[074d3d]: / mne / evoked.py

Download this file

2167 lines (1934 with data), 67.3 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from __future__ import annotations # only needed for Python ≤ 3.9
from copy import deepcopy
from inspect import getfullargspec
from pathlib import Path
import numpy as np
from ._fiff.constants import FIFF
from ._fiff.meas_info import (
ContainsMixin,
SetChannelsMixin,
_ensure_infos_match,
_read_extended_ch_info,
_rename_list,
read_meas_info,
write_meas_info,
)
from ._fiff.open import fiff_open
from ._fiff.pick import _FNIRS_CH_TYPES_SPLIT, _picks_to_idx, pick_types
from ._fiff.proj import ProjMixin
from ._fiff.tag import read_tag
from ._fiff.tree import dir_tree_find
from ._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_complex_float_matrix,
write_float,
write_float_matrix,
write_id,
write_int,
write_string,
)
from .baseline import _check_baseline, _log_rescale, rescale
from .channels.channels import InterpolationMixin, ReferenceMixin, UpdateChannelsMixin
from .channels.layout import _merge_ch_data, _pair_grad_sensors
from .defaults import _BORDER_DEFAULT, _EXTRAPOLATE_DEFAULT, _INTERPOLATION_DEFAULT
from .filter import FilterMixin, _check_fun, detrend
from .html_templates import _get_html_template
from .parallel import parallel_func
from .time_frequency.spectrum import Spectrum, SpectrumMixin, _validate_method
from .time_frequency.tfr import AverageTFR
from .utils import (
ExtendedTimeMixin,
SizeMixin,
_build_data_frame,
_check_fname,
_check_option,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_preload,
_check_time_format,
_convert_times,
_scale_dataframe_data,
_validate_type,
check_fname,
copy_function_doc_to_method_doc,
fill_doc,
logger,
repr_html,
sizeof_fmt,
verbose,
warn,
)
from .viz import (
plot_evoked,
plot_evoked_field,
plot_evoked_image,
plot_evoked_topo,
plot_evoked_topomap,
)
from .viz.evoked import plot_evoked_joint, plot_evoked_white
from .viz.topomap import _topomap_animation
_aspect_dict = {
"average": FIFF.FIFFV_ASPECT_AVERAGE,
"standard_error": FIFF.FIFFV_ASPECT_STD_ERR,
"single_epoch": FIFF.FIFFV_ASPECT_SINGLE,
"partial_average": FIFF.FIFFV_ASPECT_SUBAVERAGE,
"alternating_subaverage": FIFF.FIFFV_ASPECT_ALTAVERAGE,
"sample_cut_out_by_graph": FIFF.FIFFV_ASPECT_SAMPLE,
"power_density_spectrum": FIFF.FIFFV_ASPECT_POWER_DENSITY,
"dipole_amplitude_cuvre": FIFF.FIFFV_ASPECT_DIPOLE_WAVE,
"squid_modulation_lower_bound": FIFF.FIFFV_ASPECT_IFII_LOW,
"squid_modulation_upper_bound": FIFF.FIFFV_ASPECT_IFII_HIGH,
"squid_gate_setting": FIFF.FIFFV_ASPECT_GATE,
}
_aspect_rev = {val: key for key, val in _aspect_dict.items()}
@fill_doc
class Evoked(
ProjMixin,
ContainsMixin,
UpdateChannelsMixin,
ReferenceMixin,
SetChannelsMixin,
InterpolationMixin,
FilterMixin,
ExtendedTimeMixin,
SizeMixin,
SpectrumMixin,
):
"""Evoked data.
Parameters
----------
fname : path-like
Name of evoked/average FIF file to load.
If None no data is loaded.
condition : int, or str
Dataset ID number (int) or comment/name (str). Optional if there is
only one data set in file.
proj : bool, optional
Apply SSP projection vectors.
kind : str
Either ``'average'`` or ``'standard_error'``. The type of data to read.
Only used if 'condition' is a str.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be ``"yes"`` to load without eliciting a warning.
%(verbose)s
Attributes
----------
%(info_not_none)s
ch_names : list of str
List of channels' names.
nave : int
Number of averaged epochs.
kind : str
Type of data, either average or standard_error.
comment : str
Comment on dataset. Can be the condition.
data : array of shape (n_channels, n_times)
Evoked response.
first : int
First time sample.
last : int
Last time sample.
tmin : float
The first time point in seconds.
tmax : float
The last time point in seconds.
times : array
Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval
between consecutive time samples is equal to the inverse of the
sampling frequency.
baseline : None | tuple of length 2
This attribute reflects whether the data has been baseline-corrected
(it will be a ``tuple`` then) or not (it will be ``None``).
Notes
-----
Evoked objects can only contain the average of a single set of conditions.
"""
@verbose
def __init__(
self,
fname,
condition=None,
proj=True,
kind="average",
allow_maxshield=False,
*,
verbose=None,
):
_validate_type(proj, bool, "'proj'")
# Read the requested data
fname = _check_fname(fname=fname, must_exist=True, overwrite="read")
(
self.info,
self.nave,
self._aspect_kind,
self.comment,
times,
self.data,
self.baseline,
) = _read_evoked(fname, condition, kind, allow_maxshield)
self._set_times(times)
self._raw_times = self.times.copy()
self._decim = 1
self._update_first_last()
self.preload = True
# project and baseline correct
if proj:
self.apply_proj()
self.filename = fname
@property
def filename(self) -> Path | None:
"""The filename of the evoked object, if it exists.
:type: :class:`~pathlib.Path` | None
"""
return self._filename
@filename.setter
def filename(self, value):
self._filename = Path(value) if value is not None else value
@property
def kind(self):
"""The data kind."""
return _aspect_rev[self._aspect_kind]
@kind.setter
def kind(self, kind):
_check_option("kind", kind, list(_aspect_dict.keys()))
self._aspect_kind = _aspect_dict[kind]
@property
def data(self):
"""The data matrix."""
return self._data
@data.setter
def data(self, data):
"""Set the data matrix."""
self._data = data
@fill_doc
def get_data(self, picks=None, units=None, tmin=None, tmax=None):
"""Get evoked data as 2D array.
Parameters
----------
%(picks_all)s
%(units)s
tmin : float | None
Start time of data to get in seconds.
tmax : float | None
End time of data to get in seconds.
Returns
-------
data : ndarray, shape (n_channels, n_times)
A view on evoked data.
