[074d3d]: / mne / epochs.py

Download this file

4989 lines (4448 with data), 177.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
"""Tools for working with epoched data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import json
import operator
import os.path as op
from collections import Counter
from copy import deepcopy
from functools import partial
from inspect import getfullargspec
from pathlib import Path
import numpy as np
from scipy.interpolate import interp1d
from ._fiff.constants import FIFF
from ._fiff.meas_info import (
ContainsMixin,
SetChannelsMixin,
_ensure_infos_match,
read_meas_info,
write_meas_info,
)
from ._fiff.open import _get_next_fname, fiff_open
from ._fiff.pick import (
_DATA_CH_TYPES_SPLIT,
_pick_data_channels,
_picks_to_idx,
channel_indices_by_type,
channel_type,
pick_channels,
pick_info,
)
from ._fiff.proj import ProjMixin, setup_proj
from ._fiff.tag import _read_tag_header, read_tag
from ._fiff.tree import dir_tree_find
from ._fiff.utils import _make_split_fnames
from ._fiff.write import (
_NEXT_FILE_BUFFER,
INT32_MAX,
_get_split_size,
end_block,
start_and_end_file,
start_block,
write_complex_double_matrix,
write_complex_float_matrix,
write_double_matrix,
write_float,
write_float_matrix,
write_id,
write_int,
write_string,
)
from .annotations import (
EpochAnnotationsMixin,
_read_annotations_fif,
_write_annotations,
events_from_annotations,
)
from .baseline import _check_baseline, _log_rescale, rescale
from .bem import _check_origin
from .channels.channels import InterpolationMixin, ReferenceMixin, UpdateChannelsMixin
from .event import _read_events_fif, make_fixed_length_events, match_event_names
from .evoked import EvokedArray
from .filter import FilterMixin, _check_fun, detrend
from .fixes import rng_uniform
from .html_templates import _get_html_template
from .parallel import parallel_func
from .time_frequency.spectrum import EpochsSpectrum, SpectrumMixin, _validate_method
from .time_frequency.tfr import AverageTFR, EpochsTFR
from .utils import (
ExtendedTimeMixin,
GetEpochsMixin,
SizeMixin,
_build_data_frame,
_check_combine,
_check_event_id,
_check_fname,
_check_option,
_check_pandas_index_arguments,
_check_pandas_installed,
_check_preload,
_check_time_format,
_convert_times,
_ensure_events,
_gen_events,
_on_missing,
_path_like,
_pl,
_prepare_read_metadata,
_prepare_write_metadata,
_scale_dataframe_data,
_validate_type,
check_fname,
check_random_state,
copy_function_doc_to_method_doc,
logger,
object_size,
repr_html,
sizeof_fmt,
verbose,
warn,
)
from .utils.docs import fill_doc
from .viz import plot_drop_log, plot_epochs, plot_epochs_image, plot_topo_image_epochs
def _pack_reject_params(epochs):
reject_params = dict()
for key in ("reject", "flat", "reject_tmin", "reject_tmax"):
val = getattr(epochs, key, None)
if val is not None:
reject_params[key] = val
return reject_params
def _save_split(epochs, split_fnames, part_idx, n_parts, fmt, overwrite):
"""Split epochs.
Anything new added to this function also needs to be added to
BaseEpochs.save to account for new file sizes.
