map.items():
if self.method == method:
_require_version(mod, f"use method={repr(method)}")
_validate_type(inst, (BaseRaw, BaseEpochs), "inst", "Raw or Epochs")
if np.isclose(inst.info["highpass"], 0.0):
warn(
"The data has not been high-pass filtered. For good ICA "
"performance, it should be high-pass filtered (e.g., with a "
"1.0 Hz lower bound) before fitting ICA."
)
if isinstance(inst, BaseEpochs) and inst.baseline is not None:
warn(
"The epochs you passed to ICA.fit() were baseline-corrected. "
"However, we suggest to fit ICA only on data that has been "
"high-pass filtered, but NOT baseline-corrected."
)
if not isinstance(inst, BaseRaw):
ignored_params = [
param_name
for param_name, param_val in zip(
("start", "stop", "reject", "flat"), (start, stop, reject, flat)
)
if param_val is not None
]
if ignored_params:
warn(
f"The following parameters passed to ICA.fit() will be "
f"ignored, as they only affect raw data (and it appears "
f"you passed epochs): {', '.join(ignored_params)}"
)
picks = _picks_to_idx(
inst.info, picks, allow_empty=False, with_ref_meg=self.allow_ref_meg
)
_check_for_unsupported_ica_channels(
picks, inst.info, allow_ref_meg=self.allow_ref_meg
)
# Actually start fitting
t_start = time()
if self.current_fit != "unfitted":
self._reset()
logger.info(
"Fitting ICA to data using %i channels (please be patient, this may take "
"a while)",
len(picks),
)
# n_components could be float 0 < x < 1, but that's okay here
if self.n_components is not None and self.n_components > len(picks):
raise ValueError(
f"ica.n_components ({self.n_components}) cannot "
f"be greater than len(picks) ({len(picks)})"
)
# filter out all the channels the raw wouldn't have initialized
self.info = pick_info(inst.info, picks)
if self.info["comps"]:
with self.info._unlock():
self.info["comps"] = []
self.ch_names = self.info["ch_names"]
if isinstance(inst, BaseRaw):
self._fit_raw(
inst,
picks,
start,
stop,
decim,
reject,
flat,
tstep,
reject_by_annotation,
verbose,
)
else:
assert isinstance(inst, BaseEpochs)
self._fit_epochs(inst, picks, decim, verbose)
# sort ICA components by explained variance
var = _ica_explained_variance(self, inst)
var_ord = var.argsort()[::-1]
_sort_components(self, var_ord, copy=False)
t_stop = time()
logger.info(f"Fitting ICA took {t_stop - t_start:.1f}s.")
return self
def _reset(self):
"""Aux method."""
for key in (
"pre_whitener_",
"unmixing_matrix_",
"mixing_matrix_",
"n_components_",
"n_samples_",
"pca_components_",
"pca_explained_variance_",
"pca_mean_",
"n_iter_",
"drop_inds_",
"reject_",
):
if hasattr(self, key):
delattr(self, key)
self.current_fit = "unfitted"
def _fit_raw(
self,
raw,
picks,
start,
stop,
decim,
reject,
flat,
tstep,
reject_by_annotation,
verbose,
):
"""Aux method."""
start, stop = _check_start_stop(raw, start, stop)
reject_by_annotation = "omit" if reject_by_annotation else None
# this will be a copy
data = raw.get_data(picks, start, stop, reject_by_annotation)
# this will be a view
if decim is not None:
data = data[:, ::decim]
# this will make a copy
if (reject is not None) or (flat is not None):
self.reject_ = reject
data, self.drop_inds_ = _reject_data_segments(
data, reject, flat, decim, self.info, tstep
)
else:
self.reject_ = None
self.n_samples_ = data.shape[1]
self._fit(data, "raw")
return self
def _fit_epochs(self, epochs, picks, decim, verbose):
"""Aux method."""
if epochs.events.size == 0:
raise RuntimeError(
"Tried to fit ICA with epochs, but none were found: epochs.events is "
f'"{epochs.events}".'
)
# this should be a copy (picks a list of int)
data = epochs.get_data(picks=picks)
# this will be a view
if decim is not None:
data = data[:, :, ::decim]
self.n_samples_ = data.shape[0] * data.shape[2]
# This will make at least one copy (one from hstack, maybe one
# more from _pre_whiten)
data = np.hstack(data)
self._fit(data, "epochs")
self.reject_ = deepcopy(epochs.reject)
return self
def _compute_pre_whitener(self, data):
"""Aux function."""
data = self._do_proj(data, log_suffix="(pre-whitener computation)")
if self.noise_cov is None:
# use standardization as whitener
# Scale (z-score) the data by channel type
info = self.info
pre_whitener = np.empty([len(data), 1])
for _, picks_ in _picks_by_type(info, ref_meg=False, exclude=[]):
pre_whitener[picks_] = np.std(data[picks_])
if _contains_ch_type(info, "ref_meg"):
picks_ = pick_types(info, ref_meg=True, exclude=[])
pre_whitener[picks_] = np.std(data[picks_])
if _contains_ch_type(info, "eog"):
picks_ = pick_types(info, eog=True, exclude=[])
pre_whitener[picks_] = np.std(data[picks_])
else:
pre_whitener, _ = compute_whitener(
self.noise_cov, self.info, picks=self.info.ch_names
)
assert data.shape[0] == pre_whitener.shape[1]
self.pre_whitener_ = pre_whitener
def _do_proj(self, data, log_suffix=""):
if self.info is not None and self.info["projs"]:
proj, nproj, _ = make_projector(
[p for p in self.info["projs"] if p["active"]],
self.info["ch_names"],
include_active=True,
)
if nproj:
logger.info(
f" Applying projection operator with {nproj} "
f"vector{_pl(nproj)}"
f"{' ' if log_suffix else ''}{log_suffix}"
)
if self.noise_cov is None: # otherwise it's in pre_whitener_
data = proj @ data
return data
def _pre_whiten(self, data):
data = self._do_proj(data, log_suffix="(pre-whitener application)")
if self.noise_cov is None:
data /= self.pre_whitener_
else:
data = self.pre_whitener_ @ data
return data
def _fit(self, data, fit_type):
"""Aux function."""
random_state = check_random_state(self.random_state)
n_channels, n_samples = data.shape
self._compute_pre_whitener(data)
data = self._pre_whiten(data)
pca = _PCA(n_components=self._max_pca_components, whiten=True)
data = pca.fit_transform(data.T)
use_ev = pca.explained_variance_ratio_
n_pca = self.n_pca_components
if isinstance(n_pca, float):
n_pca = int(_exp_var_ncomp(use_ev, n_pca)[0])
elif n_pca is None:
n_pca = len(use_ev)
assert isinstance(n_pca, int | np.int_)
# If user passed a float, select the PCA components explaining the
# given cumulative variance. This information will later be used to
# only submit the corresponding parts of the data to ICA.
if self.n_components is None:
# None case: check if n_pca_components or 0.999999 yields smaller
msg = "Selecting by non-zero PCA components"
self.n_components_ = min(n_pca, _exp_var_ncomp(use_ev, 0.999999)[0])
elif isinstance(self.n_components, float):
self.n_components_, ev = _exp_var_ncomp(use_ev, self.n_components)
if self.n_components_ == 1:
raise RuntimeError(
"One PCA component captures most of the "
f"explained variance ({100 * ev}%), your threshold "
"results in 1 component. You should select "
"a higher value."
)
msg = "Selecting by explained variance"
else:
msg = "Selecting by number"
self.n_components_ = _ensure_int(self.n_components)
# check to make sure something okay happened
if self.n_components_ > n_pca:
ev = np.cumsum(use_ev)
ev /= ev[-1]
evs = 100 * ev[[self.n_components_ - 1, n_pca - 1]]
raise RuntimeError(
f"n_components={self.n_components} requires "
f"{self.n_components_} PCA values (EV={evs[0]:0.1f}%) but "
f"n_pca_components ({self.n_pca_components}) results in "
f"only {n_pca} components (EV={evs[1]:0.1f}%)"
)
logger.info(f"{msg}: {self.n_components_} components")
# the things to store for PCA
self.pca_mean_ = pca.mean_
self.pca_components_ = pca.components_
self.pca_explained_variance_ = pca.explained_variance_
del pca
# update number of components
self._update_ica_names()
if self.n_pca_components is not None and self.n_pca_components > len(
self.pca_components_
):
raise ValueError(
f"n_pca_components ({self.n_pca_components}) is greater than "
f"the number of PCA components ({len(self.pca_components_)})"
)
# take care of ICA
sel = slice(0, self.n_components_)
if self.method == "fastica":
from sklearn.decomposition import FastICA
ica = FastICA(whiten=False, random_state=random_state, **self.fit_params)
ica.fit(data[:, sel])
self.unmixing_matrix_ = ica.components_
self.n_iter_ = ica.n_iter_
elif self.method in ("infomax", "extended-infomax"):
unmixing_matrix, n_iter = infomax(
data[:, sel],
random_state=random_state,
return_n_iter=True,
**self.fit_params,
)
self.unmixing_matrix_ = unmixing_matrix
self.n_iter_ = n_iter
del unmixing_matrix, n_iter
elif self.method == "picard":
from picard import picard
_, W, _, n_iter = picard(
data[:, sel].T,
whiten=False,
return_n_iter=True,
random_state=random_state,
**self.fit_params,
)
self.unmixing_matrix_ = W
self.n_iter_ = n_iter + 1 # picard() starts counting at 0
del _, n_iter
assert self.unmixing_matrix_.shape == (self.n_components_,) * 2
norms = self.pca_explained_variance_
stable = norms / norms[0] > 1e-6 # to be stable during pinv
norms = norms[: self.n_components_]
if not stable[self.n_components_ - 1]:
max_int = np.where(stable)[0][-1] + 1
warn(
f"Using n_components={self.n_components} (resulting in "
f"n_components_={self.n_components_}) may lead to an "
f"unstable mixing matrix estimation because the ratio "
f"between the largest ({norms[0]:0.2g}) and smallest "
f"({norms[-1]:0.2g}) variances is too large (> 1e6); "
f"consider setting n_components=0.999999 or an "
f"integer <= {max_int}"
)
norms = np.sqrt(norms)
norms[norms == 0] = 1.0
self.unmixing_matrix_ /= norms # whitening
self._update_mixing_matrix()
self.current_fit = fit_type
def _update_mixing_matrix(self):
self.mixing_matrix_ = pinv(self.unmixing_matrix_)
def _update_ica_names(self):
"""Update ICA names when n_components_ is set."""
