"""Tools for working with epoched data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import json
import operator
import os.path as op
from collections import Counter
from copy import deepcopy
from functools import partial
from inspect import getfullargspec
from pathlib import Path
import numpy as np
from scipy.interpolate import interp1d
from ._fiff.constants import FIFF
from ._fiff.meas_info import (
ContainsMixin,
SetChannelsMixin,
_ensure_infos_match,
read_meas_info,
write_meas_info,
)
from ._fiff.open import _get_next_fname, fiff_open
from ._fiff.pick import (
_DATA_CH_TYPES_SPLIT,
_pick_data_channels,
_picks_to_idx,
channel_indices_by_type,
channel_type,
pick_channels,
pick_info,
)
from ._fiff.proj import ProjMixin, setup_proj
from ._fiff.tag import _read_tag_header, read_tag
from ._fiff.tree import dir_tree_find
from ._fiff.utils import _make_split_fnames
from ._fiff.write import (
_NEXT_FILE_BUFFER,
INT32_MAX,
_get_split_size,
end_block,
start_and_end_file,
start_block,
write_complex_double_matrix,
write_complex_float_matrix,
write_double_matrix,
write_float,
write_float_matrix,
write_id,
write_int,
write_string,
)
from .annotations import (
EpochAnnotationsMixin,
_read_annotations_fif,
_write_annotations,
events_from_annotations,
)
from .baseline import _check_baseline, _log_rescale, rescale
from .bem import _check_origin
from .channels.channels import InterpolationMixin, ReferenceMixin, UpdateChannelsMixin
from .event import _read_events_fif, make_fixed_length_events, match_event_names
from .evoked import EvokedArray
from .filter import FilterMixin, _check_fun, detrend
from .fixes import rng_uniform
from .html_templates import _get_html_template
from .parallel import parallel_func
from .time_frequency.spectrum import EpochsSpectrum, SpectrumMixin, _validate_method
from .time_frequency.tfr import AverageTFR, EpochsTFR
from .utils import (
ExtendedTimeMixin,
GetEpochsMixin,
SizeMixin,
_build_data_frame,
_check_combine,
_check_event_id,
_check_fname,
_check_option,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_preload,
_check_time_format,
_convert_times,
_ensure_events,
_gen_events,
_on_missing,
_path_like,
_pl,
_prepare_read_metadata,
_prepare_write_metadata,
_scale_dataframe_data,
_validate_type,
check_fname,
check_random_state,
copy_function_doc_to_method_doc,
logger,
object_size,
repr_html,
sizeof_fmt,
verbose,
warn,
)
from .utils.docs import fill_doc
from .viz import plot_drop_log, plot_epochs, plot_epochs_image, plot_topo_image_epochs
def _pack_reject_params(epochs):
reject_params = dict()
for key in ("reject", "flat", "reject_tmin", "reject_tmax"):
val = getattr(epochs, key, None)
if val is not None:
reject_params[key] = val
return reject_params
def _save_split(epochs, split_fnames, part_idx, n_parts, fmt, overwrite):
"""Split epochs.
Anything new added to this function also needs to be added to
BaseEpochs.save to account for new file sizes.
"""
# insert index in filename
this_fname = split_fnames[part_idx]
_check_fname(this_fname, overwrite=overwrite)
next_fname, next_idx = None, None
if part_idx < n_parts - 1:
next_idx = part_idx + 1
next_fname = split_fnames[next_idx]
with start_and_end_file(this_fname) as fid:
_save_part(fid, epochs, fmt, n_parts, next_fname, next_idx)
def _save_part(fid, epochs, fmt, n_parts, next_fname, next_idx):
info = epochs.info
meas_id = info["meas_id"]
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info["meas_id"])
# Write measurement info
write_meas_info(fid, info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
start_block(fid, FIFF.FIFFB_MNE_EPOCHS)
# write events out after getting data to ensure bad events are dropped
data = epochs.get_data(copy=False)
_check_option("fmt", fmt, ["single", "double"])
if np.iscomplexobj(data):
if fmt == "single":
write_function = write_complex_float_matrix
elif fmt == "double":
write_function = write_complex_double_matrix
else:
if fmt == "single":
write_function = write_float_matrix
elif fmt == "double":
write_function = write_double_matrix
# Epoch annotations are written if there are any
annotations = getattr(epochs, "annotations", [])
if annotations is not None and len(annotations):
_write_annotations(fid, annotations)
# write Epoch event windows
start_block(fid, FIFF.FIFFB_MNE_EVENTS)
write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, epochs.events.T)
write_string(fid, FIFF.FIFF_DESCRIPTION, _event_id_string(epochs.event_id))
end_block(fid, FIFF.FIFFB_MNE_EVENTS)
# Metadata
if epochs.metadata is not None:
start_block(fid, FIFF.FIFFB_MNE_METADATA)
metadata = _prepare_write_metadata(epochs.metadata)
write_string(fid, FIFF.FIFF_DESCRIPTION, metadata)
end_block(fid, FIFF.FIFFB_MNE_METADATA)
# First and last sample
first = int(round(epochs.tmin * info["sfreq"])) # round just to be safe
last = first + len(epochs.times) - 1
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, last)
# write raw original sampling rate
write_float(fid, FIFF.FIFF_MNE_EPOCHS_RAW_SFREQ, epochs._raw_sfreq)
# save baseline
if epochs.baseline is not None:
bmin, bmax = epochs.baseline
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)
# The epochs itself
decal = np.empty(info["nchan"])
for k in range(info["nchan"]):
decal[k] = 1.0 / (info["chs"][k]["cal"] * info["chs"][k].get("scale", 1.0))
data *= decal[np.newaxis, :, np.newaxis]
write_function(fid, FIFF.FIFF_EPOCH, data)
# undo modifications to data
data /= decal[np.newaxis, :, np.newaxis]
write_string(fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG, json.dumps(epochs.drop_log))
reject_params = _pack_reject_params(epochs)
if reject_params:
write_string(fid, FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT, json.dumps(reject_params))
write_int(fid, FIFF.FIFF_MNE_EPOCHS_SELECTION, epochs.selection)
# And now write the next file info in case epochs are split on disk
if next_fname is not None and n_parts > 1:
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
if meas_id is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, meas_id)
write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
end_block(fid, FIFF.FIFFB_REF)
end_block(fid, FIFF.FIFFB_MNE_EPOCHS)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
def _event_id_string(event_id):
return ";".join([k + ":" + str(v) for k, v in event_id.items()])
def _merge_events(events, event_id, selection):
"""Merge repeated events."""
event_id = event_id.copy()
new_events = events.copy()
event_idxs_to_delete = list()
unique_events, counts = np.unique(events[:, 0], return_counts=True)
for ev in unique_events[counts > 1]:
# indices at which the non-unique events happened
idxs = (events[:, 0] == ev).nonzero()[0]
# Figure out new value for events[:, 1]. Set to 0, if mixed vals exist
unique_priors = np.unique(events[idxs, 1])
new_prior = unique_priors[0] if len(unique_priors) == 1 else 0
# If duplicate time samples have same event val, "merge" == "drop"
# and no new event_id key will be created
ev_vals = np.unique(events[idxs, 2])
if len(ev_vals) <= 1:
new_event_val = ev_vals[0]
# Else, make a new event_id for the merged event
else:
# Find all event_id keys involved in duplicated events. These
# keys will be merged to become a new entry in "event_id"
event_id_keys = list(event_id.keys())
event_id_vals = list(event_id.values())
new_key_comps = [
event_id_keys[event_id_vals.index(value)] for value in ev_vals
]
# Check if we already have an entry for merged keys of duplicate
# events ... if yes, reuse it
for key in event_id:
if set(key.split("/")) == set(new_key_comps):
new_event_val = event_id[key]
break
# Else, find an unused value for the new key and make an entry into
# the event_id dict
else:
ev_vals = np.unique(
np.concatenate(
(list(event_id.values()), events[:, 1:].flatten()), axis=0
)
)
if ev_vals[0] > 1:
new_event_val = 1
else:
diffs = np.diff(ev_vals)
idx = np.where(diffs > 1)[0]
idx = -1 if len(idx) == 0 else idx[0]
new_event_val = ev_vals[idx] + 1
new_event_id_key = "/".join(sorted(new_key_comps))
event_id[new_event_id_key] = int(new_event_val)
# Replace duplicate event times with merged event and remember which
# duplicate indices to delete later
new_events[idxs[0], 1] = new_prior
new_events[idxs[0], 2] = new_event_val
event_idxs_to_delete.extend(idxs[1:])
# Delete duplicate event idxs
new_events = np.delete(new_events, event_idxs_to_delete, 0)
new_selection = np.delete(selection, event_idxs_to_delete, 0)
return new_events, event_id, new_selection
def _handle_event_repeated(events, event_id, event_repeated, selection, drop_log):
"""Handle repeated events.
Note that drop_log will be modified inplace
"""
assert len(events) == len(selection)
selection = np.asarray(selection)
unique_events, u_ev_idxs = np.unique(events[:, 0], return_index=True)
# Return early if no duplicates
if len(unique_events) == len(events):
return events, event_id, selection, drop_log
# Else, we have duplicates. Triage ...
_check_option("event_repeated", event_repeated, ["error", "drop", "merge"])
drop_log = list(drop_log)
if event_repeated == "error":
raise RuntimeError(
"Event time samples were not unique. Consider "
'setting the `event_repeated` parameter."'
)
elif event_repeated == "drop":
logger.info(
"Multiple event values for single event times found. "
"Keeping the first occurrence and dropping all others."
)
new_events = events[u_ev_idxs]
new_selection = selection[u_ev_idxs]
drop_ev_idxs = np.setdiff1d(selection, new_selection)
for idx in drop_ev_idxs:
drop_log[idx] = drop_log[idx] + ("DROP DUPLICATE",)
selection = new_selection
elif event_repeated == "merge":
logger.info(
"Multiple event values for single event times found. "
"Creating new event value to reflect simultaneous events."
)
new_events, event_id, new_selection = _merge_events(events, event_id, selection)
drop_ev_idxs = np.setdiff1d(selection, new_selection)
for idx in drop_ev_idxs:
drop_log[idx] = drop_log[idx] + ("MERGE DUPLICATE",)
selection = new_selection
drop_log = tuple(drop_log)
# Remove obsolete kv-pairs from event_id after handling
keys = new_events[:, 1:].flatten()
event_id = {k: v for k, v in event_id.items() if v in keys}
return new_events, event_id, selection, drop_log
@fill_doc
class BaseEpochs(
ProjMixin,
ContainsMixin,
UpdateChannelsMixin,
ReferenceMixin,
SetChannelsMixin,
InterpolationMixin,
FilterMixin,
ExtendedTimeMixin,
SizeMixin,
GetEpochsMixin,
EpochAnnotationsMixin,
SpectrumMixin,
):
"""Abstract base class for `~mne.Epochs`-type classes.
.. note::
This class should not be instantiated directly via
``mne.BaseEpochs(...)``. Instead, use one of the functions listed in
the See Also section below.
Parameters
----------
%(info_not_none)s
data : ndarray | None
If ``None``, data will be read from the Raw object. If ndarray, must be
of shape (n_epochs, n_channels, n_times).
%(events_epochs)s
%(event_id)s
%(epochs_tmin_tmax)s
%(baseline_epochs)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(raw_epochs)s
%(picks_all)s
%(reject_epochs)s
%(flat)s
%(decim)s
%(epochs_reject_tmin_tmax)s
%(detrend_epochs)s
%(proj_epochs)s
%(on_missing_epochs)s
preload_at_end : bool
%(epochs_preload)s
%(selection)s
.. versionadded:: 0.16
%(drop_log)s
filename : Path | None
The filename (if the epochs are read from disk).
%(metadata_epochs)s
.. versionadded:: 0.16
%(event_repeated_epochs)s
%(raw_sfreq)s
annotations : instance of mne.Annotations | None
Annotations to set.
%(verbose)s
See Also
--------
Epochs
EpochsArray
make_fixed_length_epochs
Notes
-----
The ``BaseEpochs`` class is public to allow for stable type-checking in
user code (i.e., ``isinstance(my_epochs, BaseEpochs)``) but should not be
used as a constructor for Epochs objects (use instead :class:`mne.Epochs`).
"""
@verbose
def __init__(
self,
info,
data,
events,
event_id=None,
tmin=-0.2,
tmax=0.5,
baseline=(None, 0),
raw=None,
picks=None,
reject=None,
flat=None,
decim=1,
reject_tmin=None,
reject_tmax=None,
detrend=None,
proj=True,
on_missing="raise",
preload_at_end=False,
selection=None,
drop_log=None,
filename=None,
metadata=None,
event_repeated="error",
*,
raw_sfreq=None,
annotations=None,
verbose=None,
):
if events is not None: # RtEpochs can have events=None
events = _ensure_events(events)
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if len(events) == 0:
self._allow_empty = True
selection = None
else:
self._allow_empty = False
events_max = events.max()
if events_max > INT32_MAX:
raise ValueError(
f"events array values must not exceed {INT32_MAX}, "
f"got {events_max}"
)
event_id = _check_event_id(event_id, events)
self.event_id = event_id
del event_id
if events is not None: # RtEpochs can have events=None
for key, val in self.event_id.items():
if val not in events[:, 2]:
msg = f"No matching events found for {key} (event id {val})"
_on_missing(on_missing, msg)
# ensure metadata matches original events size
self.selection = np.arange(len(events))
self.events = events
# same as self.metadata = metadata, but suppress log in favor
# of logging below (after setting self.selection)
GetEpochsMixin.metadata.fset(self, metadata, verbose=False)
del events
values = list(self.event_id.values())
selected = np.where(np.isin(self.events[:, 2], values))[0]
if selection is None:
selection = selected
else:
selection = np.array(selection, int)
if selection.shape != (len(selected),):
raise ValueError(
f"selection must be shape {selected.shape} got shape "
f"{selection.shape}"
)
self.selection = selection
if drop_log is None:
self.drop_log = tuple(
() if k in self.selection else ("IGNORED",)
for k in range(max(len(self.events), max(self.selection) + 1))
)
else:
self.drop_log = drop_log
self.events = self.events[selected]
(
self.events,
self.event_id,
self.selection,
self.drop_log,
) = _handle_event_repeated(
self.events,
self.event_id,
event_repeated,
self.selection,
self.drop_log,
)
# then subselect
sub = np.where(np.isin(selection, self.selection))[0]
if isinstance(metadata, list):
metadata = [metadata[s] for s in sub]
elif metadata is not None:
metadata = metadata.iloc[sub]
# Remove temporarily set metadata from above, and set
# again to get the correct log ("adding metadata", instead of
# "replacing existing metadata")
GetEpochsMixin.metadata.fset(self, None, verbose=False)
self.metadata = metadata
del metadata
n_events = len(self.events)
if n_events > 1:
if np.diff(self.events.astype(np.int64)[:, 0]).min() <= 0:
warn(
"The events passed to the Epochs constructor are not "
"chronologically ordered.",
RuntimeWarning,
)
if n_events > 0:
logger.info(f"{n_events} matching events found")
else:
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if not self._allow_empty:
raise ValueError("No desired events found.")
else:
self.drop_log = tuple()
self.selection = np.array([], int)
self.metadata = metadata
# do not set self.events here, let subclass do it
if (detrend not in [None, 0, 1]) or isinstance(detrend, bool):
raise ValueError("detrend must be None, 0, or 1")
self.detrend = detrend
self._raw = raw
info._check_consistency()
self.picks = _picks_to_idx(
info, picks, none="all", exclude=(), allow_empty=False
)
self.info = pick_info(info, self.picks)
del info
self._current = 0
if data is None:
self.preload = False
self._data = None
self._do_baseline = True
else:
assert decim == 1
if (
data.ndim != 3
or data.shape[2] != round((tmax - tmin) * self.info["sfreq"]) + 1
):
raise RuntimeError("bad data shape")
if data.shape[0] != len(self.events):
raise ValueError(
"The number of epochs and the number of events must match"
)
self.preload = True
self._data = data
self._do_baseline = False
self._offset = None
if tmin > tmax:
raise ValueError("tmin has to be less than or equal to tmax")
# Handle times
sfreq = float(self.info["sfreq"])
start_idx = int(round(tmin * sfreq))
self._raw_times = np.arange(start_idx, int(round(tmax * sfreq)) + 1) / sfreq
self._set_times(self._raw_times)
# check reject_tmin and reject_tmax
if reject_tmin is not None:
if np.isclose(reject_tmin, tmin):
# adjust for potential small deviations due to sampling freq
reject_tmin = self.tmin
elif reject_tmin < tmin:
raise ValueError(
f"reject_tmin needs to be None or >= tmin (got {reject_tmin})"
)
if reject_tmax is not None:
if np.isclose(reject_tmax, tmax):
# adjust for potential small deviations due to sampling freq
reject_tmax = self.tmax
elif reject_tmax > tmax:
raise ValueError(
f"reject_tmax needs to be None or <= tmax (got {reject_tmax})"
)
if (reject_tmin is not None) and (reject_tmax is not None):
if reject_tmin >= reject_tmax:
raise ValueError(
f"reject_tmin ({reject_tmin}) needs to be "
f" < reject_tmax ({reject_tmax})"
)
self.reject_tmin = reject_tmin
self.reject_tmax = reject_tmax
# decimation
self._decim = 1
self.decimate(decim)
# baseline correction: replace `None` tuple elements with actual times
self.baseline = _check_baseline(
baseline, times=self.times, sfreq=self.info["sfreq"]
)
if self.baseline is not None and self.baseline != baseline:
logger.info(
f"Setting baseline interval to "
f"[{self.baseline[0]}, {self.baseline[1]}] s"
)
logger.info(_log_rescale(self.baseline))
# setup epoch rejection
self.reject = None
self.flat = None
self._reject_setup(reject, flat)
# do the rest
valid_proj = [True, "delayed", False]
if proj not in valid_proj:
raise ValueError(f'"proj" must be one of {valid_proj}, not {proj}')
if proj == "delayed":
self._do_delayed_proj = True
logger.info("Entering delayed SSP mode.")
else:
self._do_delayed_proj = False
activate = False if self._do_delayed_proj else proj
self._projector, self.info = setup_proj(self.info, False, activate=activate)
if preload_at_end:
assert self._data is None
assert self.preload is False
self.load_data() # this will do the projection
elif proj is True and self._projector is not None and data is not None:
# let's make sure we project if data was provided and proj
# requested
# we could do this with np.einsum, but iteration should be
# more memory safe in most instances
for ii, epoch in enumerate(self._data):
self._data[ii] = np.dot(self._projector, epoch)
self.filename = filename if filename is not None else filename
if raw_sfreq is None:
raw_sfreq = self.info["sfreq"]
self._raw_sfreq = raw_sfreq
self._check_consistency()
self.set_annotations(annotations, on_missing="ignore")
def _check_consistency(self):
"""Check invariants of epochs object."""
if hasattr(self, "events"):
assert len(self.selection) == len(self.events)
assert len(self.drop_log) >= len(self.events)
assert len(self.selection) == sum(len(dl) == 0 for dl in self.drop_log)
assert hasattr(self, "_times_readonly")
assert not self.times.flags["WRITEABLE"]
assert isinstance(self.drop_log, tuple)
assert all(isinstance(log, tuple) for log in self.drop_log)
assert all(isinstance(s, str) for log in self.drop_log for s in log)
def reset_drop_log_selection(self):
"""Reset the drop_log and selection entries.