"""
# insert index in filename
this_fname = split_fnames[part_idx]
_check_fname(this_fname, overwrite=overwrite)
next_fname, next_idx = None, None
if part_idx < n_parts - 1:
next_idx = part_idx + 1
next_fname = split_fnames[next_idx]
with start_and_end_file(this_fname) as fid:
_save_part(fid, epochs, fmt, n_parts, next_fname, next_idx)
def _save_part(fid, epochs, fmt, n_parts, next_fname, next_idx):
info = epochs.info
meas_id = info["meas_id"]
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info["meas_id"])
# Write measurement info
write_meas_info(fid, info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
start_block(fid, FIFF.FIFFB_MNE_EPOCHS)
# write events out after getting data to ensure bad events are dropped
data = epochs.get_data(copy=False)
_check_option("fmt", fmt, ["single", "double"])
if np.iscomplexobj(data):
if fmt == "single":
write_function = write_complex_float_matrix
elif fmt == "double":
write_function = write_complex_double_matrix
else:
if fmt == "single":
write_function = write_float_matrix
elif fmt == "double":
write_function = write_double_matrix
# Epoch annotations are written if there are any
annotations = getattr(epochs, "annotations", [])
if annotations is not None and len(annotations):
_write_annotations(fid, annotations)
# write Epoch event windows
start_block(fid, FIFF.FIFFB_MNE_EVENTS)
write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, epochs.events.T)
write_string(fid, FIFF.FIFF_DESCRIPTION, _event_id_string(epochs.event_id))
end_block(fid, FIFF.FIFFB_MNE_EVENTS)
# Metadata
if epochs.metadata is not None:
start_block(fid, FIFF.FIFFB_MNE_METADATA)
metadata = _prepare_write_metadata(epochs.metadata)
write_string(fid, FIFF.FIFF_DESCRIPTION, metadata)
end_block(fid, FIFF.FIFFB_MNE_METADATA)
# First and last sample
first = int(round(epochs.tmin * info["sfreq"])) # round just to be safe
last = first + len(epochs.times) - 1
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, last)
# write raw original sampling rate
write_float(fid, FIFF.FIFF_MNE_EPOCHS_RAW_SFREQ, epochs._raw_sfreq)
# save baseline
if epochs.baseline is not None:
bmin, bmax = epochs.baseline
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)
# The epochs itself
decal = np.empty(info["nchan"])
for k in range(info["nchan"]):
decal[k] = 1.0 / (info["chs"][k]["cal"] * info["chs"][k].get("scale", 1.0))
data *= decal[np.newaxis, :, np.newaxis]
write_function(fid, FIFF.FIFF_EPOCH, data)
# undo modifications to data
data /= decal[np.newaxis, :, np.newaxis]
write_string(fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG, json.dumps(epochs.drop_log))
reject_params = _pack_reject_params(epochs)
if reject_params:
write_string(fid, FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT, json.dumps(reject_params))
write_int(fid, FIFF.FIFF_MNE_EPOCHS_SELECTION, epochs.selection)
# And now write the next file info in case epochs are split on disk
if next_fname is not None and n_parts > 1:
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
if meas_id is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, meas_id)
write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
end_block(fid, FIFF.FIFFB_REF)
end_block(fid, FIFF.FIFFB_MNE_EPOCHS)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
def _event_id_string(event_id):
return ";".join([k + ":" + str(v) for k, v in event_id.items()])
def _merge_events(events, event_id, selection):
"""Merge repeated events."""
