#
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from __future__ import annotations # only needed for Python ≤ 3.9
import json
import math
import warnings
from collections import namedtuple
from collections.abc import Sequence
from copy import deepcopy
from dataclasses import dataclass, is_dataclass
from inspect import Parameter, isfunction, signature
from numbers import Integral
from time import time
from typing import Literal
import numpy as np
from scipy import stats
from scipy.spatial import distance
from scipy.special import expit
from .._fiff.constants import FIFF
from .._fiff.meas_info import ContainsMixin, read_meas_info, write_meas_info
from .._fiff.open import fiff_open
from .._fiff.pick import (
_DATA_CH_TYPES_SPLIT,
_contains_ch_type,
_picks_by_type,
_picks_to_idx,
pick_channels,
pick_channels_regexp,
pick_info,
pick_types,
)
from .._fiff.proj import make_projector
from .._fiff.tag import read_tag
from .._fiff.tree import dir_tree_find
from .._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_double_matrix,
write_id,
write_int,
write_name_list,
write_string,
)
from ..channels.layout import _find_topomap_coords
from ..cov import Covariance, compute_whitener
from ..defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..filter import filter_data
from ..fixes import _safe_svd
from ..html_templates import _get_html_template
from ..io import BaseRaw
from ..io.eeglab.eeglab import _check_load_mat, _get_info
from ..utils import (
_PCA,
Bunch,
_check_all_same_channel_names,
_check_ch_locs,
_check_compensation_grade,
_check_fname,
_check_on_missing,
_check_option,
_check_preload,
_ensure_int,
_get_inst_data,
_on_missing,
_pl,
_reject_data_segments,
_require_version,
_validate_type,
check_fname,
check_random_state,
compute_corr,
copy_function_doc_to_method_doc,
fill_doc,
int_like,
logger,
pinv,
repr_html,
verbose,
warn,
)
from ..viz import (
plot_ica_components,
plot_ica_overlay,
plot_ica_scores,
plot_ica_sources,
)
from ..viz.ica import plot_ica_properties
from ..viz.topomap import _plot_corrmap
from .bads import _find_outliers
from .ctps_ import ctps
from .ecg import _get_ecg_channel_index, _make_ecg, create_ecg_epochs, qrs_detector
from .eog import _find_eog_events, _get_eog_channel_index
from .infomax_ import infomax
__all__ = (
"ICA",
"ica_find_ecg_events",
"ica_find_eog_events",
"get_score_funcs",
"read_ica",
"read_ica_eeglab",
)
def _make_xy_sfunc(func, ndim_output=False):
"""Aux function."""
def sfunc(x, y, ndim_output=ndim_output):
out = [func(a, y.ravel()) for a in x]
if len(out) and is_dataclass(out[0]): # PermutationTestResult
out = [(o.statistic, o.pvalue) for o in out]
if ndim_output:
out = np.array(out)[:, 0]
return out
sfunc.__name__ = ".".join(["score_func", func.__module__, func.__name__])
sfunc.__doc__ = func.__doc__
return sfunc
# Violate our assumption that the output is 1D so can't be used.
# Could eventually be added but probably not worth the effort unless someone
# requests it.
_BLOCKLIST = {"somersd"}
# makes score funcs attr accessible for users
def get_score_funcs():
"""Get the score functions.
Returns
-------
score_funcs : dict
The score functions.
"""
score_funcs = Bunch()
xy_arg_dist_funcs = [
(n, f)
for n, f in vars(distance).items()
if isfunction(f) and not n.startswith("_") and n not in _BLOCKLIST
]
xy_arg_stats_funcs = [
(n, f)
for n, f in vars(stats).items()
if isfunction(f) and not n.startswith("_") and n not in _BLOCKLIST
]
score_funcs.update(
{
n: _make_xy_sfunc(f)
for n, f in xy_arg_dist_funcs
if signature(f).parameters == ["u", "v"]
}
)
# In SciPy 1.9+, pearsonr has (x, y, *, alternative='two-sided'), so we
# should just look at the positional_only and positional_or_keyword entries
for n, f in xy_arg_stats_funcs:
params = [
name
for name, param in signature(f).parameters.items()
if param.kind
in (Parameter.POSITIONAL_ONLY, Parameter.POSITIONAL_OR_KEYWORD)
]
if params == ["x", "y"]:
score_funcs.update({n: _make_xy_sfunc(f, ndim_output=True)})
assert "pearsonr" in score_funcs
return score_funcs
def _check_for_unsupported_ica_channels(picks, info, allow_ref_meg=False):
"""Check for channels in picks that are not considered valid channels.
Accepted channels are the data channels
('seeg', 'dbs', 'ecog', 'eeg', 'hbo', 'hbr', 'mag', and 'grad'), 'eog'
and 'ref_meg'.
This prevents the program from crashing without
feedback when a bad channel is provided to ICA whitening.
"""
types = _DATA_CH_TYPES_SPLIT + ("eog",)
types += ("ref_meg",) if allow_ref_meg else ()
chs = info.get_channel_types(picks, unique=True, only_data_chs=False)
check = all([ch in types for ch in chs])
if not check:
raise ValueError(
f"Invalid channel type{_pl(chs)} passed for ICA: {chs}."
f"Only the following types are supported: {types}"
)
_KNOWN_ICA_METHODS = ("fastica", "infomax", "picard")
@fill_doc
class ICA(ContainsMixin):
"""Data decomposition using Independent Component Analysis (ICA).
This object estimates independent components from :class:`mne.io.Raw`,
:class:`mne.Epochs`, or :class:`mne.Evoked` objects. Components can
optionally be removed (for artifact repair) prior to signal reconstruction.
.. warning:: ICA is sensitive to low-frequency drifts and therefore
requires the data to be high-pass filtered prior to fitting.
Typically, a cutoff frequency of 1 Hz is recommended.
Parameters
----------
n_components : int | float | None
Number of principal components (from the pre-whitening PCA step) that
are passed to the ICA algorithm during fitting:
- :class:`int`
Must be greater than 1 and less than or equal to the number of
channels.
- :class:`float` between 0 and 1 (exclusive)
Will select the smallest number of components required to explain
the cumulative variance of the data greater than ``n_components``.
Consider this hypothetical example: we have 3 components, the first
explaining 70%%, the second 20%%, and the third the remaining 10%%
of the variance. Passing 0.8 here (corresponding to 80%% of
explained variance) would yield the first two components,
explaining 90%% of the variance: only by using both components the
requested threshold of 80%% explained variance can be exceeded. The
third component, on the other hand, would be excluded.
- ``None``
``0.999999`` will be used. This is done to avoid numerical
stability problems when whitening, particularly when working with
rank-deficient data.
Defaults to ``None``. The actual number used when executing the
:meth:`ICA.fit` method will be stored in the attribute
``n_components_`` (note the trailing underscore).
.. versionchanged:: 0.22
For a :class:`python:float`, the number of components will account
for *greater than* the given variance level instead of *less than or
equal to* it. The default (None) will also take into account the
rank deficiency of the data.
noise_cov : None | instance of Covariance
Noise covariance used for pre-whitening. If None (default), channels
are scaled to unit variance ("z-standardized") as a group by channel
type prior to the whitening by PCA.
%(random_state)s
method : 'fastica' | 'infomax' | 'picard'
The ICA method to use in the fit method. Use the ``fit_params`` argument
to set additional parameters. Specifically, if you want Extended
Infomax, set ``method='infomax'`` and ``fit_params=dict(extended=True)``
(this also works for ``method='picard'``). Defaults to ``'fastica'``.
For reference, see :footcite:`Hyvarinen1999,BellSejnowski1995,LeeEtAl1999,AblinEtAl2018`.
fit_params : dict | None
Additional parameters passed to the ICA estimator as specified by
``method``. Allowed entries are determined by the various algorithm
implementations: see :class:`~sklearn.decomposition.FastICA`,
:func:`~picard.picard`, :func:`~mne.preprocessing.infomax`.
max_iter : int | 'auto'
Maximum number of iterations during fit. If ``'auto'``, it
will set maximum iterations to ``1000`` for ``'fastica'``
and to ``500`` for ``'infomax'`` or ``'picard'``. The actual number of
iterations it took :meth:`ICA.fit` to complete will be stored in the
``n_iter_`` attribute.
allow_ref_meg : bool
Allow ICA on MEG reference channels. Defaults to False.
.. versionadded:: 0.18
%(verbose)s
Attributes
----------
current_fit : 'unfitted' | 'raw' | 'epochs'
Which data type was used for the fit.
ch_names : list-like
Channel names resulting from initial picking.
n_components_ : int
If fit, the actual number of PCA components used for ICA decomposition.
pre_whitener_ : ndarray, shape (n_channels, 1) or (n_channels, n_channels)
If fit, array used to pre-whiten the data prior to PCA.
pca_components_ : ndarray, shape ``(n_channels, n_channels)``
If fit, the PCA components.
pca_mean_ : ndarray, shape (n_channels,)
If fit, the mean vector used to center the data before doing the PCA.
pca_explained_variance_ : ndarray, shape ``(n_channels,)``
If fit, the variance explained by each PCA component.
mixing_matrix_ : ndarray, shape ``(n_components_, n_components_)``
If fit, the whitened mixing matrix to go back from ICA space to PCA
space.
It is, in combination with the ``pca_components_``, used by
:meth:`ICA.apply` and :meth:`ICA.get_components` to re-mix/project
a subset of the ICA components into the observed channel space.
The former method also removes the pre-whitening (z-scaling) and the
de-meaning.
unmixing_matrix_ : ndarray, shape ``(n_components_, n_components_)``
If fit, the whitened matrix to go from PCA space to ICA space.
Used, in combination with the ``pca_components_``, by the methods
:meth:`ICA.get_sources` and :meth:`ICA.apply` to unmix the observed
data.
exclude : array-like of int
List or np.array of sources indices to exclude when re-mixing the data
in the :meth:`ICA.apply` method, i.e. artifactual ICA components.
The components identified manually and by the various automatic
artifact detection methods should be (manually) appended
(e.g. ``ica.exclude.extend(eog_inds)``).
(There is also an ``exclude`` parameter in the :meth:`ICA.apply`
method.) To scrap all marked components, set this attribute to an empty
list.
%(info)s
n_samples_ : int
The number of samples used on fit.
labels_ : dict
A dictionary of independent component indices, grouped by types of
independent components. This attribute is set by some of the artifact
detection functions.
n_iter_ : int
If fit, the number of iterations required to complete ICA.
Notes
-----
.. versionchanged:: 0.23
Version 0.23 introduced the ``max_iter='auto'`` settings for maximum
iterations. With version 0.24 ``'auto'`` will be the new
default, replacing the current ``max_iter=200``.
.. versionchanged:: 0.23
Warn if `~mne.Epochs` were baseline-corrected.
.. note:: If you intend to fit ICA on `~mne.Epochs`, it is recommended to
high-pass filter, but **not** baseline correct the data for good
ICA performance. A warning will be emitted otherwise.
A trailing ``_`` in an attribute name signifies that the attribute was
added to the object during fitting, consistent with standard scikit-learn
practice.
ICA :meth:`fit` in MNE proceeds in two steps:
1. :term:`Whitening <whitening>` the data by means of a pre-whitening step
(using ``noise_cov`` if provided, or the standard deviation of each
channel type) and then principal component analysis (PCA).
2. Passing the ``n_components`` largest-variance components to the ICA
algorithm to obtain the unmixing matrix (and by pseudoinversion, the
mixing matrix).
ICA :meth:`apply` then:
1. Unmixes the data with the ``unmixing_matrix_``.
2. Includes ICA components based on ``ica.include`` and ``ica.exclude``.
3. Re-mixes the data with ``mixing_matrix_``.
4. Restores any data not passed to the ICA algorithm, i.e., the PCA
components between ``n_components`` and ``n_pca_components``.
``n_pca_components`` determines how many PCA components will be kept when
reconstructing the data when calling :meth:`apply`. This parameter can be
used for dimensionality reduction of the data, or dealing with low-rank
data (such as those with projections, or MEG data processed by SSS). It is
important to remove any numerically-zero-variance components in the data,
otherwise numerical instability causes problems when computing the mixing
matrix. Alternatively, using ``n_components`` as a float will also avoid
numerical stability problems.
The ``n_components`` parameter determines how many components out of
the ``n_channels`` PCA components the ICA algorithm will actually fit.
This is not typically used for EEG data, but for MEG data, it's common to
use ``n_components < n_channels``. For example, full-rank
306-channel MEG data might use ``n_components=40`` to find (and
later exclude) only large, dominating artifacts in the data, but still
reconstruct the data using all 306 PCA components. Setting
``n_pca_components=40``, on the other hand, would actually reduce the
rank of the reconstructed data to 40, which is typically undesirable.
If you are migrating from EEGLAB and intend to reduce dimensionality via
PCA, similarly to EEGLAB's ``runica(..., 'pca', n)`` functionality,
pass ``n_components=n`` during initialization and then
``n_pca_components=n`` during :meth:`apply`. The resulting reconstructed
data after :meth:`apply` will have rank ``n``.