This method will simplify ``self.drop_log`` and ``self.selection``
so that they are meaningless (tuple of empty tuples and increasing
integers, respectively). This can be useful when concatenating
many Epochs instances, as ``drop_log`` can accumulate many entries
which can become problematic when saving.
"""
self.selection = np.arange(len(self.events))
self.drop_log = (tuple(),) * len(self.events)
self._check_consistency()
def load_data(self):
"""Load the data if not already preloaded.
Returns
-------
epochs : instance of Epochs
The epochs object.
Notes
-----
This function operates in-place.
.. versionadded:: 0.10.0
"""
if self.preload:
return self
self._data = self._get_data()
self.preload = True
self._do_baseline = False
self._decim_slice = slice(None, None, None)
self._decim = 1
self._raw_times = self.times
assert self._data.shape[-1] == len(self.times)
self._raw = None # shouldn't need it anymore
return self
@verbose
def apply_baseline(self, baseline=(None, 0), *, verbose=None):
"""Baseline correct epochs.
Parameters
----------
%(baseline_epochs)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(verbose)s
Returns
-------
epochs : instance of Epochs
The baseline-corrected Epochs object.
Notes
-----
Baseline correction can be done multiple times, but can never be
reverted once the data has been loaded.
.. versionadded:: 0.10.0
"""
baseline = _check_baseline(baseline, times=self.times, sfreq=self.info["sfreq"])
if self.preload:
if self.baseline is not None and baseline is None:
raise RuntimeError(
"You cannot remove baseline correction "
"from preloaded data once it has been "
"applied."
)
self._do_baseline = True
picks = self._detrend_picks
rescale(self._data, self.times, baseline, copy=False, picks=picks)
self._do_baseline = False
else: # logging happens in "rescale" in "if" branch
logger.info(_log_rescale(baseline))
# For EpochsArray and Epochs, this is already True:
# assert self._do_baseline is True
# ... but for EpochsFIF it's not, so let's set it explicitly
self._do_baseline = True
self.baseline = baseline
return self
def _reject_setup(self, reject, flat, *, allow_callable=False):
"""Set self._reject_time and self._channel_type_idx."""
idx = channel_indices_by_type(self.info)
reject = deepcopy(reject) if reject is not None else dict()
flat = deepcopy(flat) if flat is not None else dict()
for rej, kind in zip((reject, flat), ("reject", "flat")):
_validate_type(rej, dict, kind)
bads = set(rej.keys()) - set(idx.keys())
if len(bads) > 0:
raise KeyError(f"Unknown channel types found in {kind}: {bads}")
for key in idx.keys():
# don't throw an error if rejection/flat would do nothing
if len(idx[key]) == 0 and (
np.isfinite(reject.get(key, np.inf)) or flat.get(key, -1) >= 0
):
# This is where we could eventually add e.g.
# self.allow_missing_reject_keys check to allow users to
# provide keys that don't exist in data
raise ValueError(
f"No {key.upper()} channel found. Cannot reject based on "
f"{key.upper()}."
)
# check for invalid values
for rej, kind in zip((reject, flat), ("Rejection", "Flat")):
for key, val in rej.items():
name = f"{kind} dict value for {key}"
if callable(val) and allow_callable:
continue
extra_str = ""
if allow_callable:
extra_str = "or callable"
_validate_type(val, "numeric", name, extra=extra_str)
if val is None or val < 0:
raise ValueError(
f"If using numerical {name} criteria, the value "
f"must be >= 0, not {repr(val)}"
)
# now check to see if our rejection and flat are getting more
# restrictive
old_reject = self.reject if self.reject is not None else dict()
old_flat = self.flat if self.flat is not None else dict()
bad_msg = (
'{kind}["{key}"] == {new} {op} {old} (old value), new '
"{kind} values must be at least as stringent as "
"previous ones"
)
# copy thresholds for channel types that were used previously, but not
# passed this time
for key in set(old_reject) - set(reject):
reject[key] = old_reject[key]
# make sure new thresholds are at least as stringent as the old ones
for key in reject:
# Skip this check if old_reject and reject are callables
if callable(reject[key]) and allow_callable:
continue
if key in old_reject and reject[key] > old_reject[key]:
raise ValueError(
bad_msg.format(
kind="reject",
key=key,
new=reject[key],
old=old_reject[key],
op=">",
)
)
# same for flat thresholds
for key in set(old_flat) - set(flat):
flat[key] = old_flat[key]
for key in flat:
if callable(flat[key]) and allow_callable:
continue
if key in old_flat and flat[key] < old_flat[key]:
raise ValueError(
bad_msg.format(
kind="flat", key=key, new=flat[key], old=old_flat[key], op="<"
)
)
# after validation, set parameters
self._bad_dropped = False
self._channel_type_idx = idx
self.reject = reject if len(reject) > 0 else None
self.flat = flat if len(flat) > 0 else None
if (self.reject_tmin is None) and (self.reject_tmax is None):
self._reject_time = None
else:
if self.reject_tmin is None:
reject_imin = None
else:
idxs = np.nonzero(self.times >= self.reject_tmin)[0]
reject_imin = idxs[0]
if self.reject_tmax is None:
reject_imax = None
else:
idxs = np.nonzero(self.times <= self.reject_tmax)[0]
reject_imax = idxs[-1]
self._reject_time = slice(reject_imin, reject_imax)
@verbose # verbose is used by mne-realtime
def _is_good_epoch(self, data, verbose=None):
"""Determine if epoch is good."""
if isinstance(data, str):
return False, (data,)
if data is None:
return False, ("NO_DATA",)
n_times = len(self.times)
if data.shape[1] < n_times:
# epoch is too short ie at the end of the data
return False, ("TOO_SHORT",)
if self.reject is None and self.flat is None:
return True, None
else:
if self._reject_time is not None:
data = data[:, self._reject_time]
return _is_good(
data,
self.ch_names,
self._channel_type_idx,
self.reject,
self.flat,
full_report=True,
ignore_chs=self.info["bads"],
)
@verbose
def _detrend_offset_decim(self, epoch, picks, verbose=None):
"""Aux Function: detrend, baseline correct, offset, decim.
Note: operates inplace
"""
if (epoch is None) or isinstance(epoch, str):
return epoch
# Detrend
if self.detrend is not None:
# We explicitly detrend just data channels (not EMG, ECG, EOG which
# are processed by baseline correction)
use_picks = _pick_data_channels(self.info, exclude=())
epoch[use_picks] = detrend(epoch[use_picks], self.detrend, axis=1)
# Baseline correct
if self._do_baseline:
rescale(
epoch,
self._raw_times,
self.baseline,
picks=picks,
copy=False,
verbose=False,
)
# Decimate if necessary (i.e., epoch not preloaded)
epoch = epoch[:, self._decim_slice]
# handle offset
if self._offset is not None:
epoch += self._offset
return epoch
def iter_evoked(self, copy=False):
"""Iterate over epochs as a sequence of Evoked objects.
The Evoked objects yielded will each contain a single epoch (i.e., no
averaging is performed).
This method resets the object iteration state to the first epoch.
Parameters
----------
copy : bool
If False copies of data and measurement info will be omitted
to save time.
"""
self.__iter__()
while True:
try:
out = self.__next__(True)
except StopIteration:
break
data, event_id = out
tmin = self.times[0]
info = self.info
if copy:
info = deepcopy(self.info)
data = data.copy()
yield EvokedArray(data, info, tmin, comment=str(event_id))
def subtract_evoked(self, evoked=None):
"""Subtract an evoked response from each epoch.
Can be used to exclude the evoked response when analyzing induced
activity, see e.g. [1]_.
Parameters
----------
evoked : instance of Evoked | None
The evoked response to subtract. If None, the evoked response
is computed from Epochs itself.
Returns
-------
self : instance of Epochs
The modified instance (instance is also modified inplace).
References
----------
.. [1] David et al. "Mechanisms of evoked and induced responses in
MEG/EEG", NeuroImage, vol. 31, no. 4, pp. 1580-1591, July 2006.
"""
logger.info("Subtracting Evoked from Epochs")
if evoked is None:
picks = _pick_data_channels(self.info, exclude=[])
evoked = self.average(picks)
# find the indices of the channels to use
picks = pick_channels(evoked.ch_names, include=self.ch_names, ordered=False)
# make sure the omitted channels are not data channels
if len(picks) < len(self.ch_names):
sel_ch = [evoked.ch_names[ii] for ii in picks]
diff_ch = list(set(self.ch_names).difference(sel_ch))
diff_idx = [self.ch_names.index(ch) for ch in diff_ch]
diff_types = [channel_type(self.info, idx) for idx in diff_idx]
bad_idx = [
diff_types.index(t) for t in diff_types if t in _DATA_CH_TYPES_SPLIT
]
if len(bad_idx) > 0:
bad_str = ", ".join([diff_ch[ii] for ii in bad_idx])
raise ValueError(
"The following data channels are missing "
f"in the evoked response: {bad_str}"
)
logger.info(
" The following channels are not included in the subtraction: "
+ ", ".join(diff_ch)
)
# make sure the times match
if (
len(self.times) != len(evoked.times)
or np.max(np.abs(self.times - evoked.times)) >= 1e-7
):
raise ValueError(
"Epochs and Evoked object do not contain the same time points."
)
# handle SSPs
if not self.proj and evoked.proj:
warn("Evoked has SSP applied while Epochs has not.")
if self.proj and not evoked.proj:
evoked = evoked.copy().apply_proj()
# find the indices of the channels to use in Epochs
ep_picks = [self.ch_names.index(evoked.ch_names[ii]) for ii in picks]
# do the subtraction
if self.preload:
self._data[:, ep_picks, :] -= evoked.data[picks][None, :, :]
else:
if self._offset is None:
self._offset = np.zeros(
(len(self.ch_names), len(self.times)), dtype=np.float64
)
self._offset[ep_picks] -= evoked.data[picks]
logger.info("[done]")
return self
@fill_doc
def average(self, picks=None, method="mean", by_event_type=False):
"""Compute an average over epochs.
Parameters
----------
%(picks_all_data)s
method : str | callable
How to combine the data. If "mean"/"median", the mean/median
are returned.
Otherwise, must be a callable which, when passed an array of shape
(n_epochs, n_channels, n_time) returns an array of shape
(n_channels, n_time).
Note that due to file type limitations, the kind for all
these will be "average".
%(by_event_type)s
Returns
-------
%(evoked_by_event_type_returns)s
Notes
-----
Computes an average of all epochs in the instance, even if
they correspond to different conditions. To average by condition,
do ``epochs[condition].average()`` for each condition separately.
When picks is None and epochs contain only ICA channels, no channels
are selected, resulting in an error. This is because ICA channels
are not considered data channels (they are of misc type) and only data
channels are selected when picks is None.
The ``method`` parameter allows e.g. robust averaging.
For example, one could do:
>>> from scipy.stats import trim_mean # doctest:+SKIP
>>> trim = lambda x: trim_mean(x, 0.1, axis=0) # doctest:+SKIP
>>> epochs.average(method=trim) # doctest:+SKIP
This would compute the trimmed mean.
"""
self._handle_empty("raise", "average")
if by_event_type:
evokeds = list()
for event_type in self.event_id.keys():
ev = self[event_type]._compute_aggregate(picks=picks, mode=method)
ev.comment = event_type
evokeds.append(ev)
else:
evokeds = self._compute_aggregate(picks=picks, mode=method)
return evokeds
@fill_doc
def standard_error(self, picks=None, by_event_type=False):
"""Compute standard error over epochs.
Parameters
----------
%(picks_all_data)s
%(by_event_type)s
Returns
-------
%(std_err_by_event_type_returns)s
"""
return self.average(picks=picks, method="std", by_event_type=by_event_type)
def _compute_aggregate(self, picks, mode="mean"):
"""Compute the mean, median, or std over epochs and return Evoked."""
# if instance contains ICA channels they won't be included unless picks
# is specified
if picks is None:
check_ICA = [x.startswith("ICA") for x in self.ch_names]
if np.all(check_ICA):
raise TypeError(
"picks must be specified (i.e. not None) for ICA channel data"
)
elif np.any(check_ICA):
warn(
"ICA channels will not be included unless explicitly "
"selected in picks"
)
n_channels = len(self.ch_names)
n_times = len(self.times)
if self.preload:
n_events = len(self.events)
fun = _check_combine(mode, valid=("mean", "median", "std"))
data = fun(self._data)
assert len(self.events) == len(self._data)
if data.shape != self._data.shape[1:]:
raise RuntimeError(
f"You passed a function that resulted n data of shape "
f"{data.shape}, but it should be {self._data.shape[1:]}."
)
else:
if mode not in {"mean", "std"}:
raise ValueError(
"If data are not preloaded, can only compute "
"mean or standard deviation."
)
data = np.zeros((n_channels, n_times))
n_events = 0
for e in self:
if np.iscomplexobj(e):
data = data.astype(np.complex128)
data += e
n_events += 1
if n_events > 0:
data /= n_events
else:
data.fill(np.nan)
# convert to stderr if requested, could do in one pass but do in
# two (slower) in case there are large numbers
if mode == "std":
data_mean = data.copy()
data.fill(0.0)
for e in self:
data += (e - data_mean) ** 2
data = np.sqrt(data / n_events)
if mode == "std":
kind = "standard_error"
data /= np.sqrt(n_events)
else:
kind = "average"
return self._evoked_from_epoch_data(
data, self.info, picks, n_events, kind, self._name
)
@property
def _name(self):
"""Give a nice string representation based on event ids."""
return self._get_name()
def _get_name(self, count="frac", ms="×", sep="+"):
"""Generate human-readable name for epochs and evokeds from event_id.
Parameters
----------
count : 'frac' | 'total'
Whether to include the fraction or total number of epochs that each
event type contributes to the number of all epochs.
Ignored if only one event type is present.
ms : str | None
The multiplication sign to use. Pass ``None`` to omit the sign.
Ignored if only one event type is present.
sep : str
How to separate the different events names. Ignored if only one
event type is present.