Notes
-----
.. versionadded:: 0.24
"""
# Avoid circular import
from .io.base import _get_ch_factors
picks = _picks_to_idx(self.info, picks, "all", exclude=())
start, stop = self._handle_tmin_tmax(tmin, tmax)
data = self.data[picks, start:stop]
if units is not None:
ch_factors = _get_ch_factors(self, units, picks)
data *= ch_factors[:, np.newaxis]
return data
@verbose
def apply_function(
self,
fun,
picks=None,
dtype=None,
n_jobs=None,
channel_wise=True,
*,
verbose=None,
**kwargs,
):
"""Apply a function to a subset of channels.
%(applyfun_summary_evoked)s
Parameters
----------
%(fun_applyfun_evoked)s
%(picks_all_data_noref)s
%(dtype_applyfun)s
%(n_jobs)s Ignored if ``channel_wise=False`` as the workload
is split across channels.
%(channel_wise_applyfun)s
.. versionadded:: 1.6
%(verbose)s
%(kwargs_fun)s
Returns
-------
self : instance of Evoked
The evoked object with transformed data.
"""
_check_preload(self, "evoked.apply_function")
picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)
if not callable(fun):
raise ValueError("fun needs to be a function")
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
args = getfullargspec(fun).args + getfullargspec(fun).kwonlyargs
if channel_wise is False:
if ("ch_idx" in args) or ("ch_name" in args):
raise ValueError(
"apply_function cannot access ch_idx or ch_name "
"when channel_wise=False"
)
if "ch_idx" in args:
logger.info("apply_function requested to access ch_idx")
if "ch_name" in args:
logger.info("apply_function requested to access ch_name")
# check the dimension of the incoming evoked data
_check_option("evoked.ndim", self._data.ndim, [2])
if channel_wise:
parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
if n_jobs == 1:
# modify data inplace to save memory
for ch_idx in picks:
if "ch_idx" in args:
kwargs.update(ch_idx=ch_idx)
if "ch_name" in args:
kwargs.update(ch_name=self.info["ch_names"][ch_idx])
self._data[ch_idx, :] = _check_fun(
fun, data_in[ch_idx, :], **kwargs
)
else:
# use parallel function
data_picks_new = parallel(
p_fun(
fun,
data_in[ch_idx, :],
**kwargs,
**{
k: v
for k, v in [
("ch_name", self.info["ch_names"][ch_idx]),
("ch_idx", ch_idx),
]
if k in args
},
)
for ch_idx in picks
)
for run_idx, ch_idx in enumerate(picks):
self._data[ch_idx, :] = data_picks_new[run_idx]
else:
self._data[picks, :] = _check_fun(fun, data_in[picks, :], **kwargs)
return self
@verbose
def apply_baseline(self, baseline=(None, 0), *, verbose=None):
"""Baseline correct evoked data.
Parameters
----------
%(baseline_evoked)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(verbose)s
Returns
-------
evoked : instance of Evoked
The baseline-corrected Evoked object.
Notes
-----
Baseline correction can be done multiple times.
.. versionadded:: 0.13.0
"""
baseline = _check_baseline(baseline, times=self.times, sfreq=self.info["sfreq"])
if self.baseline is not None and baseline is None:
raise ValueError(
"The data has already been baseline-corrected. "
"Cannot remove existing baseline correction."
)
elif baseline is None:
# Do not rescale
logger.info(_log_rescale(None))
else:
# Actually baseline correct the data. Logging happens in rescale().
self.data = rescale(self.data, self.times, baseline, copy=False)
self.baseline = baseline
return self
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Save evoked data to a file.
Parameters
----------
fname : path-like
The name of the file, which should end with ``-ave.fif(.gz)`` or
``_ave.fif(.gz)``.
%(overwrite)s
%(verbose)s
Notes
-----
To write multiple conditions into a single file, use
`mne.write_evokeds`.
.. versionchanged:: 0.23
Information on baseline correction will be stored with the data,
and will be restored when reading again via `mne.read_evokeds`.
"""
write_evokeds(fname, self, overwrite=overwrite)
@verbose
def export(self, fname, fmt="auto", *, overwrite=False, verbose=None):
"""Export Evoked to external formats.
%(export_fmt_support_evoked)s
%(export_warning)s
Parameters
----------
%(fname_export_params)s
%(export_fmt_params_evoked)s
%(overwrite)s
%(verbose)s
Notes
-----
.. versionadded:: 1.1
%(export_warning_note_evoked)s
"""
from .export import export_evokeds
export_evokeds(fname, self, fmt, overwrite=overwrite, verbose=verbose)
def __repr__(self): # noqa: D105
max_comment_length = 1000
if len(self.comment) > max_comment_length:
comment = self.comment[:max_comment_length]
comment += "..."
else:
comment = self.comment
s = f"'{comment}' ({self.kind}, N={self.nave})"
s += f", {self.times[0]:0.5g}{self.times[-1]:0.5g} s"
s += ", baseline "
if self.baseline is None:
s += "off"
else:
s += f"{self.baseline[0]:g}{self.baseline[1]:g} s"
if self.baseline != _check_baseline(
self.baseline,
times=self.times,
sfreq=self.info["sfreq"],
on_baseline_outside_data="adjust",
):
s += " (baseline period was cropped after baseline correction)"
s += f", {self.data.shape[0]} ch"
s += f", ~{sizeof_fmt(self._size)}"
return f"<Evoked | {s}>"
@repr_html
def _repr_html_(self):
t = _get_html_template("repr", "evoked.html.jinja")
t = t.render(
inst=self,
filenames=(
[Path(self.filename).name]
if getattr(self, "filename", None) is not None
else None
),
)
return t
@property
def ch_names(self):
"""Channel names."""
