"""IO with fif files containing events."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from collections.abc import Sequence
from pathlib import Path
import numpy as np
from ._fiff.constants import FIFF
from ._fiff.open import fiff_open
from ._fiff.pick import pick_channels
from ._fiff.tag import read_tag
from ._fiff.tree import dir_tree_find
from ._fiff.write import end_block, start_and_end_file, start_block, write_int
from .utils import (
_check_fname,
_check_integer_or_list,
_check_on_missing,
_check_option,
_get_stim_channel,
_on_missing,
_pl,
_validate_type,
check_fname,
fill_doc,
logger,
verbose,
warn,
)
@fill_doc
def pick_events(events, include=None, exclude=None, step=False):
"""Select some :term:`events`.
Parameters
----------
%(events)s
include : int | list | None
A event id to include or a list of them.
If None all events are included.
exclude : int | list | None
A event id to exclude or a list of them.
If None no event is excluded. If include is not None
the exclude parameter is ignored.
step : bool
If True (default is False), events have a step format according
to the argument output='step' in the function find_events().
In this case, the two last columns are considered in inclusion/
exclusion criteria.
Returns
-------
events : array, shape (n_events, 3)
The list of events.
"""
if include is not None:
include = _check_integer_or_list(include, "include")
mask = np.zeros(len(events), dtype=bool)
for e in include:
mask = np.logical_or(mask, events[:, 2] == e)
if step:
mask = np.logical_or(mask, events[:, 1] == e)
events = events[mask]
elif exclude is not None:
exclude = _check_integer_or_list(exclude, "exclude")
mask = np.ones(len(events), dtype=bool)
for e in exclude:
mask = np.logical_and(mask, events[:, 2] != e)
if step:
mask = np.logical_and(mask, events[:, 1] != e)
events = events[mask]
else:
events = np.copy(events)
if len(events) == 0:
raise RuntimeError("No events found")
return events
def define_target_events(
events, reference_id, target_id, sfreq, tmin, tmax, new_id=None, fill_na=None
):
"""Define new events by co-occurrence of existing events.
This function can be used to evaluate events depending on the
temporal lag to another event. For example, this can be used to
analyze evoked responses which were followed by a button press within
a defined time window.
Parameters
----------
events : ndarray
Array as returned by mne.find_events.
reference_id : int
The reference event. The event defining the epoch of interest.
target_id : int
The target event. The event co-occurring in within a certain time
window around the reference event.
sfreq : float
The sampling frequency of the data.
tmin : float
The lower limit in seconds from the target event.
tmax : float
The upper limit border in seconds from the target event.
new_id : int
New ID for the new event.
fill_na : int | None
Fill event to be inserted if target is not available within the time
window specified. If None, the 'null' events will be dropped.
Returns
-------
new_events : ndarray
The new defined events.
lag : ndarray
Time lag between reference and target in milliseconds.
"""
if new_id is None:
new_id = reference_id
tsample = 1e3 / sfreq
imin = int(tmin * sfreq)
imax = int(tmax * sfreq)
new_events = []
lag = []
for event in events.copy().astype(int):
if event[2] == reference_id:
lower = event[0] + imin
upper = event[0] + imax
res = events[
(events[:, 0] > lower)
& (events[:, 0] < upper)
& (events[:, 2] == target_id)
]
if res.any():
lag += [event[0] - res[0][0]]
event[2] = new_id
new_events += [event]
elif fill_na is not None:
event[2] = fill_na
new_events += [event]
lag.append(np.nan)
new_events = np.array(new_events)
with np.errstate(invalid="ignore"): # casting nans
lag = np.abs(lag, dtype="f8")
if lag.any():
lag *= tsample
else:
lag = np.array([])
return new_events if new_events.any() else np.array([]), lag
def _read_events_fif(fid, tree):
"""Aux function."""
# Find the desired block
events = dir_tree_find(tree, FIFF.FIFFB_MNE_EVENTS)
if len(events) == 0:
fid.close()
raise ValueError("Could not find event data")
events = events[0]
event_list = None
event_id = None
for d in events["directory"]:
kind = d.kind
pos = d.pos
if kind == FIFF.FIFF_MNE_EVENT_LIST:
tag = read_tag(fid, pos)
event_list = tag.data
break
if event_list is None:
raise ValueError("Could not find any events")
else:
event_list.shape = (-1, 3)
for d in events["directory"]:
kind = d.kind
pos = d.pos
if kind == FIFF.FIFF_DESCRIPTION:
tag = read_tag(fid, pos)
event_id = tag.data
m_ = [[s[::-1] for s in m[::-1].split(":", 1)] for m in event_id.split(";")]
event_id = {k: int(v) for v, k in m_}
break
elif kind == FIFF.FIFF_MNE_EVENT_COMMENTS:
tag = read_tag(fid, pos)
event_id = tag.data
event_id = event_id.tobytes().decode("latin-1").split("\x00")[:-1]
assert len(event_id) == len(event_list)
event_id = {k: v[2] for k, v in zip(event_id, event_list)}
break
return event_list, event_id
@verbose
def read_events(
filename,
include=None,
exclude=None,
mask=None,
mask_type="and",
return_event_id=False,
verbose=None,
):
"""Read :term:`events` from fif or text file.
See :ref:`tut-events-vs-annotations` and :ref:`tut-event-arrays`
for more information about events.
Parameters
----------
filename : path-like
Name of the input file.
If the extension is ``.fif``, events are read assuming
the file is in FIF format, otherwise (e.g., ``.eve``,
``.lst``, ``.txt``) events are read as coming from text.
Note that new format event files do not contain
the ``"time"`` column (used to be the second column).
include : int | list | None
A event id to include or a list of them.
If None all events are included.
exclude : int | list | None
A event id to exclude or a list of them.
If None no event is excluded. If include is not None
the exclude parameter is ignored.
mask : int | None
The value of the digital mask to apply to the stim channel values.
If None (default), no masking is performed.
mask_type : ``'and'`` | ``'not_and'``
The type of operation between the mask and the trigger.
Choose 'and' (default) for MNE-C masking behavior.