self._ica_names = [f"ICA{ii:03d}" for ii in range(self.n_components_)]
def _transform(self, data):
"""Compute sources from data (operates inplace)."""
data = self._pre_whiten(data)
if self.pca_mean_ is not None:
data -= self.pca_mean_[:, None]
# Apply unmixing
pca_data = np.dot(
self.unmixing_matrix_, self.pca_components_[: self.n_components_]
)
# Apply PCA
sources = np.dot(pca_data, data)
return sources
def _transform_raw(self, raw, start, stop, reject_by_annotation=False):
"""Transform raw data."""
if not hasattr(self, "mixing_matrix_"):
raise RuntimeError("No fit available. Please fit ICA.")
start, stop = _check_start_stop(raw, start, stop)
picks = self._get_picks(raw)
reject = "omit" if reject_by_annotation else None
data = raw.get_data(picks, start, stop, reject)
return self._transform(data)
def _transform_epochs(self, epochs, concatenate):
"""Aux method."""
if not hasattr(self, "mixing_matrix_"):
raise RuntimeError("No fit available. Please fit ICA.")
picks = self._get_picks(epochs)
data = np.hstack(epochs.get_data(picks=picks))
sources = self._transform(data)
if not concatenate:
# Put the data back in 3D
sources = np.array(np.split(sources, len(epochs.events), 1))
return sources
def _transform_evoked(self, evoked):
"""Aux method."""
if not hasattr(self, "mixing_matrix_"):
raise RuntimeError("No fit available. Please fit ICA.")
picks = self._get_picks(evoked)
return self._transform(evoked.data[picks])
def _get_picks(self, inst):
"""Pick logic for _transform method."""
picks = _picks_to_idx(inst.info, self.ch_names, exclude=[], allow_empty=True)
if len(picks) != len(self.ch_names):
if isinstance(inst, BaseRaw):
kind, do = "Raw", "doesn't"
elif isinstance(inst, BaseEpochs):
kind, do = "Epochs", "don't"
elif isinstance(inst, Evoked):
kind, do = "Evoked", "doesn't"
else:
raise ValueError("Data input must be of Raw, Epochs or Evoked type")
raise RuntimeError(
f"{kind} {do} match fitted data: {len(self.ch_names)} channels "
f"fitted but {len(picks)} channels supplied. \nPlease "
f"provide {kind} compatible with 'ica.ch_names'."
)
return picks
def get_components(self):
"""Get ICA topomap for components as numpy arrays.
Returns
-------
components : array, shape (n_channels, n_components)
The ICA components (maps).
"""
return np.dot(
self.mixing_matrix_[:, : self.n_components_].T,
self.pca_components_[: self.n_components_],
).T
def get_explained_variance_ratio(self, inst, *, components=None, ch_type=None):
"""Get the proportion of data variance explained by ICA components.
Parameters
----------
inst : mne.io.BaseRaw | mne.BaseEpochs | mne.Evoked
The uncleaned data.
components : array-like of int | int | None
The component(s) for which to do the calculation. If more than one
component is specified, explained variance will be calculated
jointly across all supplied components. If ``None`` (default), uses
all available components.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | array-like of str | None
The channel type(s) to include in the calculation. If ``None``, all
available channel types will be used.
Returns
-------
dict (str, float)
The fraction of variance in ``inst`` that can be explained by the
ICA components, calculated separately for each channel type.
Dictionary keys are the channel types, and corresponding explained
variance ratios are the values.
Notes
-----
A value similar to EEGLAB's ``pvaf`` (percent variance accounted for)
will be calculated for the specified component(s).
Since ICA components cannot be assumed to be aligned orthogonally, the
sum of the proportion of variance explained by all components may not
be equal to 1. In certain situations, the proportion of variance
explained by a component may even be negative.
.. versionadded:: 1.2
""" # noqa: E501
if self.current_fit == "unfitted":
raise ValueError("ICA must be fitted first.")
_validate_type(item=inst, types=(BaseRaw, BaseEpochs, Evoked), item_name="inst")
_validate_type(
item=components,
types=(None, "int-like", Sequence, np.ndarray),
item_name="components",
type_name="int, array-like of int, or None",
)
if isinstance(components, Sequence | np.ndarray):
for item in components:
_validate_type(
item=item, types="int-like", item_name='Elements of "components"'
)
_validate_type(
item=ch_type,
types=(Sequence, np.ndarray, str, None),
item_name="ch_type",
type_name="str, array-like of str, or None",
)
if isinstance(ch_type, str):
ch_types = [ch_type]
elif ch_type is None:
ch_types = inst.get_channel_types(unique=True, only_data_chs=True)
else:
assert isinstance(ch_type, Sequence | np.ndarray)
ch_types = ch_type
assert len(ch_types) >= 1
allowed_ch_types = ("mag", "grad", "planar1", "planar2", "eeg")
for ch_type in ch_types:
if ch_type not in allowed_ch_types:
raise ValueError(
f"You requested operation on the channel type "
f'"{ch_type}", but only the following channel types are '
f"supported: {', '.join(allowed_ch_types)}"
)
del ch_type
# Input data validation ends here
if components is None:
components = range(self.n_components_)
explained_var_ratios = [
self._get_explained_variance_ratio_one_ch_type(
inst=inst, components=components, ch_type=ch_type
)
for ch_type in ch_types
]
result = dict(zip(ch_types, explained_var_ratios))
return result
def _get_explained_variance_ratio_one_ch_type(self, *, inst, components, ch_type):
# The algorithm implemented below should be equivalent to
# https://sccn.ucsd.edu/pipermail/eeglablist/2014/009134.html
#
# Reconstruct ("back-project") the data using only the specified ICA
# components. Don't make use of potential "spare" PCA components in
# this process – we're only interested in the contribution of the ICA
# components!
kwargs = dict(
inst=inst.copy(),
include=[components],
exclude=[],
n_pca_components=0,
verbose=False,
)
if isinstance(inst, BaseEpochs | Evoked) and inst.baseline is not None:
# Don't warn if data was baseline-corrected.
with warnings.catch_warnings():
warnings.filterwarnings(
action="ignore",
message="The data.*was baseline-corrected",
category=RuntimeWarning,
)
inst_recon = self.apply(**kwargs)
else:
inst_recon = self.apply(**kwargs)
data_recon = inst_recon.get_data(picks=ch_type)
data_orig = inst.get_data(picks=ch_type)
data_diff = data_orig - data_recon
# To estimate the data variance, we first compute the variance across
# channels at each time point, and then we average these variances.
mean_var_diff = data_diff.var(axis=0).mean()
mean_var_orig = data_orig.var(axis=0).mean()
var_explained_ratio = 1 - mean_var_diff / mean_var_orig
return var_explained_ratio
def get_sources(self, inst, add_channels=None, start=None, stop=None):
"""Estimate sources given the unmixing matrix.
This method will return the sources in the container format passed.
Typical usecases:
1. pass Raw object to use `raw.plot <mne.io.Raw.plot>` for ICA sources
2. pass Epochs object to compute trial-based statistics in ICA space
3. pass Evoked object to investigate time-locking in ICA space
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from and to represent sources in.
add_channels : None | list of str
Additional channels to be added. Useful to e.g. compare sources
with some reference. Defaults to None.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, the entire data will be used.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, the entire data will be used.
Returns
-------
sources : instance of Raw, Epochs or Evoked
The ICA sources time series.
"""
if isinstance(inst, BaseRaw):
_check_compensation_grade(
self.info, inst.info, "ICA", "Raw", ch_names=self.ch_names
)
sources = self._sources_as_raw(inst, add_channels, start, stop)
elif isinstance(inst, BaseEpochs):
_check_compensation_grade(
self.info, inst.info, "ICA", "Epochs", ch_names=self.ch_names
)
sources = self._sources_as_epochs(inst, add_channels, False)
elif isinstance(inst, Evoked):
_check_compensation_grade(
self.info, inst.info, "ICA", "Evoked", ch_names=self.ch_names
)
sources = self._sources_as_evoked(inst, add_channels)
else:
raise ValueError("Data input must be of Raw, Epochs or Evoked type")
return sources
def _sources_as_raw(self, raw, add_channels, start, stop):
"""Aux method."""
# merge copied instance and picked data with sources
start, stop = _check_start_stop(raw, start, stop)
data_ = self._transform_raw(raw, start=start, stop=stop)
assert data_.shape[1] == stop - start
preloaded = raw.preload
if raw.preload:
# get data and temporarily delete
data = raw._data
raw.preload = False
del raw._data
# copy and crop here so that things like annotations are adjusted
try:
out = raw.copy().crop(
start / raw.info["sfreq"], (stop - 1) / raw.info["sfreq"]
)
finally:
# put the data back (always)
if preloaded:
raw.preload = True
raw._data = data
# populate copied raw.
if add_channels is not None and len(add_channels):
picks = pick_channels(raw.ch_names, add_channels)
data_ = np.concatenate([data_, raw.get_data(picks, start=start, stop=stop)])
out._data = data_
out._first_samps = [out.first_samp]
out._last_samps = [out.last_samp]
out.filenames = [None]
out.preload = True
out._projector = None
self._export_info(out.info, raw, add_channels)
return out
def _sources_as_epochs(self, epochs, add_channels, concatenate):
"""Aux method."""
out = epochs.copy()
sources = self._transform_epochs(epochs, concatenate)
if add_channels is not None:
picks = [epochs.ch_names.index(k) for k in add_channels]
else:
picks = []
out._data = (
np.concatenate([sources, epochs.get_data()[:, picks]], axis=1)
if len(picks) > 0
else sources
)
self._export_info(out.info, epochs, add_channels)
out.preload = True
out._raw = None
out._projector = None
return out
def _sources_as_evoked(self, evoked, add_channels):
"""Aux method."""
if add_channels is not None:
picks = [evoked.ch_names.index(k) for k in add_channels]
else:
picks = []
sources = self._transform_evoked(evoked)
if len(picks) > 1:
data = np.r_[sources, evoked.data[picks]]
else:
data = sources
out = evoked.copy()
out.data = data
self._export_info(out.info, evoked, add_channels)
return out
def _export_info(self, info, container, add_channels):
"""Aux method."""