event_id = event_id.copy()
new_events = events.copy()
event_idxs_to_delete = list()
unique_events, counts = np.unique(events[:, 0], return_counts=True)
for ev in unique_events[counts > 1]:
# indices at which the non-unique events happened
idxs = (events[:, 0] == ev).nonzero()[0]
# Figure out new value for events[:, 1]. Set to 0, if mixed vals exist
unique_priors = np.unique(events[idxs, 1])
new_prior = unique_priors[0] if len(unique_priors) == 1 else 0
# If duplicate time samples have same event val, "merge" == "drop"
# and no new event_id key will be created
ev_vals = np.unique(events[idxs, 2])
if len(ev_vals) <= 1:
new_event_val = ev_vals[0]
# Else, make a new event_id for the merged event
else:
# Find all event_id keys involved in duplicated events. These
# keys will be merged to become a new entry in "event_id"
event_id_keys = list(event_id.keys())
event_id_vals = list(event_id.values())
new_key_comps = [
event_id_keys[event_id_vals.index(value)] for value in ev_vals
]
# Check if we already have an entry for merged keys of duplicate
# events ... if yes, reuse it
for key in event_id:
if set(key.split("/")) == set(new_key_comps):
new_event_val = event_id[key]
break
# Else, find an unused value for the new key and make an entry into
# the event_id dict
else:
ev_vals = np.unique(
np.concatenate(
(list(event_id.values()), events[:, 1:].flatten()), axis=0
)
)
if ev_vals[0] > 1:
new_event_val = 1
else:
diffs = np.diff(ev_vals)
idx = np.where(diffs > 1)[0]
idx = -1 if len(idx) == 0 else idx[0]
new_event_val = ev_vals[idx] + 1
new_event_id_key = "/".join(sorted(new_key_comps))
event_id[new_event_id_key] = int(new_event_val)
# Replace duplicate event times with merged event and remember which
# duplicate indices to delete later
new_events[idxs[0], 1] = new_prior
new_events[idxs[0], 2] = new_event_val
event_idxs_to_delete.extend(idxs[1:])
# Delete duplicate event idxs
new_events = np.delete(new_events, event_idxs_to_delete, 0)
new_selection = np.delete(selection, event_idxs_to_delete, 0)
return new_events, event_id, new_selection
def _handle_event_repeated(events, event_id, event_repeated, selection, drop_log):
"""Handle repeated events.
Note that drop_log will be modified inplace
"""
assert len(events) == len(selection)
selection = np.asarray(selection)
unique_events, u_ev_idxs = np.unique(events[:, 0], return_index=True)
# Return early if no duplicates
if len(unique_events) == len(events):
return events, event_id, selection, drop_log
# Else, we have duplicates. Triage ...
_check_option("event_repeated", event_repeated, ["error", "drop", "merge"])
drop_log = list(drop_log)
if event_repeated == "error":
raise RuntimeError(
"Event time samples were not unique. Consider "
'setting the `event_repeated` parameter."'
)
elif event_repeated == "drop":
logger.info(
"Multiple event values for single event times found. "
"Keeping the first occurrence and dropping all others."
)
new_events = events[u_ev_idxs]
new_selection = selection[u_ev_idxs]
drop_ev_idxs = np.setdiff1d(selection, new_selection)
for idx in drop_ev_idxs:
drop_log[idx] = drop_log[idx] + ("DROP DUPLICATE",)
selection = new_selection
elif event_repeated == "merge":
logger.info(
"Multiple event values for single event times found. "
"Creating new event value to reflect simultaneous events."
)
new_events, event_id, new_selection = _merge_events(events, event_id, selection)
drop_ev_idxs = np.setdiff1d(selection, new_selection)
for idx in drop_ev_idxs:
drop_log[idx] = drop_log[idx] + ("MERGE DUPLICATE",)
selection = new_selection
drop_log = tuple(drop_log)
# Remove obsolete kv-pairs from event_id after handling
keys = new_events[:, 1:].flatten()
event_id = {k: v for k, v in event_id.items() if v in keys}
return new_events, event_id, selection, drop_log
@fill_doc
class BaseEpochs(
ProjMixin,
ContainsMixin,
UpdateChannelsMixin,
ReferenceMixin,
SetChannelsMixin,
InterpolationMixin,
FilterMixin,
ExtendedTimeMixin,
SizeMixin,
GetEpochsMixin,
EpochAnnotationsMixin,
SpectrumMixin,
):
"""Abstract base class for `~mne.Epochs`-type classes.
.. note::
This class should not be instantiated directly via
``mne.BaseEpochs(...)``. Instead, use one of the functions listed in
the See Also section below.
Parameters
----------
%(info_not_none)s
data : ndarray | None
If ``None``, data will be read from the Raw object. If ndarray, must be
of shape (n_epochs, n_channels, n_times).