"""
_check_option("count", value=count, allowed_values=["frac", "total"])
if len(self.event_id) == 1:
comment = next(iter(self.event_id.keys()))
else:
counter = Counter(self.events[:, 2])
comments = list()
# Take care of padding
if ms is None:
ms = " "
else:
ms = f" {ms} "
for event_name, event_code in self.event_id.items():
if count == "frac":
frac = float(counter[event_code]) / len(self.events)
comment = f"{frac:.2f}{ms}{event_name}"
else: # 'total'
comment = f"{counter[event_code]}{ms}{event_name}"
comments.append(comment)
comment = f" {sep} ".join(comments)
return comment
def _evoked_from_epoch_data(self, data, info, picks, n_events, kind, comment):
"""Create an evoked object from epoch data."""
info = deepcopy(info)
# don't apply baseline correction; we'll set evoked.baseline manually
evoked = EvokedArray(
data,
info,
tmin=self.times[0],
comment=comment,
nave=n_events,
kind=kind,
baseline=None,
)
evoked.baseline = self.baseline
# the above constructor doesn't recreate the times object precisely
# due to numerical precision issues
evoked._set_times(self.times.copy())
# pick channels
picks = _picks_to_idx(self.info, picks, "data_or_ica", ())
ch_names = [evoked.ch_names[p] for p in picks]
evoked.pick(ch_names)
if len(evoked.info["ch_names"]) == 0:
raise ValueError("No data channel found when averaging.")
if evoked.nave < 1:
warn("evoked object is empty (based on less than 1 epoch)")
return evoked
@property
def ch_names(self):
"""Channel names."""
return self.info["ch_names"]
@copy_function_doc_to_method_doc(plot_epochs)
def plot(
self,
picks=None,
scalings=None,
n_epochs=20,
n_channels=20,
title=None,
events=False,
event_color=None,
order=None,
show=True,
block=False,
decim="auto",
noise_cov=None,
butterfly=False,
show_scrollbars=True,
show_scalebars=True,
epoch_colors=None,
event_id=None,
group_by="type",
precompute=None,
use_opengl=None,
*,
theme=None,
overview_mode=None,
splash=True,
):
return plot_epochs(
self,
picks=picks,
scalings=scalings,
n_epochs=n_epochs,
n_channels=n_channels,
title=title,
events=events,
event_color=event_color,
order=order,
show=show,
block=block,
decim=decim,
noise_cov=noise_cov,
butterfly=butterfly,
show_scrollbars=show_scrollbars,
show_scalebars=show_scalebars,
epoch_colors=epoch_colors,
event_id=event_id,
group_by=group_by,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
splash=splash,
)
@copy_function_doc_to_method_doc(plot_topo_image_epochs)
def plot_topo_image(
self,
layout=None,
sigma=0.0,
vmin=None,
vmax=None,
colorbar=None,
order=None,
cmap="RdBu_r",
layout_scale=0.95,
title=None,
scalings=None,
border="none",
fig_facecolor="k",
fig_background=None,
font_color="w",
select=False,
show=True,
):
return plot_topo_image_epochs(
self,
layout=layout,
sigma=sigma,
vmin=vmin,
vmax=vmax,
colorbar=colorbar,
order=order,
cmap=cmap,
layout_scale=layout_scale,
title=title,
scalings=scalings,
border=border,
fig_facecolor=fig_facecolor,
fig_background=fig_background,
font_color=font_color,
select=select,
show=show,
)
@verbose
def drop_bad(self, reject="existing", flat="existing", verbose=None):
"""Drop bad epochs without retaining the epochs data.
Should be used before slicing operations.
.. warning:: This operation is slow since all epochs have to be read
from disk. To avoid reading epochs from disk multiple
times, use :meth:`mne.Epochs.load_data()`.
.. note:: To constrain the time period used for estimation of signal
quality, set ``epochs.reject_tmin`` and
``epochs.reject_tmax``, respectively.
Parameters
----------
%(reject_drop_bad)s
%(flat_drop_bad)s
%(verbose)s
Returns
-------
epochs : instance of Epochs
The epochs with bad epochs dropped. Operates in-place.
Notes
-----
Dropping bad epochs can be done multiple times with different
``reject`` and ``flat`` parameters. However, once an epoch is
dropped, it is dropped forever, so if more lenient thresholds may
subsequently be applied, :meth:`epochs.copy <mne.Epochs.copy>` should be
used.
"""
if reject == "existing":
if flat == "existing" and self._bad_dropped:
return
reject = self.reject
if flat == "existing":
flat = self.flat
if any(isinstance(rej, str) and rej != "existing" for rej in (reject, flat)):
raise ValueError('reject and flat, if strings, must be "existing"')
self._reject_setup(reject, flat, allow_callable=True)
self._get_data(out=False, verbose=verbose)
return self
def drop_log_stats(self, ignore=("IGNORED",)):
"""Compute the channel stats based on a drop_log from Epochs.
Parameters
----------
ignore : list
The drop reasons to ignore.
Returns
-------
perc : float
Total percentage of epochs dropped.
See Also
--------
plot_drop_log
"""
return _drop_log_stats(self.drop_log, ignore)
@copy_function_doc_to_method_doc(plot_drop_log)
def plot_drop_log(
self,
threshold=0,
n_max_plot=20,
subject=None,
color=(0.9, 0.9, 0.9),
width=0.8,
ignore=("IGNORED",),
show=True,
):
if not self._bad_dropped:
raise ValueError(
"You cannot use plot_drop_log since bad "
"epochs have not yet been dropped. "
"Use epochs.drop_bad()."
)
return plot_drop_log(
self.drop_log,
threshold,
n_max_plot,
subject,
color=color,
width=width,
ignore=ignore,
show=show,
)
@copy_function_doc_to_method_doc(plot_epochs_image)
def plot_image(
self,
picks=None,
sigma=0.0,
vmin=None,
vmax=None,
colorbar=True,
order=None,
show=True,
units=None,
scalings=None,
cmap=None,
fig=None,
axes=None,
overlay_times=None,
combine=None,
group_by=None,
evoked=True,
ts_args=None,
title=None,
clear=False,
):
return plot_epochs_image(
self,
picks=picks,
sigma=sigma,
vmin=vmin,
vmax=vmax,
colorbar=colorbar,
order=order,
show=show,
units=units,
scalings=scalings,
cmap=cmap,
fig=fig,
axes=axes,
overlay_times=overlay_times,
combine=combine,
group_by=group_by,
evoked=evoked,
ts_args=ts_args,
title=title,
clear=clear,
)
@verbose
def drop(self, indices, reason="USER", verbose=None):
"""Drop epochs based on indices or boolean mask.
.. note:: The indices refer to the current set of undropped epochs
rather than the complete set of dropped and undropped epochs.
They are therefore not necessarily consistent with any
external indices (e.g., behavioral logs). To drop epochs
based on external criteria, do not use the ``preload=True``
flag when constructing an Epochs object, and call this
method before calling the :meth:`mne.Epochs.drop_bad` or
:meth:`mne.Epochs.load_data` methods.
Parameters
----------
indices : array of int or bool
Set epochs to remove by specifying indices to remove or a boolean
mask to apply (where True values get removed). Events are
correspondingly modified.
reason : list | tuple | str
Reason(s) for dropping the epochs ('ECG', 'timeout', 'blink' etc).
Reason(s) are applied to all indices specified.
Default: 'USER'.
%(verbose)s
Returns
-------
epochs : instance of Epochs
The epochs with indices dropped. Operates in-place.
"""
indices = np.atleast_1d(indices)
if indices.ndim > 1:
raise TypeError("indices must be a scalar or a 1-d array")
# Check if indices and reasons are of the same length
# if using collection to drop epochs
if indices.dtype == np.dtype(bool):
indices = np.where(indices)[0]
try_idx = np.where(indices < 0, indices + len(self.events), indices)
out_of_bounds = (try_idx < 0) | (try_idx >= len(self.events))
if out_of_bounds.any():
first = indices[out_of_bounds][0]
raise IndexError(f"Epoch index {first} is out of bounds")
keep = np.setdiff1d(np.arange(len(self.events)), try_idx)
self._getitem(keep, reason, copy=False, drop_event_id=False)
count = len(try_idx)
logger.info(
"Dropped %d epoch%s: %s",
count,
_pl(count),
", ".join(map(str, np.sort(try_idx))),
)
return self
def _get_epoch_from_raw(self, idx, verbose=None):
"""Get a given epoch from disk."""
raise NotImplementedError
def _project_epoch(self, epoch):
"""Process a raw epoch based on the delayed param."""
# whenever requested, the first epoch is being projected.
if (epoch is None) or isinstance(epoch, str):
# can happen if t < 0 or reject based on annotations
return epoch
proj = self._do_delayed_proj or self.proj
if self._projector is not None and proj is True:
epoch = np.dot(self._projector, epoch)
return epoch
def _handle_empty(self, on_empty, meth):
if len(self.events) == 0:
msg = (
f"epochs.{meth}() can't run because this Epochs-object is empty. "
f"You might want to check Epochs.drop_log or Epochs.plot_drop_log()"
f" to see why epochs were dropped."
)
_on_missing(on_empty, msg, error_klass=RuntimeError)
@verbose
def _get_data(
self,
out=True,
picks=None,
item=None,
*,
units=None,
tmin=None,
tmax=None,
copy=False,
on_empty="warn",
verbose=None,
):
"""Load all data, dropping bad epochs along the way.
Parameters
----------
out : bool
Return the data. Setting this to False is used to reject bad
epochs without caching all the data, which saves memory.
%(picks_all)s
item : slice | array-like | str | list | None
See docstring of get_data method.
%(units)s
tmin : int | float | None
Start time of data to get in seconds.
tmax : int | float | None
End time of data to get in seconds.
%(verbose)s
"""
from .io.base import _get_ch_factors
if copy is not None:
_validate_type(copy, bool, "copy")
# Handle empty epochs
self._handle_empty(on_empty, "_get_data")
# if called with 'out=False', the call came from 'drop_bad()'
# if no reasons to drop, just declare epochs as good and return
if not out:
# make sure first and last epoch not out of bounds of raw
in_bounds = self.preload or (
self._get_epoch_from_raw(idx=0) is not None
and self._get_epoch_from_raw(idx=-1) is not None
)
# might be BaseEpochs or Epochs, only the latter has the attribute
reject_by_annotation = getattr(self, "reject_by_annotation", False)
if (
self.reject is None
and self.flat is None
and in_bounds
and self._reject_time is None
and not reject_by_annotation
):
logger.debug("_get_data is a noop, returning")
self._bad_dropped = True
return None
start, stop = self._handle_tmin_tmax(tmin, tmax)
if item is None:
item = slice(None)
elif not self._bad_dropped:
raise ValueError(
"item must be None in epochs.get_data() unless bads have been "
"dropped. Consider using epochs.drop_bad()."
)
select = self._item_to_select(item) # indices or slice
use_idx = np.arange(len(self.events))[select]
n_events = len(use_idx)
# in case there are no good events
if self.preload:
# we will store our result in our existing array
data = self._data
else:
# we start out with an empty array, allocate only if necessary
data = np.empty((0, len(self.info["ch_names"]), len(self.times)))
msg = (
f"for {n_events} events and {len(self._raw_times)} original time points"
)
if self._decim > 1:
msg += " (prior to decimation)"
if getattr(self._raw, "preload", False):
logger.info(f"Using data from preloaded Raw {msg} ...")
else:
logger.info(f"Loading data {msg} ...")
orig_picks = picks
if orig_picks is None:
picks = _picks_to_idx(self.info, picks, "all", exclude=())
else:
picks = _picks_to_idx(self.info, picks)
# handle units param only if we are going to return data (out==True)
if (units is not None) and out:
ch_factors = _get_ch_factors(self, units, picks)
else:
ch_factors = None
if self._bad_dropped:
if not out:
return
if self.preload:
return self._data_sel_copy_scale(
data,
select=select,
orig_picks=orig_picks,
picks=picks,
ch_factors=ch_factors,
start=start,
stop=stop,
copy=copy,
)
# we need to load from disk, drop, and return data
detrend_picks = self._detrend_picks
for ii, idx in enumerate(use_idx):
# faster to pre-allocate memory here
epoch_noproj = self._get_epoch_from_raw(idx)
epoch_noproj = self._detrend_offset_decim(epoch_noproj, detrend_picks)
if self._do_delayed_proj:
epoch_out = epoch_noproj
else:
epoch_out = self._project_epoch(epoch_noproj)
if ii == 0:
data = np.empty(
(n_events, len(self.ch_names), len(self.times)),
dtype=epoch_out.dtype,
)
data[ii] = epoch_out
else:
# bads need to be dropped, this might occur after a preload
# e.g., when calling drop_bad w/new params
good_idx = []
n_out = 0
drop_log = list(self.drop_log)
assert n_events == len(self.selection)
if not self.preload:
detrend_picks = self._detrend_picks
for idx, sel in enumerate(self.selection):
if self.preload: # from memory
if self._do_delayed_proj:
epoch_noproj = self._data[idx]
epoch = self._project_epoch(epoch_noproj)
else:
epoch_noproj = None
epoch = self._data[idx]
else: # from disk
epoch_noproj = self._get_epoch_from_raw(idx)
epoch_noproj = self._detrend_offset_decim(
epoch_noproj, detrend_picks
)
epoch = self._project_epoch(epoch_noproj)
epoch_out = epoch_noproj if self._do_delayed_proj else epoch
is_good, bad_tuple = self._is_good_epoch(epoch, verbose=verbose)
if not is_good:
assert isinstance(bad_tuple, tuple)
assert all(isinstance(x, str) for x in bad_tuple)
drop_log[sel] = drop_log[sel] + bad_tuple
continue
good_idx.append(idx)
# store the epoch if there is a reason to (output or update)
if out or self.preload:
# faster to pre-allocate, then trim as necessary
if n_out == 0 and not self.preload:
data = np.empty(
(n_events, epoch_out.shape[0], epoch_out.shape[1]),
dtype=epoch_out.dtype,
order="C",
)
data[n_out] = epoch_out
n_out += 1
self.drop_log = tuple(drop_log)
del drop_log
self._bad_dropped = True
n_bads_dropped = n_events - len(good_idx)
logger.info(f"{n_bads_dropped} bad epochs dropped")
if n_bads_dropped == n_events:
warn(
"All epochs were dropped!\n"
"You might need to alter reject/flat-criteria "
"or drop bad channels to avoid this. "
"You can use Epochs.plot_drop_log() to see which "
"channels are responsible for the dropping of epochs."
)
# adjust the data size if there is a reason to (output or update)
if out or self.preload:
if data.flags["OWNDATA"] and data.flags["C_CONTIGUOUS"]:
data.resize((n_out,) + data.shape[1:], refcheck=False)
else:
data = data[:n_out]
if self.preload:
self._data = data
# Now update our properties (excepd data, which is already fixed)
self._getitem(
good_idx, None, copy=False, drop_event_id=False, select_data=False
)
if not out:
return
return self._data_sel_copy_scale(
data,
select=slice(None),
orig_picks=orig_picks,
picks=picks,
ch_factors=ch_factors,
start=start,
stop=stop,
copy=copy,
)
def _data_sel_copy_scale(
self, data, *, select, orig_picks, picks, ch_factors, start, stop, copy
):
# data arg starts out as self._data when data is preloaded
data_is_self_data = bool(self.preload)
logger.debug(f"Data is self data: {data_is_self_data}")
# only two types of epoch subselection allowed
assert isinstance(select, slice | np.ndarray), type(select)
if not isinstance(select, slice):
logger.debug(" Copying, fancy indexed epochs")
data_is_self_data = False # copy (fancy indexing)
elif select != slice(None):
logger.debug(" Slicing epochs")
if orig_picks is not None:
logger.debug(" Copying, fancy indexed picks")
assert isinstance(picks, np.ndarray), type(picks)
data_is_self_data = False # copy (fancy indexing)
else:
picks = slice(None)
if not all(isinstance(x, slice) and x == slice(None) for x in (select, picks)):
data = data[select][:, picks]
del picks
if start != 0 or stop != self.times.size:
logger.debug(" Slicing time")
data = data[..., start:stop] # view (slice)
if ch_factors is not None:
if data_is_self_data:
logger.debug(" Copying, scale factors applied")
data = data.copy()
data_is_self_data = False
data *= ch_factors[:, np.newaxis]
if not data_is_self_data:
return data
if copy:
logger.debug(" Copying, copy=True")
data = data.copy()
return data
@property
def _detrend_picks(self):
if self._do_baseline:
return _pick_data_channels(
self.info, with_ref_meg=True, with_aux=True, exclude=()
)
else:
return []
@verbose
def get_data(
self,
picks=None,
item=None,
units=None,
tmin=None,
tmax=None,
*,
copy=True,
verbose=None,
):
"""Get all epochs as a 3D array.
Parameters
----------
%(picks_all)s
item : slice | array-like | str | list | None
The items to get. See :meth:`mne.Epochs.__getitem__` for
a description of valid options. This can be substantially faster
for obtaining an ndarray than :meth:`~mne.Epochs.__getitem__`
for repeated access on large Epochs objects.
None (default) is an alias for ``slice(None)``.
.. versionadded:: 0.20
%(units)s
.. versionadded:: 0.24
tmin : int | float | None
Start time of data to get in seconds.
.. versionadded:: 0.24.0
tmax : int | float | None
End time of data to get in seconds.
.. versionadded:: 0.24.0
copy : bool
Whether to return a copy of the object's data, or (if possible) a view.
See :ref:`the NumPy docs <numpy:basics.copies-and-views>` for an
explanation. Default is ``False`` in 1.6 but will change to ``True`` in 1.7,
set it explicitly to avoid a warning in some cases. A view is only possible
when ``item is None``, ``picks is None``, ``units is None``, and data are
preloaded.
.. warning::
Using ``copy=False`` and then modifying the returned ``data`` will in
turn modify the Epochs object. Use with caution!
.. versionchanged:: 1.7
The default changed from ``False`` to ``True``.
.. versionadded:: 1.6
%(verbose)s
Returns
-------
data : array of shape (n_epochs, n_channels, n_times)
The epochs data. Will be a copy when ``copy=True`` and will be a view
when possible when ``copy=False``.