.. note:: Commonly used for reasons of i) computational efficiency and
ii) additional noise reduction, it is a matter of current debate
whether pre-ICA dimensionality reduction could decrease the
reliability and stability of the ICA, at least for EEG data and
especially during preprocessing :footcite:`ArtoniEtAl2018`.
(But see also :footcite:`Montoya-MartinezEtAl2017` for a
possibly confounding effect of the different whitening/sphering
methods used in this paper (ZCA vs. PCA).)
On the other hand, for rank-deficient data such as EEG data after
average reference or interpolation, it is recommended to reduce
the dimensionality (by 1 for average reference and 1 for each
interpolated channel) for optimal ICA performance (see the
`EEGLAB wiki <eeglab_wiki_>`_).
Caveat! If supplying a noise covariance, keep track of the projections
available in the cov or in the raw object. For example, if you are
interested in EOG or ECG artifacts, EOG and ECG projections should be
temporally removed before fitting ICA, for example::
>> projs, raw.info['projs'] = raw.info['projs'], []
>> ica.fit(raw)
>> raw.info['projs'] = projs
Methods currently implemented are FastICA (default), Infomax, and Picard.
Standard Infomax can be quite sensitive to differences in floating point
arithmetic. Extended Infomax seems to be more stable in this respect,
enhancing reproducibility and stability of results; use Extended Infomax
via ``method='infomax', fit_params=dict(extended=True)``. Allowed entries
in ``fit_params`` are determined by the various algorithm implementations:
see :class:`~sklearn.decomposition.FastICA`, :func:`~picard.picard`,
:func:`~mne.preprocessing.infomax`.
.. note:: Picard can be used to solve the same problems as FastICA,
Infomax, and extended Infomax, but typically converges faster
than either of those methods. To make use of Picard's speed while
still obtaining the same solution as with other algorithms, you
need to specify ``method='picard'`` and ``fit_params`` as a
dictionary with the following combination of keys:
- ``dict(ortho=False, extended=False)`` for Infomax
- ``dict(ortho=False, extended=True)`` for extended Infomax
- ``dict(ortho=True, extended=True)`` for FastICA
Reducing the tolerance (set in ``fit_params``) speeds up estimation at the
cost of consistency of the obtained results. It is difficult to directly
compare tolerance levels between Infomax and Picard, but for Picard and
FastICA a good rule of thumb is ``tol_fastica == tol_picard ** 2``.
.. _eeglab_wiki: https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html#how-to-deal-with-corrupted-ica-decompositions
References
----------
.. footbibliography::
""" # noqa: E501
@verbose
def __init__(
self,
n_components=None,
*,
noise_cov=None,
random_state=None,
method="fastica",
fit_params=None,
max_iter="auto",
allow_ref_meg=False,
verbose=None,
):
_validate_type(method, str, "method")
_validate_type(n_components, (float, "int-like", None))
if method != "imported_eeglab": # internal use only
_check_option("method", method, _KNOWN_ICA_METHODS)
self.noise_cov = noise_cov
for kind, val in [("n_components", n_components)]:
if isinstance(val, float) and not 0 < val < 1:
raise ValueError(
"Selecting ICA components by explained "
"variance needs values between 0.0 and 1.0 "
f"(exclusive), got {kind}={val}"
)
if isinstance(val, int_like) and val == 1:
raise ValueError(
f"Selecting one component with {kind}={val} is not supported"
)
self.current_fit = "unfitted"
self.n_components = n_components
# In newer ICAs this should always be None, but keep it for
# backward compat with older versions of MNE that used it
self._max_pca_components = None
self.n_pca_components = None
self.ch_names = None
self.random_state = random_state
if fit_params is None:
fit_params = {}
fit_params = deepcopy(fit_params) # avoid side effects
if method == "fastica":
update = {"algorithm": "parallel", "fun": "logcosh", "fun_args": None}
fit_params.update({k: v for k, v in update.items() if k not in fit_params})
elif method == "infomax":
# extended=True is default in underlying function, but we want
# default False here unless user specified True:
fit_params.setdefault("extended", False)
_validate_type(max_iter, (str, "int-like"), "max_iter")
if isinstance(max_iter, str):
_check_option("max_iter", max_iter, ("auto",), "when str")
if method == "fastica":
max_iter = 1000
elif method in ["infomax", "picard"]:
max_iter = 500
fit_params.setdefault("max_iter", max_iter)
self.max_iter = max_iter
self.fit_params = fit_params
self.exclude = []
self.info = None
self.method = method
self.labels_ = dict()
self.allow_ref_meg = allow_ref_meg
def _get_infos_for_repr(self):
@dataclass
class _InfosForRepr:
fit_on: Literal["raw data", "epochs"] | None
fit_method: Literal["fastica", "infomax", "extended-infomax", "picard"]
fit_params: dict[str, str | float]
fit_n_iter: int | None
fit_n_samples: int | None
fit_n_components: int | None
fit_n_pca_components: int | None
ch_types: list[str]
excludes: list[str]
if self.current_fit == "unfitted":
fit_on = None
elif self.current_fit == "raw":
fit_on = "raw data"
else:
fit_on = "epochs"
fit_method = self.method
fit_params = self.fit_params
fit_n_iter = getattr(self, "n_iter_", None)
fit_n_samples = getattr(self, "n_samples_", None)
fit_n_components = getattr(self, "n_components_", None)
fit_n_pca_components = getattr(self, "pca_components_", None)
if fit_n_pca_components is not None:
fit_n_pca_components = len(self.pca_components_)
if self.info is not None:
ch_types = [c for c in _DATA_CH_TYPES_SPLIT if c in self]
else:
ch_types = []
if self.exclude:
excludes = [self._ica_names[i] for i in self.exclude]
else:
excludes = []
infos_for_repr = _InfosForRepr(
fit_on=fit_on,
fit_method=fit_method,
fit_params=fit_params,
fit_n_iter=fit_n_iter,
fit_n_samples=fit_n_samples,
fit_n_components=fit_n_components,
fit_n_pca_components=fit_n_pca_components,
ch_types=ch_types,
excludes=excludes,
)
return infos_for_repr
def __repr__(self):
"""ICA fit information."""
infos = self._get_infos_for_repr()
s = f"{infos.fit_on or 'no'} decomposition, method: {infos.fit_method}"
if infos.fit_on is not None:
s += (
f" (fit in {infos.fit_n_iter} iterations on "
f"{infos.fit_n_samples} samples), "
f"{infos.fit_n_components} ICA components "
f"({infos.fit_n_pca_components} PCA components available), "
f"channel types: {', '.join(infos.ch_types)}, "
f"{len(infos.excludes) or 'no'} sources marked for exclusion"
)
return f"<ICA | {s}>"
@repr_html
def _repr_html_(self):
infos = self._get_infos_for_repr()
t = _get_html_template("repr", "ica.html.jinja")
html = t.render(
fit_on=infos.fit_on,
method=infos.fit_method,
fit_params=infos.fit_params,
n_iter=infos.fit_n_iter,
n_samples=infos.fit_n_samples,
n_components=infos.fit_n_components,
n_pca_components=infos.fit_n_pca_components,
ch_types=infos.ch_types,
excludes=infos.excludes,
)
return html
@verbose
def fit(
self,
inst,
picks=None,
start=None,
stop=None,
decim=None,
reject=None,
flat=None,
tstep=2.0,
reject_by_annotation=True,
verbose=None,
):
"""Run the ICA decomposition on raw data.
Caveat! If supplying a noise covariance keep track of the projections
available in the cov, the raw or the epochs object. For example,
if you are interested in EOG or ECG artifacts, EOG and ECG projections
should be temporally removed before fitting the ICA.
Parameters
----------
inst : instance of Raw or Epochs
The data to be decomposed.
%(picks_good_data_noref)s
This selection remains throughout the initialized ICA solution.
start, stop : int | float | None
First and last sample to include. If float, data will be
interpreted as time in seconds. If ``None``, data will be used from
the first sample and to the last sample, respectively.
.. note:: These parameters only have an effect if ``inst`` is
`~mne.io.Raw` data.
decim : int | None
Increment for selecting only each n-th sampling point. If ``None``,
all samples between ``start`` and ``stop`` (inclusive) are used.
reject, flat : dict | None
Rejection parameters based on peak-to-peak amplitude (PTP)
in the continuous data. Signal periods exceeding the thresholds
in ``reject`` or less than the thresholds in ``flat`` will be
removed before fitting the ICA.
.. note:: These parameters only have an effect if ``inst`` is
`~mne.io.Raw` data. For `~mne.Epochs`, perform PTP
rejection via :meth:`~mne.Epochs.drop_bad`.
Valid keys are all channel types present in the data. Values must
be integers or floats.
If ``None``, no PTP-based rejection will be performed. Example::
reject = dict(
grad=4000e-13, # T / m (gradiometers)
mag=4e-12, # T (magnetometers)
eeg=40e-6, # V (EEG channels)
eog=250e-6 # V (EOG channels)
)
flat = None # no rejection based on flatness
tstep : float
Length of data chunks for artifact rejection in seconds.
.. note:: This parameter only has an effect if ``inst`` is
`~mne.io.Raw` data.
%(reject_by_annotation_raw)s
.. versionadded:: 0.14.0
%(verbose)s
Returns
-------
self : instance of ICA
Returns the modified instance.
"""
req_map = dict(fastica="sklearn", picard="picard")
for method, mod in req_map.items():
if self.method == method:
_require_version(mod, f"use method={repr(method)}")
_validate_type(inst, (BaseRaw, BaseEpochs), "inst", "Raw or Epochs")
if np.isclose(inst.info["highpass"], 0.0):
warn(
"The data has not been high-pass filtered. For good ICA "
"performance, it should be high-pass filtered (e.g., with a "
"1.0 Hz lower bound) before fitting ICA."
)
if isinstance(inst, BaseEpochs) and inst.baseline is not None:
warn(
"The epochs you passed to ICA.fit() were baseline-corrected. "
"However, we suggest to fit ICA only on data that has been "
"high-pass filtered, but NOT baseline-corrected."
)
if not isinstance(inst, BaseRaw):
ignored_params = [
param_name
for param_name, param_val in zip(
("start", "stop", "reject", "flat"), (start, stop, reject, flat)
)
if param_val is not None
]
if ignored_params:
warn(
f"The following parameters passed to ICA.fit() will be "
f"ignored, as they only affect raw data (and it appears "
f"you passed epochs): {', '.join(ignored_params)}"
)
picks = _picks_to_idx(
inst.info, picks, allow_empty=False, with_ref_meg=self.allow_ref_meg
)
_check_for_unsupported_ica_channels(
picks, inst.info, allow_ref_meg=self.allow_ref_meg
)
# Actually start fitting
t_start = time()
if self.current_fit != "unfitted":
self._reset()
logger.info(
"Fitting ICA to data using %i channels (please be patient, this may take "
"a while)",
len(picks),
)
# n_components could be float 0 < x < 1, but that's okay here
if self.n_components is not None and self.n_components > len(picks):
raise ValueError(
f"ica.n_components ({self.n_components}) cannot "
f"be greater than len(picks) ({len(picks)})"
)
# filter out all the channels the raw wouldn't have initialized
self.info = pick_info(inst.info, picks)
if self.info["comps"]:
with self.info._unlock():
self.info["comps"] = []
self.ch_names = self.info["ch_names"]
if isinstance(inst, BaseRaw):
self._fit_raw(
inst,
picks,
start,
stop,
decim,
reject,
flat,
tstep,
reject_by_annotation,
verbose,
)
else:
assert isinstance(inst, BaseEpochs)
self._fit_epochs(inst, picks, decim, verbose)
# sort ICA components by explained variance
var = _ica_explained_variance(self, inst)
var_ord = var.argsort()[::-1]
_sort_components(self, var_ord, copy=False)
t_stop = time()
logger.info(f"Fitting ICA took {t_stop - t_start:.1f}s.")
return self
def _reset(self):
"""Aux method."""
for key in (
"pre_whitener_",
"unmixing_matrix_",
"mixing_matrix_",
"n_components_",
"n_samples_",
"pca_components_",
"pca_explained_variance_",
"pca_mean_",
"n_iter_",
"drop_inds_",
"reject_",
):
if hasattr(self, key):
delattr(self, key)
self.current_fit = "unfitted"
def _fit_raw(
self,
raw,
picks,
start,
stop,
decim,
reject,
flat,
tstep,
reject_by_annotation,
verbose,
):
"""Aux method."""
start, stop = _check_start_stop(raw, start, stop)
reject_by_annotation = "omit" if reject_by_annotation else None
# this will be a copy
data = raw.get_data(picks, start, stop, reject_by_annotation)
# this will be a view
if decim is not None:
data = data[:, ::decim]
# this will make a copy
if (reject is not None) or (flat is not None):
self.reject_ = reject
data, self.drop_inds_ = _reject_data_segments(
data, reject, flat, decim, self.info, tstep
)
else:
self.reject_ = None
self.n_samples_ = data.shape[1]
self._fit(data, "raw")
return self
def _fit_epochs(self, epochs, picks, decim, verbose):
"""Aux method."""
if epochs.events.size == 0:
raise RuntimeError(
"Tried to fit ICA with epochs, but none were found: epochs.events is "
f'"{epochs.events}".'