.. versionadded:: 0.13
return_event_id : bool
If True, ``event_id`` will be returned. This is only possible for
``-annot.fif`` files produced with MNE-C ``mne_browse_raw``.
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(events)s
event_id : dict
Dictionary of ``{str: int}`` mappings of event IDs.
See Also
--------
find_events, write_events
Notes
-----
This function will discard the offset line (i.e., first line with zero
event number) if it is present in a text file.
For more information on ``mask`` and ``mask_type``, see
:func:`mne.find_events`.
"""
check_fname(
filename,
"events",
(
".eve",
"-eve.fif",
"-eve.fif.gz",
"-eve.lst",
"-eve.txt",
"_eve.fif",
"_eve.fif.gz",
"_eve.lst",
"_eve.txt",
"-annot.fif", # MNE-C annot
),
)
filename = Path(filename)
if filename.suffix in (".fif", ".gz"):
fid, tree, _ = fiff_open(filename)
with fid as f:
event_list, event_id = _read_events_fif(f, tree)
# hack fix for windows to avoid bincount problems
event_list = event_list.astype(int)
else:
# Have to read this in as float64 then convert because old style
# eve/lst files had a second float column that will raise errors
lines = np.loadtxt(filename, dtype=np.float64).astype(int)
if len(lines) == 0:
raise ValueError("No text lines found")
if lines.ndim == 1: # Special case for only one event
lines = lines[np.newaxis, :]
if len(lines[0]) == 4: # Old format eve/lst
goods = [0, 2, 3] # Omit "time" variable
elif len(lines[0]) == 3:
goods = [0, 1, 2]
else:
raise ValueError("Unknown number of columns in event text file")
event_list = lines[:, goods]
if mask is not None and event_list.shape[0] > 0 and event_list[0, 2] == 0:
event_list = event_list[1:]
warn("first row of event file discarded (zero-valued)")
event_id = None
event_list = pick_events(event_list, include, exclude)
unmasked_len = event_list.shape[0]
if mask is not None:
event_list = _mask_trigs(event_list, mask, mask_type)
masked_len = event_list.shape[0]
if masked_len < unmasked_len:
warn(f"{unmasked_len - masked_len} of {unmasked_len} events masked")
out = event_list
if return_event_id:
if event_id is None:
raise RuntimeError("No event_id found in the file")
out = (out, event_id)
return out
@verbose
def write_events(filename, events, *, overwrite=False, verbose=None):
"""Write :term:`events` to file.
Parameters
----------
filename : path-like
Name of the output file.
If the extension is ``.fif``, events are written in
binary FIF format, otherwise (e.g., ``.eve``,
``.lst``, ``.txt``) events are written as plain text.
Note that new format event files do not contain
the ``"time"`` column (used to be the second column).
%(events)s
%(overwrite)s
%(verbose)s
See Also
--------
read_events
"""
filename = _check_fname(filename, overwrite=overwrite)
check_fname(
filename,
"events",
(
".eve",
"-eve.fif",
"-eve.fif.gz",
"-eve.lst",
"-eve.txt",
"_eve.fif",
"_eve.fif.gz",
"_eve.lst",
"_eve.txt",
),
)
if filename.suffix in (".fif", ".gz"):
# Start writing...
with start_and_end_file(filename) as fid:
start_block(fid, FIFF.FIFFB_MNE_EVENTS)
write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, events.T)
end_block(fid, FIFF.FIFFB_MNE_EVENTS)
else:
with open(filename, "w") as f:
for e in events:
f.write(f"{e[0]:6d} {e[1]:6d} {e[2]:3d}\n")
def _find_stim_steps(data, first_samp, pad_start=None, pad_stop=None, merge=0):
changed = np.diff(data, axis=1) != 0
idx = np.where(np.all(changed, axis=0))[0]
if len(idx) == 0:
return np.empty((0, 3), dtype="int32")
pre_step = data[0, idx]
idx += 1
post_step = data[0, idx]
idx += first_samp
steps = np.c_[idx, pre_step, post_step]
if pad_start is not None:
v = steps[0, 1]
if v != pad_start:
steps = np.insert(steps, 0, [0, pad_start, v], axis=0)
if pad_stop is not None:
v = steps[-1, 2]
if v != pad_stop:
last_idx = len(data[0]) + first_samp
steps = np.append(steps, [[last_idx, v, pad_stop]], axis=0)
if merge != 0:
diff = np.diff(steps[:, 0])
idx = diff <= abs(merge)
if np.any(idx):
where = np.where(idx)[0]
keep = np.logical_not(idx)
if merge > 0:
# drop the earlier event
steps[where + 1, 1] = steps[where, 1]
keep = np.append(keep, True)
else:
# drop the later event
steps[where, 2] = steps[where + 1, 2]
keep = np.insert(keep, 0, True)
is_step = steps[:, 1] != steps[:, 2]
keep = np.logical_and(keep, is_step)
steps = steps[keep]
return steps
def find_stim_steps(raw, pad_start=None, pad_stop=None, merge=0, stim_channel=None):
"""Find all steps in data from a stim channel.
Parameters
----------
raw : Raw object
The raw data.
pad_start : None | int
Values to assume outside of the stim channel (e.g., if pad_start=0 and
the stim channel starts with value 5, an event of [0, 0, 5] will be
inserted at the beginning). With None, no steps will be inserted.
pad_stop : None | int
Values to assume outside of the stim channel, see ``pad_start``.
merge : int
Merge steps occurring in neighboring samples. The integer value
indicates over how many samples events should be merged, and the sign
indicates in which direction they should be merged (negative means
towards the earlier event, positive towards the later event).
stim_channel : None | str | list of str
Name of the stim channel or all the stim channels
affected by the trigger. If None, the config variables
'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
etc. are read. If these are not found, it will default to
'STI101' or 'STI 014', whichever is present.
Returns
-------
steps : array, shape = (n_samples, 3)
For each step in the stim channel the values [sample, v_from, v_to].
The first column contains the event time in samples (the first sample
with the new value). The second column contains the stim channel value
before the step, and the third column contains value after the step.