"""
return self._get_data(
picks=picks, item=item, units=units, tmin=tmin, tmax=tmax, copy=copy
)
@verbose
def apply_function(
self,
fun,
picks=None,
dtype=None,
n_jobs=None,
channel_wise=True,
verbose=None,
**kwargs,
):
"""Apply a function to a subset of channels.
%(applyfun_summary_epochs)s
Parameters
----------
%(fun_applyfun)s
%(picks_all_data_noref)s
%(dtype_applyfun)s
%(n_jobs)s Ignored if ``channel_wise=False`` as the workload
is split across channels.
%(channel_wise_applyfun_epo)s
%(verbose)s
%(kwargs_fun)s
Returns
-------
self : instance of Epochs
The epochs object with transformed data.
"""
_check_preload(self, "epochs.apply_function")
picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)
if not callable(fun):
raise ValueError("fun needs to be a function")
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
args = getfullargspec(fun).args + getfullargspec(fun).kwonlyargs
if channel_wise is False:
if ("ch_idx" in args) or ("ch_name" in args):
raise ValueError(
"apply_function cannot access ch_idx or ch_name "
"when channel_wise=False"
)
if "ch_idx" in args:
logger.info("apply_function requested to access ch_idx")
if "ch_name" in args:
logger.info("apply_function requested to access ch_name")
if channel_wise:
parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
if n_jobs == 1:
_fun = partial(_check_fun, fun)
# modify data inplace to save memory
for ch_idx in picks:
if "ch_idx" in args:
kwargs.update(ch_idx=ch_idx)
if "ch_name" in args:
kwargs.update(ch_name=self.info["ch_names"][ch_idx])
self._data[:, ch_idx, :] = np.apply_along_axis(
_fun, -1, data_in[:, ch_idx, :], **kwargs
)
else:
# use parallel function
_fun = partial(np.apply_along_axis, fun, -1)
data_picks_new = parallel(
p_fun(
_fun,
data_in[:, ch_idx, :],
**kwargs,
**{
k: v
for k, v in [
("ch_name", self.info["ch_names"][ch_idx]),
("ch_idx", ch_idx),
]
if k in args
},
)
for ch_idx in picks
)
for run_idx, ch_idx in enumerate(picks):
self._data[:, ch_idx, :] = data_picks_new[run_idx]
else:
self._data = _check_fun(fun, data_in, **kwargs)
return self
@property
def filename(self) -> Path | None:
"""The filename if the epochs are loaded from disk.
:type: :class:`pathlib.Path` | ``None``
"""
return self._filename
@filename.setter
def filename(self, value):
if value is not None:
value = _check_fname(value, overwrite="read", must_exist=True)
self._filename = value
def __repr__(self):
"""Build string representation."""
s = f"{len(self.events)} events "
s += "(all good)" if self._bad_dropped else "(good & bad)"
s += f", {self.tmin:.3f}".rstrip("0").rstrip(".")
s += f" – {self.tmax:.3f}".rstrip("0").rstrip(".")
s += " s (baseline "
if self.baseline is None:
s += "off"
else:
s += f"{self.baseline[0]:.3f}".rstrip("0").rstrip(".")
s += f" – {self.baseline[1]:.3f}".rstrip("0").rstrip(".")
s += " s"
if self.baseline != _check_baseline(
self.baseline,
times=self.times,
sfreq=self.info["sfreq"],
on_baseline_outside_data="adjust",
):
s += " (baseline period was cropped after baseline correction)"
s += f"), ~{sizeof_fmt(self._size)}"
s += f", data{'' if self.preload else ' not'} loaded"
s += ", with metadata" if self.metadata is not None else ""
max_events = 10
counts = [
f"{k!r}: {sum(self.events[:, 2] == v)}"
for k, v in list(self.event_id.items())[:max_events]
]
if len(self.event_id) > 0:
s += "," + "\n ".join([""] + counts)
if len(self.event_id) > max_events:
not_shown_events = len(self.event_id) - max_events
s += f"\n and {not_shown_events} more events ..."
class_name = self.__class__.__name__
class_name = "Epochs" if class_name == "BaseEpochs" else class_name
return f"<{class_name} | {s}>"
@repr_html
def _repr_html_(self):
if isinstance(self.event_id, dict):
event_strings = []
for k, v in sorted(self.event_id.items()):
n_events = sum(self.events[:, 2] == v)
event_strings.append(f"{k}: {n_events}")
elif isinstance(self.event_id, list):
event_strings = []
for k in self.event_id:
n_events = sum(self.events[:, 2] == k)
event_strings.append(f"{k}: {n_events}")
elif isinstance(self.event_id, int):
n_events = len(self.events[:, 2])
event_strings = [f"{self.event_id}: {n_events}"]
else:
event_strings = None
t = _get_html_template("repr", "epochs.html.jinja")
t = t.render(
inst=self,
filenames=(
[Path(self.filename).name]
if getattr(self, "filename", None) is not None
else None
),
event_counts=event_strings,
)
return t
@verbose
def crop(self, tmin=None, tmax=None, include_tmax=True, verbose=None):
"""Crop a time interval from the epochs.
Parameters
----------
tmin : float | None
Start time of selection in seconds.
tmax : float | None
End time of selection in seconds.
%(include_tmax)s
%(verbose)s
Returns
-------
epochs : instance of Epochs
The cropped epochs object, modified in-place.
Notes
-----
%(notes_tmax_included_by_default)s
"""
# XXX this could be made to work on non-preloaded data...
_check_preload(self, "Modifying data of epochs")
super().crop(tmin=tmin, tmax=tmax, include_tmax=include_tmax)
# Adjust rejection period
if self.reject_tmin is not None and self.reject_tmin < self.tmin:
logger.info(
f"reject_tmin is not in epochs time interval. "
f"Setting reject_tmin to epochs.tmin ({self.tmin} s)"
)
self.reject_tmin = self.tmin
if self.reject_tmax is not None and self.reject_tmax > self.tmax:
logger.info(
f"reject_tmax is not in epochs time interval. "
f"Setting reject_tmax to epochs.tmax ({self.tmax} s)"
)
self.reject_tmax = self.tmax
return self
def copy(self):
"""Return copy of Epochs instance.
Returns
-------
epochs : instance of Epochs
A copy of the object.
"""
return deepcopy(self)
def __deepcopy__(self, memodict):
"""Make a deepcopy."""
cls = self.__class__
result = cls.__new__(cls)
for k, v in self.__dict__.items():
# drop_log is immutable and _raw is private (and problematic to
# deepcopy)
if k in ("drop_log", "_raw", "_times_readonly"):
memodict[id(v)] = v
else:
v = deepcopy(v, memodict)
result.__dict__[k] = v
return result
@verbose
def save(
self,
fname,
split_size="2GB",
fmt="single",
overwrite=False,
split_naming="neuromag",
verbose=None,
):
"""Save epochs in a fif file.
Parameters
----------
fname : path-like
The name of the file, which should end with ``-epo.fif`` or
``-epo.fif.gz``.
split_size : str | int
Large raw files are automatically split into multiple pieces. This
parameter specifies the maximum size of each piece. If the
parameter is an integer, it specifies the size in Bytes. It is
also possible to pass a human-readable string, e.g., 100MB.
Note: Due to FIFF file limitations, the maximum split size is 2GB.
.. versionadded:: 0.10.0
fmt : str
Format to save data. Valid options are 'double' or
'single' for 64- or 32-bit float, or for 128- or
64-bit complex numbers respectively. Note: Data are processed with
double precision. Choosing single-precision, the saved data
will slightly differ due to the reduction in precision.
.. versionadded:: 0.17
%(overwrite)s
To overwrite original file (the same one that was loaded),
data must be preloaded upon reading. This defaults to True in 0.18
but will change to False in 0.19.
.. versionadded:: 0.18
%(split_naming)s
.. versionadded:: 0.24
%(verbose)s
Returns
-------
fnames : List of path-like
List of path-like objects containing the path to each file split.
.. versionadded:: 1.9
Notes
-----
Bad epochs will be dropped before saving the epochs to disk.
"""
check_fname(
fname, "epochs", ("-epo.fif", "-epo.fif.gz", "_epo.fif", "_epo.fif.gz")
)
# check for file existence and expand `~` if present
fname = str(
_check_fname(
fname=fname,
overwrite=overwrite,
check_bids_split=True,
name="fname",
)
)
split_size_bytes = _get_split_size(split_size)
_check_option("fmt", fmt, ["single", "double"])
# to know the length accurately. The get_data() call would drop
# bad epochs anyway
self.drop_bad()
# total_size tracks sizes that get split
# over_size tracks overhead (tags, things that get written to each)
if len(self) == 0:
warn("Saving epochs with no data")
total_size = 0
else:
d = self[0].get_data(copy=False)
# this should be guaranteed by subclasses
assert d.dtype in (">f8", "<f8", ">c16", "<c16")
total_size = d.nbytes * len(self)
self._check_consistency()
over_size = 0
if fmt == "single":
total_size //= 2 # 64bit data converted to 32bit before writing.
over_size += 32 # FIF tags
# Account for all the other things we write, too
# 1. meas_id block plus main epochs block
over_size += 132
# 2. measurement info (likely slight overestimate, but okay)
over_size += object_size(self.info) + 16 * len(self.info)
# 3. events and event_id in its own block
total_size += self.events.size * 4
over_size += len(_event_id_string(self.event_id)) + 72
# 4. Metadata in a block of its own
if self.metadata is not None:
total_size += len(_prepare_write_metadata(self.metadata))
over_size += 56
# 5. first sample, last sample, baseline
over_size += 40 * (self.baseline is not None) + 40
# 6. drop log: gets written to each, with IGNORE for ones that are
# not part of it. So make a fake one with all having entries.
drop_size = len(json.dumps(self.drop_log)) + 16
drop_size += 8 * (len(self.selection) - 1) # worst case: all but one
over_size += drop_size
# 7. reject params
reject_params = _pack_reject_params(self)
if reject_params:
over_size += len(json.dumps(reject_params)) + 16
# 8. selection
total_size += self.selection.size * 4
over_size += 16
# 9. end of file tags
over_size += _NEXT_FILE_BUFFER
logger.debug(f" Overhead size: {str(over_size).rjust(15)}")
logger.debug(f" Splittable size: {str(total_size).rjust(15)}")
logger.debug(f" Split size: {str(split_size_bytes).rjust(15)}")
# need at least one per
n_epochs = len(self)
n_per = total_size // n_epochs if n_epochs else 0
min_size = n_per + over_size
if split_size_bytes < min_size:
raise ValueError(
f"The split size {split_size} is too small to safely write "
"the epochs contents, minimum split size is "
f"{sizeof_fmt(min_size)} ({min_size} bytes)"
)
# This is like max(int(ceil(total_size / split_size)), 1) but cleaner
n_parts = max((total_size - 1) // (split_size_bytes - over_size) + 1, 1)
assert n_parts >= 1, n_parts
if n_parts > 1:
logger.info(f"Splitting into {n_parts} parts")
if n_parts > 100: # This must be an error
raise ValueError(
f"Split size {split_size} would result in writing {n_parts} files"
)
if len(self.drop_log) > 100000:
warn(
f"epochs.drop_log contains {len(self.drop_log)} entries "
f"which will incur up to a {sizeof_fmt(drop_size)} writing "
f"overhead (per split file), consider using "
f"epochs.reset_drop_log_selection() prior to writing"
)
epoch_idxs = np.array_split(np.arange(n_epochs), n_parts)
_check_option("split_naming", split_naming, ("neuromag", "bids"))
split_fnames = _make_split_fnames(fname, n_parts, split_naming)
for part_idx, epoch_idx in enumerate(epoch_idxs):
this_epochs = self[epoch_idx] if n_parts > 1 else self
# avoid missing event_ids in splits
this_epochs.event_id = self.event_id
_save_split(this_epochs, split_fnames, part_idx, n_parts, fmt, overwrite)
return split_fnames
@verbose
def export(self, fname, fmt="auto", *, overwrite=False, verbose=None):
"""Export Epochs to external formats.
%(export_fmt_support_epochs)s
%(export_warning)s
Parameters
----------
%(fname_export_params)s
%(export_fmt_params_epochs)s
%(overwrite)s
.. versionadded:: 0.24.1
%(verbose)s
Notes
-----
.. versionadded:: 0.24
%(export_warning_note_epochs)s
%(export_eeglab_note)s
"""
from .export import export_epochs
export_epochs(fname, self, fmt, overwrite=overwrite, verbose=verbose)
@fill_doc
def equalize_event_counts(
self, event_ids=None, method="mintime", *, random_state=None
):
"""Equalize the number of trials in each condition.
It tries to make the remaining epochs occurring as close as possible in
time. This method works based on the idea that if there happened to be
some time-varying (like on the scale of minutes) noise characteristics
during a recording, they could be compensated for (to some extent) in
the equalization process. This method thus seeks to reduce any of
those effects by minimizing the differences in the times of the events
within a `~mne.Epochs` instance. For example, if one event type
occurred at time points ``[1, 2, 3, 4, 120, 121]`` and the another one
at ``[3.5, 4.5, 120.5, 121.5]``, this method would remove the events at
times ``[1, 2]`` for the first event type – and not the events at times
``[120, 121]``.
Parameters
----------
event_ids : None | list | dict
The event types to equalize.
If ``None`` (default), equalize the counts of **all** event types
present in the `~mne.Epochs` instance.
If a list, each element can either be a string (event name) or a
list of strings. In the case where one of the entries is a list of
strings, event types in that list will be grouped together before
equalizing trial counts across conditions.
If a dictionary, the keys are considered as the event names whose
counts to equalize, i.e., passing ``dict(A=1, B=2)`` will have the
same effect as passing ``['A', 'B']``. This is useful if you intend
to pass an ``event_id`` dictionary that was used when creating
`~mne.Epochs`.
In the case where partial matching is used (using ``/`` in
the event names), the event types will be matched according to the
provided tags, that is, processing works as if the ``event_ids``
matched by the provided tags had been supplied instead.
The ``event_ids`` must identify non-overlapping subsets of the
epochs.
%(equalize_events_method)s
%(random_state)s Used only if ``method='random'``.
Returns
-------
epochs : instance of Epochs
The modified instance. It is modified in-place.
indices : array of int
Indices from the original events list that were dropped.
Notes
-----
For example (if ``epochs.event_id`` was ``{'Left': 1, 'Right': 2,
'Nonspatial':3}``:
epochs.equalize_event_counts([['Left', 'Right'], 'Nonspatial'])
would equalize the number of trials in the ``'Nonspatial'`` condition
with the total number of trials in the ``'Left'`` and ``'Right'``
conditions combined.
If multiple indices are provided (e.g. ``'Left'`` and ``'Right'`` in
the example above), it is not guaranteed that after equalization the
conditions will contribute equally. E.g., it is possible to end up
with 70 ``'Nonspatial'`` epochs, 69 ``'Left'`` and 1 ``'Right'``.
.. versionchanged:: 0.23
Default to equalizing all events in the passed instance if no
event names were specified explicitly.
"""
from collections.abc import Iterable
_validate_type(
event_ids,
types=(Iterable, None),
item_name="event_ids",
type_name="list-like or None",
)
if isinstance(event_ids, str):
raise TypeError(
f"event_ids must be list-like or None, but "
f"received a string: {event_ids}"
)
if event_ids is None:
event_ids = list(self.event_id)
elif not event_ids:
raise ValueError("event_ids must have at least one element")
if not self._bad_dropped:
self.drop_bad()
# figure out how to equalize
eq_inds = list()
# deal with hierarchical tags
ids = self.event_id
orig_ids = list(event_ids)
tagging = False
if "/" in "".join(ids):
# make string inputs a list of length 1
event_ids = [[x] if isinstance(x, str) else x for x in event_ids]
for ids_ in event_ids: # check if tagging is attempted
if any([id_ not in ids for id_ in ids_]):
tagging = True
# 1. treat everything that's not in event_id as a tag
# 2a. for tags, find all the event_ids matched by the tags
# 2b. for non-tag ids, just pass them directly
# 3. do this for every input
event_ids = [
[
k for k in ids if all(tag in k.split("/") for tag in id_)
] # ids matching all tags
if all(id__ not in ids for id__ in id_)
else id_ # straight pass for non-tag inputs
for id_ in event_ids
]
for ii, id_ in enumerate(event_ids):
if len(id_) == 0:
raise KeyError(
f"{orig_ids[ii]} not found in the epoch object's event_id."
)
elif len({sub_id in ids for sub_id in id_}) != 1:
err = (
"Don't mix hierarchical and regular event_ids"
f" like in '{', '.join(id_)}'."
)
raise ValueError(err)
# raise for non-orthogonal tags
if tagging is True:
events_ = [set(self[x].events[:, 0]) for x in event_ids]
doubles = events_[0].intersection(events_[1])
if len(doubles):
raise ValueError(
"The two sets of epochs are "
"overlapping. Provide an "
"orthogonal selection."