)
# this should be a copy (picks a list of int)
data = epochs.get_data(picks=picks)
# this will be a view
if decim is not None:
data = data[:, :, ::decim]
self.n_samples_ = data.shape[0] * data.shape[2]
# This will make at least one copy (one from hstack, maybe one
# more from _pre_whiten)
data = np.hstack(data)
self._fit(data, "epochs")
self.reject_ = deepcopy(epochs.reject)
return self
def _compute_pre_whitener(self, data):
"""Aux function."""
data = self._do_proj(data, log_suffix="(pre-whitener computation)")
if self.noise_cov is None:
# use standardization as whitener
# Scale (z-score) the data by channel type
info = self.info
pre_whitener = np.empty([len(data), 1])
for _, picks_ in _picks_by_type(info, ref_meg=False, exclude=[]):
pre_whitener[picks_] = np.std(data[picks_])
if _contains_ch_type(info, "ref_meg"):
picks_ = pick_types(info, ref_meg=True, exclude=[])
pre_whitener[picks_] = np.std(data[picks_])
if _contains_ch_type(info, "eog"):
picks_ = pick_types(info, eog=True, exclude=[])
pre_whitener[picks_] = np.std(data[picks_])
else:
pre_whitener, _ = compute_whitener(
self.noise_cov, self.info, picks=self.info.ch_names
)
assert data.shape[0] == pre_whitener.shape[1]
self.pre_whitener_ = pre_whitener
def _do_proj(self, data, log_suffix=""):
if self.info is not None and self.info["projs"]:
proj, nproj, _ = make_projector(
[p for p in self.info["projs"] if p["active"]],
self.info["ch_names"],
include_active=True,
)
if nproj:
logger.info(
f" Applying projection operator with {nproj} "
f"vector{_pl(nproj)}"
f"{' ' if log_suffix else ''}{log_suffix}"
)
if self.noise_cov is None: # otherwise it's in pre_whitener_
data = proj @ data
return data
def _pre_whiten(self, data):
data = self._do_proj(data, log_suffix="(pre-whitener application)")
if self.noise_cov is None:
data /= self.pre_whitener_
else:
data = self.pre_whitener_ @ data
return data
def _fit(self, data, fit_type):
"""Aux function."""
random_state = check_random_state(self.random_state)
n_channels, n_samples = data.shape
self._compute_pre_whitener(data)
data = self._pre_whiten(data)
pca = _PCA(n_components=self._max_pca_components, whiten=True)
data = pca.fit_transform(data.T)
use_ev = pca.explained_variance_ratio_
n_pca = self.n_pca_components
if isinstance(n_pca, float):
n_pca = int(_exp_var_ncomp(use_ev, n_pca)[0])
elif n_pca is None:
n_pca = len(use_ev)
assert isinstance(n_pca, int | np.int_)
# If user passed a float, select the PCA components explaining the
# given cumulative variance. This information will later be used to
# only submit the corresponding parts of the data to ICA.
if self.n_components is None:
# None case: check if n_pca_components or 0.999999 yields smaller
msg = "Selecting by non-zero PCA components"
self.n_components_ = min(n_pca, _exp_var_ncomp(use_ev, 0.999999)[0])
elif isinstance(self.n_components, float):
self.n_components_, ev = _exp_var_ncomp(use_ev, self.n_components)
if self.n_components_ == 1:
raise RuntimeError(
"One PCA component captures most of the "
f"explained variance ({100 * ev}%), your threshold "
"results in 1 component. You should select "
"a higher value."
)
msg = "Selecting by explained variance"
else:
msg = "Selecting by number"
self.n_components_ = _ensure_int(self.n_components)
# check to make sure something okay happened
if self.n_components_ > n_pca:
ev = np.cumsum(use_ev)
ev /= ev[-1]
evs = 100 * ev[[self.n_components_ - 1, n_pca - 1]]
raise RuntimeError(
f"n_components={self.n_components} requires "
f"{self.n_components_} PCA values (EV={evs[0]:0.1f}%) but "
f"n_pca_components ({self.n_pca_components}) results in "
f"only {n_pca} components (EV={evs[1]:0.1f}%)"
)
logger.info(f"{msg}: {self.n_components_} components")
# the things to store for PCA
self.pca_mean_ = pca.mean_
self.pca_components_ = pca.components_
self.pca_explained_variance_ = pca.explained_variance_
del pca
# update number of components
self._update_ica_names()
if self.n_pca_components is not None and self.n_pca_components > len(
self.pca_components_
):
raise ValueError(
f"n_pca_components ({self.n_pca_components}) is greater than "
f"the number of PCA components ({len(self.pca_components_)})"
)
# take care of ICA
sel = slice(0, self.n_components_)
if self.method == "fastica":
from sklearn.decomposition import FastICA
ica = FastICA(whiten=False, random_state=random_state, **self.fit_params)
ica.fit(data[:, sel])
self.unmixing_matrix_ = ica.components_
self.n_iter_ = ica.n_iter_
elif self.method in ("infomax", "extended-infomax"):
unmixing_matrix, n_iter = infomax(
data[:, sel],
random_state=random_state,
return_n_iter=True,
**self.fit_params,
)
self.unmixing_matrix_ = unmixing_matrix
self.n_iter_ = n_iter
del unmixing_matrix, n_iter
elif self.method == "picard":
from picard import picard
_, W, _, n_iter = picard(
data[:, sel].T,
whiten=False,
return_n_iter=True,
random_state=random_state,
**self.fit_params,
)
self.unmixing_matrix_ = W
self.n_iter_ = n_iter + 1 # picard() starts counting at 0
del _, n_iter
assert self.unmixing_matrix_.shape == (self.n_components_,) * 2
norms = self.pca_explained_variance_
stable = norms / norms[0] > 1e-6 # to be stable during pinv
norms = norms[: self.n_components_]
if not stable[self.n_components_ - 1]:
max_int = np.where(stable)[0][-1] + 1
warn(
f"Using n_components={self.n_components} (resulting in "
f"n_components_={self.n_components_}) may lead to an "
f"unstable mixing matrix estimation because the ratio "
f"between the largest ({norms[0]:0.2g}) and smallest "
f"({norms[-1]:0.2g}) variances is too large (> 1e6); "
f"consider setting n_components=0.999999 or an "
f"integer <= {max_int}"
)
norms = np.sqrt(norms)
norms[norms == 0] = 1.0
self.unmixing_matrix_ /= norms # whitening
self._update_mixing_matrix()
self.current_fit = fit_type
def _update_mixing_matrix(self):
self.mixing_matrix_ = pinv(self.unmixing_matrix_)
def _update_ica_names(self):
"""Update ICA names when n_components_ is set."""
self._ica_names = [f"ICA{ii:03d}" for ii in range(self.n_components_)]
def _transform(self, data):
"""Compute sources from data (operates inplace)."""
data = self._pre_whiten(data)
if self.pca_mean_ is not None:
data -= self.pca_mean_[:, None]
# Apply unmixing
pca_data = np.dot(
self.unmixing_matrix_, self.pca_components_[: self.n_components_]
)
# Apply PCA
sources = np.dot(pca_data, data)
return sources
def _transform_raw(self, raw, start, stop, reject_by_annotation=False):
"""Transform raw data."""
if not hasattr(self, "mixing_matrix_"):
raise RuntimeError("No fit available. Please fit ICA.")
start, stop = _check_start_stop(raw, start, stop)
picks = self._get_picks(raw)
reject = "omit" if reject_by_annotation else None
data = raw.get_data(picks, start, stop, reject)
return self._transform(data)
def _transform_epochs(self, epochs, concatenate):
"""Aux method."""
if not hasattr(self, "mixing_matrix_"):
raise RuntimeError("No fit available. Please fit ICA.")
picks = self._get_picks(epochs)
data = np.hstack(epochs.get_data(picks=picks))
sources = self._transform(data)
if not concatenate:
# Put the data back in 3D
sources = np.array(np.split(sources, len(epochs.events), 1))
return sources
def _transform_evoked(self, evoked):
"""Aux method."""
if not hasattr(self, "mixing_matrix_"):
raise RuntimeError("No fit available. Please fit ICA.")
picks = self._get_picks(evoked)
return self._transform(evoked.data[picks])
def _get_picks(self, inst):
"""Pick logic for _transform method."""
picks = _picks_to_idx(inst.info, self.ch_names, exclude=[], allow_empty=True)
if len(picks) != len(self.ch_names):
if isinstance(inst, BaseRaw):
kind, do = "Raw", "doesn't"
elif isinstance(inst, BaseEpochs):
kind, do = "Epochs", "don't"
elif isinstance(inst, Evoked):
kind, do = "Evoked", "doesn't"
else:
raise ValueError("Data input must be of Raw, Epochs or Evoked type")
raise RuntimeError(
f"{kind} {do} match fitted data: {len(self.ch_names)} channels "
f"fitted but {len(picks)} channels supplied. \nPlease "
f"provide {kind} compatible with 'ica.ch_names'."
)
return picks
def get_components(self):
"""Get ICA topomap for components as numpy arrays.
Returns
-------
components : array, shape (n_channels, n_components)
The ICA components (maps).
"""
return np.dot(
self.mixing_matrix_[:, : self.n_components_].T,
self.pca_components_[: self.n_components_],
).T
def get_explained_variance_ratio(self, inst, *, components=None, ch_type=None):
"""Get the proportion of data variance explained by ICA components.
Parameters
----------
inst : mne.io.BaseRaw | mne.BaseEpochs | mne.Evoked
The uncleaned data.
components : array-like of int | int | None
The component(s) for which to do the calculation. If more than one
component is specified, explained variance will be calculated
jointly across all supplied components. If ``None`` (default), uses
all available components.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | array-like of str | None
The channel type(s) to include in the calculation. If ``None``, all
available channel types will be used.
Returns
-------
dict (str, float)
The fraction of variance in ``inst`` that can be explained by the
ICA components, calculated separately for each channel type.
Dictionary keys are the channel types, and corresponding explained
variance ratios are the values.
Notes
-----
A value similar to EEGLAB's ``pvaf`` (percent variance accounted for)
will be calculated for the specified component(s).
Since ICA components cannot be assumed to be aligned orthogonally, the
sum of the proportion of variance explained by all components may not
be equal to 1. In certain situations, the proportion of variance
explained by a component may even be negative.
.. versionadded:: 1.2
""" # noqa: E501
if self.current_fit == "unfitted":
raise ValueError("ICA must be fitted first.")
_validate_type(item=inst, types=(BaseRaw, BaseEpochs, Evoked), item_name="inst")
_validate_type(
item=components,
types=(None, "int-like", Sequence, np.ndarray),
item_name="components",
type_name="int, array-like of int, or None",
)
if isinstance(components, Sequence | np.ndarray):
for item in components:
_validate_type(
item=item, types="int-like", item_name='Elements of "components"'
)
_validate_type(
item=ch_type,
types=(Sequence, np.ndarray, str, None),
item_name="ch_type",
type_name="str, array-like of str, or None",
)
if isinstance(ch_type, str):
ch_types = [ch_type]
elif ch_type is None:
ch_types = inst.get_channel_types(unique=True, only_data_chs=True)
else:
assert isinstance(ch_type, Sequence | np.ndarray)
ch_types = ch_type
assert len(ch_types) >= 1
allowed_ch_types = ("mag", "grad", "planar1", "planar2", "eeg")
for ch_type in ch_types:
if ch_type not in allowed_ch_types:
raise ValueError(
f"You requested operation on the channel type "
f'"{ch_type}", but only the following channel types are '
f"supported: {', '.join(allowed_ch_types)}"
)
del ch_type
# Input data validation ends here
if components is None:
components = range(self.n_components_)
explained_var_ratios = [
self._get_explained_variance_ratio_one_ch_type(
inst=inst, components=components, ch_type=ch_type
)
for ch_type in ch_types
]
result = dict(zip(ch_types, explained_var_ratios))
return result
def _get_explained_variance_ratio_one_ch_type(self, *, inst, components, ch_type):
# The algorithm implemented below should be equivalent to
# https://sccn.ucsd.edu/pipermail/eeglablist/2014/009134.html
#
# Reconstruct ("back-project") the data using only the specified ICA
# components. Don't make use of potential "spare" PCA components in
# this process – we're only interested in the contribution of the ICA
# components!
kwargs = dict(
inst=inst.copy(),
include=[components],
exclude=[],
n_pca_components=0,
verbose=False,
)
if isinstance(inst, BaseEpochs | Evoked) and inst.baseline is not None:
# Don't warn if data was baseline-corrected.
with warnings.catch_warnings():
warnings.filterwarnings(
action="ignore",
message="The data.*was baseline-corrected",
category=RuntimeWarning,
)
inst_recon = self.apply(**kwargs)
else:
inst_recon = self.apply(**kwargs)
data_recon = inst_recon.get_data(picks=ch_type)
data_orig = inst.get_data(picks=ch_type)
data_diff = data_orig - data_recon
# To estimate the data variance, we first compute the variance across
# channels at each time point, and then we average these variances.
mean_var_diff = data_diff.var(axis=0).mean()
mean_var_orig = data_orig.var(axis=0).mean()
var_explained_ratio = 1 - mean_var_diff / mean_var_orig
return var_explained_ratio
def get_sources(self, inst, add_channels=None, start=None, stop=None):
"""Estimate sources given the unmixing matrix.