# set channel names and info
ch_names = []
ch_info = []
for ii, name in enumerate(self._ica_names):
ch_names.append(name)
ch_info.append(
dict(
ch_name=name,
cal=1,
logno=ii + 1,
coil_type=FIFF.FIFFV_COIL_NONE,
kind=FIFF.FIFFV_MISC_CH,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
unit=FIFF.FIFF_UNIT_NONE,
loc=np.zeros(12, dtype="f4"),
range=1.0,
scanno=ii + 1,
unit_mul=0,
)
)
if add_channels is not None:
# re-append additionally picked ch_names
ch_names += add_channels
# re-append additionally picked ch_info
ch_info += [
k for k in container.info["chs"] if k["ch_name"] in add_channels
]
with info._unlock(update_redundant=True, check_after=True):
info["chs"] = ch_info
info["projs"] = [] # make sure projections are removed.
info["bads"] = [ch_names[k] for k in self.exclude]
@verbose
def score_sources(
self,
inst,
target=None,
score_func="pearsonr",
start=None,
stop=None,
l_freq=None,
h_freq=None,
reject_by_annotation=True,
verbose=None,
):
"""Assign score to components based on statistic or metric.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
The object to reconstruct the sources from.
target : array-like | str | None
Signal to which the sources shall be compared. It has to be of
the same shape as the sources. If str, a routine will try to find
a matching channel name. If None, a score
function expecting only one input-array argument must be used,
for instance, scipy.stats.skew (default).
score_func : callable | str
Callable taking as arguments either two input arrays
(e.g. Pearson correlation) or one input
array (e. g. skewness) and returns a float. For convenience the
most common score_funcs are available via string labels:
Currently, all distance metrics from scipy.spatial and All
functions from scipy.stats taking compatible input arguments are
supported. These function have been modified to support iteration
over the rows of a 2D array.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
%(reject_by_annotation_all)s
.. versionadded:: 0.14.0
%(verbose)s
Returns
-------
scores : ndarray
Scores for each source as returned from score_func.
"""
if isinstance(inst, BaseRaw):
_check_compensation_grade(
self.info, inst.info, "ICA", "Raw", ch_names=self.ch_names
)
sources = self._transform_raw(inst, start, stop, reject_by_annotation)
elif isinstance(inst, BaseEpochs):
_check_compensation_grade(
self.info, inst.info, "ICA", "Epochs", ch_names=self.ch_names
)
sources = self._transform_epochs(inst, concatenate=True)
elif isinstance(inst, Evoked):
_check_compensation_grade(
self.info, inst.info, "ICA", "Evoked", ch_names=self.ch_names
)
sources = self._transform_evoked(inst)
else:
raise ValueError("Data input must be of Raw, Epochs or Evoked type")
if target is not None: # we can have univariate metrics without target
target = self._check_target(target, inst, start, stop, reject_by_annotation)
if sources.shape[-1] != target.shape[-1]:
raise ValueError(
"Sources and target do not have the same number of time slices."
)
# auto target selection
if isinstance(inst, BaseRaw):
# We pass inst, not self, because the sfreq of the data we
# use for scoring components can be different:
sources, target = _band_pass_filter(
inst, sources, target, l_freq, h_freq
)
scores = _find_sources(sources, target, score_func)
return scores
def _check_target(self, target, inst, start, stop, reject_by_annotation=False):
"""Aux Method."""
if isinstance(inst, BaseRaw):
reject_by_annotation = "omit" if reject_by_annotation else None
start, stop = _check_start_stop(inst, start, stop)
if hasattr(target, "ndim"):
if target.ndim < 2:
target = target.reshape(1, target.shape[-1])
if isinstance(target, str):
pick = _get_target_ch(inst, target)
target = inst.get_data(pick, start, stop, reject_by_annotation)
elif isinstance(inst, BaseEpochs):
if isinstance(target, str):
pick = _get_target_ch(inst, target)
target = inst.get_data(picks=pick)
if hasattr(target, "ndim"):
if target.ndim == 3 and min(target.shape) == 1:
target = target.ravel()
elif isinstance(inst, Evoked):
if isinstance(target, str):
pick = _get_target_ch(inst, target)
target = inst.data[pick]
return target
def _find_bads_ch(
self,
inst,
chs,
threshold=3.0,
start=None,
stop=None,
l_freq=None,
h_freq=None,
reject_by_annotation=True,
prefix="chs",
measure="zscore",
):
"""Compute ExG/ref components.
See find_bads_ecg, find_bads_eog, and find_bads_ref for details.
"""
scores, idx = [], []
# some magic we need inevitably ...
# get targets before equalizing
targets = [
self._check_target(ch, inst, start, stop, reject_by_annotation)
for ch in chs
]
# assign names, if targets are arrays instead of strings
target_names = []
for ch in chs:
if not isinstance(ch, str):
if prefix == "ecg":
target_names.append("ECG-MAG")
else:
target_names.append(prefix)
else:
target_names.append(ch)
for ii, (ch, target) in enumerate(zip(target_names, targets)):
scores += [
self.score_sources(
inst,
target=target,
score_func="pearsonr",
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
reject_by_annotation=reject_by_annotation,
)
]
# pick last scores
if measure == "zscore":
this_idx = _find_outliers(scores[-1], threshold=threshold)
elif measure == "correlation":
this_idx = np.where(abs(scores[-1]) > threshold)[0]
else:
raise ValueError(f"Unknown measure {measure}")
idx += [this_idx]
self.labels_[f"{prefix}/{ii}/{ch}"] = list(this_idx)
# remove duplicates but keep order by score, even across multiple
# ref channels
scores_ = np.concatenate([scores[ii][inds] for ii, inds in enumerate(idx)])
idx_ = np.concatenate(idx)[np.abs(scores_).argsort()[::-1]]
idx_unique = list(np.unique(idx_))
idx = []
for i in idx_:
if i in idx_unique:
idx.append(i)
idx_unique.remove(i)
if len(scores) == 1:
scores = scores[0]
labels = list(idx)
return labels, scores
def _get_ctps_threshold(self, pk_threshold=20):
"""Automatically decide the threshold of Kuiper index for CTPS method.
This function finds the threshold of Kuiper index based on the
threshold of pk. Kuiper statistic that minimizes the difference between
pk and the pk threshold (defaults to 20 :footcite:`DammersEtAl2008`)
is returned. It is assumed that the data are appropriately filtered and
bad data are rejected at least based on peak-to-peak amplitude
when/before running the ICA decomposition on data.
References
----------
.. footbibliography::
"""
N = self.info["sfreq"]
Vs = np.arange(1, 100) / 100
C = math.sqrt(N) + 0.155 + 0.24 / math.sqrt(N)
# in formula (13), when k gets large, only k=1 matters for the
# summation. k*V*C thus becomes V*C
Pks = 2 * (4 * (Vs * C) ** 2 - 1) * (np.exp(-2 * (Vs * C) ** 2))
# NOTE: the threshold of pk is transformed to Pk for comparison
# pk = -log10(Pk)
return Vs[np.argmin(np.abs(Pks - 10 ** (-pk_threshold)))]
@verbose
def find_bads_ecg(
self,
inst,
ch_name=None,
threshold="auto",
start=None,
stop=None,
l_freq=8,
h_freq=16,
method="ctps",
reject_by_annotation=True,
measure="zscore",
verbose=None,
):
"""Detect ECG related components.
Cross-trial phase statistics :footcite:`DammersEtAl2008` or Pearson
correlation can be used for detection.
.. note:: If no ECG channel is available, an artificial ECG channel will be
created based on cross-channel averaging of ``"mag"`` or ``"grad"``
channels. If neither of these channel types are available in
``inst``, artificial ECG channel creation is impossible.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
%(ch_name_ecg)s
threshold : float | 'auto'
Value above which a feature is classified as outlier. See Notes.
.. versionchanged:: 0.21
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
When working with Epochs or Evoked objects, must be float or None.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
When working with Epochs or Evoked objects, must be float or None.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
method : 'ctps' | 'correlation'
The method used for detection. If ``'ctps'``, cross-trial phase
statistics :footcite:`DammersEtAl2008` are used to detect
ECG-related components. See Notes.
%(reject_by_annotation_all)s
.. versionadded:: 0.14.0
%(measure)s
%(verbose)s
Returns
-------
ecg_idx : list of int
The indices of ECG-related components.
scores : np.ndarray of float, shape (``n_components_``)
If method is 'ctps', the normalized Kuiper index scores. If method
is 'correlation', the correlation scores.
See Also
--------
find_bads_eog, find_bads_ref, find_bads_muscle
Notes
-----
The ``threshold``, ``method``, and ``measure`` parameters interact in
the following ways:
- If ``method='ctps'``, ``threshold`` refers to the significance value
of a Kuiper statistic, and ``threshold='auto'`` will compute the
threshold automatically based on the sampling frequency.
- If ``method='correlation'`` and ``measure='correlation'``,
``threshold`` refers to the Pearson correlation value, and
``threshold='auto'`` sets the threshold to 0.9.
- If ``method='correlation'`` and ``measure='zscore'``, ``threshold``
refers to the z-score value (i.e., standard deviations) used in the
iterative z-scoring method, and ``threshold='auto'`` sets the
threshold to 3.0.