return self.info["ch_names"]
@copy_function_doc_to_method_doc(plot_evoked)
def plot(
self,
picks=None,
exclude="bads",
unit=True,
show=True,
ylim=None,
xlim="tight",
proj=False,
hline=None,
units=None,
scalings=None,
titles=None,
axes=None,
gfp=False,
window_title=None,
spatial_colors="auto",
zorder="unsorted",
selectable=True,
noise_cov=None,
time_unit="s",
sphere=None,
*,
highlight=None,
verbose=None,
):
return plot_evoked(
self,
picks=picks,
exclude=exclude,
unit=unit,
show=show,
ylim=ylim,
proj=proj,
xlim=xlim,
hline=hline,
units=units,
scalings=scalings,
titles=titles,
axes=axes,
gfp=gfp,
window_title=window_title,
spatial_colors=spatial_colors,
zorder=zorder,
selectable=selectable,
noise_cov=noise_cov,
time_unit=time_unit,
sphere=sphere,
highlight=highlight,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_evoked_image)
def plot_image(
self,
picks=None,
exclude="bads",
unit=True,
show=True,
clim=None,
xlim="tight",
proj=False,
units=None,
scalings=None,
titles=None,
axes=None,
cmap="RdBu_r",
colorbar=True,
mask=None,
mask_style=None,
mask_cmap="Greys",
mask_alpha=0.25,
time_unit="s",
show_names=None,
group_by=None,
sphere=None,
):
return plot_evoked_image(
self,
picks=picks,
exclude=exclude,
unit=unit,
show=show,
clim=clim,
xlim=xlim,
proj=proj,
units=units,
scalings=scalings,
titles=titles,
axes=axes,
cmap=cmap,
colorbar=colorbar,
mask=mask,
mask_style=mask_style,
mask_cmap=mask_cmap,
mask_alpha=mask_alpha,
time_unit=time_unit,
show_names=show_names,
group_by=group_by,
sphere=sphere,
)
@copy_function_doc_to_method_doc(plot_evoked_topo)
def plot_topo(
self,
layout=None,
layout_scale=0.945,
color=None,
border="none",
ylim=None,
scalings=None,
title=None,
proj=False,
vline=(0.0,),
fig_background=None,
merge_grads=False,
legend=True,
axes=None,
background_color="w",
noise_cov=None,
exclude="bads",
select=False,
show=True,
):
""".
Notes
-----
.. versionadded:: 0.10.0
"""
return plot_evoked_topo(
self,
layout=layout,
layout_scale=layout_scale,
color=color,
border=border,
ylim=ylim,
scalings=scalings,
title=title,
proj=proj,
vline=vline,
fig_background=fig_background,
merge_grads=merge_grads,
legend=legend,
axes=axes,
background_color=background_color,
noise_cov=noise_cov,
exclude=exclude,
select=select,
show=show,
)
@copy_function_doc_to_method_doc(plot_evoked_topomap)
def plot_topomap(
self,
times="auto",
*,
average=None,
ch_type=None,
scalings=None,
proj=False,
sensors=True,
show_names=False,
mask=None,
mask_params=None,
contours=6,
outlines="head",
sphere=None,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
border=_BORDER_DEFAULT,
res=64,
size=1,
cmap=None,
vlim=(None, None),
cnorm=None,
colorbar=True,
cbar_fmt="%3.1f",
units=None,
axes=None,
time_unit="s",
time_format=None,
nrows=1,
ncols="auto",
show=True,
):
return plot_evoked_topomap(
self,
times=times,
ch_type=ch_type,
vlim=vlim,
cmap=cmap,
cnorm=cnorm,
sensors=sensors,
colorbar=colorbar,
scalings=scalings,
units=units,
res=res,
size=size,
cbar_fmt=cbar_fmt,
time_unit=time_unit,
time_format=time_format,
proj=proj,
show=show,
show_names=show_names,
mask=mask,
mask_params=mask_params,
outlines=outlines,
contours=contours,
image_interp=image_interp,
average=average,
axes=axes,
extrapolate=extrapolate,
sphere=sphere,
border=border,
nrows=nrows,
ncols=ncols,
)
@copy_function_doc_to_method_doc(plot_evoked_field)
def plot_field(
self,
surf_maps,
time=None,
time_label="t = %0.0f ms",
n_jobs=None,
fig=None,
vmax=None,
n_contours=21,
*,
show_density=True,
alpha=None,
interpolation="nearest",
interaction="terrain",
time_viewer="auto",
verbose=None,
):
return plot_evoked_field(
self,
surf_maps,
time=time,
time_label=time_label,
n_jobs=n_jobs,
fig=fig,
vmax=vmax,
n_contours=n_contours,
show_density=show_density,
alpha=alpha,
interpolation=interpolation,
interaction=interaction,
time_viewer=time_viewer,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_evoked_white)
def plot_white(
self,
noise_cov,
show=True,
rank=None,
time_unit="s",
sphere=None,
axes=None,
*,
spatial_colors="auto",
verbose=None,
):
return plot_evoked_white(
self,
noise_cov=noise_cov,
rank=rank,
show=show,
time_unit=time_unit,
sphere=sphere,
axes=axes,
spatial_colors=spatial_colors,
verbose=verbose,
)
@copy_function_doc_to_method_doc(plot_evoked_joint)
def plot_joint(
self,
times="peaks",
title="",
picks=None,
exclude="bads",
show=True,
ts_args=None,
topomap_args=None,
):
return plot_evoked_joint(
self,
times=times,
title=title,
picks=picks,
exclude=exclude,
show=show,
ts_args=ts_args,
topomap_args=topomap_args,
)
@fill_doc
def animate_topomap(
self,
ch_type=None,
times=None,
frame_rate=None,
butterfly=False,
blit=True,
show=True,
time_unit="s",
sphere=None,
*,
image_interp=_INTERPOLATION_DEFAULT,
extrapolate=_EXTRAPOLATE_DEFAULT,
vmin=None,
vmax=None,
verbose=None,
):
"""Make animation of evoked data as topomap timeseries.
The animation can be paused/resumed with left mouse button.
Left and right arrow keys can be used to move backward or forward
in time.
Parameters
----------
ch_type : str | None
Channel type to plot. Accepted data types: 'mag', 'grad', 'eeg',
'hbo', 'hbr', 'fnirs_cw_amplitude',
'fnirs_fd_ac_amplitude', 'fnirs_fd_phase', and 'fnirs_od'.
If None, first available channel type from the above list is used.
Defaults to None.
times : array of float | None
The time points to plot. If None, 10 evenly spaced samples are
calculated over the evoked time series. Defaults to None.
frame_rate : int | None
Frame rate for the animation in Hz. If None,
frame rate = sfreq / 10. Defaults to None.
butterfly : bool
Whether to plot the data as butterfly plot under the topomap.
Defaults to False.
blit : bool
Whether to use blit to optimize drawing. In general, it is
recommended to use blit in combination with ``show=True``. If you
intend to save the animation it is better to disable blit.
Defaults to True.
show : bool
Whether to show the animation. Defaults to True.
time_unit : str
The units for the time axis, can be "ms" (default in 0.16)
or "s" (will become the default in 0.17).
.. versionadded:: 0.16
%(sphere_topomap_auto)s
%(image_interp_topomap)s
%(extrapolate_topomap)s
.. versionadded:: 0.22
%(vmin_vmax_topomap)s
.. versionadded:: 1.1.0
%(verbose)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
anim : instance of matplotlib.animation.FuncAnimation
Animation of the topomap.