)
for eq in event_ids:
eq_inds.append(self._keys_to_idx(eq))
sample_nums = [self.events[e, 0] for e in eq_inds]
indices = _get_drop_indices(sample_nums, method, random_state)
# need to re-index indices
indices = np.concatenate([e[idx] for e, idx in zip(eq_inds, indices)])
self.drop(indices, reason="EQUALIZED_COUNT")
# actually remove the indices
return self, indices
@verbose
def compute_psd(
self,
method="multitaper",
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
remove_dc=True,
exclude=(),
*,
n_jobs=1,
verbose=None,
**method_kw,
):
"""Perform spectral analysis on sensor data.
Parameters
----------
%(method_psd)s
Default is ``'multitaper'``.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(remove_dc)s
%(exclude_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
spectrum : instance of EpochsSpectrum
The spectral representation of each epoch.
Notes
-----
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
method = _validate_method(method, type(self).__name__)
self._set_legacy_nfft_default(tmin, tmax, method, method_kw)
return EpochsSpectrum(
self,
method=method,
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
picks=picks,
exclude=exclude,
proj=proj,
remove_dc=remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def compute_tfr(
self,
method,
freqs,
*,
tmin=None,
tmax=None,
picks=None,
proj=False,
output="power",
average=False,
return_itc=False,
decim=1,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Compute a time-frequency representation of epoched data.
Parameters
----------
%(method_tfr_epochs)s
%(freqs_tfr_epochs)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(output_compute_tfr)s
average : bool
Whether to return average power across epochs (instead of single-trial
power). ``average=True`` is not compatible with ``output="complex"`` or
``output="phase"``. Ignored if ``method="stockwell"`` (Stockwell method
*requires* averaging). Default is ``False``.
return_itc : bool
Whether to return inter-trial coherence (ITC) as well as power estimates.
If ``True`` then must specify ``average=True`` (or ``method="stockwell",
average="auto"``). Default is ``False``.
%(decim_tfr)s
%(n_jobs)s
%(verbose)s
%(method_kw_epochs_tfr)s
Returns
-------
tfr : instance of EpochsTFR or AverageTFR
The time-frequency-resolved power estimates.
itc : instance of AverageTFR
The inter-trial coherence (ITC). Only returned if ``return_itc=True``.
Notes
-----
If ``average=True`` (or ``method="stockwell", average="auto"``) the result will
be an :class:`~mne.time_frequency.AverageTFR` instead of an
:class:`~mne.time_frequency.EpochsTFR`.
.. versionadded:: 1.7
References
----------
.. footbibliography::
"""
if method == "stockwell" and not average: # stockwell method *must* average
logger.info(
'Requested `method="stockwell"` so ignoring parameter `average=False`.'
)
average = True
if average:
# augment `output` value for use by tfr_array_* functions
_check_option("output", output, ("power",), extra=" when average=True")
method_kw["output"] = "avg_power_itc" if return_itc else "avg_power"
else:
msg = (
"compute_tfr() got incompatible parameters `average=False` and `{}` "
"({} requires averaging over epochs)."
)
if return_itc:
raise ValueError(msg.format("return_itc=True", "computing ITC"))
if method == "stockwell":
raise ValueError(msg.format('method="stockwell"', "Stockwell method"))
# `average` and `return_itc` both False, so "phase" and "complex" are OK
_check_option("output", output, ("power", "phase", "complex"))
method_kw["output"] = output
if method == "stockwell":
method_kw["return_itc"] = return_itc
method_kw.pop("output")
if isinstance(freqs, str):
_check_option("freqs", freqs, "auto")
else:
_validate_type(freqs, "array-like")
_check_option(
"freqs", np.array(freqs).shape, ((2,),), extra=" (wrong shape)."
)
if average:
out = AverageTFR(
inst=self,
method=method,
freqs=freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# tfr_array_stockwell always returns ITC (but sometimes it's None)
if hasattr(out, "_itc"):
if out._itc is not None:
state = out.__getstate__()
state["data"] = out._itc
state["data_type"] = "Inter-trial coherence"
itc = AverageTFR(inst=state)
del out._itc
return out, itc
del out._itc
return out
# now handle average=False
return EpochsTFR(
inst=self,
method=method,
freqs=freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def plot_psd(
self,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
*,
method="auto",
average=False,
dB=True,
estimate="power",
xscale="linear",
area_mode="std",
area_alpha=0.33,
color="black",
line_alpha=None,
spatial_colors=True,
sphere=None,
exclude="bads",
ax=None,
show=True,
n_jobs=1,
verbose=None,
**method_kw,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(average_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(color_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
.. versionadded:: 0.22.0
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad
channels are excluded. Pass an empty list to plot all channels
(including channels marked "bad", if any).
.. versionadded:: 0.24.0
%(ax_plot_psd)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_psd_meth)s
"""
return super().plot_psd(
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
reject_by_annotation=False,
method=method,
average=average,
dB=dB,
estimate=estimate,
xscale=xscale,
area_mode=area_mode,
area_alpha=area_alpha,
color=color,
line_alpha=line_alpha,
spatial_colors=spatial_colors,
sphere=sphere,
exclude=exclude,
ax=ax,
show=show,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def to_data_frame(
self,
picks=None,
index=None,
scalings=None,
copy=True,
long_format=False,
time_format=None,
*,
verbose=None,
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default,
additional columns "time", "epoch" (epoch number), and "condition"
(epoch event description) are added, unless ``index`` is not ``None``
(in which case the columns specified in ``index`` will be used to form
the DataFrame's index instead).
Parameters
----------
%(picks_all)s
%(index_df_epo)s
Valid string values are 'time', 'epoch', and 'condition'.
Defaults to ``None``.
%(scalings_df)s
%(copy_df)s
%(long_format_df_epo)s
%(time_format_df)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# arg checking
valid_index_args = ["time", "epoch", "condition"]
valid_time_formats = ["ms", "timedelta"]
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(time_format, valid_time_formats)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data = self._get_data(on_empty="raise")[:, picks, :]
times = self.times
n_epochs, n_picks, n_times = data.shape
data = np.hstack(data).T # (time*epochs) x signals
if copy:
data = data.copy()
data = _scale_dataframe_data(self, data, picks, scalings)
# prepare extra columns / multiindex
mindex = list()
times = np.tile(times, n_epochs)
times = _convert_times(times, time_format, self.info["meas_date"])
mindex.append(("time", times))
rev_event_id = {v: k for k, v in self.event_id.items()}
conditions = [rev_event_id[k] for k in self.events[:, 2]]
mindex.append(("condition", np.repeat(conditions, n_times)))
mindex.append(("epoch", np.repeat(self.selection, n_times)))
assert all(len(mdx) == len(mindex[0]) for mdx in mindex)
# build DataFrame
df = _build_data_frame(
self,
data,
picks,
long_format,
mindex,
index,
default_index=["condition", "epoch", "time"],
)
return df
def as_type(self, ch_type="grad", mode="fast"):
"""Compute virtual epochs using interpolated fields.
.. Warning:: Using virtual epochs to compute inverse can yield
unexpected results. The virtual channels have ``'_v'`` appended
at the end of the names to emphasize that the data contained in
them are interpolated.
Parameters
----------
ch_type : str
The destination channel type. It can be 'mag' or 'grad'.
mode : str
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used. ``'fast'`` should be sufficient
for most applications.
Returns
-------
epochs : instance of mne.EpochsArray
The transformed epochs object containing only virtual channels.
Notes
-----
This method returns a copy and does not modify the data it
operates on. It also returns an EpochsArray instance.
.. versionadded:: 0.20.0
"""
from .forward import _as_meg_type_inst
self._handle_empty("raise", "as_type")
return _as_meg_type_inst(self, ch_type=ch_type, mode=mode)
def _drop_log_stats(drop_log, ignore=("IGNORED",)):
"""Compute drop log stats.
Parameters
----------
drop_log : list of list
Epoch drop log from Epochs.drop_log.
ignore : list
The drop reasons to ignore.
Returns
-------
perc : float
Total percentage of epochs dropped.
"""
if (
not isinstance(drop_log, tuple)
or not all(isinstance(d, tuple) for d in drop_log)
or not all(isinstance(s, str) for d in drop_log for s in d)
):
raise TypeError("drop_log must be a tuple of tuple of str")
perc = 100 * np.mean(
[len(d) > 0 for d in drop_log if not any(r in ignore for r in d)]
)
return perc
def make_metadata(
events,
event_id,
tmin,
tmax,
sfreq,
row_events=None,
keep_first=None,
keep_last=None,
):
"""Automatically generate metadata for use with `mne.Epochs` from events.
This function mimics the epoching process (it constructs time windows
around time-locked "events of interest") and collates information about
any other events that occurred within those time windows. The information
is returned as a :class:`pandas.DataFrame`, suitable for use as
`~mne.Epochs` metadata: one row per time-locked event, and columns
indicating presence or absence and latency of each ancillary event type.
The function will also return a new ``events`` array and ``event_id``
dictionary that correspond to the generated metadata, which together can then be
readily fed into `~mne.Epochs`.
Parameters
----------
events : array, shape (m, 3)
The :term:`events array <events>`. By default, the returned metadata
:class:`~pandas.DataFrame` will have as many rows as the events array.
To create rows for only a subset of events, pass the ``row_events``
parameter.
event_id : dict
A mapping from event names (keys) to event IDs (values). The event
names will be incorporated as columns of the returned metadata
:class:`~pandas.DataFrame`.
tmin, tmax : float | str | list of str | None
If float, start and end of the time interval for metadata generation in seconds,
relative to the time-locked event of the respective time window (the "row
events").
.. note::
If you are planning to attach the generated metadata to
`~mne.Epochs` and intend to include only events that fall inside
your epoch's time interval, pass the same ``tmin`` and ``tmax``
values here as you use for your epochs.
If ``None``, the time window used for metadata generation is bounded by the
``row_events``. This is can be particularly practical if trial duration varies
greatly, but each trial starts with a known event (e.g., a visual cue or
fixation).
.. note::
If ``tmin=None``, the first time window for metadata generation starts with
the first row event. If ``tmax=None``, the last time window for metadata
generation ends with the last event in ``events``.
If a string or a list of strings, the events bounding the metadata around each
"row event". For ``tmin``, the events are assumed to occur **before** the row
event, and for ``tmax``, the events are assumed to occur **after** – unless
``tmin`` or ``tmax`` are equal to a row event, in which case the row event
serves as the bound.
.. versionchanged:: 1.6.0
Added support for ``None``.
.. versionadded:: 1.7.0
Added support for strings.
sfreq : float
The sampling frequency of the data from which the events array was
extracted.
row_events : list of str | str | None
Event types around which to create the time windows. For each of these
time-locked events, we will create a **row** in the returned metadata
:class:`pandas.DataFrame`. If provided, the string(s) must be keys of
``event_id``. If ``None`` (default), rows are created for **all** event types
present in ``event_id``.
keep_first : str | list of str | None
Specify subsets of :term:`hierarchical event descriptors` (HEDs,
inspired by :footcite:`BigdelyShamloEtAl2013`) matching events of which
the **first occurrence** within each time window shall be stored in
addition to the original events.
.. note::
There is currently no way to retain **all** occurrences of a
repeated event. The ``keep_first`` parameter can be used to specify
subsets of HEDs, effectively creating a new event type that is the
union of all events types described by the matching HED pattern.
Only the very first event of this set will be kept.
For example, you might have two response events types,
``response/left`` and ``response/right``; and in trials with both
responses occurring, you want to keep only the first response. In this
case, you can pass ``keep_first='response'``. This will add two new
columns to the metadata: ``response``, indicating at what **time** the
event occurred, relative to the time-locked event; and
``first_response``, stating which **type** (``'left'`` or ``'right'``)
of event occurred.
To match specific subsets of HEDs describing different sets of events,
pass a list of these subsets, e.g.
``keep_first=['response', 'stimulus']``. If ``None`` (default), no
event aggregation will take place and no new columns will be created.
.. note::
By default, this function will always retain the first instance
of any event in each time window. For example, if a time window
contains two ``'response'`` events, the generated ``response``
column will automatically refer to the first of the two events. In
this specific case, it is therefore **not** necessary to make use of
the ``keep_first`` parameter – unless you need to differentiate
between two types of responses, like in the example above.
keep_last : list of str | None
Same as ``keep_first``, but for keeping only the **last** occurrence
of matching events. The column indicating the **type** of an event
``myevent`` will be named ``last_myevent``.
Returns
-------
metadata : pandas.DataFrame
Metadata for each row event, with the following columns:
- ``event_name``, with strings indicating the name of the time-locked
event ("row event") for that specific time window
- one column per event type in ``event_id``, with the same name; floats
indicating the latency of the event in seconds, relative to the
time-locked event
- if applicable, additional columns named after the ``keep_first`` and
``keep_last`` event types; floats indicating the latency of the
event in seconds, relative to the time-locked event
- if applicable, additional columns ``first_{event_type}`` and
``last_{event_type}`` for ``keep_first`` and ``keep_last`` event
types, respetively; the values will be strings indicating which event
types were matched by the provided HED patterns
events : array, shape (n, 3)
The events corresponding to the generated metadata, i.e. one
time-locked event per row.
event_id : dict
The event dictionary corresponding to the new events array. This will
be identical to the input dictionary unless ``row_events`` is supplied,
in which case it will only contain the events provided there.
Notes
-----
The time window used for metadata generation need not correspond to the
time window used to create the `~mne.Epochs`, to which the metadata will
be attached; it may well be much shorter or longer, or not overlap at all,
if desired. This can be useful, for example, to include events that
occurred before or after an epoch, e.g. during the inter-trial interval.
If either ``tmin``, ``tmax``, or both are ``None``, or a string referring e.g. to a
response event, the time window will typically vary, too.
.. versionadded:: 0.23
References
----------
.. footbibliography::
"""
pd = _check_pandas_installed()
_validate_type(events, types=("array-like",), item_name="events")
_validate_type(event_id, types=(dict,), item_name="event_id")
_validate_type(sfreq, types=("numeric",), item_name="sfreq")
_validate_type(tmin, types=("numeric", str, "array-like", None), item_name="tmin")
_validate_type(tmax, types=("numeric", str, "array-like", None), item_name="tmax")
_validate_type(row_events, types=(None, str, "array-like"), item_name="row_events")
_validate_type(keep_first, types=(None, str, "array-like"), item_name="keep_first")
_validate_type(keep_last, types=(None, str, "array-like"), item_name="keep_last")
if not event_id:
raise ValueError("event_id dictionary must contain at least one entry")
def _ensure_list(x):
if x is None:
return []
elif isinstance(x, str):
return [x]
else:
return list(x)
row_events = _ensure_list(row_events)
keep_first = _ensure_list(keep_first)
keep_last = _ensure_list(keep_last)
# Turn tmin, tmax into a list if they're strings or arrays of strings
try:
_validate_type(tmin, types=(str, "array-like"), item_name="tmin")
tmin = _ensure_list(tmin)
except TypeError:
pass
try:
_validate_type(tmax, types=(str, "array-like"), item_name="tmax")
tmax = _ensure_list(tmax)
except TypeError:
pass
keep_first_and_last = set(keep_first) & set(keep_last)
if keep_first_and_last:
raise ValueError(
f"The event names in keep_first and keep_last must "
f"be mutually exclusive. Specified in both: "
f"{', '.join(sorted(keep_first_and_last))}"
)
del keep_first_and_last
for param_name, values in dict(keep_first=keep_first, keep_last=keep_last).items():
for first_last_event_name in values:
try:
match_event_names(event_id, [first_last_event_name])
except KeyError:
raise ValueError(
f'Event "{first_last_event_name}", specified in '
f"{param_name}, cannot be found in event_id dictionary"
)
# If tmin, tmax are strings, ensure these event names are present in event_id
def _diff_input_strings_vs_event_id(input_strings, input_name, event_id):
event_name_diff = sorted(set(input_strings) - set(event_id.keys()))
if event_name_diff:
raise ValueError(
f"Present in {input_name}, but missing from event_id: "
f"{', '.join(event_name_diff)}"
)
_diff_input_strings_vs_event_id(
input_strings=row_events, input_name="row_events", event_id=event_id
)
if isinstance(tmin, list):
_diff_input_strings_vs_event_id(
input_strings=tmin, input_name="tmin", event_id=event_id
)
if isinstance(tmax, list):
_diff_input_strings_vs_event_id(
input_strings=tmax, input_name="tmax", event_id=event_id
)