References
----------
.. footbibliography::
"""
_validate_type(threshold, (str, "numeric"), "threshold")
if isinstance(threshold, str):
_check_option("threshold", threshold, ("auto",), extra="when str")
_validate_type(method, str, "method")
_check_option("method", method, ("ctps", "correlation"))
_validate_type(measure, str, "measure")
_check_option("measure", measure, ("zscore", "correlation"))
idx_ecg = _get_ecg_channel_index(ch_name, inst)
if idx_ecg is None:
ecg, _ = _make_ecg(
inst, start, stop, reject_by_annotation=reject_by_annotation
)
else:
ecg = inst.ch_names[idx_ecg]
if method == "ctps":
if threshold == "auto":
threshold = self._get_ctps_threshold()
logger.info(f"Using threshold: {threshold:.2f} for CTPS ECG detection")
if isinstance(inst, BaseRaw):
sources = self.get_sources(
create_ecg_epochs(
inst,
ch_name,
l_freq=l_freq,
h_freq=h_freq,
keep_ecg=False,
reject_by_annotation=reject_by_annotation,
)
).get_data(copy=False)
if sources.shape[0] == 0:
warn(
"No ECG activity detected. Consider changing "
"the input parameters."
)
elif isinstance(inst, BaseEpochs):
sources = self.get_sources(inst).get_data(copy=False)
else:
raise ValueError("With `ctps` only Raw and Epochs input is supported")
_, p_vals, _ = ctps(sources)
scores = p_vals.max(-1)
ecg_idx = np.where(scores >= threshold)[0]
# sort indices by scores
ecg_idx = ecg_idx[np.abs(scores[ecg_idx]).argsort()[::-1]]
self.labels_["ecg"] = list(ecg_idx)
if ch_name is None:
ch_name = "ECG-MAG"
self.labels_[f"ecg/{ch_name}"] = list(ecg_idx)
elif method == "correlation":
if threshold == "auto" and measure == "zscore":
threshold = 3.0
elif threshold == "auto" and measure == "correlation":
threshold = 0.9
self.labels_["ecg"], scores = self._find_bads_ch(
inst,
[ecg],
threshold=threshold,
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
prefix="ecg",
reject_by_annotation=reject_by_annotation,
measure=measure,
)
return self.labels_["ecg"], scores
@verbose
def find_bads_ref(
self,
inst,
ch_name=None,
threshold=3.0,
start=None,
stop=None,
l_freq=None,
h_freq=None,
reject_by_annotation=True,
method="together",
measure="zscore",
verbose=None,
):
"""Detect MEG reference related components using correlation.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from. Should contain at least one channel
i.e. component derived from MEG reference channels.
ch_name : list of str
Which MEG reference components to use. If None, then all channels
that begin with REF_ICA.
threshold : float | str
Value above which a feature is classified as outlier.
- If ``measure`` is ``'zscore'``, defines the threshold on the
z-score used in the iterative z-scoring method.
- If ``measure`` is ``'correlation'``, defines the absolute
threshold on the correlation between 0 and 1.
- If ``'auto'``, defaults to 3.0 if ``measure`` is ``'zscore'`` and
0.9 if ``measure`` is ``'correlation'``.
.. warning::
If ``method`` is ``'together'``, the iterative z-score method
is always used.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
%(reject_by_annotation_all)s
method : 'together' | 'separate'
Method to use to identify reference channel related components.
Defaults to ``'together'``. See notes.
.. versionadded:: 0.21
%(measure)s
%(verbose)s
Returns
-------
ref_idx : list of int
The indices of MEG reference related components, sorted by score.
scores : np.ndarray of float, shape (``n_components_``) | list of array
The correlation scores.
See Also
--------
find_bads_ecg, find_bads_eog, find_bads_muscle
Notes
-----
ICA decomposition on MEG reference channels is used to assess external
magnetic noise and remove it from the MEG. Two methods are supported:
With the ``'together'`` method, only one ICA fit is used, which
encompasses both MEG and reference channels together. Components which
have particularly strong weights on the reference channels may be
thresholded and marked for removal.
With ``'separate'`` selected components from a separate ICA
decomposition on the reference channels are used as a ground truth for
identifying bad components in an ICA fit done on MEG channels only. The
logic here is similar to an EOG/ECG, with reference components
replacing the EOG/ECG channels. Recommended procedure is to perform ICA
separately on reference channels, extract them using
:meth:`~mne.preprocessing.ICA.get_sources`, and then append them to the
inst using :meth:`~mne.io.Raw.add_channels`, preferably with the prefix
``REF_ICA`` so that they can be automatically detected.
With ``'together'``, thresholding is based on adaptative z-scoring.
With ``'separate'``:
- If ``measure`` is ``'zscore'``, thresholding is based on adaptative
z-scoring.
- If ``measure`` is ``'correlation'``, threshold defines the absolute
threshold on the correlation between 0 and 1.
Validation and further documentation for this technique can be found
in :footcite:`HannaEtAl2020`.
.. versionadded:: 0.18
References
----------
.. footbibliography::
"""
_validate_type(threshold, (str, "numeric"), "threshold")
if isinstance(threshold, str):
_check_option("threshold", threshold, ("auto",), extra="when str")
_validate_type(method, str, "method")
_check_option("method", method, ("together", "separate"))
_validate_type(measure, str, "measure")
_check_option("measure", measure, ("zscore", "correlation"))
if method == "separate":
if threshold == "auto" and measure == "zscore":
threshold = 3.0
elif threshold == "auto" and measure == "correlation":
threshold = 0.9
if not ch_name:
inds = pick_channels_regexp(inst.ch_names, "REF_ICA*")
else:
inds = pick_channels(inst.ch_names, ch_name)
# regexp returns list, pick_channels returns numpy
inds = list(inds)
if not inds:
raise ValueError("No valid channels available.")
ref_chs = [inst.ch_names[k] for k in inds]
self.labels_["ref_meg"], scores = self._find_bads_ch(
inst,
ref_chs,
threshold=threshold,
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
prefix="ref_meg",
reject_by_annotation=reject_by_annotation,
measure=measure,
)
elif method == "together":
if threshold == "auto":
threshold = 3.0
if measure != "zscore":
logger.info(
"With method 'together', only 'zscore' measure is"
f"supported. Using 'zscore' instead of '{measure}'."
)
meg_picks = pick_types(self.info, meg=True, ref_meg=False)
ref_picks = pick_types(self.info, meg=False, ref_meg=True)
if not any(meg_picks) or not any(ref_picks):
raise ValueError(
"ICA solution must contain both reference and MEG channels."
)
weights = self.get_components()
# take norm of component weights on reference channels for each
# component, divide them by the norm on the standard channels,
# log transform to approximate normal distribution
normrats = np.linalg.norm(weights[ref_picks], axis=0) / np.linalg.norm(
weights[meg_picks], axis=0
)
scores = np.log(normrats)
self.labels_["ref_meg"] = list(
_find_outliers(scores, threshold=threshold, tail=1)
)
return self.labels_["ref_meg"], scores
@verbose
def find_bads_muscle(
self,
inst,
threshold=0.5,
start=None,
stop=None,
l_freq=7,
h_freq=45,
sphere=None,
verbose=None,
):
"""Detect muscle-related components.
Detection is based on :footcite:`DharmapraniEtAl2016` which uses
data from a subject who has been temporarily paralyzed
:footcite:`WhithamEtAl2007`. The criteria are threefold:
#. Positive log-log spectral slope from 7 to 45 Hz
#. Peripheral component power (farthest away from the vertex)
#. A single focal point measured by low spatial smoothness
The threshold is relative to the slope, focal point and smoothness
of a typical muscle-related ICA component. Note the high frequency
of the power spectral density slope was 75 Hz in the reference but
has been modified to 45 Hz as a default based on the criteria being
more accurate in practice.
If ``inst`` is supplied without sensor positions, only the first criterion
(slope) is applied.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
threshold : float | str
Value above which a component should be marked as muscle-related,
relative to a typical muscle component.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low frequency for muscle-related power.
h_freq : float
High frequency for muscle-related power.
%(sphere_topomap_auto)s
%(verbose)s
Returns
-------
muscle_idx : list of int
The indices of muscle-related components, sorted by score.
scores : np.ndarray of float, shape (``n_components_``) | list of array
The correlation scores.
See Also
--------
find_bads_ecg, find_bads_eog, find_bads_ref
Notes
-----
.. versionadded:: 1.1
"""
_validate_type(threshold, "numeric", "threshold")
slope_score, focus_score, smoothness_score = None, None, None
sources = self.get_sources(inst, start=start, stop=stop)
components = self.get_components()
# compute metric #1: slope of the log-log psd
spectrum = sources.compute_psd(fmin=l_freq, fmax=h_freq, picks="misc")
psds, freqs = spectrum.get_data(return_freqs=True)
if psds.ndim > 2:
psds = psds.mean(axis=0)
slopes = np.polyfit(np.log10(freqs), np.log10(psds).T, 1)[0]
# typical muscle slope is ~0.15, non-muscle components negative
# so logistic with shift -0.5 and slope 0.25 so -0.5 -> 0.5 and 0->1
slope_score = expit((slopes + 0.5) / 0.25)
# Need sensor positions for the criteria below, so return with only one score
# if no positions available
picks = _picks_to_idx(
inst.info, self.ch_names, "all", exclude=(), allow_empty=False
)
if not _check_ch_locs(inst.info, picks=picks):
warn(
"No sensor positions found. Scores for bad muscle components are only "
"based on the 'slope' criterion."