See Also
--------
find_events : More sophisticated options for finding events in a Raw file.
"""
# pull stim channel from config if necessary
stim_channel = _get_stim_channel(stim_channel, raw.info)
picks = pick_channels(raw.info["ch_names"], include=stim_channel, ordered=False)
if len(picks) == 0:
raise ValueError("No stim channel found to extract event triggers.")
data, _ = raw[picks, :]
if np.any(data < 0):
warn("Trigger channel contains negative values, using absolute value.")
data = np.abs(data) # make sure trig channel is positive
data = data.astype(np.int64)
return _find_stim_steps(
data, raw.first_samp, pad_start=pad_start, pad_stop=pad_stop, merge=merge
)
@verbose
def _find_events(
data,
first_samp,
*,
verbose=None,
output="onset",
consecutive="increasing",
min_samples=0,
mask=None,
uint_cast=False,
mask_type="and",
initial_event=False,
ch_name=None,
):
"""Help find events."""
assert data.shape[0] == 1 # data should be only a row vector
if min_samples > 0:
merge = int(min_samples // 1)
if merge == min_samples:
merge -= 1
else:
merge = 0
data = data.astype(np.int64)
if uint_cast:
data = data.astype(np.uint16).astype(np.int64)
if data.min() < 0:
warn(
"Trigger channel contains negative values, using absolute "
"value. If data were acquired on a Neuromag system with "
"STI016 active, consider using uint_cast=True to work around "
"an acquisition bug"
)
data = np.abs(data) # make sure trig channel is positive
events = _find_stim_steps(data, first_samp, pad_stop=0, merge=merge)
initial_value = data[0, 0]
if initial_value != 0:
if initial_event:
events = np.insert(events, 0, [first_samp, 0, initial_value], axis=0)
else:
logger.info(
f"Trigger channel {ch_name} has a non-zero initial value of "
f"{initial_value} (consider using initial_event=True to detect this "
"event)"
)
events = _mask_trigs(events, mask, mask_type)
# Determine event onsets and offsets
if consecutive == "increasing":
onsets = events[:, 2] > events[:, 1]
offsets = np.logical_and(
np.logical_or(onsets, (events[:, 2] == 0)), (events[:, 1] > 0)
)
elif consecutive:
onsets = events[:, 2] > 0
offsets = events[:, 1] > 0
else:
onsets = events[:, 1] == 0
offsets = events[:, 2] == 0
onset_idx = np.where(onsets)[0]
offset_idx = np.where(offsets)[0]
if len(onset_idx) == 0 or len(offset_idx) == 0:
return np.empty((0, 3), dtype="int32")
# delete orphaned onsets/offsets
if onset_idx[0] > offset_idx[0]:
logger.info("Removing orphaned offset at the beginning of the file.")
offset_idx = np.delete(offset_idx, 0)
if onset_idx[-1] > offset_idx[-1]:
logger.info("Removing orphaned onset at the end of the file.")
onset_idx = np.delete(onset_idx, -1)
_check_option("output", output, ("onset", "step", "offset"))
if output == "onset":
events = events[onset_idx]
elif output == "step":
idx = np.union1d(onset_idx, offset_idx)
events = events[idx]
else:
assert output == "offset"
event_id = events[onset_idx, 2]
events = events[offset_idx]
events[:, 1] = events[:, 2]
events[:, 2] = event_id
events[:, 0] -= 1
logger.info(f"{len(events)} event{_pl(events)} found on stim channel {ch_name}")
logger.info(f"Event IDs: {np.unique(events[:, 2])}")
return events
def _find_unique_events(events):
"""Uniquify events (ie remove duplicated rows."""
e = np.ascontiguousarray(events).view(
np.dtype((np.void, events.dtype.itemsize * events.shape[1]))
)
_, idx = np.unique(e, return_index=True)
n_dupes = len(events) - len(idx)
if n_dupes > 0:
warn(
"Some events are duplicated in your different stim channels. "
f"{n_dupes} events were ignored during deduplication."
)
return events[idx]
@verbose
def find_events(
raw,
stim_channel=None,
output="onset",
consecutive="increasing",
min_duration=0,
shortest_event=2,
mask=None,
uint_cast=False,
mask_type="and",
initial_event=False,
verbose=None,
):
"""Find :term:`events` from raw file.
See :ref:`tut-events-vs-annotations` and :ref:`tut-event-arrays`
for more information about events.
Parameters
----------
raw : Raw object
The raw data.
stim_channel : None | str | list of str
Name of the stim channel or all the stim channels
affected by triggers. If None, the config variables
'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
etc. are read. If these are not found, it will fall back to
'STI 014' if present, then fall back to the first channel of type
'stim', if present. If multiple channels are provided
then the returned events are the union of all the events
extracted from individual stim channels.
output : 'onset' | 'offset' | 'step'
Whether to report when events start, when events end, or both.
consecutive : bool | 'increasing'
If True, consider instances where the value of the events
channel changes without first returning to zero as multiple
events. If False, report only instances where the value of the
events channel changes from/to zero. If 'increasing', report
adjacent events only when the second event code is greater than
the first.
min_duration : float
The minimum duration of a change in the events channel required
to consider it as an event (in seconds).
shortest_event : int
Minimum number of samples an event must last (default is 2). If the
duration is less than this an exception will be raised.
mask : int | None
The value of the digital mask to apply to the stim channel values.
If None (default), no masking is performed.
uint_cast : bool
If True (default False), do a cast to ``uint16`` on the channel
data. This can be used to fix a bug with STI101 and STI014 in
Neuromag acquisition setups that use channel STI016 (channel 16
turns data into e.g. -32768), similar to ``mne_fix_stim14 --32``
in MNE-C.
.. versionadded:: 0.12
mask_type : 'and' | 'not_and'
The type of operation between the mask and the trigger.
Choose 'and' (default) for MNE-C masking behavior.
.. versionadded:: 0.13
initial_event : bool
If True (default False), an event is created if the stim channel has a
value different from 0 as its first sample. This is useful if an event
at t=0s is present.