# First and last sample of each epoch, relative to the time-locked event
# This follows the approach taken in mne.Epochs
# For strings and None, we don't know the start and stop samples in advance as the
# time window can vary.
if isinstance(tmin, type(None) | list):
start_sample = None
else:
start_sample = int(round(tmin * sfreq))
if isinstance(tmax, type(None) | list):
stop_sample = None
else:
stop_sample = int(round(tmax * sfreq)) + 1
# Make indexing easier
# We create the DataFrame before subsetting the events so we end up with
# indices corresponding to the original event indices. Not used for now,
# but might come in handy sometime later
events_df = pd.DataFrame(events, columns=("sample", "prev_id", "id"))
id_to_name_map = {v: k for k, v in event_id.items()}
# Only keep events that are of interest
events = events[np.isin(events[:, 2], list(event_id.values()))]
events_df = events_df.loc[events_df["id"].isin(event_id.values()), :]
# Prepare & condition the metadata DataFrame
# Avoid column name duplications if the exact same event name appears in
# event_id.keys() and keep_first / keep_last simultaneously
keep_first_cols = [col for col in keep_first if col not in event_id]
keep_last_cols = [col for col in keep_last if col not in event_id]
first_cols = [f"first_{col}" for col in keep_first_cols]
last_cols = [f"last_{col}" for col in keep_last_cols]
columns = [
"event_name",
*event_id.keys(),
*keep_first_cols,
*keep_last_cols,
*first_cols,
*last_cols,
]
data = np.empty((len(events_df), len(columns)), float)
metadata = pd.DataFrame(data=data, columns=columns, index=events_df.index)
# Event names
metadata["event_name"] = ""
# Event times
start_idx = 1
stop_idx = start_idx + len(event_id.keys()) + len(keep_first_cols + keep_last_cols)
metadata.iloc[:, start_idx:stop_idx] = np.nan
# keep_first and keep_last names
start_idx = stop_idx
metadata[columns[start_idx:]] = None
# We're all set, let's iterate over all events and fill in in the
# respective cells in the metadata. We will subset this to include only
# `row_events` later
for row_event in events_df.itertuples(name="RowEvent"):
row_idx = row_event.Index
metadata.loc[row_idx, "event_name"] = id_to_name_map[row_event.id]
# Determine which events fall into the current time window
if start_sample is None and isinstance(tmin, list):
# Lower bound is the the current or the closest previpus event with a name
# in "tmin"; if there is no such event (e.g., beginning of the recording is
# being approached), the upper lower becomes the last event in the
# recording.
prev_matching_events = events_df.loc[
(events_df["sample"] <= row_event.sample)
& (events_df["id"].isin([event_id[name] for name in tmin])),
:,
]
if prev_matching_events.size == 0:
# No earlier matching event. Use the current one as the beginning of the
# time window. This may occur at the beginning of a recording.
window_start_sample = row_event.sample
else:
# At least one earlier matching event. Use the closest one.
window_start_sample = prev_matching_events.iloc[-1]["sample"]
elif start_sample is None:
# Lower bound is the current event.
window_start_sample = row_event.sample
else:
# Lower bound is determined by tmin.
window_start_sample = row_event.sample + start_sample
if stop_sample is None and isinstance(tmax, list):
# Upper bound is the the current or the closest following event with a name
# in "tmax"; if there is no such event (e.g., end of the recording is being
# approached), the upper bound becomes the last event in the recording.
next_matching_events = events_df.loc[
(events_df["sample"] >= row_event.sample)
& (events_df["id"].isin([event_id[name] for name in tmax])),
:,
]
if next_matching_events.size == 0:
# No matching event after the current one; use the end of the recording
# as upper bound. This may occur at the end of a recording.
window_stop_sample = events_df["sample"].iloc[-1]
else:
# At least one matching later event. Use the closest one..
window_stop_sample = next_matching_events.iloc[0]["sample"]
elif stop_sample is None:
# Upper bound: next event of the same type, or the last event (of
# any type) if no later event of the same type can be found.
next_events = events_df.loc[
(events_df["sample"] > row_event.sample),
:,
]
if next_events.size == 0:
# We've reached the last event in the recording.
window_stop_sample = row_event.sample
elif next_events.loc[next_events["id"] == row_event.id, :].size > 0:
# There's still an event of the same type appearing after the
# current event. Stop one sample short, we don't want to include that
# last event here, but in the next iteration.
window_stop_sample = (
next_events.loc[next_events["id"] == row_event.id, :].iloc[0][
"sample"
]
- 1
)
else:
# There are still events after the current one, but not of the
# same type.
window_stop_sample = next_events.iloc[-1]["sample"]
else:
# Upper bound is determined by tmax.
window_stop_sample = row_event.sample + stop_sample
events_in_window = events_df.loc[
(events_df["sample"] >= window_start_sample)
& (events_df["sample"] <= window_stop_sample),
:,
]
assert not events_in_window.empty
# Store the metadata
for event in events_in_window.itertuples(name="Event"):
event_sample = event.sample - row_event.sample
event_time = event_sample / sfreq
event_time = 0 if np.isclose(event_time, 0) else event_time
event_name = id_to_name_map[event.id]
if not np.isnan(metadata.loc[row_idx, event_name]):
# Event already exists in current time window!
assert metadata.loc[row_idx, event_name] <= event_time
if event_name not in keep_last:
continue
metadata.loc[row_idx, event_name] = event_time
# Handle keep_first and keep_last event aggregation
for event_group_name in keep_first + keep_last:
if event_name not in match_event_names(event_id, [event_group_name]):
continue
if event_group_name in keep_first:
first_last_col = f"first_{event_group_name}"
else:
first_last_col = f"last_{event_group_name}"
old_time = metadata.loc[row_idx, event_group_name]
if not np.isnan(old_time):
if (event_group_name in keep_first and old_time <= event_time) or (
event_group_name in keep_last and old_time >= event_time
):
continue
if event_group_name not in event_id:
# This is an HED. Strip redundant information from the
# event name
name = (
event_name.replace(event_group_name, "")
.replace("//", "/")
.strip("/")
)
metadata.loc[row_idx, first_last_col] = name
del name
metadata.loc[row_idx, event_group_name] = event_time
# Only keep rows of interest
if row_events:
event_id_timelocked = {
name: val for name, val in event_id.items() if name in row_events
}
events = events[np.isin(events[:, 2], list(event_id_timelocked.values()))]
metadata = metadata.loc[metadata["event_name"].isin(event_id_timelocked)]
assert len(events) == len(metadata)
event_id = event_id_timelocked
return metadata, events, event_id
def _events_from_annotations(raw, events, event_id, annotations, on_missing):
"""Generate events and event_ids from annotations."""
events, event_id_tmp = events_from_annotations(raw)
if events.size == 0:
raise RuntimeError(
"No usable annotations found in the raw object. "
"Either `events` must be provided or the raw "
"object must have annotations to construct epochs"
)
if any(raw.annotations.duration > 0):
logger.info(
"Ignoring annotation durations and creating fixed-duration epochs "
"around annotation onsets."
)
if event_id is None:
event_id = event_id_tmp
# if event_id is the names of events, map to events integers
if isinstance(event_id, str):
event_id = [event_id]
if isinstance(event_id, list | tuple | set):
if not set(event_id).issubset(set(event_id_tmp)):
msg = (
"No matching annotations found for event_id(s) "
f"{set(event_id) - set(event_id_tmp)}"
)
_on_missing(on_missing, msg)
# remove extras if on_missing not error
event_id = set(event_id) & set(event_id_tmp)
event_id = {my_id: event_id_tmp[my_id] for my_id in event_id}
# remove any non-selected annotations
annotations.delete(~np.isin(raw.annotations.description, list(event_id)))
return events, event_id, annotations
@fill_doc
class Epochs(BaseEpochs):
"""Epochs extracted from a Raw instance.
Parameters
----------
%(raw_epochs)s
.. note::
If ``raw`` contains annotations, ``Epochs`` can be constructed around
``raw.annotations.onset``, but note that the durations of the annotations
are ignored in this case.
%(events_epochs)s
.. versionchanged:: 1.7
Allow ``events=None`` to use ``raw.annotations.onset`` as the source of
epoch times.
%(event_id)s
%(epochs_tmin_tmax)s
%(baseline_epochs)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(picks_all)s
preload : bool
%(epochs_preload)s
%(reject_epochs)s
%(flat)s
%(proj_epochs)s
%(decim)s
%(epochs_reject_tmin_tmax)s
%(detrend_epochs)s
%(on_missing_epochs)s
%(reject_by_annotation_epochs)s
%(metadata_epochs)s
.. versionadded:: 0.16
%(event_repeated_epochs)s
%(verbose)s
Attributes
----------
%(info_not_none)s
%(event_id_attr)s
ch_names : list of string
List of channel names.
%(selection_attr)s
preload : bool
Indicates whether epochs are in memory.
drop_log : tuple of tuple
A tuple of the same length as the event array used to initialize the
Epochs object. If the i-th original event is still part of the
selection, drop_log[i] will be an empty tuple; otherwise it will be
a tuple of the reasons the event is not longer in the selection, e.g.:
- 'IGNORED'
If it isn't part of the current subset defined by the user
- 'NO_DATA' or 'TOO_SHORT'
If epoch didn't contain enough data names of channels that exceeded
the amplitude threshold
- 'EQUALIZED_COUNTS'
See :meth:`~mne.Epochs.equalize_event_counts`
- 'USER'
For user-defined reasons (see :meth:`~mne.Epochs.drop`).
When dropping based on flat or reject parameters the tuple of
reasons contains a tuple of channels that satisfied the rejection
criteria.
filename : str
The filename of the object.
times : ndarray
Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval
between consecutive time samples is equal to the inverse of the
sampling frequency.
See Also
--------
mne.epochs.combine_event_ids
mne.Epochs.equalize_event_counts
Notes
-----
When accessing data, Epochs are detrended, baseline-corrected, and
decimated, then projectors are (optionally) applied.
For indexing and slicing using ``epochs[...]``, see
:meth:`mne.Epochs.__getitem__`.
All methods for iteration over objects (using :meth:`mne.Epochs.__iter__`,
:meth:`mne.Epochs.iter_evoked` or :meth:`mne.Epochs.next`) use the same
internal state.
If ``event_repeated`` is set to ``'merge'``, the coinciding events
(duplicates) will be merged into a single event_id and assigned a new
id_number as::
event_id['{event_id_1}/{event_id_2}/...'] = new_id_number
For example with the event_id ``{'aud': 1, 'vis': 2}`` and the events
``[[0, 0, 1], [0, 0, 2]]``, the "merge" behavior will update both event_id
and events to be: ``{'aud/vis': 3}`` and ``[[0, 0, 3]]`` respectively.
There is limited support for :class:`~mne.Annotations` in the
:class:`~mne.Epochs` class. Currently annotations that are present in the
:class:`~mne.io.Raw` object will be preserved in the resulting
:class:`~mne.Epochs` object, but:
1. It is not yet possible to add annotations
to the Epochs object programmatically (via code) or interactively
(through the plot window)
2. Concatenating :class:`~mne.Epochs` objects
that contain annotations is not supported, and any annotations will
be dropped when concatenating.
3. Annotations will be lost on save.
"""
@verbose
def __init__(
self,
raw,
events=None,
event_id=None,
tmin=-0.2,
tmax=0.5,
baseline=(None, 0),
picks=None,
preload=False,
reject=None,
flat=None,
proj=True,
decim=1,
reject_tmin=None,
reject_tmax=None,
detrend=None,
on_missing="raise",
reject_by_annotation=True,
metadata=None,
event_repeated="error",
verbose=None,
):
from .io import BaseRaw
if not isinstance(raw, BaseRaw):
raise ValueError(
"The first argument to `Epochs` must be an instance of mne.io.BaseRaw"
)
info = deepcopy(raw.info)
annotations = raw.annotations.copy()
# proj is on when applied in Raw
proj = proj or raw.proj
self.reject_by_annotation = reject_by_annotation
# keep track of original sfreq (needed for annotations)
raw_sfreq = raw.info["sfreq"]
# get events from annotations if no events given
if events is None:
events, event_id, annotations = _events_from_annotations(
raw, events, event_id, annotations, on_missing
)
# call BaseEpochs constructor
super().__init__(
info,
None,
events,
event_id,
tmin,
tmax,
metadata=metadata,
baseline=baseline,
raw=raw,
picks=picks,
reject=reject,
flat=flat,
decim=decim,
reject_tmin=reject_tmin,
reject_tmax=reject_tmax,
detrend=detrend,
proj=proj,
on_missing=on_missing,
preload_at_end=preload,
event_repeated=event_repeated,
verbose=verbose,
raw_sfreq=raw_sfreq,
annotations=annotations,
)
@verbose
def _get_epoch_from_raw(self, idx, verbose=None):
"""Load one epoch from disk.
Returns
-------
data : array | str | None
If string, it's details on rejection reason.
If array, it's the data in the desired range (good segment)
If None, it means no data is available.
"""
if self._raw is None:
# This should never happen, as raw=None only if preload=True
raise ValueError(
"An error has occurred, no valid raw file found. "
"Please report this to the mne-python "
"developers."
)
sfreq = self._raw.info["sfreq"]
event_samp = self.events[idx, 0]
# Read a data segment from "start" to "stop" in samples
first_samp = self._raw.first_samp
start = int(round(event_samp + self._raw_times[0] * sfreq))
start -= first_samp
stop = start + len(self._raw_times)
# reject_tmin, and reject_tmax need to be converted to samples to
# check the reject_by_annotation boundaries: reject_start, reject_stop
reject_tmin = self.reject_tmin
if reject_tmin is None:
reject_tmin = self._raw_times[0]
reject_start = int(round(event_samp + reject_tmin * sfreq))
reject_start -= first_samp
reject_tmax = self.reject_tmax
if reject_tmax is None:
reject_tmax = self._raw_times[-1]
diff = int(round((self._raw_times[-1] - reject_tmax) * sfreq))
reject_stop = stop - diff
logger.debug(f" Getting epoch for {start}-{stop}")
data = self._raw._check_bad_segment(
start,
stop,
self.picks,
reject_start,
reject_stop,
self.reject_by_annotation,
)
return data
@fill_doc
class EpochsArray(BaseEpochs):
"""Epochs object from numpy array.
Parameters
----------
data : array, shape (n_epochs, n_channels, n_times)
The channels' time series for each epoch. See notes for proper units of
measure.
%(info_not_none)s Consider using :func:`mne.create_info` to populate this
structure.
%(events_epochs)s
%(tmin_epochs)s
%(event_id)s
%(reject_epochs)s
%(flat)s
%(epochs_reject_tmin_tmax)s
%(baseline_epochs)s
Defaults to ``None``, i.e. no baseline correction.
%(proj_epochs)s
%(on_missing_epochs)s
%(metadata_epochs)s
.. versionadded:: 0.16
%(selection)s
%(drop_log)s
.. versionadded:: 1.3
%(raw_sfreq)s
.. versionadded:: 1.3
%(verbose)s
See Also
--------
create_info
EvokedArray
io.RawArray
Notes
-----
Proper units of measure:
* V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog
* T: mag
* T/m: grad
* M: hbo, hbr
* Am: dipole
* AU: misc
EpochsArray does not set `Annotations`. If you would like to create
simulated data with Annotations that are then preserved in the Epochs
object, you would use `mne.io.RawArray` first and then create an
`mne.Epochs` object.
"""
@verbose
def __init__(
self,
data,
info,
events=None,
tmin=0.0,
event_id=None,
reject=None,
flat=None,
reject_tmin=None,
reject_tmax=None,
baseline=None,
proj=True,
on_missing="raise",
metadata=None,
selection=None,
*,
drop_log=None,
raw_sfreq=None,
verbose=None,
):
dtype = np.complex128 if np.any(np.iscomplex(data)) else np.float64
data = np.asanyarray(data, dtype=dtype)
if data.ndim != 3:
raise ValueError(
"Data must be a 3D array of shape (n_epochs, n_channels, n_samples)"
)
if len(info["ch_names"]) != data.shape[1]:
raise ValueError("Info and data must have same number of channels.")
if events is None:
n_epochs = len(data)
events = _gen_events(n_epochs)
info = info.copy() # do not modify original info
tmax = (data.shape[2] - 1) / info["sfreq"] + tmin
super().__init__(
info,
data,
events,
event_id,
tmin,
tmax,
baseline,
reject=reject,
flat=flat,
reject_tmin=reject_tmin,
reject_tmax=reject_tmax,
decim=1,
metadata=metadata,
selection=selection,
proj=proj,
on_missing=on_missing,
drop_log=drop_log,
raw_sfreq=raw_sfreq,
verbose=verbose,
)
if self.baseline is not None:
self._do_baseline = True
if (
len(events)
!= np.isin(self.events[:, 2], list(self.event_id.values())).sum()
):
raise ValueError("The events must only contain event numbers from event_id")
detrend_picks = self._detrend_picks
for e in self._data:
# This is safe without assignment b/c there is no decim
self._detrend_offset_decim(e, detrend_picks)
self.drop_bad()
def combine_event_ids(epochs, old_event_ids, new_event_id, copy=True):
"""Collapse event_ids from an epochs instance into a new event_id.
Parameters
----------
epochs : instance of Epochs
The epochs to operate on.
old_event_ids : str, or list
Conditions to collapse together.
new_event_id : dict, or int
A one-element dict (or a single integer) for the new
condition. Note that for safety, this cannot be any
existing id (in epochs.event_id.values()).
copy : bool
Whether to return a new instance or modify in place.
Returns
-------
epochs : instance of Epochs
The modified epochs.
Notes
-----
This For example (if epochs.event_id was ``{'Left': 1, 'Right': 2}``::
combine_event_ids(epochs, ['Left', 'Right'], {'Directional': 12})
would create a 'Directional' entry in epochs.event_id replacing
'Left' and 'Right' (combining their trials).