)
scores = slope_score
self.labels_["muscle"] = [
idx for idx, score in enumerate(scores) if score > threshold
]
return self.labels_["muscle"], scores
# compute metric #2: distance from the vertex of focus
components_norm = abs(components) / np.max(abs(components), axis=0)
# we need to retrieve the position from the channels that were used to
# fit the ICA. N.B: picks in _find_topomap_coords includes bad channels
# even if they are not provided explicitly.
pos = _find_topomap_coords(
inst.info, picks=self.ch_names, sphere=sphere, ignore_overlap=True
)
assert pos.shape[0] == components.shape[0] # pos for each sensor
pos -= pos.mean(axis=0) # center
dists = np.linalg.norm(pos, axis=1)
dists /= dists.max()
focus_dists = np.dot(dists, components_norm)
# focus distance is ~65% of max electrode distance with 10% slope
# (assumes typical head size)
focus_score = expit((focus_dists - 0.65) / 0.1)
# compute metric #3: smoothness
smoothnesses = np.zeros((components.shape[1],))
dists = distance.squareform(distance.pdist(pos))
dists = 1 - (dists / dists.max()) # invert
for idx, comp in enumerate(components.T):
comp_dists = distance.squareform(distance.pdist(comp[:, np.newaxis]))
comp_dists /= comp_dists.max()
smoothnesses[idx] = np.multiply(dists, comp_dists).sum()
# smoothnessness is around 150 for muscle and 450 otherwise
# so use reversed logistic centered at 300 with 100 slope
smoothness_score = 1 - expit((smoothnesses - 300) / 100)
# multiply all criteria that are present
scores = [
score
for score in [slope_score, focus_score, smoothness_score]
if score is not None
]
n_criteria = len(scores)
scores = np.prod(np.array(scores), axis=0)
# scale the threshold by the use of three metrics
self.labels_["muscle"] = [
idx for idx, score in enumerate(scores) if score > threshold**n_criteria
]
return self.labels_["muscle"], scores
@verbose
def find_bads_eog(
self,
inst,
ch_name=None,
threshold=3.0,
start=None,
stop=None,
l_freq=1,
h_freq=10,
reject_by_annotation=True,
measure="zscore",
verbose=None,
):
"""Detect EOG related components using correlation.
Detection is based on Pearson correlation between the
filtered data and the filtered EOG channel.
Thresholding is based on adaptive z-scoring. The above threshold
components will be masked and the z-score will be recomputed
until no supra-threshold component remains.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
ch_name : str
The name of the channel to use for EOG peak detection.
The argument is mandatory if the dataset contains no EOG
channels.
threshold : float | str
Value above which a feature is classified as outlier.
- If ``measure`` is ``'zscore'``, defines the threshold on the
z-score used in the iterative z-scoring method.
- If ``measure`` is ``'correlation'``, defines the absolute
threshold on the correlation between 0 and 1.
- If ``'auto'``, defaults to 3.0 if ``measure`` is ``'zscore'`` and
0.9 if ``measure`` is ``'correlation'``.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
%(reject_by_annotation_all)s
.. versionadded:: 0.14.0
%(measure)s
%(verbose)s
Returns
-------
eog_idx : list of int
The indices of EOG related components, sorted by score.
scores : np.ndarray of float, shape (``n_components_``) | list of array
The correlation scores.
See Also
--------
find_bads_ecg, find_bads_ref, find_bads_muscle
"""
_validate_type(threshold, (str, "numeric"), "threshold")
if isinstance(threshold, str):
_check_option("threshold", threshold, ("auto",), extra="when str")
_validate_type(measure, str, "measure")
_check_option("measure", measure, ("zscore", "correlation"))
eog_inds = _get_eog_channel_index(ch_name, inst)
eog_chs = [inst.ch_names[k] for k in eog_inds]
if threshold == "auto" and measure == "zscore":
threshold = 3.0
elif threshold == "auto" and measure == "correlation":
threshold = 0.9
self.labels_["eog"], scores = self._find_bads_ch(
inst,
eog_chs,
threshold=threshold,
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
prefix="eog",
reject_by_annotation=reject_by_annotation,
measure=measure,
)
return self.labels_["eog"], scores
@verbose
def apply(
self,
inst,
include=None,
exclude=None,
n_pca_components=None,
start=None,
stop=None,
*,
on_baseline="warn",
verbose=None,
):
"""Remove selected components from the signal.
Given the unmixing matrix, transform the data,
zero out all excluded components, and inverse-transform the data.
This procedure will reconstruct M/EEG signals from which
the dynamics described by the excluded components is subtracted.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
The data to be processed (i.e., cleaned). It will be modified
in-place.
include : array_like of int
The indices referring to columns in the ummixing matrix. The
components to be kept. If ``None`` (default), all components
will be included (minus those defined in ``ica.exclude``
and the ``exclude`` parameter, see below).
exclude : array_like of int
The indices referring to columns in the ummixing matrix. The
components to be zeroed out. If ``None`` (default) or an
empty list, only components from ``ica.exclude`` will be
excluded. Else, the union of ``exclude`` and ``ica.exclude``
will be excluded.
%(n_pca_components_apply)s
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
%(on_baseline_ica)s
%(verbose)s
Returns
-------
out : instance of Raw, Epochs or Evoked
The processed data.
Notes
-----
.. note:: Applying ICA may introduce a DC shift. If you pass
baseline-corrected `~mne.Epochs` or `~mne.Evoked` data,
the baseline period of the cleaned data may not be of
zero mean anymore. If you require baseline-corrected
data, apply baseline correction again after cleaning
via ICA. A warning will be emitted to remind you of this
fact if you pass baseline-corrected data.
.. versionchanged:: 0.23
Warn if instance was baseline-corrected.
"""
_validate_type(
inst, (BaseRaw, BaseEpochs, Evoked), "inst", "Raw, Epochs, or Evoked"
)
kwargs = dict(
include=include, exclude=exclude, n_pca_components=n_pca_components
)
if isinstance(inst, BaseRaw):
kind, meth = "Raw", self._apply_raw
kwargs.update(raw=inst, start=start, stop=stop)
elif isinstance(inst, BaseEpochs):
kind, meth = "Epochs", self._apply_epochs
kwargs.update(epochs=inst)
else: # isinstance(inst, Evoked):
kind, meth = "Evoked", self._apply_evoked
kwargs.update(evoked=inst)
_check_compensation_grade(
self.info, inst.info, "ICA", kind, ch_names=self.ch_names
)
_check_on_missing(on_baseline, "on_baseline", extras=("reapply",))
reapply_baseline = False
if isinstance(inst, BaseEpochs | Evoked):
if getattr(inst, "baseline", None) is not None:
if on_baseline == "reapply":
reapply_baseline = True
else:
msg = (
"The data you passed to ICA.apply() was "
"baseline-corrected. Please note that ICA can "
"introduce DC shifts, therefore you may wish to "
"consider baseline-correcting the cleaned data again."
)
_on_missing(on_baseline, msg, "on_baseline")
logger.info(f"Applying ICA to {kind} instance")
out = meth(**kwargs)
if reapply_baseline:
out.apply_baseline(inst.baseline)
return out
def _check_exclude(self, exclude):
if exclude is None:
return list(set(self.exclude))
else:
# Allow both self.exclude and exclude to be array-like:
return list(set(self.exclude).union(set(exclude)))
def _apply_raw(self, raw, include, exclude, n_pca_components, start, stop):
"""Aux method."""
_check_preload(raw, "ica.apply")
start, stop = _check_start_stop(raw, start, stop)
picks = pick_types(
raw.info, meg=False, include=self.ch_names, exclude="bads", ref_meg=False
)
data = raw[picks, start:stop][0]
data = self._pick_sources(data, include, exclude, n_pca_components)
raw[picks, start:stop] = data
return raw
def _apply_epochs(self, epochs, include, exclude, n_pca_components):
"""Aux method."""
_check_preload(epochs, "ica.apply")
picks = pick_types(
epochs.info, meg=False, ref_meg=False, include=self.ch_names, exclude="bads"
)
# special case where epochs come picked but fit was 'unpicked'.
if len(picks) != len(self.ch_names):
raise RuntimeError(
f"Epochs don't match fitted data: {len(self.ch_names)} channels "
f"fitted but {len(picks)} channels supplied. \nPlease "
"provide Epochs compatible with 'ica.ch_names'."
)
data = np.hstack(epochs.get_data(picks))
data = self._pick_sources(data, include, exclude, n_pca_components)
# restore epochs, channels, tsl order
epochs._data[:, picks] = np.array(np.split(data, len(epochs.events), 1))
epochs.preload = True
return epochs
def _apply_evoked(self, evoked, include, exclude, n_pca_components):
"""Aux method."""
picks = pick_types(
evoked.info, meg=False, ref_meg=False, include=self.ch_names, exclude="bads"
)
# special case where evoked come picked but fit was 'unpicked'.
if len(picks) != len(self.ch_names):
raise RuntimeError(
f"Evoked does not match fitted data: {len(self.ch_names)} channels "
f"fitted but {len(picks)} channels supplied. \nPlease "
"provide an Evoked object that's compatible with ica.ch_names."
)
data = evoked.data[picks]
data = self._pick_sources(data, include, exclude, n_pca_components)
# restore evoked
evoked.data[picks] = data
return evoked
def _pick_sources(self, data, include, exclude, n_pca_components):
"""Aux function."""
if n_pca_components is None:
n_pca_components = self.n_pca_components
data = self._pre_whiten(data)
exclude = self._check_exclude(exclude)
_n_pca_comp = self._check_n_pca_components(n_pca_components)
n_ch, _ = data.shape
max_pca_components = self.pca_components_.shape[0]
if not self.n_components_ <= _n_pca_comp <= max_pca_components:
raise ValueError(
f"n_pca_components ({_n_pca_comp}) must be >= "
f"n_components_ ({self.n_components_}) and <= "
"the total number of PCA components "
f"({max_pca_components})."