Notes
-----
.. versionadded:: 0.12.0
"""
return _topomap_animation(
self,
ch_type=ch_type,
times=times,
frame_rate=frame_rate,
butterfly=butterfly,
blit=blit,
show=show,
time_unit=time_unit,
sphere=sphere,
image_interp=image_interp,
extrapolate=extrapolate,
vmin=vmin,
vmax=vmax,
verbose=verbose,
)
def as_type(self, ch_type="grad", mode="fast"):
"""Compute virtual evoked using interpolated fields.
.. Warning:: Using virtual evoked to compute inverse can yield
unexpected results. The virtual channels have ``'_v'`` appended
at the end of the names to emphasize that the data contained in
them are interpolated.
Parameters
----------
ch_type : str
The destination channel type. It can be 'mag' or 'grad'.
mode : str
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used. ``'fast'`` should be sufficient
for most applications.
Returns
-------
evoked : instance of mne.Evoked
The transformed evoked object containing only virtual channels.
Notes
-----
This method returns a copy and does not modify the data it
operates on. It also returns an EvokedArray instance.
.. versionadded:: 0.9.0
"""
from .forward import _as_meg_type_inst
return _as_meg_type_inst(self, ch_type=ch_type, mode=mode)
@fill_doc
def detrend(self, order=1, picks=None):
"""Detrend data.
This function operates in-place.
Parameters
----------
order : int
Either 0 or 1, the order of the detrending. 0 is a constant
(DC) detrend, 1 is a linear detrend.
%(picks_good_data)s
Returns
-------
evoked : instance of Evoked
The detrended evoked object.
"""
picks = _picks_to_idx(self.info, picks)
self.data[picks] = detrend(self.data[picks], order, axis=-1)
return self
def copy(self):
"""Copy the instance of evoked.
Returns
-------
evoked : instance of Evoked
A copy of the object.
"""
evoked = deepcopy(self)
return evoked
def __neg__(self):
"""Negate channel responses.
Returns
-------
evoked_neg : instance of Evoked
The Evoked instance with channel data negated and '-'
prepended to the comment.
"""
out = self.copy()
out.data *= -1
if out.comment is not None and " + " in out.comment:
out.comment = f"({out.comment})" # multiple conditions in evoked
out.comment = f"- {out.comment or 'unknown'}"
return out
def get_peak(
self,
ch_type=None,
tmin=None,
tmax=None,
mode="abs",
time_as_index=False,
merge_grads=False,
return_amplitude=False,
*,
strict=True,
):
"""Get location and latency of peak amplitude.
Parameters
----------
ch_type : str | None
The channel type to use. Defaults to None. If more than one channel
type is present in the data, this value **must** be provided.
tmin : float | None
The minimum point in time to be considered for peak getting.
If None (default), the beginning of the data is used.
tmax : float | None
The maximum point in time to be considered for peak getting.
If None (default), the end of the data is used.
mode : 'pos' | 'neg' | 'abs'
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
time_as_index : bool
Whether to return the time index instead of the latency in seconds.
merge_grads : bool
If True, compute peak from merged gradiometer data.
return_amplitude : bool
If True, return also the amplitude at the maximum response.
.. versionadded:: 0.16
strict : bool
If True, raise an error if values are all positive when detecting
a minimum (mode='neg'), or all negative when detecting a maximum
(mode='pos'). Defaults to True.
.. versionadded:: 1.7
Returns
-------
ch_name : str
The channel exhibiting the maximum response.
latency : float | int
The time point of the maximum response, either latency in seconds
or index.
amplitude : float
The amplitude of the maximum response. Only returned if
return_amplitude is True.
.. versionadded:: 0.16
""" # noqa: E501
supported = (
"mag",
"grad",
"eeg",
"seeg",
"dbs",
"ecog",
"misc",
"None",
) + _FNIRS_CH_TYPES_SPLIT
types_used = self.get_channel_types(unique=True, only_data_chs=True)
_check_option("ch_type", str(ch_type), supported)
if ch_type is not None and ch_type not in types_used:
raise ValueError(
f'Channel type "{ch_type}" not found in this evoked object.'
)
elif len(types_used) > 1 and ch_type is None:
raise RuntimeError(
'Multiple data channel types found. Please pass the "ch_type" '
"parameter."
)
if merge_grads:
if ch_type != "grad":
raise ValueError('Channel type must be "grad" for merge_grads')
elif mode == "neg":
raise ValueError(
"Negative mode (mode=neg) does not make sense with merge_grads=True"
)
meg = eeg = misc = seeg = dbs = ecog = fnirs = False
picks = None
if ch_type in ("mag", "grad"):
meg = ch_type
elif ch_type == "eeg":
eeg = True
elif ch_type == "misc":
misc = True
elif ch_type == "seeg":
seeg = True
elif ch_type == "dbs":
dbs = True
elif ch_type == "ecog":
ecog = True
elif ch_type in _FNIRS_CH_TYPES_SPLIT:
fnirs = ch_type
if ch_type is not None:
if merge_grads:
picks = _pair_grad_sensors(self.info, topomap_coords=False)
else:
picks = pick_types(
self.info,
meg=meg,
eeg=eeg,
misc=misc,
seeg=seeg,
ecog=ecog,
ref_meg=False,
fnirs=fnirs,
dbs=dbs,
)
data = self.data
ch_names = self.ch_names
if picks is not None:
data = data[picks]
ch_names = [ch_names[k] for k in picks]
if merge_grads:
data, _ = _merge_ch_data(data, ch_type, [])
ch_names = [ch_name[:-1] + "X" for ch_name in ch_names[::2]]
ch_idx, time_idx, max_amp = _get_peak(
data,
self.times,
tmin,
tmax,
mode,
strict=strict,
)
out = (ch_names[ch_idx], time_idx if time_as_index else self.times[time_idx])
if return_amplitude:
out += (max_amp,)
return out
@verbose
def compute_psd(
self,
method="multitaper",
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
remove_dc=True,
exclude=(),
*,
n_jobs=1,
verbose=None,
**method_kw,
):
"""Perform spectral analysis on sensor data.
Parameters
----------
%(method_psd)s
Default is ``'multitaper'``.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(remove_dc)s
%(exclude_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
spectrum : instance of Spectrum
The spectral representation of the data.
Notes
-----
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
method = _validate_method(method, type(self).__name__)
self._set_legacy_nfft_default(tmin, tmax, method, method_kw)
return Spectrum(
self,
method=method,
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
picks=picks,
exclude=exclude,
proj=proj,
remove_dc=remove_dc,
reject_by_annotation=False,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def compute_tfr(
self,
method,
freqs,
*,
tmin=None,
tmax=None,
picks=None,
proj=False,
output="power",
decim=1,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Compute a time-frequency representation of evoked data.