This method will return the sources in the container format passed.
Typical usecases:
1. pass Raw object to use `raw.plot <mne.io.Raw.plot>` for ICA sources
2. pass Epochs object to compute trial-based statistics in ICA space
3. pass Evoked object to investigate time-locking in ICA space
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from and to represent sources in.
add_channels : None | list of str
Additional channels to be added. Useful to e.g. compare sources
with some reference. Defaults to None.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, the entire data will be used.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, the entire data will be used.
Returns
-------
sources : instance of Raw, Epochs or Evoked
The ICA sources time series.
"""
if isinstance(inst, BaseRaw):
_check_compensation_grade(
self.info, inst.info, "ICA", "Raw", ch_names=self.ch_names
)
sources = self._sources_as_raw(inst, add_channels, start, stop)
elif isinstance(inst, BaseEpochs):
_check_compensation_grade(
self.info, inst.info, "ICA", "Epochs", ch_names=self.ch_names
)
sources = self._sources_as_epochs(inst, add_channels, False)
elif isinstance(inst, Evoked):
_check_compensation_grade(
self.info, inst.info, "ICA", "Evoked", ch_names=self.ch_names
)
sources = self._sources_as_evoked(inst, add_channels)
else:
raise ValueError("Data input must be of Raw, Epochs or Evoked type")
return sources
def _sources_as_raw(self, raw, add_channels, start, stop):
"""Aux method."""
# merge copied instance and picked data with sources
start, stop = _check_start_stop(raw, start, stop)
data_ = self._transform_raw(raw, start=start, stop=stop)
assert data_.shape[1] == stop - start
preloaded = raw.preload
if raw.preload:
# get data and temporarily delete
data = raw._data
raw.preload = False
del raw._data
# copy and crop here so that things like annotations are adjusted
try:
out = raw.copy().crop(
start / raw.info["sfreq"], (stop - 1) / raw.info["sfreq"]
)
finally:
# put the data back (always)
if preloaded:
raw.preload = True
raw._data = data
# populate copied raw.
if add_channels is not None and len(add_channels):
picks = pick_channels(raw.ch_names, add_channels)
data_ = np.concatenate([data_, raw.get_data(picks, start=start, stop=stop)])
out._data = data_
out._first_samps = [out.first_samp]
out._last_samps = [out.last_samp]
out.filenames = [None]
out.preload = True
out._projector = None
self._export_info(out.info, raw, add_channels)
return out
def _sources_as_epochs(self, epochs, add_channels, concatenate):
"""Aux method."""
out = epochs.copy()
sources = self._transform_epochs(epochs, concatenate)
if add_channels is not None:
picks = [epochs.ch_names.index(k) for k in add_channels]
else:
picks = []
out._data = (
np.concatenate([sources, epochs.get_data()[:, picks]], axis=1)
if len(picks) > 0
else sources
)
self._export_info(out.info, epochs, add_channels)
out.preload = True
out._raw = None
out._projector = None
return out
def _sources_as_evoked(self, evoked, add_channels):
"""Aux method."""
if add_channels is not None:
picks = [evoked.ch_names.index(k) for k in add_channels]
else:
picks = []
sources = self._transform_evoked(evoked)
if len(picks) > 1:
data = np.r_[sources, evoked.data[picks]]
else:
data = sources
out = evoked.copy()
out.data = data
self._export_info(out.info, evoked, add_channels)
return out
def _export_info(self, info, container, add_channels):
"""Aux method."""
# set channel names and info
ch_names = []
ch_info = []
for ii, name in enumerate(self._ica_names):
ch_names.append(name)
ch_info.append(
dict(
ch_name=name,
cal=1,
logno=ii + 1,
coil_type=FIFF.FIFFV_COIL_NONE,
kind=FIFF.FIFFV_MISC_CH,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
unit=FIFF.FIFF_UNIT_NONE,
loc=np.zeros(12, dtype="f4"),
range=1.0,
scanno=ii + 1,
unit_mul=0,
)
)
if add_channels is not None:
# re-append additionally picked ch_names
ch_names += add_channels
# re-append additionally picked ch_info
ch_info += [
k for k in container.info["chs"] if k["ch_name"] in add_channels
]
with info._unlock(update_redundant=True, check_after=True):
info["chs"] = ch_info
info["projs"] = [] # make sure projections are removed.
info["bads"] = [ch_names[k] for k in self.exclude]
@verbose
def score_sources(
self,
inst,
target=None,
score_func="pearsonr",
start=None,
stop=None,
l_freq=None,
h_freq=None,
reject_by_annotation=True,
verbose=None,
):
"""Assign score to components based on statistic or metric.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
The object to reconstruct the sources from.
target : array-like | str | None
Signal to which the sources shall be compared. It has to be of
the same shape as the sources. If str, a routine will try to find
a matching channel name. If None, a score
function expecting only one input-array argument must be used,
for instance, scipy.stats.skew (default).
score_func : callable | str
Callable taking as arguments either two input arrays
(e.g. Pearson correlation) or one input
array (e. g. skewness) and returns a float. For convenience the
most common score_funcs are available via string labels:
Currently, all distance metrics from scipy.spatial and All
functions from scipy.stats taking compatible input arguments are
supported. These function have been modified to support iteration
over the rows of a 2D array.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
%(reject_by_annotation_all)s
.. versionadded:: 0.14.0
%(verbose)s
Returns
-------
scores : ndarray
Scores for each source as returned from score_func.
"""
if isinstance(inst, BaseRaw):
_check_compensation_grade(
self.info, inst.info, "ICA", "Raw", ch_names=self.ch_names
)
sources = self._transform_raw(inst, start, stop, reject_by_annotation)
elif isinstance(inst, BaseEpochs):
_check_compensation_grade(
self.info, inst.info, "ICA", "Epochs", ch_names=self.ch_names
)
sources = self._transform_epochs(inst, concatenate=True)
elif isinstance(inst, Evoked):
_check_compensation_grade(
self.info, inst.info, "ICA", "Evoked", ch_names=self.ch_names
)
sources = self._transform_evoked(inst)
else:
raise ValueError("Data input must be of Raw, Epochs or Evoked type")
if target is not None: # we can have univariate metrics without target
target = self._check_target(target, inst, start, stop, reject_by_annotation)
if sources.shape[-1] != target.shape[-1]:
raise ValueError(
"Sources and target do not have the same number of time slices."
)
# auto target selection
if isinstance(inst, BaseRaw):
# We pass inst, not self, because the sfreq of the data we
# use for scoring components can be different:
sources, target = _band_pass_filter(
inst, sources, target, l_freq, h_freq
)
scores = _find_sources(sources, target, score_func)
return scores
def _check_target(self, target, inst, start, stop, reject_by_annotation=False):
"""Aux Method."""
if isinstance(inst, BaseRaw):
reject_by_annotation = "omit" if reject_by_annotation else None
start, stop = _check_start_stop(inst, start, stop)
if hasattr(target, "ndim"):
if target.ndim < 2:
target = target.reshape(1, target.shape[-1])
if isinstance(target, str):
pick = _get_target_ch(inst, target)
target = inst.get_data(pick, start, stop, reject_by_annotation)
elif isinstance(inst, BaseEpochs):
if isinstance(target, str):
pick = _get_target_ch(inst, target)
target = inst.get_data(picks=pick)
if hasattr(target, "ndim"):
if target.ndim == 3 and min(target.shape) == 1:
target = target.ravel()
elif isinstance(inst, Evoked):
if isinstance(target, str):
pick = _get_target_ch(inst, target)
target = inst.data[pick]
return target
def _find_bads_ch(
self,
inst,
chs,
threshold=3.0,
start=None,
stop=None,
l_freq=None,
h_freq=None,
reject_by_annotation=True,
prefix="chs",
measure="zscore",
):
"""Compute ExG/ref components.
See find_bads_ecg, find_bads_eog, and find_bads_ref for details.
"""
scores, idx = [], []
# some magic we need inevitably ...
# get targets before equalizing
targets = [
self._check_target(ch, inst, start, stop, reject_by_annotation)
for ch in chs
]
# assign names, if targets are arrays instead of strings
target_names = []
for ch in chs:
if not isinstance(ch, str):
if prefix == "ecg":
target_names.append("ECG-MAG")
else:
target_names.append(prefix)
else:
target_names.append(ch)
for ii, (ch, target) in enumerate(zip(target_names, targets)):
scores += [
self.score_sources(
inst,
target=target,
score_func="pearsonr",
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
reject_by_annotation=reject_by_annotation,
)
]
# pick last scores
if measure == "zscore":
this_idx = _find_outliers(scores[-1], threshold=threshold)
elif measure == "correlation":
this_idx = np.where(abs(scores[-1]) > threshold)[0]
else:
raise ValueError(f"Unknown measure {measure}")
idx += [this_idx]
self.labels_[f"{prefix}/{ii}/{ch}"] = list(this_idx)
# remove duplicates but keep order by score, even across multiple
# ref channels
scores_ = np.concatenate([scores[ii][inds] for ii, inds in enumerate(idx)])
idx_ = np.concatenate(idx)[np.abs(scores_).argsort()[::-1]]
idx_unique = list(np.unique(idx_))
idx = []
for i in idx_:
if i in idx_unique:
idx.append(i)
idx_unique.remove(i)
if len(scores) == 1:
scores = scores[0]
labels = list(idx)
return labels, scores
def _get_ctps_threshold(self, pk_threshold=20):
"""Automatically decide the threshold of Kuiper index for CTPS method.
This function finds the threshold of Kuiper index based on the
threshold of pk. Kuiper statistic that minimizes the difference between
pk and the pk threshold (defaults to 20 :footcite:`DammersEtAl2008`)
is returned. It is assumed that the data are appropriately filtered and
bad data are rejected at least based on peak-to-peak amplitude
when/before running the ICA decomposition on data.
References
----------
.. footbibliography::
"""
N = self.info["sfreq"]
Vs = np.arange(1, 100) / 100
C = math.sqrt(N) + 0.155 + 0.24 / math.sqrt(N)
# in formula (13), when k gets large, only k=1 matters for the
# summation. k*V*C thus becomes V*C
Pks = 2 * (4 * (Vs * C) ** 2 - 1) * (np.exp(-2 * (Vs * C) ** 2))
# NOTE: the threshold of pk is transformed to Pk for comparison
# pk = -log10(Pk)
return Vs[np.argmin(np.abs(Pks - 10 ** (-pk_threshold)))]
@verbose
def find_bads_ecg(
self,
inst,
ch_name=None,
threshold="auto",
start=None,
stop=None,
l_freq=8,
h_freq=16,
method="ctps",
reject_by_annotation=True,
measure="zscore",
verbose=None,
):
"""Detect ECG related components.
Cross-trial phase statistics :footcite:`DammersEtAl2008` or Pearson
correlation can be used for detection.
.. note:: If no ECG channel is available, an artificial ECG channel will be
created based on cross-channel averaging of ``"mag"`` or ``"grad"``
channels. If neither of these channel types are available in
``inst``, artificial ECG channel creation is impossible.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
%(ch_name_ecg)s
threshold : float | 'auto'
Value above which a feature is classified as outlier. See Notes.
.. versionchanged:: 0.21
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
When working with Epochs or Evoked objects, must be float or None.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
When working with Epochs or Evoked objects, must be float or None.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
method : 'ctps' | 'correlation'
The method used for detection. If ``'ctps'``, cross-trial phase
statistics :footcite:`DammersEtAl2008` are used to detect
ECG-related components. See Notes.
%(reject_by_annotation_all)s
.. versionadded:: 0.14.0
%(measure)s
%(verbose)s
Returns
-------
ecg_idx : list of int
The indices of ECG-related components.
scores : np.ndarray of float, shape (``n_components_``)
If method is 'ctps', the normalized Kuiper index scores. If method
is 'correlation', the correlation scores.
See Also
--------
find_bads_eog, find_bads_ref, find_bads_muscle
Notes
-----
The ``threshold``, ``method``, and ``measure`` parameters interact in
the following ways:
- If ``method='ctps'``, ``threshold`` refers to the significance value
of a Kuiper statistic, and ``threshold='auto'`` will compute the
threshold automatically based on the sampling frequency.
- If ``method='correlation'`` and ``measure='correlation'``,
``threshold`` refers to the Pearson correlation value, and
``threshold='auto'`` sets the threshold to 0.9.