.. versionadded:: 0.16
%(verbose)s
Returns
-------
%(events)s
See Also
--------
find_stim_steps : Find all the steps in the stim channel.
read_events : Read events from disk.
write_events : Write events to disk.
Notes
-----
.. warning:: If you are working with downsampled data, events computed
before decimation are no longer valid. Please recompute
your events after decimation, but note this reduces the
precision of event timing.
Examples
--------
Consider data with a stim channel that looks like::
[0, 32, 32, 33, 32, 0]
By default, find_events returns all samples at which the value of the
stim channel increases::
>>> print(find_events(raw)) # doctest: +SKIP
[[ 1 0 32]
[ 3 32 33]]
If consecutive is False, find_events only returns the samples at which
the stim channel changes from zero to a non-zero value::
>>> print(find_events(raw, consecutive=False)) # doctest: +SKIP
[[ 1 0 32]]
If consecutive is True, find_events returns samples at which the
event changes, regardless of whether it first returns to zero::
>>> print(find_events(raw, consecutive=True)) # doctest: +SKIP
[[ 1 0 32]
[ 3 32 33]
[ 4 33 32]]
If output is 'offset', find_events returns the last sample of each event
instead of the first one::
>>> print(find_events(raw, consecutive=True, # doctest: +SKIP
... output='offset'))
[[ 2 33 32]
[ 3 32 33]
[ 4 0 32]]
If output is 'step', find_events returns the samples at which an event
starts or ends::
>>> print(find_events(raw, consecutive=True, # doctest: +SKIP
... output='step'))
[[ 1 0 32]
[ 3 32 33]
[ 4 33 32]
[ 5 32 0]]
To ignore spurious events, it is also possible to specify a minimum
event duration. Assuming our events channel has a sample rate of
1000 Hz::
>>> print(find_events(raw, consecutive=True, # doctest: +SKIP
... min_duration=0.002))
[[ 1 0 32]]
For the digital mask, if mask_type is set to 'and' it will take the
binary representation of the digital mask, e.g. 5 -> '00000101', and will
allow the values to pass where mask is one, e.g.::
7 '0000111' <- trigger value
37 '0100101' <- mask
----------------
5 '0000101'
For the digital mask, if mask_type is set to 'not_and' it will take the
binary representation of the digital mask, e.g. 5 -> '00000101', and will
block the values where mask is one, e.g.::
7 '0000111' <- trigger value
37 '0100101' <- mask
----------------
2 '0000010'
"""
min_samples = min_duration * raw.info["sfreq"]
# pull stim channel from config if necessary
try:
stim_channel = _get_stim_channel(stim_channel, raw.info)
except ValueError:
if len(raw.annotations) > 0:
raise ValueError(
"No stim channels found, but the raw object has "
"annotations. Consider using "
"mne.events_from_annotations to convert these to "
"events."
)
else:
raise
picks = pick_channels(raw.info["ch_names"], include=stim_channel)
if len(picks) == 0:
raise ValueError("No stim channel found to extract event triggers.")
logger.info(f"Finding events on: {', '.join(raw.ch_names[pick] for pick in picks)}")
data, _ = raw[picks, :]
events_list = []
for d, ch_name in zip(data, stim_channel):
events = _find_events(
d[np.newaxis, :],
raw.first_samp,
verbose=verbose,
output=output,
consecutive=consecutive,
min_samples=min_samples,
mask=mask,
uint_cast=uint_cast,
mask_type=mask_type,
initial_event=initial_event,
ch_name=ch_name,
)
# add safety check for spurious events (for ex. from neuromag syst.) by
# checking the number of low sample events
n_short_events = np.sum(np.diff(events[:, 0]) < shortest_event)
if n_short_events > 0:
raise ValueError(
f"You have {n_short_events} events shorter than the shortest_event. "
"These are very unusual and you may want to set min_duration to a "
"larger value e.g. x / raw.info['sfreq']. Where x = 1 sample shorter "
"than the shortest event length."
)
events_list.append(events)
events = np.concatenate(events_list, axis=0)
events = _find_unique_events(events)
events = events[np.argsort(events[:, 0])]
return events
def _mask_trigs(events, mask, mask_type):
"""Mask digital trigger values."""
_check_option("mask_type", mask_type, ["not_and", "and"])
if mask is not None:
_validate_type(mask, "int", "mask", "int or None")
n_events = len(events)
if n_events == 0:
return events.copy()
if mask is not None:
if mask_type == "not_and":
mask = np.bitwise_not(mask)
elif mask_type != "and":
raise ValueError(
"'mask_type' should be either 'and'"
f" or 'not_and', instead of '{mask_type}'"
)
events[:, 1:] = np.bitwise_and(events[:, 1:], mask)
events = events[events[:, 1] != events[:, 2]]
return events
def merge_events(events, ids, new_id, replace_events=True):
"""Merge a set of :term:`events`.
Parameters
----------
events : array, shape (n_events_in, 3)
Events.
ids : array of int
The ids of events to merge.
new_id : int
The new id.
replace_events : bool
If True (default), old event ids are replaced. Otherwise,
new events will be added to the old event list.
Returns
-------
new_events : array, shape (n_events_out, 3)
The new events.
Notes
-----
Rather than merging events you can use hierarchical event_id
in Epochs. For example, here::
>>> event_id = {'auditory/left': 1, 'auditory/right': 2}
And the condition 'auditory' would correspond to either 1 or 2.
Examples
--------
Here is quick example of the behavior::
>>> events = [[134, 0, 1], [341, 0, 2], [502, 0, 3]]
>>> merge_events(events, [1, 2], 12, replace_events=True)
array([[134, 0, 12],
[341, 0, 12],
[502, 0, 3]])
>>> merge_events(events, [1, 2], 12, replace_events=False)
array([[134, 0, 1],
[134, 0, 12],
[341, 0, 2],
[341, 0, 12],
[502, 0, 3]])
"""
events = np.asarray(events)
events_out = events.copy()
idx_touched = [] # to keep track of the original events we can keep
for col in [1, 2]:
for i in ids:
mask = events[:, col] == i
events_out[mask, col] = new_id
idx_touched.append(np.where(mask)[0])
if not replace_events:
idx_touched = np.unique(np.concatenate(idx_touched))
events_out = np.concatenate((events_out, events[idx_touched]), axis=0)
# Now sort in lexical order
events_out = events_out[np.lexsort(events_out.T[::-1])]
return events_out
@fill_doc
def shift_time_events(events, ids, tshift, sfreq):
"""Shift a set of :term:`events`.