Parameters
----------
%(method_tfr)s
%(freqs_tfr)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(output_compute_tfr)s
%(decim_tfr)s
%(n_jobs)s
%(verbose)s
%(method_kw_tfr)s
Returns
-------
tfr : instance of AverageTFR
The time-frequency-resolved power estimates of the data.
Notes
-----
.. versionadded:: 1.7
References
----------
.. footbibliography::
"""
_check_option("output", output, ("power", "phase", "complex"))
method_kw["output"] = output
return AverageTFR(
inst=self,
method=method,
freqs=freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def plot_psd(
self,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
*,
method="auto",
average=False,
dB=True,
estimate="power",
xscale="linear",
area_mode="std",
area_alpha=0.33,
color="black",
line_alpha=None,
spatial_colors=True,
sphere=None,
exclude="bads",
ax=None,
show=True,
n_jobs=1,
verbose=None,
**method_kw,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(average_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(color_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
.. versionadded:: 0.22.0
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad
channels are excluded. Pass an empty list to plot all channels
(including channels marked "bad", if any).
.. versionadded:: 0.24.0
%(ax_plot_psd)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_psd_meth)s
"""
return super().plot_psd(
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
reject_by_annotation=False,
method=method,
average=average,
dB=dB,
estimate=estimate,
xscale=xscale,
area_mode=area_mode,
area_alpha=area_alpha,
color=color,
line_alpha=line_alpha,
spatial_colors=spatial_colors,
sphere=sphere,
exclude=exclude,
ax=ax,
show=show,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def to_data_frame(
self,
picks=None,
index=None,
scalings=None,
copy=True,
long_format=False,
time_format=None,
*,
verbose=None,
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default,
an additional column "time" is added, unless ``index='time'``
(in which case time values form the DataFrame's index).
Parameters
----------
%(picks_all)s
%(index_df_evk)s
Defaults to ``None``.
%(scalings_df)s
%(copy_df)s
%(long_format_df_raw)s
%(time_format_df)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# arg checking
valid_index_args = ["time"]
valid_time_formats = ["ms", "timedelta"]
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(time_format, valid_time_formats)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data = self.data[picks, :]
times = self.times
data = data.T
if copy:
data = data.copy()
data = _scale_dataframe_data(self, data, picks, scalings)
# prepare extra columns / multiindex
mindex = list()
times = _convert_times(times, time_format, self.info["meas_date"])
mindex.append(("time", times))
# build DataFrame
df = _build_data_frame(
self, data, picks, long_format, mindex, index, default_index=["time"]
)
return df
@fill_doc
class EvokedArray(Evoked):
"""Evoked object from numpy array.
Parameters
----------
data : array of shape (n_channels, n_times)
The channels' evoked response. See notes for proper units of measure.
%(info_not_none)s Consider using :func:`mne.create_info` to populate this
structure.
tmin : float
Start time before event. Defaults to 0.
comment : str
Comment on dataset. Can be the condition. Defaults to ''.
nave : int
Number of averaged epochs. Defaults to 1.
kind : str
Type of data, either average or standard_error. Defaults to 'average'.
%(baseline_evoked)s
Defaults to ``None``, i.e. no baseline correction.
.. versionadded:: 0.23
%(verbose)s
See Also
--------
EpochsArray, io.RawArray, create_info
Notes
-----
Proper units of measure:
* V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog
* T: mag
* T/m: grad
* M: hbo, hbr
* Am: dipole
* AU: misc
"""
@verbose
def __init__(
self,
data,
info,
tmin=0.0,
comment="",
nave=1,
kind="average",
baseline=None,
*,
verbose=None,
):
dtype = np.complex128 if np.iscomplexobj(data) else np.float64
data = np.asanyarray(data, dtype=dtype)
if data.ndim != 2:
raise ValueError(
"Data must be a 2D array of shape (n_channels, n_samples), got shape "
f"{data.shape}"
)
if len(info["ch_names"]) != np.shape(data)[0]:
raise ValueError(
f"Info ({len(info['ch_names'])}) and data ({np.shape(data)[0]}) must "
"have same number of channels."
)
self.data = data
self.first = int(round(tmin * info["sfreq"]))
self.last = self.first + np.shape(data)[-1] - 1
self._set_times(
np.arange(self.first, self.last + 1, dtype=np.float64) / info["sfreq"]
)
self._raw_times = self.times.copy()
self._decim = 1
self.info = info.copy() # do not modify original info
self.nave = nave
self.kind = kind
self.comment = comment
self.picks = None
self.preload = True
self._projector = None
_validate_type(self.kind, "str", "kind")
if self.kind not in _aspect_dict:
raise ValueError(
f'unknown kind "{self.kind}", should be "average" or "standard_error"'
)
self._aspect_kind = _aspect_dict[self.kind]
self.baseline = baseline
if self.baseline is not None: # omit log msg if not baselining
self.apply_baseline(self.baseline)
self._filename = None
def _get_entries(fid, evoked_node, allow_maxshield=False):
"""Get all evoked entries."""
comments = list()
aspect_kinds = list()
for ev in evoked_node:
for k in range(ev["nent"]):
my_kind = ev["directory"][k].kind
pos = ev["directory"][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comments.append(tag.data)
my_aspect = _get_aspect(ev, allow_maxshield)[0]
for k in range(my_aspect["nent"]):
my_kind = my_aspect["directory"][k].kind
pos = my_aspect["directory"][k].pos
if my_kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kinds.append(int(tag.data.item()))
comments = np.atleast_1d(comments)
aspect_kinds = np.atleast_1d(aspect_kinds)
if len(comments) != len(aspect_kinds) or len(comments) == 0:
fid.close()
raise ValueError("Dataset names in FIF file could not be found.")
t = [_aspect_rev[a] for a in aspect_kinds]
t = ['"' + c + '" (' + tt + ")" for tt, c in zip(t, comments)]
t = "\n".join(t)
return comments, aspect_kinds, t
def _get_aspect(evoked, allow_maxshield):
"""Get Evoked data aspect."""
from .io.base import _check_maxshield
is_maxshield = False
aspect = dir_tree_find(evoked, FIFF.FIFFB_ASPECT)
if len(aspect) == 0:
_check_maxshield(allow_maxshield)
aspect = dir_tree_find(evoked, FIFF.FIFFB_IAS_ASPECT)
is_maxshield = True
if len(aspect) > 1:
logger.info("Multiple data aspects found. Taking first one.")