- If ``method='correlation'`` and ``measure='zscore'``, ``threshold``
refers to the z-score value (i.e., standard deviations) used in the
iterative z-scoring method, and ``threshold='auto'`` sets the
threshold to 3.0.
References
----------
.. footbibliography::
"""
_validate_type(threshold, (str, "numeric"), "threshold")
if isinstance(threshold, str):
_check_option("threshold", threshold, ("auto",), extra="when str")
_validate_type(method, str, "method")
_check_option("method", method, ("ctps", "correlation"))
_validate_type(measure, str, "measure")
_check_option("measure", measure, ("zscore", "correlation"))
idx_ecg = _get_ecg_channel_index(ch_name, inst)
if idx_ecg is None:
ecg, _ = _make_ecg(
inst, start, stop, reject_by_annotation=reject_by_annotation
)
else:
ecg = inst.ch_names[idx_ecg]
if method == "ctps":
if threshold == "auto":
threshold = self._get_ctps_threshold()
logger.info(f"Using threshold: {threshold:.2f} for CTPS ECG detection")
if isinstance(inst, BaseRaw):
sources = self.get_sources(
create_ecg_epochs(
inst,
ch_name,
l_freq=l_freq,
h_freq=h_freq,
keep_ecg=False,
reject_by_annotation=reject_by_annotation,
)
).get_data(copy=False)
if sources.shape[0] == 0:
warn(
"No ECG activity detected. Consider changing "
"the input parameters."
)
elif isinstance(inst, BaseEpochs):
sources = self.get_sources(inst).get_data(copy=False)
else:
raise ValueError("With `ctps` only Raw and Epochs input is supported")
_, p_vals, _ = ctps(sources)
scores = p_vals.max(-1)
ecg_idx = np.where(scores >= threshold)[0]
# sort indices by scores
ecg_idx = ecg_idx[np.abs(scores[ecg_idx]).argsort()[::-1]]
self.labels_["ecg"] = list(ecg_idx)
if ch_name is None:
ch_name = "ECG-MAG"
self.labels_[f"ecg/{ch_name}"] = list(ecg_idx)
elif method == "correlation":
if threshold == "auto" and measure == "zscore":
threshold = 3.0
elif threshold == "auto" and measure == "correlation":
threshold = 0.9
self.labels_["ecg"], scores = self._find_bads_ch(
inst,
[ecg],
threshold=threshold,
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
prefix="ecg",
reject_by_annotation=reject_by_annotation,
measure=measure,
)
return self.labels_["ecg"], scores
@verbose
def find_bads_ref(
self,
inst,
ch_name=None,
threshold=3.0,
start=None,
stop=None,
l_freq=None,
h_freq=None,
reject_by_annotation=True,
method="together",
measure="zscore",
verbose=None,
):
"""Detect MEG reference related components using correlation.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from. Should contain at least one channel
i.e. component derived from MEG reference channels.
ch_name : list of str
Which MEG reference components to use. If None, then all channels
that begin with REF_ICA.
threshold : float | str
Value above which a feature is classified as outlier.
- If ``measure`` is ``'zscore'``, defines the threshold on the
z-score used in the iterative z-scoring method.
- If ``measure`` is ``'correlation'``, defines the absolute
threshold on the correlation between 0 and 1.
- If ``'auto'``, defaults to 3.0 if ``measure`` is ``'zscore'`` and
0.9 if ``measure`` is ``'correlation'``.
.. warning::
If ``method`` is ``'together'``, the iterative z-score method
is always used.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
%(reject_by_annotation_all)s
method : 'together' | 'separate'
Method to use to identify reference channel related components.
Defaults to ``'together'``. See notes.
.. versionadded:: 0.21
%(measure)s
%(verbose)s
Returns
-------
ref_idx : list of int
The indices of MEG reference related components, sorted by score.
scores : np.ndarray of float, shape (``n_components_``) | list of array
The correlation scores.
See Also
--------
find_bads_ecg, find_bads_eog, find_bads_muscle
Notes
-----
ICA decomposition on MEG reference channels is used to assess external
magnetic noise and remove it from the MEG. Two methods are supported:
With the ``'together'`` method, only one ICA fit is used, which
encompasses both MEG and reference channels together. Components which
have particularly strong weights on the reference channels may be
thresholded and marked for removal.
With ``'separate'`` selected components from a separate ICA
decomposition on the reference channels are used as a ground truth for
identifying bad components in an ICA fit done on MEG channels only. The
logic here is similar to an EOG/ECG, with reference components
replacing the EOG/ECG channels. Recommended procedure is to perform ICA
separately on reference channels, extract them using
:meth:`~mne.preprocessing.ICA.get_sources`, and then append them to the
inst using :meth:`~mne.io.Raw.add_channels`, preferably with the prefix
``REF_ICA`` so that they can be automatically detected.
With ``'together'``, thresholding is based on adaptative z-scoring.
With ``'separate'``:
- If ``measure`` is ``'zscore'``, thresholding is based on adaptative
z-scoring.
- If ``measure`` is ``'correlation'``, threshold defines the absolute
threshold on the correlation between 0 and 1.
Validation and further documentation for this technique can be found
in :footcite:`HannaEtAl2020`.
.. versionadded:: 0.18
References
----------
.. footbibliography::
"""
_validate_type(threshold, (str, "numeric"), "threshold")
if isinstance(threshold, str):
_check_option("threshold", threshold, ("auto",), extra="when str")
_validate_type(method, str, "method")
_check_option("method", method, ("together", "separate"))
_validate_type(measure, str, "measure")
_check_option("measure", measure, ("zscore", "correlation"))
if method == "separate":
if threshold == "auto" and measure == "zscore":
threshold = 3.0
elif threshold == "auto" and measure == "correlation":
threshold = 0.9
if not ch_name:
inds = pick_channels_regexp(inst.ch_names, "REF_ICA*")
else:
inds = pick_channels(inst.ch_names, ch_name)
# regexp returns list, pick_channels returns numpy
inds = list(inds)
if not inds:
raise ValueError("No valid channels available.")
ref_chs = [inst.ch_names[k] for k in inds]
self.labels_["ref_meg"], scores = self._find_bads_ch(
inst,
ref_chs,
threshold=threshold,
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
prefix="ref_meg",
reject_by_annotation=reject_by_annotation,
measure=measure,
)
elif method == "together":
if threshold == "auto":
threshold = 3.0
if measure != "zscore":
logger.info(
"With method 'together', only 'zscore' measure is"
f"supported. Using 'zscore' instead of '{measure}'."
)
meg_picks = pick_types(self.info, meg=True, ref_meg=False)
ref_picks = pick_types(self.info, meg=False, ref_meg=True)
if not any(meg_picks) or not any(ref_picks):
raise ValueError(
"ICA solution must contain both reference and MEG channels."
)
weights = self.get_components()
# take norm of component weights on reference channels for each
# component, divide them by the norm on the standard channels,
# log transform to approximate normal distribution
normrats = np.linalg.norm(weights[ref_picks], axis=0) / np.linalg.norm(
weights[meg_picks], axis=0
)
scores = np.log(normrats)
self.labels_["ref_meg"] = list(
_find_outliers(scores, threshold=threshold, tail=1)
)
return self.labels_["ref_meg"], scores
@verbose
def find_bads_muscle(
self,
inst,
threshold=0.5,
start=None,
stop=None,
l_freq=7,
h_freq=45,
sphere=None,
verbose=None,
):
"""Detect muscle-related components.
Detection is based on :footcite:`DharmapraniEtAl2016` which uses
data from a subject who has been temporarily paralyzed
:footcite:`WhithamEtAl2007`. The criteria are threefold:
#. Positive log-log spectral slope from 7 to 45 Hz
#. Peripheral component power (farthest away from the vertex)
#. A single focal point measured by low spatial smoothness
The threshold is relative to the slope, focal point and smoothness
of a typical muscle-related ICA component. Note the high frequency
of the power spectral density slope was 75 Hz in the reference but
has been modified to 45 Hz as a default based on the criteria being
more accurate in practice.
If ``inst`` is supplied without sensor positions, only the first criterion
(slope) is applied.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
threshold : float | str
Value above which a component should be marked as muscle-related,
relative to a typical muscle component.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low frequency for muscle-related power.
h_freq : float
High frequency for muscle-related power.
%(sphere_topomap_auto)s
%(verbose)s
Returns
-------
muscle_idx : list of int
The indices of muscle-related components, sorted by score.
scores : np.ndarray of float, shape (``n_components_``) | list of array
The correlation scores.
See Also
--------
find_bads_ecg, find_bads_eog, find_bads_ref
Notes
-----
.. versionadded:: 1.1
"""
_validate_type(threshold, "numeric", "threshold")
slope_score, focus_score, smoothness_score = None, None, None
sources = self.get_sources(inst, start=start, stop=stop)
components = self.get_components()
# compute metric #1: slope of the log-log psd
spectrum = sources.compute_psd(fmin=l_freq, fmax=h_freq, picks="misc")
psds, freqs = spectrum.get_data(return_freqs=True)
if psds.ndim > 2:
psds = psds.mean(axis=0)
slopes = np.polyfit(np.log10(freqs), np.log10(psds).T, 1)[0]
# typical muscle slope is ~0.15, non-muscle components negative
# so logistic with shift -0.5 and slope 0.25 so -0.5 -> 0.5 and 0->1
slope_score = expit((slopes + 0.5) / 0.25)
# Need sensor positions for the criteria below, so return with only one score
# if no positions available
picks = _picks_to_idx(
inst.info, self.ch_names, "all", exclude=(), allow_empty=False
)
if not _check_ch_locs(inst.info, picks=picks):
warn(
"No sensor positions found. Scores for bad muscle components are only "
"based on the 'slope' criterion."
)
scores = slope_score
self.labels_["muscle"] = [
idx for idx, score in enumerate(scores) if score > threshold
]
return self.labels_["muscle"], scores
# compute metric #2: distance from the vertex of focus
components_norm = abs(components) / np.max(abs(components), axis=0)
# we need to retrieve the position from the channels that were used to
# fit the ICA. N.B: picks in _find_topomap_coords includes bad channels
# even if they are not provided explicitly.
pos = _find_topomap_coords(
inst.info, picks=self.ch_names, sphere=sphere, ignore_overlap=True
)
assert pos.shape[0] == components.shape[0] # pos for each sensor
pos -= pos.mean(axis=0) # center
dists = np.linalg.norm(pos, axis=1)
dists /= dists.max()
focus_dists = np.dot(dists, components_norm)
# focus distance is ~65% of max electrode distance with 10% slope
# (assumes typical head size)
focus_score = expit((focus_dists - 0.65) / 0.1)
# compute metric #3: smoothness
smoothnesses = np.zeros((components.shape[1],))
dists = distance.squareform(distance.pdist(pos))
dists = 1 - (dists / dists.max()) # invert
for idx, comp in enumerate(components.T):
comp_dists = distance.squareform(distance.pdist(comp[:, np.newaxis]))
comp_dists /= comp_dists.max()
smoothnesses[idx] = np.multiply(dists, comp_dists).sum()
# smoothnessness is around 150 for muscle and 450 otherwise
# so use reversed logistic centered at 300 with 100 slope
smoothness_score = 1 - expit((smoothnesses - 300) / 100)
# multiply all criteria that are present
scores = [
score
for score in [slope_score, focus_score, smoothness_score]
if score is not None
]
n_criteria = len(scores)
scores = np.prod(np.array(scores), axis=0)
# scale the threshold by the use of three metrics
self.labels_["muscle"] = [
idx for idx, score in enumerate(scores) if score > threshold**n_criteria
]
return self.labels_["muscle"], scores
@verbose
def find_bads_eog(
self,
inst,
ch_name=None,
threshold=3.0,
start=None,
stop=None,
l_freq=1,
h_freq=10,
reject_by_annotation=True,
measure="zscore",
verbose=None,
):
"""Detect EOG related components using correlation.
Detection is based on Pearson correlation between the
filtered data and the filtered EOG channel.
Thresholding is based on adaptive z-scoring. The above threshold
components will be masked and the z-score will be recomputed
until no supra-threshold component remains.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
Object to compute sources from.
ch_name : str
The name of the channel to use for EOG peak detection.
The argument is mandatory if the dataset contains no EOG
channels.
threshold : float | str
Value above which a feature is classified as outlier.
- If ``measure`` is ``'zscore'``, defines the threshold on the
z-score used in the iterative z-scoring method.
- If ``measure`` is ``'correlation'``, defines the absolute
threshold on the correlation between 0 and 1.
- If ``'auto'``, defaults to 3.0 if ``measure`` is ``'zscore'`` and
0.9 if ``measure`` is ``'correlation'``.
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
%(reject_by_annotation_all)s
.. versionadded:: 0.14.0
%(measure)s
%(verbose)s
Returns
-------
eog_idx : list of int
The indices of EOG related components, sorted by score.
scores : np.ndarray of float, shape (``n_components_``) | list of array
The correlation scores.