%(events_epochs)s
%(event_id)s
%(epochs_tmin_tmax)s
%(baseline_epochs)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(raw_epochs)s
%(picks_all)s
%(reject_epochs)s
%(flat)s
%(decim)s
%(epochs_reject_tmin_tmax)s
%(detrend_epochs)s
%(proj_epochs)s
%(on_missing_epochs)s
preload_at_end : bool
%(epochs_preload)s
%(selection)s
.. versionadded:: 0.16
%(drop_log)s
filename : Path | None
The filename (if the epochs are read from disk).
%(metadata_epochs)s
.. versionadded:: 0.16
%(event_repeated_epochs)s
%(raw_sfreq)s
annotations : instance of mne.Annotations | None
Annotations to set.
%(verbose)s
See Also
--------
Epochs
EpochsArray
make_fixed_length_epochs
Notes
-----
The ``BaseEpochs`` class is public to allow for stable type-checking in
user code (i.e., ``isinstance(my_epochs, BaseEpochs)``) but should not be
used as a constructor for Epochs objects (use instead :class:`mne.Epochs`).
"""
@verbose
def __init__(
self,
info,
data,
events,
event_id=None,
tmin=-0.2,
tmax=0.5,
baseline=(None, 0),
raw=None,
picks=None,
reject=None,
flat=None,
decim=1,
reject_tmin=None,
reject_tmax=None,
detrend=None,
proj=True,
on_missing="raise",
preload_at_end=False,
selection=None,
drop_log=None,
filename=None,
metadata=None,
event_repeated="error",
*,
raw_sfreq=None,
annotations=None,
verbose=None,
):
if events is not None: # RtEpochs can have events=None
events = _ensure_events(events)
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if len(events) == 0:
self._allow_empty = True
selection = None
else:
self._allow_empty = False
events_max = events.max()
if events_max > INT32_MAX:
raise ValueError(
f"events array values must not exceed {INT32_MAX}, "
f"got {events_max}"
)
event_id = _check_event_id(event_id, events)
self.event_id = event_id
del event_id
if events is not None: # RtEpochs can have events=None
for key, val in self.event_id.items():
if val not in events[:, 2]:
msg = f"No matching events found for {key} (event id {val})"
_on_missing(on_missing, msg)
# ensure metadata matches original events size
self.selection = np.arange(len(events))
self.events = events
# same as self.metadata = metadata, but suppress log in favor
# of logging below (after setting self.selection)
GetEpochsMixin.metadata.fset(self, metadata, verbose=False)
del events
values = list(self.event_id.values())
selected = np.where(np.isin(self.events[:, 2], values))[0]
if selection is None:
selection = selected
else:
selection = np.array(selection, int)
if selection.shape != (len(selected),):
raise ValueError(
f"selection must be shape {selected.shape} got shape "
f"{selection.shape}"
)
self.selection = selection
if drop_log is None:
self.drop_log = tuple(
() if k in self.selection else ("IGNORED",)
for k in range(max(len(self.events), max(self.selection) + 1))
)
else:
self.drop_log = drop_log
self.events = self.events[selected]
(
self.events,
self.event_id,
self.selection,
self.drop_log,
) = _handle_event_repeated(
self.events,
self.event_id,
event_repeated,
self.selection,
self.drop_log,
)
# then subselect
sub = np.where(np.isin(selection, self.selection))[0]
if isinstance(metadata, list):
metadata = [metadata[s] for s in sub]
elif metadata is not None:
metadata = metadata.iloc[sub]
# Remove temporarily set metadata from above, and set
# again to get the correct log ("adding metadata", instead of
# "replacing existing metadata")
GetEpochsMixin.metadata.fset(self, None, verbose=False)
self.metadata = metadata
del metadata
n_events = len(self.events)
if n_events > 1:
if np.diff(self.events.astype(np.int64)[:, 0]).min() <= 0:
warn(
"The events passed to the Epochs constructor are not "
"chronologically ordered.",
RuntimeWarning,
)
if n_events > 0:
logger.info(f"{n_events} matching events found")
else:
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if not self._allow_empty:
raise ValueError("No desired events found.")