return aspect[0], is_maxshield
def _get_evoked_node(fname):
"""Get info in evoked file."""
f, tree, _ = fiff_open(fname)
with f as fid:
_, meas = read_meas_info(fid, tree, verbose=False)
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
return evoked_node
def _check_evokeds_ch_names_times(all_evoked):
evoked = all_evoked[0]
ch_names = evoked.ch_names
for ii, ev in enumerate(all_evoked[1:]):
if ev.ch_names != ch_names:
if set(ev.ch_names) != set(ch_names):
raise ValueError(f"{evoked} and {ev} do not contain the same channels.")
else:
warn("Order of channels differs, reordering channels ...")
ev = ev.copy()
ev.reorder_channels(ch_names)
all_evoked[ii + 1] = ev
if not np.max(np.abs(ev.times - evoked.times)) < 1e-7:
raise ValueError(f"{evoked} and {ev} do not contain the same time instants")
return all_evoked
def combine_evoked(all_evoked, weights):
"""Merge evoked data by weighted addition or subtraction.
Each `~mne.Evoked` in ``all_evoked`` should have the same channels and the
same time instants. Subtraction can be performed by passing
``weights=[1, -1]``.
.. Warning::
Other than cases like simple subtraction mentioned above (where all
weights are ``-1`` or ``1``), if you provide numeric weights instead of using
``'equal'`` or ``'nave'``, the resulting `~mne.Evoked` object's
``.nave`` attribute (which is used to scale noise covariance when
applying the inverse operator) may not be suitable for inverse imaging.
Parameters
----------
all_evoked : list of Evoked
The evoked datasets.
weights : list of float | ``'equal'`` | ``'nave'``
The weights to apply to the data of each evoked instance, or a string
describing the weighting strategy to apply: ``'nave'`` computes
sum-to-one weights proportional to each object's ``nave`` attribute;
``'equal'`` weights each `~mne.Evoked` by ``1 / len(all_evoked)``.
Returns
-------
evoked : Evoked
The new evoked data.
Notes
-----
.. versionadded:: 0.9.0
"""
naves = np.array([evk.nave for evk in all_evoked], float)
if isinstance(weights, str):
_check_option("weights", weights, ["nave", "equal"])
if weights == "nave":
weights = naves / naves.sum()
else:
weights = np.ones_like(naves) / len(naves)
else:
weights = np.array(weights, float)
if weights.ndim != 1 or weights.size != len(all_evoked):
raise ValueError("weights must be the same size as all_evoked")
# cf. https://en.wikipedia.org/wiki/Weighted_arithmetic_mean, section on
# "weighted sample variance". The variance of a weighted sample mean is:
#
# σ² = w₁² σ₁² + w₂² σ₂² + ... + wₙ² σₙ²
#
# We estimate the variance of each evoked instance as 1 / nave to get:
#
# σ² = w₁² / nave₁ + w₂² / nave₂ + ... + wₙ² / naveₙ
#
# And our resulting nave is the reciprocal of this:
new_nave = 1.0 / np.sum(weights**2 / naves)
# This general formula is equivalent to formulae in Matti's manual
# (pp 128-129), where:
# new_nave = sum(naves) when weights='nave' and
# new_nave = 1. / sum(1. / naves) when weights are all 1.
all_evoked = _check_evokeds_ch_names_times(all_evoked)
evoked = all_evoked[0].copy()
# use union of bad channels
bads = list(set(b for e in all_evoked for b in e.info["bads"]))
evoked.info["bads"] = bads
evoked.data = sum(w * e.data for w, e in zip(weights, all_evoked))
evoked.nave = new_nave
comment = ""
for idx, (w, e) in enumerate(zip(weights, all_evoked)):
# pick sign
sign = "" if w >= 0 else "-"
# format weight
weight = "" if np.isclose(abs(w), 1.0) else f"{abs(w):0.3f}"
# format multiplier
multiplier = " × " if weight else ""
# format comment
if e.comment is not None and " + " in e.comment: # multiple conditions
this_comment = f"({e.comment})"
else:
this_comment = f"{e.comment or 'unknown'}"
# assemble everything
if idx == 0:
comment += f"{sign}{weight}{multiplier}{this_comment}"
else:
comment += f" {sign or '+'} {weight}{multiplier}{this_comment}"
# special-case: combine_evoked([e1, -e2], [1, -1])
evoked.comment = comment.replace(" - - ", " + ")
return evoked
@verbose
def read_evokeds(
fname,
condition=None,
baseline=None,
kind="average",
proj=True,
allow_maxshield=False,
verbose=None,
) -> list[Evoked] | Evoked:
"""Read evoked dataset(s).
Parameters
----------
fname : path-like
The filename, which should end with ``-ave.fif`` or ``-ave.fif.gz``.
condition : int or str | list of int or str | None
The index or list of indices of the evoked dataset to read. FIF files
can contain multiple datasets. If None, all datasets are returned as a
list.
%(baseline_evoked)s
If ``None`` (default), do not apply baseline correction.
.. note:: Note that if the read `~mne.Evoked` objects have already
been baseline-corrected, the data retrieved from disk will
**always** be baseline-corrected (in fact, only the
baseline-corrected version of the data will be saved, so
there is no way to undo this procedure). Only **after** the
data has been loaded, a custom (additional) baseline
correction **may** be optionally applied by passing a tuple
here. Passing ``None`` will **not** remove an existing
baseline correction, but merely omit the optional, additional
baseline correction.
kind : str
Either ``'average'`` or ``'standard_error'``, the type of data to read.
proj : bool
If False, available projectors won't be applied to the data.
allow_maxshield : bool | str (default False)
If True, allow loading of data that has been recorded with internal
active compensation (MaxShield). Data recorded with MaxShield should
generally not be loaded directly, but should first be processed using
SSS/tSSS to remove the compensation signals that may also affect brain
activity. Can also be ``"yes"`` to load without eliciting a warning.
%(verbose)s
Returns
-------
evoked : Evoked or list of Evoked
The evoked dataset(s); one `~mne.Evoked` if ``condition`` is an
integer or string; or a list of `~mne.Evoked` if ``condition`` is
``None`` or a list.
See Also
--------
write_evokeds
Notes
-----
.. versionchanged:: 0.23
If the read `~mne.Evoked` objects had been baseline-corrected before
saving, this will be reflected in their ``baseline`` attribute after
reading.