Parameters
----------
%(events)s
ids : ndarray of int | None
The ids of events to shift.
tshift : float
Time-shift event. Use positive value tshift for forward shifting
the event and negative value for backward shift.
sfreq : float
The sampling frequency of the data.
Returns
-------
new_events : array of int, shape (n_new_events, 3)
The new events.
"""
events = events.copy()
if ids is None:
mask = slice(None)
else:
mask = np.isin(events[:, 2], ids)
events[mask, 0] += int(tshift * sfreq)
return events
@fill_doc
def make_fixed_length_events(
raw,
id=1, # noqa: A002
start=0,
stop=None,
duration=1.0,
first_samp=True,
overlap=0.0,
):
"""Make a set of :term:`events` separated by a fixed duration.
Parameters
----------
raw : instance of Raw
A raw object to use the data from.
id : int
The id to use (default 1).
start : float
Time of first event (in seconds).
stop : float | None
Maximum time of last event (in seconds). If None, events extend to the
end of the recording.
duration : float
The duration to separate events by (in seconds).
first_samp : bool
If True (default), times will have :term:`first_samp` added to them, as
in :func:`mne.find_events`. This behavior is not desirable if the
returned events will be combined with event times that already
have :term:`first_samp` added to them, e.g. event times that come
from :func:`mne.find_events`.
overlap : float
The overlap between events (in seconds).
Must be ``0 <= overlap < duration``.
.. versionadded:: 0.18
Returns
-------
%(events)s
"""
from .io import BaseRaw
_validate_type(raw, BaseRaw, "raw")
_validate_type(id, "int", "id")
_validate_type(duration, "numeric", "duration")
_validate_type(overlap, "numeric", "overlap")
duration, overlap = float(duration), float(overlap)
if not 0 <= overlap < duration:
raise ValueError(
f"overlap must be >=0 but < duration ({duration}), got {overlap}"
)
start = raw.time_as_index(start, use_rounding=True)[0]
if stop is not None:
stop = raw.time_as_index(stop, use_rounding=True)[0]
else:
stop = raw.last_samp + 1
if first_samp:
start = start + raw.first_samp
stop = min([stop + raw.first_samp, raw.last_samp + 1])
else:
stop = min([stop, len(raw.times)])
# Make sure we don't go out the end of the file:
stop -= int(np.round(raw.info["sfreq"] * duration))
# This should be inclusive due to how we generally use start and stop...
ts = np.arange(start, stop + 1, raw.info["sfreq"] * (duration - overlap)).astype(
int
)
n_events = len(ts)
if n_events == 0:
raise ValueError(
"No events produced, check the values of start, stop, and duration"
)
events = np.c_[ts, np.zeros(n_events, dtype=int), id * np.ones(n_events, dtype=int)]
return events
def concatenate_events(events, first_samps, last_samps):
"""Concatenate event lists to be compatible with concatenate_raws.
This is useful, for example, if you processed and/or changed
events in raw files separately before combining them using
:func:`mne.concatenate_raws`.
Parameters
----------
events : list of array
List of :term:`events` arrays, typically each extracted from a
corresponding raw file that is being concatenated.
first_samps : list or array of int
First sample numbers of the raw files concatenated.
last_samps : list or array of int
Last sample numbers of the raw files concatenated.
Returns
-------
events : array
The concatenated events.
See Also
--------
mne.concatenate_raws
"""
_validate_type(events, list, "events")
if not (len(events) == len(last_samps) and len(events) == len(first_samps)):
raise ValueError(
"events, first_samps, and last_samps must all have the same lengths"
)
first_samps = np.array(first_samps)
last_samps = np.array(last_samps)
n_samps = np.cumsum(last_samps - first_samps + 1)
events_out = events[0]
for e, f, n in zip(events[1:], first_samps[1:], n_samps[:-1]):
# remove any skip since it doesn't exist in concatenated files
e2 = e.copy()
e2[:, 0] -= f
# add offset due to previous files, plus original file offset
e2[:, 0] += n + first_samps[0]
events_out = np.concatenate((events_out, e2), axis=0)
return events_out
@fill_doc
class AcqParserFIF:
"""Parser for Elekta data acquisition settings.
This class parses parameters (e.g. events and averaging categories) that
are defined in the Elekta TRIUX/VectorView data acquisition software (DACQ)
and stored in ``info['acq_pars']``. It can be used to reaverage raw data
according to DACQ settings and modify original averaging settings if
necessary.
Parameters
----------
%(info_not_none)s This is where the DACQ parameters will be taken from.
Attributes
----------
categories : list
List of averaging categories marked active in DACQ.
events : list
List of events that are in use (referenced by some averaging category).
reject : dict
Rejection criteria from DACQ that can be used with mne.Epochs.
Note that mne does not support all DACQ rejection criteria
(e.g. spike, slope).
flat : dict
Flatness rejection criteria from DACQ that can be used with mne.Epochs.
acq_dict : dict
All DACQ parameters.
See Also
--------
mne.io.Raw.acqparser : Access the parser through a Raw attribute.
Notes
-----
Any averaging category (also non-active ones) can be accessed by indexing
as ``acqparserfif['category_name']``.