else:
self.drop_log = tuple()
self.selection = np.array([], int)
self.metadata = metadata
# do not set self.events here, let subclass do it
if (detrend not in [None, 0, 1]) or isinstance(detrend, bool):
raise ValueError("detrend must be None, 0, or 1")
self.detrend = detrend
self._raw = raw
info._check_consistency()
self.picks = _picks_to_idx(
info, picks, none="all", exclude=(), allow_empty=False
)
self.info = pick_info(info, self.picks)
del info
self._current = 0
if data is None:
self.preload = False
self._data = None
self._do_baseline = True
else:
assert decim == 1
if (
data.ndim != 3
or data.shape[2] != round((tmax - tmin) * self.info["sfreq"]) + 1
):
raise RuntimeError("bad data shape")
if data.shape[0] != len(self.events):
raise ValueError(
"The number of epochs and the number of events must match"
)
self.preload = True
self._data = data
self._do_baseline = False
self._offset = None
if tmin > tmax:
raise ValueError("tmin has to be less than or equal to tmax")
# Handle times
sfreq = float(self.info["sfreq"])
start_idx = int(round(tmin * sfreq))
self._raw_times = np.arange(start_idx, int(round(tmax * sfreq)) + 1) / sfreq
self._set_times(self._raw_times)
# check reject_tmin and reject_tmax
if reject_tmin is not None:
if np.isclose(reject_tmin, tmin):
# adjust for potential small deviations due to sampling freq
reject_tmin = self.tmin
elif reject_tmin < tmin:
raise ValueError(
f"reject_tmin needs to be None or >= tmin (got {reject_tmin})"
)
if reject_tmax is not None:
if np.isclose(reject_tmax, tmax):
# adjust for potential small deviations due to sampling freq
reject_tmax = self.tmax
elif reject_tmax > tmax:
raise ValueError(
f"reject_tmax needs to be None or <= tmax (got {reject_tmax})"
)
if (reject_tmin is not None) and (reject_tmax is not None):
if reject_tmin >= reject_tmax:
raise ValueError(
f"reject_tmin ({reject_tmin}) needs to be "
f" < reject_tmax ({reject_tmax})"
)
self.reject_tmin = reject_tmin
self.reject_tmax = reject_tmax
# decimation
self._decim = 1
self.decimate(decim)
# baseline correction: replace `None` tuple elements with actual times
self.baseline = _check_baseline(
baseline, times=self.times, sfreq=self.info["sfreq"]
)
if self.baseline is not None and self.baseline != baseline:
logger.info(
f"Setting baseline interval to "
f"[{self.baseline[0]}, {self.baseline[1]}] s"
)
logger.info(_log_rescale(self.baseline))
# setup epoch rejection
self.reject = None
self.flat = None
self._reject_setup(reject, flat)
# do the rest
valid_proj = [True, "delayed", False]
if proj not in valid_proj:
raise ValueError(f'"proj" must be one of {valid_proj}, not {proj}')
if proj == "delayed":
self._do_delayed_proj = True
logger.info("Entering delayed SSP mode.")
else:
self._do_delayed_proj = False
activate = False if self._do_delayed_proj else proj
self._projector, self.info = setup_proj(self.info, False, activate=activate)
if preload_at_end:
assert self._data is None
assert self.preload is False
self.load_data() # this will do the projection
elif proj is True and self._projector is not None and data is not None:
# let's make sure we project if data was provided and proj
# requested
# we could do this with np.einsum, but iteration should be
# more memory safe in most instances
for ii, epoch in enumerate(self._data):
self._data[ii] = np.dot(self._projector, epoch)
self.filename = filename if filename is not None else filename
if raw_sfreq is None:
raw_sfreq = self.info["sfreq"]
self._raw_sfreq = raw_sfreq
self._check_consistency()
self.set_annotations(annotations, on_missing="ignore")
def _check_consistency(self):
"""Check invariants of epochs object."""