"""
fname = _check_fname(fname, overwrite="read", must_exist=True)
check_fname(fname, "evoked", ("-ave.fif", "-ave.fif.gz", "_ave.fif", "_ave.fif.gz"))
logger.info(f"Reading {fname} ...")
return_list = True
if condition is None:
evoked_node = _get_evoked_node(fname)
condition = range(len(evoked_node))
elif not isinstance(condition, list):
condition = [condition]
return_list = False
out = []
for c in condition:
evoked = Evoked(
fname,
c,
kind=kind,
proj=proj,
allow_maxshield=allow_maxshield,
verbose=verbose,
)
if baseline is None and evoked.baseline is None:
logger.info(_log_rescale(None))
elif baseline is None and evoked.baseline is not None:
# Don't touch an existing baseline
bmin, bmax = evoked.baseline
logger.info(
f"Loaded Evoked data is baseline-corrected "
f"(baseline: [{bmin:g}, {bmax:g}] s)"
)
else:
evoked.apply_baseline(baseline)
out.append(evoked)
return out if return_list else out[0]
def _read_evoked(fname, condition=None, kind="average", allow_maxshield=False):
"""Read evoked data from a FIF file."""
if fname is None:
raise ValueError("No evoked filename specified")
f, tree, _ = fiff_open(fname)
with f as fid:
# Read the measurement info
info, meas = read_meas_info(fid, tree, clean_bads=True)
# Locate the data of interest
processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
if len(processed) == 0:
raise ValueError("Could not find processed data")
evoked_node = dir_tree_find(meas, FIFF.FIFFB_EVOKED)
if len(evoked_node) == 0:
raise ValueError("Could not find evoked data")
# find string-based entry
if isinstance(condition, str):
if kind not in _aspect_dict.keys():
raise ValueError('kind must be "average" or "standard_error"')
comments, aspect_kinds, t = _get_entries(fid, evoked_node, allow_maxshield)
goods = np.isin(comments, [condition]) & np.isin(
aspect_kinds, [_aspect_dict[kind]]
)
found_cond = np.where(goods)[0]
if len(found_cond) != 1:
raise ValueError(
f'condition "{condition}" ({kind}) not found, out of found '
f"datasets:\n{t}"
)
condition = found_cond[0]
elif condition is None:
if len(evoked_node) > 1:
_, _, conditions = _get_entries(fid, evoked_node, allow_maxshield)
raise TypeError(
"Evoked file has more than one condition, the condition parameters "
f"must be specified from:\n{conditions}"
)
else:
condition = 0
if condition >= len(evoked_node) or condition < 0:
raise ValueError("Data set selector out of range")
my_evoked = evoked_node[condition]
# Identify the aspects
with info._unlock():
my_aspect, info["maxshield"] = _get_aspect(my_evoked, allow_maxshield)
# Now find the data in the evoked block
nchan = 0
sfreq = -1
chs = []
baseline = bmin = bmax = None
comment = last = first = first_time = nsamp = None
for k in range(my_evoked["nent"]):
my_kind = my_evoked["directory"][k].kind
pos = my_evoked["directory"][k].pos
if my_kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif my_kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, pos)
first = int(tag.data.item())
elif my_kind == FIFF.FIFF_LAST_SAMPLE:
tag = read_tag(fid, pos)
last = int(tag.data.item())
elif my_kind == FIFF.FIFF_NCHAN:
tag = read_tag(fid, pos)
nchan = int(tag.data.item())
elif my_kind == FIFF.FIFF_SFREQ:
tag = read_tag(fid, pos)
sfreq = float(tag.data.item())
elif my_kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
elif my_kind == FIFF.FIFF_FIRST_TIME:
tag = read_tag(fid, pos)
first_time = float(tag.data.item())
elif my_kind == FIFF.FIFF_NO_SAMPLES:
tag = read_tag(fid, pos)
nsamp = int(tag.data.item())
elif my_kind == FIFF.FIFF_MNE_BASELINE_MIN:
tag = read_tag(fid, pos)
bmin = float(tag.data.item())
elif my_kind == FIFF.FIFF_MNE_BASELINE_MAX:
tag = read_tag(fid, pos)
bmax = float(tag.data.item())
if comment is None:
comment = "No comment"
if bmin is not None or bmax is not None:
# None's should've been replaced with floats
assert bmin is not None and bmax is not None
baseline = (bmin, bmax)
# Local channel information?
if nchan > 0:
if chs is None:
raise ValueError(
"Local channel information was not found when it was expected."
)
if len(chs) != nchan:
raise ValueError(
"Number of channels and number of channel definitions are different"
)
ch_names_mapping = _read_extended_ch_info(chs, my_evoked, fid)
info["chs"] = chs
info["bads"][:] = _rename_list(info["bads"], ch_names_mapping)
logger.info(
f" Found channel information in evoked data. nchan = {nchan}"
)
if sfreq > 0:
info["sfreq"] = sfreq
# Read the data in the aspect block
nave = 1
epoch = []
for k in range(my_aspect["nent"]):
kind = my_aspect["directory"][k].kind
pos = my_aspect["directory"][k].pos
if kind == FIFF.FIFF_COMMENT:
tag = read_tag(fid, pos)
comment = tag.data
elif kind == FIFF.FIFF_ASPECT_KIND:
tag = read_tag(fid, pos)
aspect_kind = int(tag.data.item())
elif kind == FIFF.FIFF_NAVE:
tag = read_tag(fid, pos)
nave = int(tag.data.item())
elif kind == FIFF.FIFF_EPOCH:
tag = read_tag(fid, pos)
epoch.append(tag)
nepoch = len(epoch)
if nepoch != 1 and nepoch != info["nchan"]:
raise ValueError(
"Number of epoch tags is unreasonable "
f"(nepoch = {nepoch} nchan = {info['nchan']})"
)
if nepoch == 1:
# Only one epoch
data = epoch[0].data
# May need a transpose if the number of channels is one
if data.shape[1] == 1 and info["nchan"] == 1:
data = data.T
else:
# Put the old style epochs together
data = np.concatenate([e.data[None, :] for e in epoch], axis=0)
if np.isrealobj(data):
data = data.astype(np.float64)
else:
data = data.astype(np.complex128)
if first_time is not None and nsamp is not None:
times = first_time + np.arange(nsamp) / info["sfreq"]
elif first is not None:
nsamp = last - first + 1
times = np.arange(first, last + 1) / info["sfreq"]
else:
raise RuntimeError("Could not read time parameters")
del first, last
if nsamp is not None and data.shape[1] != nsamp:
raise ValueError(
f"Incorrect number of samples ({data.shape[1]} instead of {nsamp})"
)
logger.info(" Found the data of interest:")
logger.info(
f" t = {1000 * times[0]:10.2f} ... {1000 * times[-1]:10.2f} ms ("
f"{comment})"
)
if info["comps"] is not None:
logger.info(
f" {len(info['comps'])} CTF compensation matrices available"
)
logger.info(f" nave = {nave} - aspect type = {aspect_kind}")
# Calibrate
cals = np.array(
[
info["chs"][k]["cal"] * info["chs"][k].get("scale", 1.0)
for k in range(info["nchan"])
]
)
data *= cals[:, np.newaxis]
return info, nave, aspect_kind, comment, times, data, baseline
@verbose
def write_evokeds(fname, evoked, *, on_mismatch="raise", overwrite=False, verbose=None):
"""Write an evoked dataset to a file.