See Also
--------
find_bads_ecg, find_bads_ref, find_bads_muscle
"""
_validate_type(threshold, (str, "numeric"), "threshold")
if isinstance(threshold, str):
_check_option("threshold", threshold, ("auto",), extra="when str")
_validate_type(measure, str, "measure")
_check_option("measure", measure, ("zscore", "correlation"))
eog_inds = _get_eog_channel_index(ch_name, inst)
eog_chs = [inst.ch_names[k] for k in eog_inds]
if threshold == "auto" and measure == "zscore":
threshold = 3.0
elif threshold == "auto" and measure == "correlation":
threshold = 0.9
self.labels_["eog"], scores = self._find_bads_ch(
inst,
eog_chs,
threshold=threshold,
start=start,
stop=stop,
l_freq=l_freq,
h_freq=h_freq,
prefix="eog",
reject_by_annotation=reject_by_annotation,
measure=measure,
)
return self.labels_["eog"], scores
@verbose
def apply(
self,
inst,
include=None,
exclude=None,
n_pca_components=None,
start=None,
stop=None,
*,
on_baseline="warn",
verbose=None,
):
"""Remove selected components from the signal.
Given the unmixing matrix, transform the data,
zero out all excluded components, and inverse-transform the data.
This procedure will reconstruct M/EEG signals from which
the dynamics described by the excluded components is subtracted.
Parameters
----------
inst : instance of Raw, Epochs or Evoked
The data to be processed (i.e., cleaned). It will be modified
in-place.
include : array_like of int
The indices referring to columns in the ummixing matrix. The
components to be kept. If ``None`` (default), all components
will be included (minus those defined in ``ica.exclude``
and the ``exclude`` parameter, see below).
exclude : array_like of int
The indices referring to columns in the ummixing matrix. The
components to be zeroed out. If ``None`` (default) or an
empty list, only components from ``ica.exclude`` will be
excluded. Else, the union of ``exclude`` and ``ica.exclude``
will be excluded.
%(n_pca_components_apply)s
start : int | float | None
First sample to include. If float, data will be interpreted as
time in seconds. If None, data will be used from the first sample.
stop : int | float | None
Last sample to not include. If float, data will be interpreted as
time in seconds. If None, data will be used to the last sample.
%(on_baseline_ica)s
%(verbose)s
Returns
-------
out : instance of Raw, Epochs or Evoked
The processed data.
Notes
-----
.. note:: Applying ICA may introduce a DC shift. If you pass
baseline-corrected `~mne.Epochs` or `~mne.Evoked` data,
the baseline period of the cleaned data may not be of
zero mean anymore. If you require baseline-corrected
data, apply baseline correction again after cleaning
via ICA. A warning will be emitted to remind you of this
fact if you pass baseline-corrected data.
.. versionchanged:: 0.23
Warn if instance was baseline-corrected.
"""
_validate_type(
inst, (BaseRaw, BaseEpochs, Evoked), "inst", "Raw, Epochs, or Evoked"
)
kwargs = dict(
include=include, exclude=exclude, n_pca_components=n_pca_components
)
if isinstance(inst, BaseRaw):
kind, meth = "Raw", self._apply_raw
kwargs.update(raw=inst, start=start, stop=stop)
elif isinstance(inst, BaseEpochs):
kind, meth = "Epochs", self._apply_epochs
kwargs.update(epochs=inst)
else: # isinstance(inst, Evoked):
kind, meth = "Evoked", self._apply_evoked
kwargs.update(evoked=inst)
_check_compensation_grade(
self.info, inst.info, "ICA", kind, ch_names=self.ch_names
)
_check_on_missing(on_baseline, "on_baseline", extras=("reapply",))
reapply_baseline = False
if isinstance(inst, BaseEpochs | Evoked):
if getattr(inst, "baseline", None) is not None:
if on_baseline == "reapply":
reapply_baseline = True
else:
msg = (
"The data you passed to ICA.apply() was "
"baseline-corrected. Please note that ICA can "
"introduce DC shifts, therefore you may wish to "
"consider baseline-correcting the cleaned data again."
)
_on_missing(on_baseline, msg, "on_baseline")
logger.info(f"Applying ICA to {kind} instance")
out = meth(**kwargs)
if reapply_baseline:
out.apply_baseline(inst.baseline)
return out
def _check_exclude(self, exclude):
if exclude is None:
return list(set(self.exclude))
else:
# Allow both self.exclude and exclude to be array-like:
return list(set(self.exclude).union(set(exclude)))
def _apply_raw(self, raw, include, exclude, n_pca_components, start, stop):
"""Aux method."""
_check_preload(raw, "ica.apply")
start, stop = _check_start_stop(raw, start, stop)
picks = pick_types(
raw.info, meg=False, include=self.ch_names, exclude="bads", ref_meg=False
)
data = raw[picks, start:stop][0]
data = self._pick_sources(data, include, exclude, n_pca_components)
raw[picks, start:stop] = data
return raw
def _apply_epochs(self, epochs, include, exclude, n_pca_components):
"""Aux method."""
_check_preload(epochs, "ica.apply")
picks = pick_types(
epochs.info, meg=False, ref_meg=False, include=self.ch_names, exclude="bads"
)
# special case where epochs come picked but fit was 'unpicked'.
if len(picks) != len(self.ch_names):
raise RuntimeError(
f"Epochs don't match fitted data: {len(self.ch_names)} channels "
f"fitted but {len(picks)} channels supplied. \nPlease "
"provide Epochs compatible with 'ica.ch_names'."
)
data = np.hstack(epochs.get_data(picks))
data = self._pick_sources(data, include, exclude, n_pca_components)
# restore epochs, channels, tsl order
epochs._data[:, picks] = np.array(np.split(data, len(epochs.events), 1))
epochs.preload = True
return epochs
def _apply_evoked(self, evoked, include, exclude, n_pca_components):
"""Aux method."""
picks = pick_types(
evoked.info, meg=False, ref_meg=False, include=self.ch_names, exclude="bads"
)
# special case where evoked come picked but fit was 'unpicked'.
if len(picks) != len(self.ch_names):
raise RuntimeError(
f"Evoked does not match fitted data: {len(self.ch_names)} channels "
f"fitted but {len(picks)} channels supplied. \nPlease "
"provide an Evoked object that's compatible with ica.ch_names."
)
data = evoked.data[picks]
data = self._pick_sources(data, include, exclude, n_pca_components)
# restore evoked
evoked.data[picks] = data
return evoked
def _pick_sources(self, data, include, exclude, n_pca_components):
"""Aux function."""
if n_pca_components is None:
n_pca_components = self.n_pca_components
data = self._pre_whiten(data)
exclude = self._check_exclude(exclude)
_n_pca_comp = self._check_n_pca_components(n_pca_components)
n_ch, _ = data.shape
max_pca_components = self.pca_components_.shape[0]
if not self.n_components_ <= _n_pca_comp <= max_pca_components:
raise ValueError(
f"n_pca_components ({_n_pca_comp}) must be >= "
f"n_components_ ({self.n_components_}) and <= "
"the total number of PCA components "
f"({max_pca_components})."
)
logger.info(
f" Transforming to ICA space ({self.n_components_} "
f"component{_pl(self.n_components_)})"
)
# Apply first PCA
if self.pca_mean_ is not None:
data -= self.pca_mean_[:, None]
sel_keep = np.arange(self.n_components_)
if include not in (None, []):
sel_keep = np.unique(include)
elif exclude not in (None, []):
sel_keep = np.setdiff1d(np.arange(self.n_components_), exclude)
n_zero = self.n_components_ - len(sel_keep)
logger.info(f" Zeroing out {n_zero} ICA component{_pl(n_zero)}")
# Mixing and unmixing should both be shape (self.n_components_, 2),
# and we need to put these into the upper left part of larger mixing
# and unmixing matrices of shape (n_ch, _n_pca_comp)
pca_components = self.pca_components_[:_n_pca_comp]
assert pca_components.shape == (_n_pca_comp, n_ch)
assert (
self.unmixing_matrix_.shape
== self.mixing_matrix_.shape
== (self.n_components_,) * 2
)
unmixing = np.eye(_n_pca_comp)
unmixing[: self.n_components_, : self.n_components_] = self.unmixing_matrix_
unmixing = np.dot(unmixing, pca_components)
logger.info(
f" Projecting back using {_n_pca_comp} PCA component{_pl(_n_pca_comp)}"
)
mixing = np.eye(_n_pca_comp)
mixing[: self.n_components_, : self.n_components_] = self.mixing_matrix_
mixing = pca_components.T @ mixing
assert mixing.shape == unmixing.shape[::-1] == (n_ch, _n_pca_comp)
# keep requested components plus residuals (if any)
sel_keep = np.concatenate(
(sel_keep, np.arange(self.n_components_, _n_pca_comp))
)
proj_mat = np.dot(mixing[:, sel_keep], unmixing[sel_keep, :])
data = np.dot(proj_mat, data)
assert proj_mat.shape == (n_ch,) * 2
if self.pca_mean_ is not None:
data += self.pca_mean_[:, None]
# restore scaling
if self.noise_cov is None: # revert standardization
data *= self.pre_whitener_
else:
data = np.linalg.pinv(self.pre_whitener_, rcond=1e-14) @ data
return data
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Store ICA solution into a fiff file.
Parameters
----------
fname : path-like
The absolute path of the file name to save the ICA solution into.
The file name should end with ``-ica.fif`` or ``-ica.fif.gz``.
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
Returns
-------
ica : instance of ICA
The object.
See Also
--------
read_ica
"""
if self.current_fit == "unfitted":
raise RuntimeError("No fit available. Please first fit ICA")
check_fname(
fname, "ICA", ("-ica.fif", "-ica.fif.gz", "_ica.fif", "_ica.fif.gz")
)
fname = _check_fname(fname, overwrite=overwrite)
logger.info(f"Writing ICA solution to {fname}...")
with start_and_end_file(fname) as fid:
_write_ica(fid, self)
return self
def copy(self):
"""Copy the ICA object.
Returns
-------
ica : instance of ICA
The copied object.
"""
return deepcopy(self)
@copy_function_doc_to_method_doc(plot_ica_components)
def plot_components(
self,
picks=None,
ch_type=None,
*,
inst=None,
plot_std=True,
reject="auto",
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap="RdBu_r",
vlim=(None, None),
cnorm=None,
colorbar=False,
cbar_fmt="%3.2f",
axes=None,
title=None,
nrows="auto",
ncols="auto",
show=True,
image_args=None,
psd_args=None,
verbose=None,
):
return plot_ica_components(
self,
picks=picks,
ch_type=ch_type,
inst=inst,
plot_std=plot_std,
reject=reject,
sensors=sensors,
show_names=show_names,
contours=contours,
outlines=outlines,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
res=res,
size=size,
cmap=cmap,
vlim=vlim,
cnorm=cnorm,
colorbar=colorbar,
cbar_fmt=cbar_fmt,
axes=axes,
title=title,
nrows=nrows,
ncols=ncols,
show=show,
image_args=image_args,
psd_args=psd_args,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_ica_properties)
def plot_properties(
self,
inst,
picks=None,
axes=None,
dB=True,
plot_std=True,
log_scale=False,
topomap_args=None,
image_args=None,
psd_args=None,
figsize=None,
show=True,
reject="auto",
reject_by_annotation=True,
*,
estimate="power",
verbose=None,
):
return plot_ica_properties(
self,
inst,
picks=picks,
axes=axes,
dB=dB,
plot_std=plot_std,
log_scale=log_scale,
topomap_args=topomap_args,
image_args=image_args,
psd_args=psd_args,
figsize=figsize,
show=show,
reject=reject,
reject_by_annotation=reject_by_annotation,
estimate=estimate,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_ica_sources)
def plot_sources(
self,
inst,
picks=None,
start=None,
stop=None,
title=None,
show=True,
block=False,
show_first_samp=False,
show_scrollbars=True,
time_format="float",
precompute=None,
use_opengl=None,
*,
psd_args=None,
theme=None,
overview_mode=None,
splash=True,
):
return plot_ica_sources(
self,
inst=inst,
picks=picks,
start=start,
stop=stop,
title=title,
show=show,
block=block,
psd_args=psd_args,
show_first_samp=show_first_samp,
show_scrollbars=show_scrollbars,
time_format=time_format,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
splash=splash,
)
@copy_function_doc_to_method_doc(plot_ica_scores)
def plot_scores(
self,
scores,
exclude=None,
labels=None,
axhline=None,
title="ICA component scores",
figsize=None,
n_cols=None,
show=True,
):
return plot_ica_scores(
ica=self,
scores=scores,
exclude=exclude,
labels=labels,
axhline=axhline,
title=title,
figsize=figsize,
n_cols=n_cols,
show=show,
)
@copy_function_doc_to_method_doc(plot_ica_overlay)
def plot_overlay(
self,
inst,
exclude=None,
picks=None,
start=None,
stop=None,
title=None,
show=True,
n_pca_components=None,
*,
on_baseline="warn",
verbose=None,
):
return plot_ica_overlay(
self,
inst=inst,
exclude=exclude,
picks=picks,
start=start,
stop=stop,
title=title,
show=show,
n_pca_components=n_pca_components,
on_baseline=on_baseline,
verbose=verbose,
)
@verbose
def _check_n_pca_components(self, _n_pca_comp, verbose=None):
"""Aux function."""
if isinstance(_n_pca_comp, float):
n, ev = _exp_var_ncomp(self.pca_explained_variance_, _n_pca_comp)
logger.info(
f" Selected {n} PCA components by explained "
f"variance ({100 * ev}≥{100 * _n_pca_comp}%)"
)
_n_pca_comp = n
elif _n_pca_comp is None:
_n_pca_comp = self._max_pca_components
if _n_pca_comp is None:
_n_pca_comp = self.pca_components_.shape[0]
elif _n_pca_comp < self.n_components_:
_n_pca_comp = self.n_components_
return _n_pca_comp
def _exp_var_ncomp(var, n):
cvar = np.asarray(var, dtype=np.float64)
cvar = cvar.cumsum()
cvar /= cvar[-1]
# We allow 1., which would give us N+1
n = min((cvar <= n).sum() + 1, len(cvar))
return n, cvar[n - 1]
def _check_start_stop(raw, start, stop):
"""Aux function."""
out = list()
for st, none_ in ((start, 0), (stop, raw.n_times)):
if st is None:
out.append(none_)
else:
try:
out.append(_ensure_int(st))
except TypeError: # not int-like
out.append(raw.time_as_index(st)[0])
return out
@verbose
def ica_find_ecg_events(
raw,
ecg_source,
event_id=999,
tstart=0.0,
l_freq=5,
h_freq=35,
qrs_threshold="auto",
verbose=None,
):
"""Find ECG peaks from one selected ICA source.