if hasattr(self, "events"):
assert len(self.selection) == len(self.events)
assert len(self.drop_log) >= len(self.events)
assert len(self.selection) == sum(len(dl) == 0 for dl in self.drop_log)
assert hasattr(self, "_times_readonly")
assert not self.times.flags["WRITEABLE"]
assert isinstance(self.drop_log, tuple)
assert all(isinstance(log, tuple) for log in self.drop_log)
assert all(isinstance(s, str) for log in self.drop_log for s in log)
def reset_drop_log_selection(self):
"""Reset the drop_log and selection entries.
This method will simplify ``self.drop_log`` and ``self.selection``
so that they are meaningless (tuple of empty tuples and increasing
integers, respectively). This can be useful when concatenating
many Epochs instances, as ``drop_log`` can accumulate many entries
which can become problematic when saving.
"""
self.selection = np.arange(len(self.events))
self.drop_log = (tuple(),) * len(self.events)
self._check_consistency()
def load_data(self):
"""Load the data if not already preloaded.
Returns
-------
epochs : instance of Epochs
The epochs object.
Notes
-----
This function operates in-place.
.. versionadded:: 0.10.0
"""
if self.preload:
return self
self._data = self._get_data()
self.preload = True
self._do_baseline = False
self._decim_slice = slice(None, None, None)
self._decim = 1
self._raw_times = self.times
assert self._data.shape[-1] == len(self.times)
self._raw = None # shouldn't need it anymore
return self
@verbose
def apply_baseline(self, baseline=(None, 0), *, verbose=None):
"""Baseline correct epochs.
Parameters
----------
%(baseline_epochs)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(verbose)s
Returns
-------
epochs : instance of Epochs
The baseline-corrected Epochs object.
Notes
-----
Baseline correction can be done multiple times, but can never be
reverted once the data has been loaded.
.. versionadded:: 0.10.0
"""
baseline = _check_baseline(baseline, times=self.times, sfreq=self.info["sfreq"])
if self.preload:
if self.baseline is not None and baseline is None:
raise RuntimeError(
"You cannot remove baseline correction "
"from preloaded data once it has been "
"applied."
)
self._do_baseline = True
picks = self._detrend_picks
rescale(self._data, self.times, baseline, copy=False, picks=picks)
self._do_baseline = False
else: # logging happens in "rescale" in "if" branch
logger.info(_log_rescale(baseline))
# For EpochsArray and Epochs, this is already True:
# assert self._do_baseline is True
# ... but for EpochsFIF it's not, so let's set it explicitly
self._do_baseline = True
self.baseline = baseline
return self
def _reject_setup(self, reject, flat, *, allow_callable=False):
"""Set self._reject_time and self._channel_type_idx."""
idx = channel_indices_by_type(self.info)
reject = deepcopy(reject) if reject is not None else dict()
flat = deepcopy(flat) if flat is not None else dict()
for rej, kind in zip((reject, flat), ("reject", "flat")):
_validate_type(rej, dict, kind)
bads = set(rej.keys()) - set(idx.keys())
if len(bads) > 0:
raise KeyError(f"Unknown channel types found in {kind}: {bads}")
for key in idx.keys():
# don't throw an error if rejection/flat would do nothing
if len(idx[key]) == 0 and (
np.isfinite(reject.get(key, np.inf)) or flat.get(key, -1) >= 0
):
# This is where we could eventually add e.g.
# self.allow_missing_reject_keys check to allow users to
# provide keys that don't exist in data
raise ValueError(
f"No {key.upper()} channel found. Cannot reject based on "
f"{key.upper()}."