"""
# DACQ variables always start with one of these
_acq_var_magic = ["ERF", "DEF", "ACQ", "TCP"]
# averager related DACQ variable names (without preceding 'ERF')
# old versions (DACQ < 3.4)
_dacq_vars_compat = (
"megMax",
"megMin",
"megNoise",
"megSlope",
"megSpike",
"eegMax",
"eegMin",
"eegNoise",
"eegSlope",
"eegSpike",
"eogMax",
"ecgMax",
"ncateg",
"nevent",
"stimSource",
"triggerMap",
"update",
"artefIgnore",
"averUpdate",
)
_event_vars_compat = ("Comment", "Delay")
_cat_vars = (
"Comment",
"Display",
"Start",
"State",
"End",
"Event",
"Nave",
"ReqEvent",
"ReqWhen",
"ReqWithin",
"SubAve",
)
# new versions only (DACQ >= 3.4)
_dacq_vars = _dacq_vars_compat + (
"magMax",
"magMin",
"magNoise",
"magSlope",
"magSpike",
"version",
)
_event_vars = _event_vars_compat + (
"Name",
"Channel",
"NewBits",
"OldBits",
"NewMask",
"OldMask",
)
def __init__(self, info):
acq_pars = info["acq_pars"]
if not acq_pars:
raise ValueError("No acquisition parameters")
self.acq_dict = dict(self._acqpars_gen(acq_pars))
if "ERFversion" in self.acq_dict:
self.compat = False # DACQ ver >= 3.4
elif "ERFncateg" in self.acq_dict: # probably DACQ < 3.4
self.compat = True
else:
raise ValueError("Cannot parse acquisition parameters")
dacq_vars = self._dacq_vars_compat if self.compat else self._dacq_vars
# set instance variables
for var in dacq_vars:
val = self.acq_dict["ERF" + var]
if var[:3] in ["mag", "meg", "eeg", "eog", "ecg"]:
val = float(val)
elif var in ["ncateg", "nevent"]:
val = int(val)
setattr(self, var.lower(), val)
self.stimsource = "Internal" if self.stimsource == "1" else "External"
# collect all events and categories
self._events = self._events_from_acq_pars()
self._categories = self._categories_from_acq_pars()
# mark events that are used by a category
for cat in self._categories.values():
if cat["event"]:
self._events[cat["event"]]["in_use"] = True
if cat["reqevent"]:
self._events[cat["reqevent"]]["in_use"] = True
# make mne rejection dicts based on the averager parameters
self.reject = {
"grad": self.megmax,
"eeg": self.eegmax,
"eog": self.eogmax,
"ecg": self.ecgmax,
}
if not self.compat:
self.reject["mag"] = self.magmax
self.reject = {k: float(v) for k, v in self.reject.items() if float(v) > 0}
self.flat = {"grad": self.megmin, "eeg": self.eegmin}
if not self.compat:
self.flat["mag"] = self.magmin
self.flat = {k: float(v) for k, v in self.flat.items() if float(v) > 0}
def __repr__(self): # noqa: D105
s = "<AcqParserFIF | "
s += f"categories: {self.ncateg} "
cats_in_use = len(self._categories_in_use)
s += f"({cats_in_use} in use), "
s += f"events: {self.nevent} "
evs_in_use = len(self._events_in_use)
s += f"({evs_in_use} in use)"
if self.categories:
s += "\nAveraging categories:"
for cat in self.categories:
s += f'\n{cat["index"]}: "{cat["comment"]}"'
s += ">"
return s
def __getitem__(self, item):
"""Return an averaging category, or list of categories.
Parameters
----------
item : str | list of str
Name of the category (comment field in DACQ).
Returns
-------
conds : dict | list of dict
Each dict should have the following keys:
comment: str
The comment field in DACQ.
state : bool
Whether the category was marked enabled in DACQ.
index : int
The index of the category in DACQ. Indices start from 1.
event : int
DACQ index of the reference event (trigger event, zero time for
the corresponding epochs). Note that the event indices start
from 1.
start : float
Start time of epoch relative to the reference event.
end : float
End time of epoch relative to the reference event.
reqevent : int
Index of the required (conditional) event.
reqwhen : int
Whether the required event is required before (1) or after (2)
the reference event.
reqwithin : float
The time range within which the required event must occur,
before or after the reference event.
display : bool
Whether the category was displayed online in DACQ.
nave : int
Desired number of averages. DACQ stops collecting averages once
this number is reached.
subave : int
Whether to compute normal and alternating subaverages, and
how many epochs to include. See the Elekta data acquisition
manual for details. Currently the class does not offer any
facility for computing subaverages, but it can be done manually
by the user after collecting the epochs.
"""
if isinstance(item, str):
item = [item]
else:
_validate_type(item, list, "Keys", "category names")
cats = list()
for it in item:
if it in self._categories:
cats.append(self._categories[it])
else:
raise KeyError("No such category")
return cats[0] if len(cats) == 1 else cats
def __len__(self):
"""Return number of averaging categories marked active in DACQ.
Returns
-------
n_cat : int
The number of categories.
"""
return len(self.categories)
def _events_from_acq_pars(self):
"""Collect DACQ events into a dict.
Events are keyed by number starting from 1 (DACQ index of event).
Each event is itself represented by a dict containing the event
parameters.
"""
# lookup table for event number -> bits for old DACQ versions
_compat_event_lookup = {
1: 1,
2: 2,
3: 4,
4: 8,
5: 16,
6: 32,
7: 3,
8: 5,
9: 6,
10: 7,
11: 9,
12: 10,
13: 11,
14: 12,
15: 13,
16: 14,
17: 15,
}
events = dict()
for evnum in range(1, self.nevent + 1):
evnum_s = str(evnum).zfill(2) # '01', '02' etc.
evdi = dict()
event_vars = self._event_vars_compat if self.compat else self._event_vars
for var in event_vars:
# name of DACQ variable, e.g. 'ERFeventNewBits01'
acq_key = "ERFevent" + var + evnum_s
# corresponding dict key, e.g. 'newbits'
dict_key = var.lower()
val = self.acq_dict[acq_key]
# type convert numeric values
if dict_key in ["newbits", "oldbits", "newmask", "oldmask"]:
val = int(val)
elif dict_key in ["delay"]:
val = float(val)
evdi[dict_key] = val
evdi["in_use"] = False # __init__() will set this
evdi["index"] = evnum
if self.compat:
evdi["name"] = str(evnum)
evdi["oldmask"] = 63
evdi["newmask"] = 63
evdi["oldbits"] = 0
evdi["newbits"] = _compat_event_lookup[evnum]
events[evnum] = evdi
return events
def _acqpars_gen(self, acq_pars):
"""Yield key/value pairs from ``info['acq_pars'])``."""
key, val = "", ""
for line in acq_pars.split():
if any([line.startswith(x) for x in self._acq_var_magic]):
key = line
val = ""
else:
if not key:
raise ValueError("Cannot parse acquisition parameters")
# DACQ splits items with spaces into multiple lines
val += " " + line if val else line
yield key, val
def _categories_from_acq_pars(self):
"""Collect DACQ averaging categories into a dict.