)
logger.info(
f" Transforming to ICA space ({self.n_components_} "
f"component{_pl(self.n_components_)})"
)
# Apply first PCA
if self.pca_mean_ is not None:
data -= self.pca_mean_[:, None]
sel_keep = np.arange(self.n_components_)
if include not in (None, []):
sel_keep = np.unique(include)
elif exclude not in (None, []):
sel_keep = np.setdiff1d(np.arange(self.n_components_), exclude)
n_zero = self.n_components_ - len(sel_keep)
logger.info(f" Zeroing out {n_zero} ICA component{_pl(n_zero)}")
# Mixing and unmixing should both be shape (self.n_components_, 2),
# and we need to put these into the upper left part of larger mixing
# and unmixing matrices of shape (n_ch, _n_pca_comp)
pca_components = self.pca_components_[:_n_pca_comp]
assert pca_components.shape == (_n_pca_comp, n_ch)
assert (
self.unmixing_matrix_.shape
== self.mixing_matrix_.shape
== (self.n_components_,) * 2
)
unmixing = np.eye(_n_pca_comp)
unmixing[: self.n_components_, : self.n_components_] = self.unmixing_matrix_
unmixing = np.dot(unmixing, pca_components)
logger.info(
f" Projecting back using {_n_pca_comp} PCA component{_pl(_n_pca_comp)}"
)
mixing = np.eye(_n_pca_comp)
mixing[: self.n_components_, : self.n_components_] = self.mixing_matrix_
mixing = pca_components.T @ mixing
assert mixing.shape == unmixing.shape[::-1] == (n_ch, _n_pca_comp)
# keep requested components plus residuals (if any)
sel_keep = np.concatenate(
(sel_keep, np.arange(self.n_components_, _n_pca_comp))
)
proj_mat = np.dot(mixing[:, sel_keep], unmixing[sel_keep, :])
data = np.dot(proj_mat, data)
assert proj_mat.shape == (n_ch,) * 2
if self.pca_mean_ is not None:
data += self.pca_mean_[:, None]
# restore scaling
if self.noise_cov is None: # revert standardization
data *= self.pre_whitener_
else:
data = np.linalg.pinv(self.pre_whitener_, rcond=1e-14) @ data
return data
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Store ICA solution into a fiff file.
Parameters
----------
fname : path-like
The absolute path of the file name to save the ICA solution into.
The file name should end with ``-ica.fif`` or ``-ica.fif.gz``.
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
Returns
-------
ica : instance of ICA
The object.
See Also
--------
read_ica
"""
if self.current_fit == "unfitted":
raise RuntimeError("No fit available. Please first fit ICA")
check_fname(
fname, "ICA", ("-ica.fif", "-ica.fif.gz", "_ica.fif", "_ica.fif.gz")
)
fname = _check_fname(fname, overwrite=overwrite)
logger.info(f"Writing ICA solution to {fname}...")
with start_and_end_file(fname) as fid:
_write_ica(fid, self)
return self
def copy(self):
"""Copy the ICA object.
Returns
-------
ica : instance of ICA
The copied object.
"""
return deepcopy(self)
@copy_function_doc_to_method_doc(plot_ica_components)
def plot_components(
self,
picks=None,
ch_type=None,
*,
inst=None,
plot_std=True,
reject="auto",
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap="RdBu_r",
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.2f",
axes=None,
title=None,
nrows="auto",
ncols="auto",
show=True,
image_args=None,
psd_args=None,
verbose=None,
):
return plot_ica_components(
self,
picks=picks,
ch_type=ch_type,
inst=inst,
plot_std=plot_std,
reject=reject,
sensors=sensors,
show_names=show_names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
axes=axes,
title=title,
nrows=nrows,
ncols=ncols,
show=show,
image_args=image_args,
psd_args=psd_args,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_ica_properties)
def plot_properties(
self,
inst,
picks=None,
axes=None,
dB=True,
plot_std=True,
log_scale=False,
topomap_args=None,
image_args=None,
psd_args=None,
figsize=None,
show=True,
reject="auto",
reject_by_annotation=True,
*,
estimate="power",
verbose=None,
):
return plot_ica_properties(
self,
inst,
picks=picks,
axes=axes,
dB=dB,
plot_std=plot_std,
log_scale=log_scale,
topomap_args=topomap_args,
image_args=image_args,
psd_args=psd_args,
figsize=figsize,
show=show,
reject=reject,
reject_by_annotation=reject_by_annotation,
estimate=estimate,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_ica_sources)
def plot_sources(
self,
inst,
picks=None,
start=None,
stop=None,
title=None,
show=True,
block=False,
show_first_samp=False,
show_scrollbars=True,
time_format="float",
precompute=None,
use_opengl=None,
*,
psd_args=None,
theme=None,
overview_mode=None,
splash=True,
):
return plot_ica_sources(
self,
inst=inst,
picks=picks,
start=start,
stop=stop,
title=title,
show=show,
block=block,
psd_args=psd_args,
show_first_samp=show_first_samp,
show_scrollbars=show_scrollbars,
time_format=time_format,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
splash=splash,
)
@copy_function_doc_to_method_doc(plot_ica_scores)
def plot_scores(
self,
scores,
exclude=None,
labels=None,
axhline=None,
title="ICA component scores",
figsize=None,
n_cols=None,
show=True,
):
return plot_ica_scores(
ica=self,
scores=scores,
exclude=exclude,
labels=labels,
axhline=axhline,
title=title,
figsize=figsize,
n_cols=n_cols,
show=show,
)
@copy_function_doc_to_method_doc(plot_ica_overlay)
def plot_overlay(
self,
inst,
exclude=None,
picks=None,
start=None,
stop=None,
title=None,
show=True,
n_pca_components=None,
*,
on_baseline="warn",
verbose=None,
):
return plot_ica_overlay(
self,
inst=inst,
exclude=exclude,
picks=picks,
start=start,
stop=stop,
title=title,
show=show,
n_pca_components=n_pca_components,
on_baseline=on_baseline,
verbose=verbose,
)
@verbose
def _check_n_pca_components(self, _n_pca_comp, verbose=None):
"""Aux function."""
if isinstance(_n_pca_comp, float):
n, ev = _exp_var_ncomp(self.pca_explained_variance_, _n_pca_comp)
logger.info(
f" Selected {n} PCA components by explained "
f"variance ({100 * ev}{100 * _n_pca_comp}%)"
)
_n_pca_comp = n
elif _n_pca_comp is None:
_n_pca_comp = self._max_pca_components
if _n_pca_comp is None:
_n_pca_comp = self.pca_components_.shape[0]
elif _n_pca_comp < self.n_components_:
_n_pca_comp = self.n_components_
return _n_pca_comp
def _exp_var_ncomp(var, n):
cvar = np.asarray(var, dtype=np.float64)
cvar = cvar.cumsum()
cvar /= cvar[-1]
# We allow 1., which would give us N+1
n = min((cvar <= n).sum() + 1, len(cvar))
return n, cvar[n - 1]
def _check_start_stop(raw, start, stop):
"""Aux function."""
out = list()
for st, none_ in ((start, 0), (stop, raw.n_times)):
if st is None:
out.append(none_)
else:
try:
out.append(_ensure_int(st))
except TypeError: # not int-like
out.append(raw.time_as_index(st)[0])
return out
@verbose
def ica_find_ecg_events(
raw,
ecg_source,
event_id=999,
tstart=0.0,
l_freq=5,
h_freq=35,
qrs_threshold="auto",
verbose=None,
):
"""Find ECG peaks from one selected ICA source.
Parameters
----------
raw : instance of Raw
Raw object to draw sources from.
ecg_source : ndarray
ICA source resembling ECG to find peaks from.
event_id : int
The index to assign to found events.
tstart : float
Start detection after tstart seconds. Useful when beginning
of run is noisy.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
qrs_threshold : float | str
Between 0 and 1. qrs detection threshold. Can also be "auto" to
automatically choose the threshold that generates a reasonable
number of heartbeats (40-160 beats / min).
%(verbose)s
Returns
-------
ecg_events : array
Events.
ch_ECG : string
Name of channel used.
average_pulse : float.
Estimated average pulse.
"""
logger.info("Using ICA source to identify heart beats")
# detecting QRS and generating event file
ecg_events = qrs_detector(
raw.info["sfreq"],
ecg_source.ravel(),
tstart=tstart,
thresh_value=qrs_threshold,
l_freq=l_freq,
h_freq=h_freq,
)
n_events = len(ecg_events)
ecg_events = np.c_[
ecg_events + raw.first_samp, np.zeros(n_events), event_id * np.ones(n_events)
]
return ecg_events
@verbose
def ica_find_eog_events(
raw, eog_source=None, event_id=998, l_freq=1, h_freq=10, verbose=None
):
"""Locate EOG artifacts from one selected ICA source.
Parameters
----------
raw : instance of Raw
The raw data.
eog_source : ndarray
ICA source resembling EOG to find peaks from.
event_id : int
The index to assign to found events.
l_freq : float
Low cut-off frequency in Hz.
h_freq : float
High cut-off frequency in Hz.
%(verbose)s
Returns
-------
eog_events : array
Events.
"""
eog_events = _find_eog_events(
eog_source[np.newaxis],
ch_names=None,
event_id=event_id,
l_freq=l_freq,
h_freq=h_freq,
sampling_rate=raw.info["sfreq"],
first_samp=raw.first_samp,
)
return eog_events
def _get_target_ch(container, target):
"""Aux function."""
# auto target selection
picks = pick_channels(container.ch_names, include=[target])
ref_picks = pick_types(container.info, meg=False, eeg=False, ref_meg=True)
if len(ref_picks) > 0:
picks = list(set(picks) - set(ref_picks))
if len(picks) == 0:
raise ValueError(f"{target} not in channel list ({container.ch_names})")
return picks
def _find_sources(sources, target, score_func):
"""Aux function."""
if isinstance(score_func, str):
score_func = get_score_funcs().get(score_func, score_func)
if not callable(score_func):
raise ValueError(f"{score_func} is not a valid score_func.")
scores = (
score_func(sources, target) if target is not None else score_func(sources, 1)
)
return scores
def _ica_explained_variance(ica, inst, normalize=False):
"""Check variance accounted for by each component in supplied data.
This function is only used for sorting the components.
Parameters
----------
ica : ICA
Instance of `mne.preprocessing.ICA`.
inst : Raw | Epochs | Evoked
Data to explain with ICA. Instance of Raw, Epochs or Evoked.
normalize : bool
Whether to normalize the variance.
Returns
-------
var : array
Variance explained by each component.
"""
# check if ica is ICA and whether inst is Raw or Epochs
if not isinstance(ica, ICA):
raise TypeError("first argument must be an instance of ICA.")
if not isinstance(inst, BaseRaw | BaseEpochs | Evoked):
raise TypeError(
"second argument must an instance of either Raw, Epochs or Evoked."