Parameters
----------
raw : instance of Raw
Raw object to draw sources from.
ecg_source : ndarray
ICA source resembling ECG to find peaks from.
event_id : int
The index to assign to found events.
tstart : float
Start detection after tstart seconds. Useful when beginning
of run is noisy.
l_freq : float
Low pass frequency.
h_freq : float
High pass frequency.
qrs_threshold : float | str
Between 0 and 1. qrs detection threshold. Can also be "auto" to
automatically choose the threshold that generates a reasonable
number of heartbeats (40-160 beats / min).
%(verbose)s
Returns
-------
ecg_events : array
Events.
ch_ECG : string
Name of channel used.
average_pulse : float.
Estimated average pulse.
"""
logger.info("Using ICA source to identify heart beats")
# detecting QRS and generating event file
ecg_events = qrs_detector(
raw.info["sfreq"],
ecg_source.ravel(),
tstart=tstart,
thresh_value=qrs_threshold,
l_freq=l_freq,
h_freq=h_freq,
)
n_events = len(ecg_events)
ecg_events = np.c_[
ecg_events + raw.first_samp, np.zeros(n_events), event_id * np.ones(n_events)
]
return ecg_events
@verbose
def ica_find_eog_events(
raw, eog_source=None, event_id=998, l_freq=1, h_freq=10, verbose=None
):
"""Locate EOG artifacts from one selected ICA source.
Parameters
----------
raw : instance of Raw
The raw data.
eog_source : ndarray
ICA source resembling EOG to find peaks from.
event_id : int
The index to assign to found events.
l_freq : float
Low cut-off frequency in Hz.
h_freq : float
High cut-off frequency in Hz.
%(verbose)s
Returns
-------
eog_events : array
Events.
"""
eog_events = _find_eog_events(
eog_source[np.newaxis],
ch_names=None,
event_id=event_id,
l_freq=l_freq,
h_freq=h_freq,
sampling_rate=raw.info["sfreq"],
first_samp=raw.first_samp,
)
return eog_events
def _get_target_ch(container, target):
"""Aux function."""
# auto target selection
picks = pick_channels(container.ch_names, include=[target])
ref_picks = pick_types(container.info, meg=False, eeg=False, ref_meg=True)
if len(ref_picks) > 0:
picks = list(set(picks) - set(ref_picks))
if len(picks) == 0:
raise ValueError(f"{target} not in channel list ({container.ch_names})")
return picks
def _find_sources(sources, target, score_func):
"""Aux function."""
if isinstance(score_func, str):
score_func = get_score_funcs().get(score_func, score_func)
if not callable(score_func):
raise ValueError(f"{score_func} is not a valid score_func.")
scores = (
score_func(sources, target) if target is not None else score_func(sources, 1)
)
return scores
def _ica_explained_variance(ica, inst, normalize=False):
"""Check variance accounted for by each component in supplied data.
This function is only used for sorting the components.
Parameters
----------
ica : ICA
Instance of `mne.preprocessing.ICA`.
inst : Raw | Epochs | Evoked
Data to explain with ICA. Instance of Raw, Epochs or Evoked.
normalize : bool
Whether to normalize the variance.
Returns
-------
var : array
Variance explained by each component.
"""
# check if ica is ICA and whether inst is Raw or Epochs
if not isinstance(ica, ICA):
raise TypeError("first argument must be an instance of ICA.")
if not isinstance(inst, BaseRaw | BaseEpochs | Evoked):
raise TypeError(
"second argument must an instance of either Raw, Epochs or Evoked."
)
source_data = _get_inst_data(ica.get_sources(inst))
# if epochs - reshape to channels x timesamples
if isinstance(inst, BaseEpochs):
n_epochs, n_chan, n_samp = source_data.shape
source_data = source_data.transpose(1, 0, 2).reshape(
(n_chan, n_epochs * n_samp)
)
n_chan, n_samp = source_data.shape
var = (
np.sum(ica.mixing_matrix_**2, axis=0)
* np.sum(source_data**2, axis=1)
/ (n_chan * n_samp - 1)
)
if normalize:
var /= var.sum()
return var
def _sort_components(ica, order, copy=True):
"""Change the order of components in ica solution."""
assert ica.n_components_ == len(order)
if copy:
ica = ica.copy()
# reorder components
ica.mixing_matrix_ = ica.mixing_matrix_[:, order]
ica.unmixing_matrix_ = ica.unmixing_matrix_[order, :]
# reorder labels, excludes etc.
if isinstance(order, np.ndarray):
order = list(order)
if ica.exclude:
ica.exclude = [order.index(ic) for ic in ica.exclude]
for k in ica.labels_.keys():
ica.labels_[k] = [order.index(ic) for ic in ica.labels_[k]]
return ica
def _serialize(dict_, outer_sep=";", inner_sep=":"):
"""Aux function."""
s = []
for key, value in dict_.items():
if callable(value):
value = value.__name__
elif isinstance(value, Integral):
value = int(value)
elif isinstance(value, dict):
# py35 json does not support numpy int64
for subkey, subvalue in value.items():
if isinstance(subvalue, list):
if len(subvalue) > 0:
if isinstance(subvalue[0], int | np.integer):
value[subkey] = [int(i) for i in subvalue]
for cls in (np.random.RandomState, Covariance):
if isinstance(value, cls):
value = cls.__name__
s.append(key + inner_sep + json.dumps(value))
return outer_sep.join(s)
def _deserialize(str_, outer_sep=";", inner_sep=":"):
"""Aux Function."""
out = {}
for mapping in str_.split(outer_sep):
k, v = mapping.split(inner_sep, 1)
out[k] = json.loads(v)
return out
def _write_ica(fid, ica):
"""Write an ICA object.
Parameters
----------
fid: file
The file descriptor
ica:
The instance of ICA to write
"""
ica_init = dict(
noise_cov=ica.noise_cov,
n_components=ica.n_components,
n_pca_components=ica.n_pca_components,
max_pca_components=ica._max_pca_components,
current_fit=ica.current_fit,
allow_ref_meg=ica.allow_ref_meg,
)
if ica.info is not None:
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if ica.info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, ica.info["meas_id"])
# Write measurement info
write_meas_info(fid, ica.info)
end_block(fid, FIFF.FIFFB_MEAS)
start_block(fid, FIFF.FIFFB_MNE_ICA)
# ICA interface params
write_string(fid, FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS, _serialize(ica_init))
# Channel names
if ica.ch_names is not None:
write_name_list(fid, FIFF.FIFF_MNE_ROW_NAMES, ica.ch_names)
# samples on fit
n_samples = getattr(ica, "n_samples_", None)
ica_misc = {
"n_samples_": (None if n_samples is None else int(n_samples)),
"labels_": getattr(ica, "labels_", None),
"method": getattr(ica, "method", None),
"n_iter_": getattr(ica, "n_iter_", None),
"fit_params": getattr(ica, "fit_params", None),
}
# ICA misc params
write_string(fid, FIFF.FIFF_MNE_ICA_MISC_PARAMS, _serialize(ica_misc))
# Whitener
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_WHITENER, ica.pre_whitener_)
# PCA components_
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_COMPONENTS, ica.pca_components_)
# PCA mean_
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_PCA_MEAN, ica.pca_mean_)
# PCA explained_variance_
write_double_matrix(
fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR, ica.pca_explained_variance_
)
# ICA unmixing
write_double_matrix(fid, FIFF.FIFF_MNE_ICA_MATRIX, ica.unmixing_matrix_)
# Write bad components
write_int(fid, FIFF.FIFF_MNE_ICA_BADS, list(ica.exclude))
# Write reject_
if ica.reject_ is not None:
write_string(
fid, FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT, json.dumps(dict(reject=ica.reject_))
)
# Done!
end_block(fid, FIFF.FIFFB_MNE_ICA)
@verbose
def read_ica(fname, verbose=None):
"""Restore ICA solution from fif file.
Parameters
----------
fname : path-like
Absolute path to fif file containing ICA matrices.
The file name should end with -ica.fif or -ica.fif.gz.
%(verbose)s
Returns
-------
ica : instance of ICA
The ICA estimator.
"""
check_fname(fname, "ICA", ("-ica.fif", "-ica.fif.gz", "_ica.fif", "_ica.fif.gz"))
fname = _check_fname(fname, overwrite="read", must_exist=True)
logger.info(f"Reading {fname} ...")
fid, tree, _ = fiff_open(fname)
try:
# we used to store bads that weren't part of the info...
info, _ = read_meas_info(fid, tree, clean_bads=True)
except ValueError:
logger.info(
"Could not find the measurement info. \n"
"Functionality requiring the info won't be"
" available."
)
info = None
ica_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ICA)
if len(ica_data) == 0:
ica_data = dir_tree_find(tree, 123) # Constant 123 Used before v 0.11
if len(ica_data) == 0:
fid.close()
raise ValueError("Could not find ICA data")
my_ica_data = ica_data[0]
ica_reject = None
for d in my_ica_data["directory"]:
kind = d.kind
pos = d.pos
if kind == FIFF.FIFF_MNE_ICA_INTERFACE_PARAMS:
tag = read_tag(fid, pos)
ica_init = tag.data
elif kind == FIFF.FIFF_MNE_ROW_NAMES:
tag = read_tag(fid, pos)
ch_names = tag.data
elif kind == FIFF.FIFF_MNE_ICA_WHITENER:
tag = read_tag(fid, pos)
pre_whitener = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_COMPONENTS:
tag = read_tag(fid, pos)
pca_components = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR:
tag = read_tag(fid, pos)
pca_explained_variance = tag.data
elif kind == FIFF.FIFF_MNE_ICA_PCA_MEAN:
tag = read_tag(fid, pos)
pca_mean = tag.data
elif kind == FIFF.FIFF_MNE_ICA_MATRIX:
tag = read_tag(fid, pos)
unmixing_matrix = tag.data
elif kind == FIFF.FIFF_MNE_ICA_BADS:
tag = read_tag(fid, pos)
exclude = tag.data
elif kind == FIFF.FIFF_MNE_ICA_MISC_PARAMS:
tag = read_tag(fid, pos)
ica_misc = tag.data
elif kind == FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT:
tag = read_tag(fid, pos)
ica_reject = json.loads(tag.data)["reject"]
fid.close()
ica_init, ica_misc = (_deserialize(k) for k in (ica_init, ica_misc))
n_pca_components = ica_init.pop("n_pca_components")
current_fit = ica_init.pop("current_fit")
max_pca_components = ica_init.pop("max_pca_components")
method = ica_misc.get("method", "fastica")
if method in _KNOWN_ICA_METHODS:
ica_init["method"] = method
if ica_init["noise_cov"] == Covariance.__name__:
logger.info("Reading whitener drawn from noise covariance ...")
logger.info("Now restoring ICA solution ...")