Categories are keyed by the comment field in DACQ. Each category is
itself represented a dict containing the category parameters.
"""
cats = dict()
for catnum in [str(x).zfill(2) for x in range(1, self.nevent + 1)]:
catdi = dict()
# read all category variables
for var in self._cat_vars:
acq_key = "ERFcat" + var + catnum
class_key = var.lower()
val = self.acq_dict[acq_key]
catdi[class_key] = val
# some type conversions
catdi["display"] = catdi["display"] == "1"
catdi["state"] = catdi["state"] == "1"
for key in ["start", "end", "reqwithin"]:
catdi[key] = float(catdi[key])
for key in ["nave", "event", "reqevent", "reqwhen", "subave"]:
catdi[key] = int(catdi[key])
# some convenient extra (non-DACQ) vars
catdi["index"] = int(catnum) # index of category in DACQ list
cats[catdi["comment"]] = catdi
return cats
def _events_mne_to_dacq(self, mne_events):
"""Create list of DACQ events based on mne trigger transitions list.
mne_events is typically given by mne.find_events (use consecutive=True
to get all transitions). Output consists of rows in the form
[t, 0, event_codes] where t is time in samples and event_codes is all
DACQ events compatible with the transition, bitwise ORed together:
e.g. [t1, 0, 5] means that events 1 and 3 occurred at time t1,
as 2**(1 - 1) + 2**(3 - 1) = 5.
"""
events_ = mne_events.copy()
events_[:, 1:3] = 0
for n, ev in self._events.items():
if ev["in_use"]:
pre_ok = (
np.bitwise_and(ev["oldmask"], mne_events[:, 1]) == ev["oldbits"]
)
post_ok = (
np.bitwise_and(ev["newmask"], mne_events[:, 2]) == ev["newbits"]
)
ok_ind = np.where(pre_ok & post_ok)
events_[ok_ind, 2] |= 1 << (n - 1)
return events_
def _mne_events_to_category_t0(self, cat, mne_events, sfreq):
"""Translate mne_events to epoch zero times (t0).
First mne events (trigger transitions) are converted into DACQ events.
Then the zero times for the epochs are obtained by considering the
reference and conditional (required) events and the delay to stimulus.
"""
cat_ev = cat["event"]
cat_reqev = cat["reqevent"]
# first convert mne events to dacq event list
events = self._events_mne_to_dacq(mne_events)
# next, take req. events and delays into account
times = events[:, 0]
# indices of times where ref. event occurs
refEvents_inds = np.where(events[:, 2] & (1 << cat_ev - 1))[0]
refEvents_t = times[refEvents_inds]
if cat_reqev:
# indices of times where req. event occurs
reqEvents_inds = np.where(events[:, 2] & (1 << cat_reqev - 1))[0]
reqEvents_t = times[reqEvents_inds]
# relative (to refevent) time window where req. event
# must occur (e.g. [0 .2])
twin = [0, (-1) ** (cat["reqwhen"]) * cat["reqwithin"]]
win = np.round(np.array(sorted(twin)) * sfreq) # to samples
refEvents_wins = refEvents_t[:, None] + win
req_acc = np.zeros(refEvents_inds.shape, dtype=bool)
for t in reqEvents_t:
# mark time windows where req. condition is satisfied
reqEvent_in_win = np.logical_and(
t >= refEvents_wins[:, 0], t <= refEvents_wins[:, 1]
)
req_acc |= reqEvent_in_win
# drop ref. events where req. event condition is not satisfied
refEvents_inds = refEvents_inds[np.where(req_acc)]
refEvents_t = times[refEvents_inds]
# adjust for trigger-stimulus delay by delaying the ref. event
refEvents_t += int(np.round(self._events[cat_ev]["delay"] * sfreq))
return refEvents_t
@property
def categories(self):
"""Return list of averaging categories ordered by DACQ index.
Only returns categories marked active in DACQ.
"""
cats = sorted(self._categories_in_use.values(), key=lambda cat: cat["index"])
return cats
@property
def events(self):
"""Return events ordered by DACQ index.
Only returns events that are in use (referred to by a category).
"""
evs = sorted(self._events_in_use.values(), key=lambda ev: ev["index"])
return evs
@property
def _categories_in_use(self):
return {k: v for k, v in self._categories.items() if v["state"]}
@property
def _events_in_use(self):
return {k: v for k, v in self._events.items() if v["in_use"]}
def get_condition(
self,
raw,
condition=None,
stim_channel=None,
mask=None,
uint_cast=None,
mask_type="and",
delayed_lookup=True,
):
"""Get averaging parameters for a condition (averaging category).
Output is designed to be used with the Epochs class to extract the
corresponding epochs.
Parameters
----------
raw : Raw object
An instance of Raw.
condition : None | str | dict | list of dict
Condition or a list of conditions. Conditions can be strings
(DACQ comment field, e.g. 'Auditory left') or category dicts
(e.g. acqp['Auditory left'], where acqp is an instance of
AcqParserFIF). If None, get all conditions marked active in
DACQ.
stim_channel : None | str | list of str
Name of the stim channel or all the stim channels
affected by the trigger. If None, the config variables
'MNE_STIM_CHANNEL', 'MNE_STIM_CHANNEL_1', 'MNE_STIM_CHANNEL_2',
etc. are read. If these are not found, it will fall back to
'STI101' or 'STI 014' if present, then fall back to the first
channel of type 'stim', if present.
mask : int | None
The value of the digital mask to apply to the stim channel values.