"""
epochs = epochs.copy() if copy else epochs
old_event_ids = np.asanyarray(old_event_ids)
if isinstance(new_event_id, int):
new_event_id = {str(new_event_id): new_event_id}
else:
if not isinstance(new_event_id, dict):
raise ValueError("new_event_id must be a dict or int")
if not len(list(new_event_id.keys())) == 1:
raise ValueError("new_event_id dict must have one entry")
new_event_num = list(new_event_id.values())[0]
new_event_num = operator.index(new_event_num)
if new_event_num in epochs.event_id.values():
raise ValueError("new_event_id value must not already exist")
# could use .pop() here, but if a latter one doesn't exist, we're
# in trouble, so run them all here and pop() later
old_event_nums = np.array([epochs.event_id[key] for key in old_event_ids])
# find the ones to replace
inds = np.any(
epochs.events[:, 2][:, np.newaxis] == old_event_nums[np.newaxis, :], axis=1
)
# replace the event numbers in the events list
epochs.events[inds, 2] = new_event_num
# delete old entries
for key in old_event_ids:
epochs.event_id.pop(key)
# add the new entry
epochs.event_id.update(new_event_id)
return epochs
@fill_doc
def equalize_epoch_counts(epochs_list, method="mintime", *, random_state=None):
"""Equalize the number of trials in multiple Epochs or EpochsTFR instances.
Parameters
----------
epochs_list : list of Epochs instances
The Epochs instances to equalize trial counts for.
%(equalize_events_method)s
%(random_state)s Used only if ``method='random'``.
Notes
-----
The method ``'mintime'`` tries to make the remaining epochs occurring as close as
possible in time. This method is motivated by the possibility that if there happened
to be some time-varying (like on the scale of minutes) noise characteristics during
a recording, they could be compensated for (to some extent) in the
equalization process. This method thus seeks to reduce any of those effects
by minimizing the differences in the times of the events in the two sets of
epochs. For example, if one had event times [1, 2, 3, 4, 120, 121] and the
other one had [3.5, 4.5, 120.5, 121.5], it would remove events at times
[1, 2] in the first epochs and not [120, 121].
Examples
--------
>>> equalize_epoch_counts([epochs1, epochs2]) # doctest: +SKIP
"""
if not all(isinstance(epoch, BaseEpochs | EpochsTFR) for epoch in epochs_list):
raise ValueError("All inputs must be Epochs instances")
# make sure bad epochs are dropped
for epoch in epochs_list:
if not epoch._bad_dropped:
epoch.drop_bad()
sample_nums = [epoch.events[:, 0] for epoch in epochs_list]
indices = _get_drop_indices(sample_nums, method, random_state)
for epoch, inds in zip(epochs_list, indices):
epoch.drop(inds, reason="EQUALIZED_COUNT")
def _get_drop_indices(sample_nums, method, random_state):
"""Get indices to drop from multiple event timing lists."""
small_idx = np.argmin([e.size for e in sample_nums])
small_epoch_indices = sample_nums[small_idx]
_check_option("method", method, ["mintime", "truncate", "random"])
indices = list()
for event in sample_nums:
if method == "mintime":
mask = _minimize_time_diff(small_epoch_indices, event)
elif method == "truncate":
mask = np.ones(event.size, dtype=bool)
mask[small_epoch_indices.size :] = False
elif method == "random":
rng = check_random_state(random_state)
mask = np.zeros(event.size, dtype=bool)
idx = rng.choice(
np.arange(event.size), size=small_epoch_indices.size, replace=False
)
mask[idx] = True
indices.append(np.where(np.logical_not(mask))[0])
return indices
def _minimize_time_diff(t_shorter, t_longer):
"""Find a boolean mask to minimize timing differences."""
keep = np.ones((len(t_longer)), dtype=bool)
# special case: length zero or one
if len(t_shorter) < 2: # interp1d won't work
keep.fill(False)
if len(t_shorter) == 1:
idx = np.argmin(np.abs(t_longer - t_shorter))
keep[idx] = True
return keep
scores = np.ones(len(t_longer))
x1 = np.arange(len(t_shorter))
# The first set of keep masks to test
kwargs = dict(copy=False, bounds_error=False, assume_sorted=True)
shorter_interp = interp1d(x1, t_shorter, fill_value=t_shorter[-1], **kwargs)
for ii in range(len(t_longer) - len(t_shorter)):
scores.fill(np.inf)
# set up the keep masks to test, eliminating any rows that are already
# gone
keep_mask = ~np.eye(len(t_longer), dtype=bool)[keep]
keep_mask[:, ~keep] = False
# Check every possible removal to see if it minimizes
x2 = np.arange(len(t_longer) - ii - 1)
t_keeps = np.array([t_longer[km] for km in keep_mask])
longer_interp = interp1d(
x2, t_keeps, axis=1, fill_value=t_keeps[:, -1], **kwargs
)
d1 = longer_interp(x1) - t_shorter
d2 = shorter_interp(x2) - t_keeps
scores[keep] = np.abs(d1, d1).sum(axis=1) + np.abs(d2, d2).sum(axis=1)
keep[np.argmin(scores)] = False
return keep
@verbose
def _is_good(
e,
ch_names,
channel_type_idx,
reject,
flat,
full_report=False,
ignore_chs=(),
verbose=None,
):
"""Test if data segment e is good according to reject and flat.
The reject and flat parameters can accept functions as values.
If full_report=True, it will give True/False as well as a list of all
offending channels.
"""
bad_tuple = tuple()
has_printed = False
checkable = np.ones(len(ch_names), dtype=bool)
checkable[np.array([c in ignore_chs for c in ch_names], dtype=bool)] = False
for refl, f, t in zip([reject, flat], [np.greater, np.less], ["", "flat"]):
if refl is not None:
for key, refl in refl.items():
criterion = refl
idx = channel_type_idx[key]
name = key.upper()
if len(idx) > 0:
e_idx = e[idx]
checkable_idx = checkable[idx]
# Check if criterion is a function and apply it
if callable(criterion):
result = criterion(e_idx)
_validate_type(result, tuple, "reject/flat output")
if len(result) != 2:
raise TypeError(
"Function criterion must return a tuple of length 2"
)
cri_truth, reasons = result
_validate_type(cri_truth, (bool, np.bool_), cri_truth, "bool")
_validate_type(
reasons, (str, list, tuple), reasons, "str, list, or tuple"
)
idx_deltas = np.where(np.logical_and(cri_truth, checkable_idx))[
0
]
else:
deltas = np.max(e_idx, axis=1) - np.min(e_idx, axis=1)
idx_deltas = np.where(
np.logical_and(f(deltas, criterion), checkable_idx)
)[0]
if len(idx_deltas) > 0:
# Check to verify that refl is a callable that returns
# (bool, reason). Reason must be a str/list/tuple.
# If using tuple
if callable(refl):
if isinstance(reasons, str):
reasons = (reasons,)
for idx, reason in enumerate(reasons):
_validate_type(reason, str, reason)
bad_tuple += tuple(reasons)
else:
bad_names = [ch_names[idx[i]] for i in idx_deltas]
if not has_printed:
logger.info(
f" Rejecting {t} epoch based on {name} : "
f"{bad_names}"
)
has_printed = True
if not full_report:
return False
else:
bad_tuple += tuple(bad_names)
if not full_report:
return True
else:
if bad_tuple == ():
return True, None
else:
return False, bad_tuple
def _read_one_epoch_file(f, tree, preload):
"""Read a single FIF file."""
with f as fid:
# Read the measurement info
info, meas = read_meas_info(fid, tree, clean_bads=True)
# read in the Annotations if they exist
annotations = _read_annotations_fif(fid, tree)
try:
events, mappings = _read_events_fif(fid, tree)
except ValueError as e:
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if str(e) == "Could not find any events":
events = np.empty((0, 3), dtype=np.int32)
mappings = dict()
else:
raise
# Metadata
metadata = None
metadata_tree = dir_tree_find(tree, FIFF.FIFFB_MNE_METADATA)
if len(metadata_tree) > 0:
for dd in metadata_tree[0]["directory"]:
kind = dd.kind
pos = dd.pos
if kind == FIFF.FIFF_DESCRIPTION:
metadata = read_tag(fid, pos).data
metadata = _prepare_read_metadata(metadata)
break
# Locate the data of interest
processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
del meas
if len(processed) == 0:
raise ValueError("Could not find processed data")
epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
if len(epochs_node) == 0:
# before version 0.11 we errantly saved with this tag instead of
# an MNE tag
epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
if len(epochs_node) == 0:
epochs_node = dir_tree_find(tree, 122) # 122 used before v0.11
if len(epochs_node) == 0:
raise ValueError("Could not find epochs data")
my_epochs = epochs_node[0]
# Now find the data in the block
data = None
data_tag = None
bmin, bmax = None, None
baseline = None
selection = None
drop_log = None
raw_sfreq = None
reject_params = {}
for k in range(my_epochs["nent"]):
kind = my_epochs["directory"][k].kind
pos = my_epochs["directory"][k].pos
if kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, pos)
first = int(tag.data.item())
elif kind == FIFF.FIFF_LAST_SAMPLE:
tag = read_tag(fid, pos)
last = int(tag.data.item())
elif kind == FIFF.FIFF_EPOCH:
# delay reading until later
fid.seek(pos, 0)
data_tag = _read_tag_header(fid, pos)
data_tag.type = data_tag.type ^ (1 << 30)
elif kind in [FIFF.FIFF_MNE_BASELINE_MIN, 304]:
# Constant 304 was used before v0.11
tag = read_tag(fid, pos)
bmin = float(tag.data.item())
elif kind in [FIFF.FIFF_MNE_BASELINE_MAX, 305]:
# Constant 305 was used before v0.11
tag = read_tag(fid, pos)
bmax = float(tag.data.item())
elif kind == FIFF.FIFF_MNE_EPOCHS_SELECTION:
tag = read_tag(fid, pos)
selection = np.array(tag.data)
elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG:
tag = read_tag(fid, pos)
drop_log = tag.data
drop_log = json.loads(drop_log)
drop_log = tuple(tuple(x) for x in drop_log)
elif kind == FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT:
tag = read_tag(fid, pos)
reject_params = json.loads(tag.data)
elif kind == FIFF.FIFF_MNE_EPOCHS_RAW_SFREQ:
tag = read_tag(fid, pos)
raw_sfreq = tag.data
if bmin is not None or bmax is not None:
baseline = (bmin, bmax)
n_samp = last - first + 1
logger.info(" Found the data of interest:")
logger.info(
f" t = {1000 * first / info['sfreq']:10.2f} ... "
f"{1000 * last / info['sfreq']:10.2f} ms"
)
if info["comps"] is not None:
logger.info(
f" {len(info['comps'])} CTF compensation matrices available"
)
# Inspect the data
if data_tag is None:
raise ValueError("Epochs data not found")
epoch_shape = (len(info["ch_names"]), n_samp)
size_expected = len(events) * np.prod(epoch_shape)
# on read double-precision is always used
if data_tag.type == FIFF.FIFFT_FLOAT:
datatype = np.float64
fmt = ">f4"
elif data_tag.type == FIFF.FIFFT_DOUBLE:
datatype = np.float64
fmt = ">f8"
elif data_tag.type == FIFF.FIFFT_COMPLEX_FLOAT:
datatype = np.complex128
fmt = ">c8"
elif data_tag.type == FIFF.FIFFT_COMPLEX_DOUBLE:
datatype = np.complex128
fmt = ">c16"
fmt_itemsize = np.dtype(fmt).itemsize
assert fmt_itemsize in (4, 8, 16)
size_actual = data_tag.size // fmt_itemsize - 16 // fmt_itemsize
if not size_actual == size_expected:
raise ValueError(
f"Incorrect number of samples ({size_actual} instead of "
f"{size_expected})."
)
# Calibration factors
cals = np.array(
[
[info["chs"][k]["cal"] * info["chs"][k].get("scale", 1.0)]
for k in range(info["nchan"])
],
np.float64,
)
# Read the data
if preload:
data = read_tag(fid, data_tag.pos).data.astype(datatype)
data *= cals
# Put it all together
tmin = first / info["sfreq"]
tmax = last / info["sfreq"]
event_id = (
{str(e): e for e in np.unique(events[:, 2])}
if mappings is None
else mappings
)
# In case epochs didn't have a FIFF.FIFF_MNE_EPOCHS_SELECTION tag
# (version < 0.8):
if selection is None:
selection = np.arange(len(events))
if drop_log is None:
drop_log = ((),) * len(events)
return (
info,
data,
data_tag,
events,
event_id,
metadata,
tmin,
tmax,
baseline,
selection,
drop_log,
epoch_shape,
cals,
reject_params,
fmt,
annotations,
raw_sfreq,
)
@verbose
def read_epochs(fname, proj=True, preload=True, verbose=None) -> "EpochsFIF":
"""Read epochs from a fif file.
Parameters
----------
%(fname_epochs)s
%(proj_epochs)s
preload : bool
If True, read all epochs from disk immediately. If ``False``, epochs
will be read on demand.
%(verbose)s
Returns
-------
epochs : instance of Epochs
The epochs.
"""
return EpochsFIF(fname, proj, preload, verbose)
class _RawContainer:
"""Helper for a raw data container."""
def __init__(self, fid, data_tag, event_samps, epoch_shape, cals, fmt):
self.fid = fid
self.data_tag = data_tag
self.event_samps = event_samps
self.epoch_shape = epoch_shape
self.cals = cals
self.proj = False
self.fmt = fmt
def __del__(self): # noqa: D105
self.fid.close()
@fill_doc
class EpochsFIF(BaseEpochs):
"""Epochs read from disk.
Parameters
----------
%(fname_epochs)s
%(proj_epochs)s
preload : bool
If True, read all epochs from disk immediately. If False, epochs will
be read on demand.
%(verbose)s
See Also
--------
mne.Epochs
mne.epochs.combine_event_ids
mne.Epochs.equalize_event_counts
"""
@verbose
def __init__(self, fname, proj=True, preload=True, verbose=None):
from .io.base import _get_fname_rep
if _path_like(fname):
check_fname(
fname=fname,
filetype="epochs",
endings=("-epo.fif", "-epo.fif.gz", "_epo.fif", "_epo.fif.gz"),
)
fname = _check_fname(fname=fname, must_exist=True, overwrite="read")
elif not preload:
raise ValueError("preload must be used with file-like objects")
fnames = [fname]
fname_rep = _get_fname_rep(fname)
ep_list = list()
raw = list()
for fname in fnames:
logger.info(f"Reading {fname_rep} ...")
fid, tree, _ = fiff_open(fname, preload=preload)
next_fname = _get_next_fname(fid, fname, tree)
(
info,
data,
data_tag,
events,
event_id,
metadata,
tmin,
tmax,
baseline,
selection,
drop_log,
epoch_shape,
cals,
reject_params,
fmt,
annotations,
raw_sfreq,
) = _read_one_epoch_file(fid, tree, preload)
if (events[:, 0] < 0).any():
events = events.copy()
warn(
"Incorrect events detected on disk, setting event "
"numbers to consecutive increasing integers"
)
events[:, 0] = np.arange(1, len(events) + 1)
# here we ignore missing events, since users should already be
# aware of missing events if they have saved data that way
# we also retain original baseline without re-applying baseline
# correction (data is being baseline-corrected when written to
# disk)
epoch = BaseEpochs(
info,
data,
events,
event_id,
tmin,
tmax,
baseline=None,
metadata=metadata,
on_missing="ignore",
selection=selection,
drop_log=drop_log,
proj=False,
verbose=False,
raw_sfreq=raw_sfreq,
)
epoch.baseline = baseline
epoch._do_baseline = False # might be superfluous but won't hurt
ep_list.append(epoch)
if not preload:
# store everything we need to index back to the original data
raw.append(
_RawContainer(
fiff_open(fname)[0],
data_tag,
events[:, 0].copy(),
epoch_shape,
cals,
fmt,
)
)
if next_fname is not None:
fnames.append(next_fname)
unsafe_annot_add = raw_sfreq is None
(
info,
data,
raw_sfreq,
events,
event_id,
tmin,
tmax,
metadata,
baseline,
selection,
drop_log,
) = _concatenate_epochs(
ep_list,
with_data=preload,
add_offset=False,
on_mismatch="raise",
)
# we need this uniqueness for non-preloaded data to work properly
if len(np.unique(events[:, 0])) != len(events):
raise RuntimeError("Event time samples were not unique")
# correct the drop log
assert len(drop_log) % len(fnames) == 0
step = len(drop_log) // len(fnames)
offsets = np.arange(step, len(drop_log) + 1, step)
drop_log = list(drop_log)
for i1, i2 in zip(offsets[:-1], offsets[1:]):
other_log = drop_log[i1:i2]
for k, (a, b) in enumerate(zip(drop_log, other_log)):
if a == ("IGNORED",) and b != ("IGNORED",):
drop_log[k] = b
drop_log = tuple(drop_log[:step])
# call BaseEpochs constructor
# again, ensure we're retaining the baseline period originally loaded
# from disk without trying to re-apply baseline correction
super().__init__(
info,
data,
events,
event_id,
tmin,
tmax,
baseline=None,
raw=raw,
proj=proj,
preload_at_end=False,
on_missing="ignore",
selection=selection,
drop_log=drop_log,
filename=fname_rep,
metadata=metadata,
verbose=verbose,
raw_sfreq=raw_sfreq,
annotations=annotations,
**reject_params,
)
self.baseline = baseline
self._do_baseline = False
# use the private property instead of drop_bad so that epochs
# are not all read from disk for preload=False
self._bad_dropped = True
# private property to suggest that people re-save epochs if they add
# annotations
self._unsafe_annot_add = unsafe_annot_add
@verbose
def _get_epoch_from_raw(self, idx, verbose=None):
"""Load one epoch from disk."""