# make sure dtypes are np.float64 to satisfy fast_dot
def f(x):
return x.astype(np.float64)
ica_init = {
k: v for k, v in ica_init.items() if k in signature(ICA.__init__).parameters
}
ica = ICA(**ica_init)
ica.current_fit = current_fit
ica.ch_names = ch_names.split(":")
if n_pca_components is not None and not isinstance(n_pca_components, int_like):
n_pca_components = np.float64(n_pca_components)
ica.n_pca_components = n_pca_components
ica.pre_whitener_ = f(pre_whitener)
ica.pca_mean_ = f(pca_mean)
ica.pca_components_ = f(pca_components)
ica.n_components_ = unmixing_matrix.shape[0]
ica._max_pca_components = max_pca_components
ica._update_ica_names()
ica.pca_explained_variance_ = f(pca_explained_variance)
ica.unmixing_matrix_ = f(unmixing_matrix)
ica._update_mixing_matrix()
ica.exclude = [] if exclude is None else list(exclude)
ica.info = info
if "n_samples_" in ica_misc:
ica.n_samples_ = ica_misc["n_samples_"]
if "labels_" in ica_misc:
labels_ = ica_misc["labels_"]
if labels_ is not None:
ica.labels_ = labels_
if "method" in ica_misc:
ica.method = ica_misc["method"]
if "n_iter_" in ica_misc:
ica.n_iter_ = ica_misc["n_iter_"]
if "fit_params" in ica_misc:
ica.fit_params = ica_misc["fit_params"]
ica.reject_ = ica_reject
logger.info("Ready.")
return ica
_ica_node = namedtuple("Node", "name target score_func criterion")
@verbose
def _band_pass_filter(inst, sources, target, l_freq, h_freq, verbose=None):
"""Optionally band-pass filter the data."""
if l_freq is not None and h_freq is not None:
logger.info("... filtering ICA sources")
# use FIR here, steeper is better
kw = dict(
phase="zero-double",
filter_length="10s",
fir_window="hann",
l_trans_bandwidth=0.5,
h_trans_bandwidth=0.5,
fir_design="firwin2",
)
sources = filter_data(sources, inst.info["sfreq"], l_freq, h_freq, **kw)
logger.info("... filtering target")
target = filter_data(target, inst.info["sfreq"], l_freq, h_freq, **kw)
elif l_freq is not None or h_freq is not None:
raise ValueError("Must specify both pass bands")
return sources, target
# #############################################################################
# CORRMAP
def _find_max_corrs(all_maps, target, threshold):
"""Compute correlations between template and target components."""
# Following Fig.2 from:
# https://www.sciencedirect.com/science/article/abs/pii/S1388245709002338
# > ... inverse weights (i.e., IC maps) from a selected template IC are
# > correlated with all ICs from all datasets ...
all_corrs = [compute_corr(target, subj_maps.T) for subj_maps in all_maps]
abs_corrs = [np.abs(a) for a in all_corrs]
corr_polarities = [np.sign(a) for a in all_corrs]
del all_corrs
# > selection of X ICs from each dataset with highest absolute
# > correlation >= TH
#
# subj_idxs is a list of indices for each subject that exceeded the threshold:
if threshold <= 1:
subj_idxs = [list(np.nonzero(s_corr > threshold)[0]) for s_corr in abs_corrs]
else:
subj_idxs = [
list(_find_outliers(s_corr, threshold=threshold)) for s_corr in abs_corrs
]
# > The mean correlation of a resulting cluster is then computed via
# > Fisher’s z transform, to account for the non-normal distribution of
# > correlation values.
#
# Here we just use the median rather than the (transformed-back) mean of
# the (Fisher z-transformed) correlations:
am = np.concatenate(
[abs_corr[subj_idx] for abs_corr, subj_idx in zip(abs_corrs, subj_idxs)]
)
if len(am) == 0:
return [], 0, 0, []
median_corr_with_target = np.median(am)
# > Next, an average cluster map is calculated, after inversion of those
# > ICs showing a negative correlation (sign ambiguity problem) and root
# > mean square (RMS) normalization of each individual IC.
#
# Which is this (rms=Frobenius norm=np.linalg.norm):
newtarget = sum(
subj_maps[idx] * (pols[idx] / np.linalg.norm(subj_maps[idx]))
for subj_maps, pols, subj_idx in zip(all_maps, corr_polarities, subj_idxs)
for idx in subj_idx
)
newtarget /= len(am)
# And we also compute the similarity between this new map and our original
# target map
sim_i_o = np.abs(np.corrcoef(target, newtarget)[1, 0])
return newtarget, median_corr_with_target, sim_i_o, subj_idxs
@verbose
def corrmap(
icas,
template,
threshold="auto",
label=None,
ch_type="eeg",
*,
sensors=True,
show_names=False,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
cmap=None,
plot=True,
show=True,
verbose=None,
):
"""Find similar Independent Components across subjects by map similarity.
Corrmap :footcite:p:`CamposViolaEtAl2009` identifies the best group
match to a supplied template. Typically, feed it a list of fitted ICAs and
a template IC, for example, the blink for the first subject, to identify
specific ICs across subjects.
The specific procedure consists of two iterations. In a first step, the
maps best correlating with the template are identified. In the next step,
the analysis is repeated with the mean of the maps identified in the first
stage.
Run with ``plot`` and ``show`` set to ``True`` and ``label=False`` to find
good parameters. Then, run with labelling enabled to apply the
labelling in the IC objects. (Running with both ``plot`` and ``labels``
off does nothing.)
Outputs a list of fitted ICAs with the indices of the marked ICs in a
specified field.
The original Corrmap website: www.debener.de/corrmap/corrmapplugin1.html
Parameters
----------
icas : list of mne.preprocessing.ICA
A list of fitted ICA objects.
template : tuple | np.ndarray, shape (n_components,)
Either a tuple with two elements (int, int) representing the list
indices of the set from which the template should be chosen, and the
template. E.g., if template=(1, 0), the first IC of the 2nd ICA object
is used.
Or a numpy array whose size corresponds to each IC map from the
supplied maps, in which case this map is chosen as the template.
threshold : "auto" | list of float | float
Correlation threshold for identifying ICs
If "auto", search for the best map by trying all correlations between
0.6 and 0.95. In the original proposal, lower values are considered,
but this is not yet implemented.
If list of floats, search for the best map in the specified range of
correlation strengths. As correlation values, must be between 0 and 1
If float > 0, select ICs correlating better than this.
If float > 1, use z-scoring to identify ICs within subjects (not in
original Corrmap)
Defaults to "auto".
label : None | str
If not None, categorised ICs are stored in a dictionary ``labels_``
under the given name. Preexisting entries will be appended to
(excluding repeats), not overwritten. If None, a dry run is performed
and the supplied ICs are not changed.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg'
The channel type to plot. Defaults to 'eeg'.
%(sensors_topomap)s
%(show_names_topomap)s
%(contours_topomap)s
%(outlines_topomap)s
%(sphere_topomap_auto)s
%(image_interp_topomap)s
.. versionadded:: 1.2
%(extrapolate_topomap)s
.. versionadded:: 1.2
%(border_topomap)s
.. versionadded:: 1.2
%(cmap_topomap_simple)s
plot : bool
Should constructed template and selected maps be plotted? Defaults
to True.
%(show)s
%(verbose)s
Returns
-------
template_fig : Figure
Figure showing the template.
labelled_ics : Figure
Figure showing the labelled ICs in all ICA decompositions.
References
----------
.. footbibliography::
"""
if not isinstance(plot, bool):
raise ValueError("`plot` must be of type `bool`")
same_chans = _check_all_same_channel_names(icas)
if same_chans is False:
raise ValueError(
"Not all ICA instances have the same channel names. "
"Corrmap requires all instances to have the same "
"montage. Consider interpolating bad channels before "
"running ICA."
)
threshold_extra = ""
if threshold == "auto":
threshold = np.arange(60, 95, dtype=np.float64) / 100.0
threshold_extra = ' ("auto")'
all_maps = [ica.get_components().T for ica in icas]
# check if template is an index to one IC in one ICA object, or an array
if len(template) == 2:
target = all_maps[template[0]][template[1]]
is_subject = True
elif template.ndim == 1 and len(template) == all_maps[0].shape[1]:
target = template
is_subject = False
else:
raise ValueError(
"`template` must be a length-2 tuple or an array the size of the ICA maps."
)
template_fig, labelled_ics = None, None
if plot is True:
if is_subject: # plotting from an ICA object
ttl = f"Template from subj. {template[0]}"
template_fig = icas[template[0]].plot_components(
picks=template[1],
ch_type=ch_type,
title=ttl,
outlines=outlines,
cmap=cmap,
contours=contours,
show=show,
sphere=sphere,
)
else: # plotting an array
template_fig = _plot_corrmap(
[template],
[0],
[0],
ch_type,
icas[0].copy(),
"Template",
outlines=outlines,
cmap=cmap,
contours=contours,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
show=show,
template=True,
sphere=sphere,
)
template_fig.canvas.draw()
# first run: use user-selected map
threshold = np.atleast_1d(np.array(threshold, float)).ravel()
threshold_err = (
"No component detected using when z-scoring "
f"threshold{threshold_extra} {threshold}, consider using a more lenient "
"threshold"
)
if len(all_maps) == 0:
raise RuntimeError(threshold_err)
paths = [_find_max_corrs(all_maps, target, t) for t in threshold]
# find iteration with highest avg correlation with target
new_target, _, _, _ = paths[np.argmax([path[2] for path in paths])]
# second run: use output from first run
if len(all_maps) == 0 or len(new_target) == 0:
raise RuntimeError(threshold_err)
paths = [_find_max_corrs(all_maps, new_target, t) for t in threshold]
del new_target
# find iteration with highest avg correlation with target
_, median_corr, _, max_corrs = paths[np.argmax([path[1] for path in paths])]
allmaps, indices, subjs, nones = (list() for _ in range(4))
logger.info(f"Median correlation with constructed map: {median_corr:0.3f}")
del median_corr
if plot is True:
logger.info("Displaying selected ICs per subject.")
for ii, (ica, max_corr) in enumerate(zip(icas, max_corrs)):
if len(max_corr) > 0:
if isinstance(max_corr[0], np.ndarray):
max_corr = max_corr[0]
if label is not None:
ica.labels_[label] = list(
set(list(max_corr) + ica.labels_.get(label, list()))
)
if plot is True:
allmaps.extend(ica.get_components()[:, max_corr].T)
subjs.extend([ii] * len(max_corr))
indices.extend(max_corr)
else:
if (label is not None) and (label not in ica.labels_):
ica.labels_[label] = list()
nones.append(ii)
if len(nones) == 0:
logger.info("At least 1 IC detected for each subject.")
else:
logger.info(
f"No maps selected for subject{_pl(nones)} {nones}, "
"consider a more liberal threshold."
)
if plot is True:
labelled_ics = _plot_corrmap(
allmaps,
subjs,
indices,
ch_type,
ica,
label,
outlines=outlines,
cmap=cmap,
sensors=sensors,
contours=contours,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
border=border,
show=show,
show_names=show_names,
)
return template_fig, labelled_ics
else:
return None
@verbose
def read_ica_eeglab(fname, *, montage_units="auto", verbose=None):
"""Load ICA information saved in an EEGLAB .set file.
Parameters
----------
fname : path-like
Complete path to a ``.set`` EEGLAB file that contains an ICA object.
%(montage_units)s
.. versionadded:: 1.6
%(verbose)s
Returns
-------
ica : instance of ICA
An ICA object based on the information contained in the input file.
"""
eeg = _check_load_mat(fname, None)
info, eeg_montage, _ = _get_info(eeg, eog=(), montage_units=montage_units)
info.set_montage(eeg_montage)
pick_info(info, np.round(eeg["icachansind"]).astype(int) - 1, copy=False)
rank = eeg.icasphere.shape[0]
n_components = eeg.icaweights.shape[0]
ica = ICA(method="imported_eeglab", n_components=n_components)
ica.current_fit = "eeglab"
ica.ch_names = info["ch_names"]
ica.n_pca_components = None
ica.n_components_ = n_components
n_ch = len(ica.ch_names)
assert len(eeg.icachansind) == n_ch
ica.pre_whitener_ = np.ones((n_ch, 1))
ica.pca_mean_ = np.zeros(n_ch)
assert eeg.icasphere.shape[1] == n_ch
assert eeg.icaweights.shape == (n_components, rank)
# When PCA reduction is used in EEGLAB, runica returns
# weights= weights*sphere*eigenvectors(:,1:ncomps)';
# sphere = eye(urchans). When PCA reduction is not used, we have:
#
# eeg.icawinv == pinv(eeg.icaweights @ eeg.icasphere)
#
# So in either case, we can use SVD to get our square whitened
# weights matrix (u * s) and our PCA vectors (v) back:
use = eeg.icaweights @ eeg.icasphere
use_check = pinv(eeg.icawinv)
if not np.allclose(use, use_check, rtol=1e-6):
warn(
"Mismatch between icawinv and icaweights @ icasphere from EEGLAB "
"possibly due to ICA component removal, assuming icawinv is "
"correct"
)
use = use_check
u, s, v = _safe_svd(use, full_matrices=False)
ica.unmixing_matrix_ = u * s
ica.pca_components_ = v
ica.pca_explained_variance_ = s * s
ica.info = info
ica._update_mixing_matrix()
ica._update_ica_names()
ica.reject_ = None
return ica