If None (default), no masking is performed.
uint_cast : bool
If True (default False), do a cast to ``uint16`` on the channel
data. This can be used to fix a bug with STI101 and STI014 in
Neuromag acquisition setups that use channel STI016 (channel 16
turns data into e.g. -32768), similar to ``mne_fix_stim14 --32``
in MNE-C.
mask_type : 'and' | 'not_and'
The type of operation between the mask and the trigger.
Choose 'and' for MNE-C masking behavior.
delayed_lookup : bool
If True, use the 'delayed lookup' procedure implemented in Elekta
software. When a trigger transition occurs, the lookup of
the new trigger value will not happen immediately at the following
sample, but with a 1-sample delay. This allows a slight
asynchrony between trigger onsets, when they are intended to be
synchronous. If you have accurate hardware and want to detect
transitions with a resolution of one sample, use
delayed_lookup=False.
Returns
-------
conds_data : dict or list of dict
Each dict has the following keys:
events : array, shape (n_epochs_out, 3)
List of zero time points (t0) for the epochs matching the
condition. Use as the ``events`` parameter to Epochs. Note
that these are not (necessarily) actual events.
event_id : dict
Name of condition and index compatible with ``events``.
Should be passed as the ``event_id`` parameter to Epochs.
tmin : float
Epoch starting time relative to t0. Use as the ``tmin``
parameter to Epochs.
tmax : float
Epoch ending time relative to t0. Use as the ``tmax``
parameter to Epochs.
"""
if condition is None:
condition = self.categories # get all
if not isinstance(condition, list):
condition = [condition] # single cond -> listify
conds_data = list()
for cat in condition:
if isinstance(cat, str):
cat = self[cat]
mne_events = find_events(
raw,
stim_channel=stim_channel,
mask=mask,
mask_type=mask_type,
output="step",
uint_cast=uint_cast,
consecutive=True,
verbose=False,
shortest_event=1,
)
if delayed_lookup:
ind = np.where(np.diff(mne_events[:, 0]) == 1)[0]
if 1 in np.diff(ind):
raise ValueError(
"There are several subsequent "
"transitions on the trigger channel. "
"This will not work well with "
"delayed_lookup=True. You may want to "
"check your trigger data and "
"set delayed_lookup=False."
)
mne_events[ind, 2] = mne_events[ind + 1, 2]
mne_events = np.delete(mne_events, ind + 1, axis=0)
sfreq = raw.info["sfreq"]
cat_t0_ = self._mne_events_to_category_t0(cat, mne_events, sfreq)
# make it compatible with the usual events array
cat_t0 = np.c_[
cat_t0_, np.zeros(cat_t0_.shape), cat["index"] * np.ones(cat_t0_.shape)
].astype(np.uint32)
cat_id = {cat["comment"]: cat["index"]}
tmin, tmax = cat["start"], cat["end"]
conds_data.append(
dict(events=cat_t0, event_id=cat_id, tmin=tmin, tmax=tmax)
)
return conds_data[0] if len(conds_data) == 1 else conds_data
def match_event_names(event_names, keys, *, on_missing="raise"):
"""Search a collection of event names for matching (sub-)groups of events.
This function is particularly helpful when using grouped event names
(i.e., event names containing forward slashes ``/``). Please see the
Examples section below for a working example.
Parameters
----------
event_names : array-like of str | dict
Either a collection of event names, or the ``event_id`` dictionary
mapping event names to event codes.
keys : array-like of str | str
One or multiple event names or groups to search for in ``event_names``.
on_missing : 'raise' | 'warn' | 'ignore'
How to handle situations when none of the ``keys`` can be found in
``event_names``. If ``'warn'`` or ``'ignore'``, an empty list will be
returned.
Returns
-------
matches : list of str
All event names that match any of the ``keys`` provided.
Notes
-----
.. versionadded:: 1.0
Examples
--------
Assuming the following grouped event names in the data, you could easily
query for all ``auditory`` and ``left`` event names::
>>> event_names = [
... 'auditory/left',
... 'auditory/right',
... 'visual/left',
... 'visual/right'
... ]
>>> match_event_names(
... event_names=event_names,
... keys=['auditory', 'left']
... )
['auditory/left', 'auditory/right', 'visual/left']
"""
_check_on_missing(on_missing)
if isinstance(event_names, dict):
event_names = list(event_names)
# ensure we have a list of `keys`
if isinstance(keys, Sequence | np.ndarray) and not isinstance(keys, str):
keys = list(keys)
else:
keys = [keys]
matches = []
# form the hierarchical event name mapping
for key in keys:
if not isinstance(key, str):
raise ValueError(f"keys must be strings, got {type(key)} ({key})")
matches.extend(
name
for name in event_names
if set(key.split("/")).issubset(name.split("/"))
)
if not matches:
_on_missing(
on_missing=on_missing,
msg=f'Event name "{key}" could not be found. The following events '
f"are present in the data: {', '.join(event_names)}",
error_klass=KeyError,
)
matches = sorted(set(matches)) # deduplicate if necessary
return matches
def count_events(events, ids=None):
"""Count events.
Parameters
----------
events : ndarray, shape (N, 3)
The events array (consisting of N events).
ids : array-like of int | None
If ``None``, count all event types present in the input. If array-like
of int, count only those event types given by ``ids``.
Returns
-------
counts : dict
A dictionary containing the event types as keys with their counts as
values.
Examples
--------
>>> events = np.array([[0, 0, 1], [0, 0, 1], [0, 0, 5]])
>>> count_events(events)
{1: 2, 5: 1}
>>> count_events(events, ids=[1, 5])
{1: 2, 5: 1}
>>> count_events(events, ids=[1, 11])
{1: 2, 11: 0}
"""
counts = np.bincount(events[:, 2])
counts = {i: int(count) for i, count in enumerate(counts) if count > 0}
if ids is not None:
counts = {id_: counts.get(id_, 0) for id_ in ids}
return counts