Parameters
----------
fname : path-like
The file name, which should end with ``-ave.fif`` or ``-ave.fif.gz``.
evoked : Evoked instance, or list of Evoked instances
The evoked dataset, or list of evoked datasets, to save in one file.
Note that the measurement info from the first evoked instance is used,
so be sure that information matches.
%(on_mismatch_info)s
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
.. versionadded:: 0.24
See Also
--------
read_evokeds
Notes
-----
.. versionchanged:: 0.23
Information on baseline correction will be stored with each individual
`~mne.Evoked` object, and will be restored when reading the data again
via `mne.read_evokeds`.
"""
_write_evokeds(fname, evoked, on_mismatch=on_mismatch, overwrite=overwrite)
def _write_evokeds(fname, evoked, check=True, *, on_mismatch="raise", overwrite=False):
"""Write evoked data."""
from .dipole import DipoleFixed # avoid circular import
fname = _check_fname(fname=fname, overwrite=overwrite)
if check:
check_fname(
fname, "evoked", ("-ave.fif", "-ave.fif.gz", "_ave.fif", "_ave.fif.gz")
)
if not isinstance(evoked, list | tuple):
evoked = [evoked]
warned = False
# Create the file and save the essentials
with start_and_end_file(fname) as fid:
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if evoked[0].info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, evoked[0].info["meas_id"])
# Write measurement info
write_meas_info(fid, evoked[0].info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
for ei, e in enumerate(evoked):
if ei:
_ensure_infos_match(
info1=evoked[0].info,
info2=e.info,
name=f"evoked[{ei}]",
on_mismatch=on_mismatch,
)
start_block(fid, FIFF.FIFFB_EVOKED)
# Comment is optional
if e.comment is not None and len(e.comment) > 0:
write_string(fid, FIFF.FIFF_COMMENT, e.comment)
# First time, num. samples, first and last sample
write_float(fid, FIFF.FIFF_FIRST_TIME, e.times[0])
write_int(fid, FIFF.FIFF_NO_SAMPLES, len(e.times))
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, e.first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, e.last)
# Baseline
if not isinstance(e, DipoleFixed) and e.baseline is not None:
bmin, bmax = e.baseline
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)
# The evoked data itself
if e.info.get("maxshield"):
aspect = FIFF.FIFFB_IAS_ASPECT
else:
aspect = FIFF.FIFFB_ASPECT
start_block(fid, aspect)
write_int(fid, FIFF.FIFF_ASPECT_KIND, e._aspect_kind)
# convert nave to integer to comply with FIFF spec
nave_int = int(round(e.nave))
if nave_int != e.nave and not warned:
warn(
'converting "nave" to integer before saving evoked; this '
"can have a minor effect on the scale of source "
'estimates that are computed using "nave".'
)
warned = True
write_int(fid, FIFF.FIFF_NAVE, nave_int)
del nave_int
decal = np.zeros((e.info["nchan"], 1))
for k in range(e.info["nchan"]):
decal[k] = 1.0 / (
e.info["chs"][k]["cal"] * e.info["chs"][k].get("scale", 1.0)
)
if np.iscomplexobj(e.data):
write_function = write_complex_float_matrix
else:
write_function = write_float_matrix
write_function(fid, FIFF.FIFF_EPOCH, decal * e.data)
end_block(fid, aspect)
end_block(fid, FIFF.FIFFB_EVOKED)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
def _get_peak(data, times, tmin=None, tmax=None, mode="abs", *, strict=True):
"""Get feature-index and time of maximum signal from 2D array.
Note. This is a 'getter', not a 'finder'. For non-evoked type
data and continuous signals, please use proper peak detection algorithms.
Parameters
----------
data : instance of numpy.ndarray (n_locations, n_times)
The data, either evoked in sensor or source space.
times : instance of numpy.ndarray (n_times)
The times in seconds.
tmin : float | None
The minimum point in time to be considered for peak getting.
tmax : float | None
The maximum point in time to be considered for peak getting.
mode : {'pos', 'neg', 'abs'}
How to deal with the sign of the data. If 'pos' only positive
values will be considered. If 'neg' only negative values will
be considered. If 'abs' absolute values will be considered.
Defaults to 'abs'.
strict : bool
If True, raise an error if values are all positive when detecting
a minimum (mode='neg'), or all negative when detecting a maximum
(mode='pos'). Defaults to True.
Returns
-------
max_loc : int
The index of the feature with the maximum value.
max_time : int
The time point of the maximum response, index.
max_amp : float
Amplitude of the maximum response.
"""
_check_option("mode", mode, ["abs", "neg", "pos"])
if tmin is None:
tmin = times[0]
if tmax is None:
tmax = times[-1]
if tmin < times.min() or tmax > times.max():
if tmin < times.min():
param_name = "tmin"
param_val = tmin
else:
param_name = "tmax"
param_val = tmax
raise ValueError(
f"{param_name} ({param_val}) is out of bounds. It must be "
f"between {times.min()} and {times.max()}"
)
elif tmin > tmax:
raise ValueError(f"tmin ({tmin}) must be <= tmax ({tmax})")
time_win = (times >= tmin) & (times <= tmax)
mask = np.ones_like(data).astype(bool)
mask[:, time_win] = False
maxfun = np.argmax
if mode == "pos":
if strict and not np.any(data[~mask] > 0):
raise ValueError(
"No positive values encountered. Cannot operate in pos mode."
)
elif mode == "neg":
if strict and not np.any(data[~mask] < 0):
raise ValueError(
"No negative values encountered. Cannot operate in neg mode."
)
maxfun = np.argmin
masked_index = np.ma.array(np.abs(data) if mode == "abs" else data, mask=mask)
max_loc, max_time = np.unravel_index(maxfun(masked_index), data.shape)
return max_loc, max_time, data[max_loc, max_time]