)
source_data = _get_inst_data(ica.get_sources(inst))
# if epochs - reshape to channels x timesamples
if isinstance(inst, BaseEpochs):
n_epochs, n_chan, n_samp = source_data.shape
source_data = source_data.transpose(1, 0, 2).reshape(
(n_chan, n_epochs * n_samp)
)
n_chan, n_samp = source_data.shape
var = (
np.sum(ica.mixing_matrix_**2, axis=0)
* np.sum(source_data**2, axis=1)
/ (n_chan * n_samp - 1)
)
if normalize:
var /= var.sum()
return var
def _sort_components(ica, order, copy=True):
"""Change the order of components in ica solution."""
assert ica.n_components_ == len(order)
if copy:
ica = ica.copy()
# reorder components
ica.mixing_matrix_ = ica.mixing_matrix_[:, order]
ica.unmixing_matrix_ = ica.unmixing_matrix_[order, :]
# reorder labels, excludes etc.
if isinstance(order, np.ndarray):
order = list(order)
if ica.exclude:
ica.exclude = [order.index(ic) for ic in ica.exclude]
for k in ica.labels_.keys():
ica.labels_[k] = [order.index(ic) for ic in ica.labels_[k]]
return ica
def _serialize(dict_, outer_sep=";", inner_sep=":"):
"""Aux function."""
s = []
for key, value in dict_.items():
if callable(value):
value = value.__name__
elif isinstance(value, Integral):
value = int(value)
elif isinstance(value, dict):
# py35 json does not support numpy int64
for subkey, subvalue in value.items():
if isinstance(subvalue, list):
if len(subvalue) > 0:
if isinstance(subvalue[0], int | np.integer):
value[subkey] = [int(i) for i in subvalue]
for cls in (np.random.RandomState, Covariance):
if isinstance(value, cls):
value = cls.__name__
s.append(key + inner_sep + json.dumps(value))
return outer_sep.join(s)
def _deserialize(str_, outer_sep=";", inner_sep=":"):
"""Aux Function."""
out = {}
for mapping in str_.split(outer_sep):
k, v = mapping.split(inner_sep, 1)
out[k] = json.loads(v)
return out
def _write_ica(fid, ica):
"""Write an ICA object.
Parameters
----------
fid: file
The file descriptor
ica:
The instance of ICA to write
"""
ica_init = dict(
noise_cov=ica.noise_cov,
n_components=ica.n_components,
n_pca_components=ica.n_pca_components,
max_pca_components=ica._max_pca_components,
current_fit=ica.current_fit,
allow_ref_meg=ica.allow_ref_meg,
)
if ica.info is not None:
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if ica.info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, ica.info["meas_id"])
# Write measurement info
write_meas_info(fid, ica.info)
end_block(fid, FIFF.FIFFB_MEAS)
start_block(fid, FIFF.FIFFB_MNE_ICA)
# ICA interface params
write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS, _serialize(ica_init))
# Channel names
if ica.ch_names is not None:
write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, ica.ch_names)
# samples on fit
n_samples = getattr(ica, "n_samples_", None)
ica_misc = {
"n_samples_": (None if n_samples is None else int(n_samples)),
"labels_": getattr(ica, "labels_", None),
"method": getattr(ica, "method", None),
"n_iter_": getattr(ica, "n_iter_", None),
"fit_params": getattr(ica, "fit_params", None),
}
# ICA misc params
write_string(fid, FIFF.FIFF_MNE_ICA_MISC_PARAMS, _serialize(ica_misc))
# Whitener
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_WHITENER, ica.pre_whitener_)
# PCA components_
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_COMPONENTS, ica.pca_components_)
# PCA mean_
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_MEAN, ica.pca_mean_)
# PCA explained_variance_
write_double_matrix(
fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR, ica.pca_explained_variance_
)
# ICA unmixing
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_MATRIX, ica.unmixing_matrix_)
# Write bad components
write_int(fid, FIFF.FIFF_MNE_ICA_BADS, list(ica.exclude))
# Write reject_
if ica.reject_ is not None:
write_string(
fid, FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT, json.dumps(dict(reject=ica.reject_))
)
# Done!
end_block(fid, FIFF.FIFFB_MNE_ICA)
@verbose
def read_ica(fname, verbose=None):
"""Restore ICA solution from fif file.
Parameters
----------
fname : path-like
Absolute path to fif file containing ICA matrices.
The file name should end with -ica.fif or -ica.fif.gz.
%(verbose)s
Returns
-------
ica : instance of ICA
The ICA estimator.
"""
check_fname(fname, "ICA", ("-ica.fif", "-ica.fif.gz", "_ica.fif", "_ica.fif.gz"))
fname = _check_fname(fname, overwrite="read", must_exist=True)
logger.info(f"Reading {fname} ...")
fid, tree, _ = fiff_open(fname)
try:
# we used to store bads that weren't part of the info...
info, _ = read_meas_info(fid, tree, clean_bads=True)
except ValueError:
logger.info(
"Could not find the measurement info. \n"
"Functionality requiring the info won't be"
" available."
)
info = None
ica_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ICA)
if len(ica_data) == 0:
ica_data = dir_tree_find(tree, 123) # Constant 123 Used before v 0.11
if len(ica_data) == 0:
fid.close()
raise ValueError("Could not find ICA data")
my_ica_data = ica_data[0]
ica_reject = None
for d in my_ica_data["directory"]:
kind = d.kind
pos = d.pos
if kind == FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS:
tag = read_tag(fid, pos)
ica_init = tag.data
elif kind == FIFF.FIFF_MNE_ROW_NAMES:
tag = read_tag(fid, pos)
ch_names = tag.data
elif kind == FIFF.FIFF_MNE_ICA_WHITENER:
tag = read_tag(fid, pos)
pre_whitener = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_COMPONENTS:
tag = read_tag(fid, pos)
pca_components = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR:
tag = read_tag(fid, pos)
pca_explained_variance = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_MEAN:
tag = read_tag(fid, pos)
pca_mean = tag.data
elif kind == FIFF.FIFF_MNE_ICA_MATRIX:
tag = read_tag(fid, pos)
unmixing_matrix = tag.data
elif kind == FIFF.FIFF_MNE_ICA_BADS:
tag = read_tag(fid, pos)
exclude = tag.data
elif kind == FIFF.FIFF_MNE_ICA_MISC_PARAMS:
tag = read_tag(fid, pos)
ica_misc = tag.data
elif kind == FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT:
tag = read_tag(fid, pos)
ica_reject = json.loads(tag.data)["reject"]
fid.close()
ica_init, ica_misc = (_deserialize(k) for k in (ica_init, ica_misc))
n_pca_components = ica_init.pop("n_pca_components")
current_fit = ica_init.pop("current_fit")
max_pca_components = ica_init.pop("max_pca_components")
method = ica_misc.get("method", "fastica")
if method in _KNOWN_ICA_METHODS:
ica_init["method"] = method
if ica_init["noise_cov"] == Covariance.__name__:
logger.info("Reading whitener drawn from noise covariance ...")
logger.info("Now restoring ICA solution ...")
# make sure dtypes are np.float64 to satisfy fast_dot
def f(x):
return x.astype(np.float64)
ica_init = {
k: v for k, v in ica_init.items() if k in signature(ICA.__init__).parameters
}
ica = ICA(**ica_init)
ica.current_fit = current_fit
ica.ch_names = ch_names.split(":")
if n_pca_components is not None and not isinstance(n_pca_components, int_like):
n_pca_components = np.float64(n_pca_components)
ica.n_pca_components = n_pca_components
ica.pre_whitener_ = f(pre_whitener)
ica.pca_mean_ = f(pca_mean)
ica.pca_components_ = f(pca_components)
ica.n_components_ = unmixing_matrix.shape[0]
ica._max_pca_components = max_pca_components
ica._update_ica_names()
ica.pca_explained_variance_ = f(pca_explained_variance)
ica.unmixing_matrix_ = f(unmixing_matrix)
ica._update_mixing_matrix()
ica.exclude = [] if exclude is None else list(exclude)
ica.info = info
if "n_samples_" in ica_misc:
ica.n_samples_ = ica_misc["n_samples_"]
if "labels_" in ica_misc:
labels_ = ica_misc["labels_"]
if labels_ is not None:
ica.labels_ = labels_
if "method" in ica_misc:
ica.method = ica_misc["method"]
if "n_iter_" in ica_misc:
ica.n_iter_ = ica_misc["n_iter_"]
if "fit_params" in ica_misc:
ica.fit_params = ica_misc["fit_params"]
ica.reject_ = ica_reject
logger.info("Ready.")
return ica
_ica_node = namedtuple("Node", "name target score_func criterion")
@verbose
def _band_pass_filter(inst, sources, target, l_freq, h_freq, verbose=None):
"""Optionally band-pass filter the data."""
if l_freq is not None and h_freq is not None:
logger.info("... filtering ICA sources")
# use FIR here, steeper is better
kw = dict(
phase="zero-double",
filter_length="10s",
fir_window="hann",
l_trans_bandwidth=0.5,
h_trans_bandwidth=0.5,
fir_design="firwin2",
)
sources = filter_data(sources, inst.info["sfreq"], l_freq, h_freq, **kw)
logger.info("... filtering target")
target = filter_data(target, inst.info["sfreq"], l_freq, h_freq, **kw)
elif l_freq is not None or h_freq is not None:
raise ValueError("Must specify both pass bands")
return sources, target
# #############################################################################
# CORRMAP
def _find_max_corrs(all_maps, target, threshold):
"""Compute correlations between template and target components."""