# Find the right file and offset to use
event_samp = self.events[idx, 0]
for raw in self._raw:
idx = np.where(raw.event_samps == event_samp)[0]
if len(idx) == 1:
fmt = raw.fmt
idx = idx[0]
size = np.prod(raw.epoch_shape) * np.dtype(fmt).itemsize
offset = idx * size + 16 # 16 = Tag header
break
else:
# read the correct subset of the data
raise RuntimeError(
"Correct epoch could not be found, please contact mne-python developers"
)
# the following is equivalent to this, but faster:
#
# >>> data = read_tag(raw.fid, raw.data_tag.pos).data.astype(float)
# >>> data *= raw.cals[np.newaxis, :, :]
# >>> data = data[idx]
#
# Eventually this could be refactored in io/tag.py if other functions
# could make use of it
raw.fid.seek(raw.data_tag.pos + offset, 0)
if fmt == ">c8":
read_fmt = ">f4"
elif fmt == ">c16":
read_fmt = ">f8"
else:
read_fmt = fmt
data = np.frombuffer(raw.fid.read(size), read_fmt)
if read_fmt != fmt:
data = data.view(fmt)
data = data.astype(np.complex128)
else:
data = data.astype(np.float64)
data.shape = raw.epoch_shape
data *= raw.cals
return data
@fill_doc
def bootstrap(epochs, random_state=None):
"""Compute epochs selected by bootstrapping.
Parameters
----------
epochs : Epochs instance
epochs data to be bootstrapped
%(random_state)s
Returns
-------
epochs : Epochs instance
The bootstrap samples
"""
if not epochs.preload:
raise RuntimeError(
"Modifying data of epochs is only supported "
"when preloading is used. Use preload=True "
"in the constructor."
)
rng = check_random_state(random_state)
epochs_bootstrap = epochs.copy()
n_events = len(epochs_bootstrap.events)
idx = rng_uniform(rng)(0, n_events, n_events)
epochs_bootstrap = epochs_bootstrap[idx]
return epochs_bootstrap
def _concatenate_epochs(
epochs_list, *, with_data=True, add_offset=True, on_mismatch="raise"
):
"""Auxiliary function for concatenating epochs."""
if not isinstance(epochs_list, list | tuple):
raise TypeError(f"epochs_list must be a list or tuple, got {type(epochs_list)}")
# to make warning messages only occur once during concatenation
warned = False
for ei, epochs in enumerate(epochs_list):
if not isinstance(epochs, BaseEpochs):
raise TypeError(
f"epochs_list[{ei}] must be an instance of Epochs, got {type(epochs)}"
)
if (
getattr(epochs, "annotations", None) is not None
and len(epochs.annotations) > 0
and not warned
):
warned = True
warn(
"Concatenation of Annotations within Epochs is not supported yet. All "
"annotations will be dropped."
)
# create a copy, so that the Annotations are not modified in place
# from the original object
epochs = epochs.copy()
epochs.set_annotations(None)
out = epochs_list[0]
offsets = [0]
if with_data:
out.drop_bad()
offsets.append(len(out))
events = [out.events]
metadata = [out.metadata]
baseline, tmin, tmax = out.baseline, out.tmin, out.tmax
raw_sfreq = out._raw_sfreq
info = deepcopy(out.info)
drop_log = out.drop_log
event_id = deepcopy(out.event_id)
selection = out.selection
# offset is the last epoch + tmax + 10 second
shift = np.int64((10 + tmax) * out.info["sfreq"])
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if out._allow_empty:
events_offset = 0
else:
events_offset = int(np.max(events[0][:, 0])) + shift
events_offset = np.int64(events_offset)
events_overflow = False
warned = False
for ii, epochs in enumerate(epochs_list[1:], 1):
_ensure_infos_match(epochs.info, info, f"epochs[{ii}]", on_mismatch=on_mismatch)
if not np.allclose(epochs.times, epochs_list[0].times):
raise ValueError("Epochs must have same times")
if epochs.baseline != baseline:
raise ValueError("Baseline must be same for all epochs")
if epochs._raw_sfreq != raw_sfreq and not warned:
warned = True
warn(
"The original raw sampling rate of the Epochs does not "
"match for all Epochs. Please proceed cautiously."
)
# compare event_id
common_keys = list(set(event_id).intersection(set(epochs.event_id)))
for key in common_keys:
if not event_id[key] == epochs.event_id[key]:
msg = (
"event_id values must be the same for identical keys "
'for all concatenated epochs. Key "{}" maps to {} in '
"some epochs and to {} in others."
)
raise ValueError(msg.format(key, event_id[key], epochs.event_id[key]))
if with_data:
epochs.drop_bad()
offsets.append(len(epochs))
evs = epochs.events.copy()
if len(epochs.events) == 0:
warn("One of the Epochs objects to concatenate was empty.")
elif add_offset:
# We need to cast to a native Python int here to detect an
# overflow of a numpy int32 (which is the default on windows)
max_timestamp = int(np.max(evs[:, 0]))
evs[:, 0] += events_offset
events_offset += max_timestamp + shift
if events_offset > INT32_MAX:
warn(
f"Event number greater than {INT32_MAX} created, "
"events[:, 0] will be assigned consecutive increasing "
"integer values"
)
events_overflow = True
add_offset = False # we no longer need to add offset
events.append(evs)
selection = np.concatenate((selection, epochs.selection))
drop_log = drop_log + epochs.drop_log
event_id.update(epochs.event_id)
metadata.append(epochs.metadata)
events = np.concatenate(events, axis=0)
# check to see if we exceeded our maximum event offset
if events_overflow:
events[:, 0] = np.arange(1, len(events) + 1)
# Create metadata object (or make it None)
n_have = sum(this_meta is not None for this_meta in metadata)
if n_have == 0:
metadata = None
elif n_have != len(metadata):
raise ValueError(
f"{n_have} of {len(metadata)} epochs instances have metadata, either "
"all or none must have metadata"
)
else:
pd = _check_pandas_installed(strict=False)
if pd is not False:
metadata = pd.concat(metadata)
else: # dict of dicts
metadata = sum(metadata, list())
assert len(offsets) == (len(epochs_list) if with_data else 0) + 1
data = None
if with_data:
offsets = np.cumsum(offsets)
for start, stop, epochs in zip(offsets[:-1], offsets[1:], epochs_list):
this_data = epochs.get_data(copy=False)
if data is None:
data = np.empty(
(offsets[-1], len(out.ch_names), len(out.times)),
dtype=this_data.dtype,
)
data[start:stop] = this_data
return (
info,
data,
raw_sfreq,
events,
event_id,
tmin,
tmax,
metadata,
baseline,
selection,
drop_log,
)
@verbose
def concatenate_epochs(
epochs_list, add_offset=True, *, on_mismatch="raise", verbose=None
):
"""Concatenate a list of `~mne.Epochs` into one `~mne.Epochs` object.
.. note:: Unlike `~mne.concatenate_raws`, this function does **not**
modify any of the input data.
Parameters
----------
epochs_list : list
List of `~mne.Epochs` instances to concatenate (in that order).
add_offset : bool
If True, a fixed offset is added to the event times from different
Epochs sets, such that they are easy to distinguish after the
concatenation.
If False, the event times are unaltered during the concatenation.
%(on_mismatch_info)s
%(verbose)s
.. versionadded:: 0.24
Returns
-------
epochs : instance of EpochsArray
The result of the concatenation. All data will be loaded into memory.
Notes
-----
.. versionadded:: 0.9.0
"""
(
info,
data,
raw_sfreq,
events,
event_id,
tmin,
tmax,
metadata,
baseline,
selection,
drop_log,
) = _concatenate_epochs(
epochs_list,
with_data=True,
add_offset=add_offset,
on_mismatch=on_mismatch,
)
selection = np.where([len(d) == 0 for d in drop_log])[0]
out = EpochsArray(
data=data,
info=info,
events=events,
event_id=event_id,
tmin=tmin,
baseline=baseline,
selection=selection,
drop_log=drop_log,
proj=False,
on_missing="ignore",
metadata=metadata,
raw_sfreq=raw_sfreq,
)
out.drop_bad()
return out
@verbose
def average_movements(
epochs,
head_pos=None,
orig_sfreq=None,
picks=None,
origin="auto",
weight_all=True,
int_order=8,
ext_order=3,
destination=None,
ignore_ref=False,
return_mapping=False,
mag_scale=100.0,
verbose=None,
):
"""Average data using Maxwell filtering, transforming using head positions.
Parameters
----------
epochs : instance of Epochs
The epochs to operate on.
%(head_pos_maxwell)s
orig_sfreq : float | None
The original sample frequency of the data (that matches the
event sample numbers in ``epochs.events``). Can be ``None``
if data have not been decimated or resampled.
%(picks_all_data)s
%(origin_maxwell)s
weight_all : bool
If True, all channels are weighted by the SSS basis weights.
If False, only MEG channels are weighted, other channels
receive uniform weight per epoch.
%(int_order_maxwell)s
%(ext_order_maxwell)s
%(destination_maxwell_dest)s
%(ignore_ref_maxwell)s
return_mapping : bool
If True, return the mapping matrix.
%(mag_scale_maxwell)s
.. versionadded:: 0.13
%(verbose)s
Returns
-------
evoked : instance of Evoked
The averaged epochs.
See Also
--------
mne.preprocessing.maxwell_filter
mne.chpi.read_head_pos
Notes
-----
The Maxwell filtering version of this algorithm is described in [1]_,
in section V.B "Virtual signals and movement correction", equations
40-44. For additional validation, see [2]_.
Regularization has not been added because in testing it appears to
decrease dipole localization accuracy relative to using all components.
Fine calibration and cross-talk cancellation, however, could be added
to this algorithm based on user demand.
.. versionadded:: 0.11
References
----------
.. [1] Taulu S. and Kajola M. "Presentation of electromagnetic
multichannel data: The signal space separation method,"
Journal of Applied Physics, vol. 97, pp. 124905 1-10, 2005.
.. [2] Wehner DT, Hämäläinen MS, Mody M, Ahlfors SP. "Head movements
of children in MEG: Quantification, effects on source
estimation, and compensation. NeuroImage 40:541–550, 2008.
""" # noqa: E501
from .preprocessing.maxwell import (
_check_destination,
_check_usable,
_col_norm_pinv,
_get_coil_scale,
_get_mf_picks_fix_mags,
_get_n_moments,
_get_sensor_operator,
_prep_mf_coils,
_remove_meg_projs_comps,
_reset_meg_bads,
_trans_sss_basis,
)
if head_pos is None:
raise TypeError("head_pos must be provided and cannot be None")
from .chpi import head_pos_to_trans_rot_t
if not isinstance(epochs, BaseEpochs):
raise TypeError(f"epochs must be an instance of Epochs, not {type(epochs)}")
orig_sfreq = epochs.info["sfreq"] if orig_sfreq is None else orig_sfreq
orig_sfreq = float(orig_sfreq)
if isinstance(head_pos, np.ndarray):
head_pos = head_pos_to_trans_rot_t(head_pos)
trn, rot, t = head_pos
del head_pos
_check_usable(epochs, ignore_ref)
origin = _check_origin(origin, epochs.info, "head")
recon_trans = _check_destination(destination, epochs.info, "head")
logger.info(f"Aligning and averaging up to {len(epochs.events)} epochs")
if not np.array_equal(epochs.events[:, 0], np.unique(epochs.events[:, 0])):
raise RuntimeError("Epochs must have monotonically increasing events")
info_to = epochs.info.copy()
meg_picks, mag_picks, grad_picks, good_mask, _ = _get_mf_picks_fix_mags(
info_to, int_order, ext_order, ignore_ref
)
coil_scale, mag_scale = _get_coil_scale(
meg_picks, mag_picks, grad_picks, mag_scale, info_to
)
mult = _get_sensor_operator(epochs, meg_picks)
n_channels, n_times = len(epochs.ch_names), len(epochs.times)
other_picks = np.setdiff1d(np.arange(n_channels), meg_picks)
data = np.zeros((n_channels, n_times))
count = 0
# keep only MEG w/bad channels marked in "info_from"
info_from = pick_info(info_to, meg_picks[good_mask], copy=True)
all_coils_recon = _prep_mf_coils(info_to, ignore_ref=ignore_ref)
all_coils = _prep_mf_coils(info_from, ignore_ref=ignore_ref)
# remove MEG bads in "to" info
_reset_meg_bads(info_to)
# set up variables
w_sum = 0.0
n_in, n_out = _get_n_moments([int_order, ext_order])
S_decomp = 0.0 # this will end up being a weighted average
last_trans = None
decomp_coil_scale = coil_scale[good_mask]
exp = dict(int_order=int_order, ext_order=ext_order, head_frame=True, origin=origin)
n_in = _get_n_moments(int_order)
for ei, epoch in enumerate(epochs):
event_time = epochs.events[epochs._current - 1, 0] / orig_sfreq
use_idx = np.where(t <= event_time)[0]
if len(use_idx) == 0:
trans = info_to["dev_head_t"]["trans"]
else:
use_idx = use_idx[-1]
trans = np.vstack(
[np.hstack([rot[use_idx], trn[[use_idx]].T]), [[0.0, 0.0, 0.0, 1.0]]]
)
loc_str = ", ".join(f"{tr:0.1f}" for tr in (trans[:3, 3] * 1000))
if last_trans is None or not np.allclose(last_trans, trans):
logger.info(
f" Processing epoch {ei + 1} (device location: {loc_str} mm)"
)
reuse = False
last_trans = trans
else:
logger.info(f" Processing epoch {ei + 1} (device location: same)")
reuse = True
epoch = epoch.copy() # because we operate inplace
if not reuse:
S = _trans_sss_basis(exp, all_coils, trans, coil_scale=decomp_coil_scale)
# Get the weight from the un-regularized version (eq. 44)
weight = np.linalg.norm(S[:, :n_in])
# XXX Eventually we could do cross-talk and fine-cal here
S *= weight
S_decomp += S # eq. 41
epoch[slice(None) if weight_all else meg_picks] *= weight
data += epoch # eq. 42
w_sum += weight
count += 1
del info_from
mapping = None
if count == 0:
data.fill(np.nan)
else:
data[meg_picks] /= w_sum
data[other_picks] /= w_sum if weight_all else count
# Finalize weighted average decomp matrix
S_decomp /= w_sum
# Get recon matrix
# (We would need to include external here for regularization to work)
exp["ext_order"] = 0
S_recon = _trans_sss_basis(exp, all_coils_recon, recon_trans)
if mult is not None:
S_decomp = mult @ S_decomp
S_recon = mult @ S_recon
exp["ext_order"] = ext_order
# We could determine regularization on basis of destination basis
# matrix, restricted to good channels, as regularizing individual
# matrices within the loop above does not seem to work. But in
# testing this seemed to decrease localization quality in most cases,
# so we do not provide the option here.
S_recon /= coil_scale
# Invert
pS_ave = _col_norm_pinv(S_decomp)[0][:n_in]
pS_ave *= decomp_coil_scale.T
# Get mapping matrix
mapping = np.dot(S_recon, pS_ave)
# Apply mapping
data[meg_picks] = np.dot(mapping, data[meg_picks[good_mask]])
info_to["dev_head_t"] = recon_trans # set the reconstruction transform
evoked = epochs._evoked_from_epoch_data(
data, info_to, picks, n_events=count, kind="average", comment=epochs._name
)
_remove_meg_projs_comps(evoked, ignore_ref)
logger.info(f"Created Evoked dataset from {count} epochs")
return (evoked, mapping) if return_mapping else evoked
@verbose
def make_fixed_length_epochs(
raw,
duration=1.0,
preload=False,
reject_by_annotation=True,
proj=True,
overlap=0.0,
id=1, # noqa: A002
verbose=None,
):
"""Divide continuous raw data into equal-sized consecutive epochs.
Parameters
----------
raw : instance of Raw
Raw data to divide into segments.
duration : float
Duration of each epoch in seconds. Defaults to 1.
%(preload)s
%(reject_by_annotation_epochs)s
.. versionadded:: 0.21.0
%(proj_epochs)s
.. versionadded:: 0.22.0
overlap : float
The overlap between epochs, in seconds. Must be
``0 <= overlap < duration``. Default is 0, i.e., no overlap.
.. versionadded:: 0.23.0
id : int
The id to use (default 1).
.. versionadded:: 0.24.0
%(verbose)s
Returns
-------
epochs : instance of Epochs
Segmented data.
Notes
-----
.. versionadded:: 0.20
"""
events = make_fixed_length_events(raw, id=id, duration=duration, overlap=overlap)
delta = 1.0 / raw.info["sfreq"]
return Epochs(
raw,
events,
event_id=[id],
tmin=0,
tmax=duration - delta,
baseline=None,
preload=preload,
reject_by_annotation=reject_by_annotation,
proj=proj,
verbose=verbose,
)