# Following Fig.2 from:
# https://www.sciencedirect.com/science/article/abs/pii/S1388245709002338
# > ... inverse weights (i.e., IC maps) from a selected template IC are
# > correlated with all ICs from all datasets ...
all_corrs = [compute_corr(target, subj_maps.T) for subj_maps in all_maps]
abs_corrs = [np.abs(a) for a in all_corrs]
corr_polarities = [np.sign(a) for a in all_corrs]
del all_corrs
# > selection of X ICs from each dataset with highest absolute
# > correlation >= TH
#
# subj_idxs is a list of indices for each subject that exceeded the threshold:
if threshold <= 1:
subj_idxs = [list(np.nonzero(s_corr > threshold)[0]) for s_corr in abs_corrs]
else:
subj_idxs = [
list(_find_outliers(s_corr, threshold=threshold)) for s_corr in abs_corrs
]
# > The mean correlation of a resulting cluster is then computed via
# > Fisher’s z transform, to account for the non-normal distribution of
# > correlation values.
#
# Here we just use the median rather than the (transformed-back) mean of
# the (Fisher z-transformed) correlations:
am = np.concatenate(
[abs_corr[subj_idx] for abs_corr, subj_idx in zip(abs_corrs, subj_idxs)]
)
if len(am) == 0:
return [], 0, 0, []
median_corr_with_target = np.median(am)
# > Next, an average cluster map is calculated, after inversion of those
# > ICs showing a negative correlation (sign ambiguity problem) and root
# > mean square (RMS) normalization of each individual IC.
#
# Which is this (rms=Frobenius norm=np.linalg.norm):
newtarget = sum(
subj_maps[idx] * (pols[idx] / np.linalg.norm(subj_maps[idx]))
for subj_maps, pols, subj_idx in zip(all_maps, corr_polarities, subj_idxs)
for idx in subj_idx
)
newtarget /= len(am)
# And we also compute the similarity between this new map and our original
# target map
sim_i_o = np.abs(np.corrcoef(target, newtarget)[1, 0])
return newtarget, median_corr_with_target, sim_i_o, subj_idxs
@verbose
def corrmap(
icas,
template,
threshold="auto",
label=None,
ch_type="eeg",
*,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
cmap=None,
plot=True,
show=True,
verbose=None,
):
"""Find similar Independent Components across subjects by map similarity.
Corrmap :footcite:p:`CamposViolaEtAl2009` identifies the best group
match to a supplied template. Typically, feed it a list of fitted ICAs and
a template IC, for example, the blink for the first subject, to identify
specific ICs across subjects.
The specific procedure consists of two iterations. In a first step, the
maps best correlating with the template are identified. In the next step,
the analysis is repeated with the mean of the maps identified in the first
stage.
Run with ``plot`` and ``show`` set to ``True`` and ``label=False`` to find
good parameters. Then, run with labelling enabled to apply the
labelling in the IC objects. (Running with both ``plot`` and ``labels``
off does nothing.)
Outputs a list of fitted ICAs with the indices of the marked ICs in a
specified field.
The original Corrmap website: www.debener.de/corrmap/corrmapplugin1.html
Parameters
----------
icas : list of mne.preprocessing.ICA
A list of fitted ICA objects.
template : tuple | np.ndarray, shape (n_components,)
Either a tuple with two elements (int, int) representing the list
indices of the set from which the template should be chosen, and the
template. E.g., if template=(1, 0), the first IC of the 2nd ICA object
is used.
Or a numpy array whose size corresponds to each IC map from the
supplied maps, in which case this map is chosen as the template.
threshold : "auto" | list of float | float
Correlation threshold for identifying ICs
If "auto", search for the best map by trying all correlations between
0.6 and 0.95. In the original proposal, lower values are considered,
but this is not yet implemented.
If list of floats, search for the best map in the specified range of
correlation strengths. As correlation values, must be between 0 and 1
If float > 0, select ICs correlating better than this.
If float > 1, use z-scoring to identify ICs within subjects (not in
original Corrmap)
Defaults to "auto".
label : None | str
If not None, categorised ICs are stored in a dictionary ``labels_``
under the given name. Preexisting entries will be appended to
(excluding repeats), not overwritten. If None, a dry run is performed
and the supplied ICs are not changed.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
The channel type to plot. Defaults to 'eeg'.
%(sensors_topomap)s
%(show_names_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
.. versionadded:: 1.2
%(extrapolate_topomap)s
.. versionadded:: 1.2
%(border_topomap)s
.. versionadded:: 1.2
%(cmap_topomap_simple)s
plot : bool
Should constructed template and selected maps be plotted? Defaults
to True.
%(show)s
%(verbose)s
Returns
-------
template_fig : Figure
Figure showing the template.
labelled_ics : Figure
Figure showing the labelled ICs in all ICA decompositions.
References
----------
.. footbibliography::
"""
if not isinstance(plot, bool):
raise ValueError("`plot` must be of type `bool`")
same_chans = _check_all_same_channel_names(icas)
if same_chans is False:
raise ValueError(
"Not all ICA instances have the same channel names. "
"Corrmap requires all instances to have the same "
"montage. Consider interpolating bad channels before "
"running ICA."
)
threshold_extra = ""
if threshold == "auto":
threshold = np.arange(60, 95, dtype=np.float64) / 100.0
threshold_extra = ' ("auto")'
all_maps = [ica.get_components().T for ica in icas]
# check if template is an index to one IC in one ICA object, or an array
if len(template) == 2:
target = all_maps[template[0]][template[1]]
is_subject = True
elif template.ndim == 1 and len(template) == all_maps[0].shape[1]:
target = template
is_subject = False
else:
raise ValueError(
"`template` must be a length-2 tuple or an array the size of the ICA maps."
)
template_fig, labelled_ics = None, None
if plot is True:
if is_subject: # plotting from an ICA object
ttl = f"Template from subj. {template[0]}"
template_fig = icas[template[0]].plot_components(
picks=template[1],
ch_type=ch_type,
title=ttl,
outlines=outlines,
cmap=cmap,
contours=contours,
show=show,
sphere=sphere,
)
else: # plotting an array
template_fig = _plot_corrmap(
[template],
[0],
[0],
ch_type,
icas[0].copy(),
"Template",
outlines=outlines,
cmap=cmap,
contours=contours,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
show=show,
template=True,
sphere=sphere,
)
template_fig.canvas.draw()
# first run: use user-selected map
threshold = np.atleast_1d(np.array(threshold, float)).ravel()
threshold_err = (
"No component detected using when z-scoring "
f"threshold{threshold_extra} {threshold}, consider using a more lenient "
"threshold"
)
if len(all_maps) == 0:
raise RuntimeError(threshold_err)
paths = [_find_max_corrs(all_maps, target, t) for t in threshold]
# find iteration with highest avg correlation with target
new_target, _, _, _ = paths[np.argmax([path[2] for path in paths])]
# second run: use output from first run
if len(all_maps) == 0 or len(new_target) == 0:
raise RuntimeError(threshold_err)
paths = [_find_max_corrs(all_maps, new_target, t) for t in threshold]
del new_target
# find iteration with highest avg correlation with target
_, median_corr, _, max_corrs = paths[np.argmax([path[1] for path in paths])]
allmaps, indices, subjs, nones = (list() for _ in range(4))
logger.info(f"Median correlation with constructed map: {median_corr:0.3f}")
del median_corr
if plot is True:
logger.info("Displaying selected ICs per subject.")
for ii, (ica, max_corr) in enumerate(zip(icas, max_corrs)):
if len(max_corr) > 0:
if isinstance(max_corr[0], np.ndarray):
max_corr = max_corr[0]
if label is not None:
ica.labels_[label] = list(
set(list(max_corr) + ica.labels_.get(label, list()))
)
if plot is True:
allmaps.extend(ica.get_components()[:, max_corr].T)
subjs.extend([ii] * len(max_corr))
indices.extend(max_corr)
else:
if (label is not None) and (label not in ica.labels_):
ica.labels_[label] = list()
nones.append(ii)
if len(nones) == 0:
logger.info("At least 1 IC detected for each subject.")
else:
logger.info(
f"No maps selected for subject{_pl(nones)} {nones}, "
"consider a more liberal threshold."
)
if plot is True:
labelled_ics = _plot_corrmap(
allmaps,
subjs,
indices,
ch_type,
ica,
label,
outlines=outlines,
cmap=cmap,
sensors=sensors,
contours=contours,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
show=show,
show_names=show_names,
)
return template_fig, labelled_ics
else:
return None
@verbose
def read_ica_eeglab(fname, *, montage_units="auto", verbose=None):
"""Load ICA information saved in an EEGLAB .set file.
Parameters
----------
fname : path-like
Complete path to a ``.set`` EEGLAB file that contains an ICA object.
%(montage_units)s
.. versionadded:: 1.6
%(verbose)s
Returns
-------
ica : instance of ICA
An ICA object based on the information contained in the input file.
"""
eeg = _check_load_mat(fname, None)
info, eeg_montage, _ = _get_info(eeg, eog=(), montage_units=montage_units)
info.set_montage(eeg_montage)
pick_info(info, np.round(eeg["icachansind"]).astype(int) - 1, copy=False)
rank = eeg.icasphere.shape[0]
n_components = eeg.icaweights.shape[0]
ica = ICA(method="imported_eeglab", n_components=n_components)
ica.current_fit = "eeglab"
ica.ch_names = info["ch_names"]
ica.n_pca_components = None
ica.n_components_ = n_components
n_ch = len(ica.ch_names)
assert len(eeg.icachansind) == n_ch
ica.pre_whitener_ = np.ones((n_ch, 1))
ica.pca_mean_ = np.zeros(n_ch)
assert eeg.icasphere.shape[1] == n_ch
assert eeg.icaweights.shape == (n_components, rank)
# When PCA reduction is used in EEGLAB, runica returns
# weights= weights*sphere*eigenvectors(:,1:ncomps)';
# sphere = eye(urchans). When PCA reduction is not used, we have:
#
# eeg.icawinv == pinv(eeg.icaweights @ eeg.icasphere)
#
# So in either case, we can use SVD to get our square whitened
# weights matrix (u * s) and our PCA vectors (v) back:
use = eeg.icaweights @ eeg.icasphere
use_check = pinv(eeg.icawinv)
if not np.allclose(use, use_check, rtol=1e-6):
warn(
"Mismatch between icawinv and icaweights @ icasphere from EEGLAB "
"possibly due to ICA component removal, assuming icawinv is "
"correct"
)
use = use_check
u, s, v = _safe_svd(use, full_matrices=False)
ica.unmixing_matrix_ = u * s
ica.pca_components_ = v
ica.pca_explained_variance_ = s * s
ica.info = info
ica._update_mixing_matrix()
ica._update_ica_names()
ica.reject_ = None
return ica