)
# check for invalid values
for rej, kind in zip((reject, flat), ("Rejection", "Flat")):
for key, val in rej.items():
name = f"{kind} dict value for {key}"
if callable(val) and allow_callable:
continue
extra_str = ""
if allow_callable:
extra_str = "or callable"
_validate_type(val, "numeric", name, extra=extra_str)
if val is None or val < 0:
raise ValueError(
f"If using numerical {name} criteria, the value "
f"must be >= 0, not {repr(val)}"
)
# now check to see if our rejection and flat are getting more
# restrictive
old_reject = self.reject if self.reject is not None else dict()
old_flat = self.flat if self.flat is not None else dict()
bad_msg = (
'{kind}["{key}"] == {new} {op} {old} (old value), new '
"{kind} values must be at least as stringent as "
"previous ones"
)
# copy thresholds for channel types that were used previously, but not
# passed this time
for key in set(old_reject) - set(reject):
reject[key] = old_reject[key]
# make sure new thresholds are at least as stringent as the old ones
for key in reject:
# Skip this check if old_reject and reject are callables
if callable(reject[key]) and allow_callable:
continue
if key in old_reject and reject[key] > old_reject[key]:
raise ValueError(
bad_msg.format(
kind="reject",
key=key,
new=reject[key],
old=old_reject[key],
op=">",
)
)
# same for flat thresholds
for key in set(old_flat) - set(flat):
flat[key] = old_flat[key]
for key in flat:
if callable(flat[key]) and allow_callable:
continue
if key in old_flat and flat[key] < old_flat[key]:
raise ValueError(
bad_msg.format(
kind="flat", key=key, new=flat[key], old=old_flat[key], op="<"
)
)
# after validation, set parameters
self._bad_dropped = False
self._channel_type_idx = idx
self.reject = reject if len(reject) > 0 else None
self.flat = flat if len(flat) > 0 else None
if (self.reject_tmin is None) and (self.reject_tmax is None):
self._reject_time = None
else:
if self.reject_tmin is None:
reject_imin = None
else:
idxs = np.nonzero(self.times >= self.reject_tmin)[0]
reject_imin = idxs[0]
if self.reject_tmax is None:
reject_imax = None
else:
idxs = np.nonzero(self.times <= self.reject_tmax)[0]
reject_imax = idxs[-1]
self._reject_time = slice(reject_imin, reject_imax)
@verbose # verbose is used by mne-realtime
def _is_good_epoch(self, data, verbose=None):
"""Determine if epoch is good."""
if isinstance(data, str):
return False, (data,)
if data is None:
return False, ("NO_DATA",)
n_times = len(self.times)
if data.shape[1] < n_times:
# epoch is too short ie at the end of the data
return False, ("TOO_SHORT",)
if self.reject is None and self.flat is None:
return True, None
else:
if self._reject_time is not None:
data = data[:, self._reject_time]
return _is_good(
data,
self.ch_names,
self._channel_type_idx,
self.reject,
self.flat,
full_report=True,
ignore_chs=self.info["bads"],
)
@verbose
def _detrend_offset_decim(self, epoch, picks, verbose=None):
"""Aux Function: detrend, baseline correct, offset, decim.
Note: operates inplace
"""
if (epoch is None) or isinstance(epoch, str):
return epoch
# Detrend
if self.detrend is not None:
# We explicitly detrend just data channels (not EMG, ECG, EOG which
# are processed by baseline correction)
use_picks = _pick_data_channels(self.info, exclude=())
epoch[use_picks] = detrend(epoch[use_picks], self.detrend, axis=1)
# Baseline correct
if self._do_baseline:
rescale(
epoch,
self._raw_times,
self.baseline,
picks=picks,
copy=False,
verbose=False,
)
# Decimate if necessary (i.e., epoch not preloaded)
epoch = epoch[:, self._decim_slice]
# handle offset
if self._offset is not None:
epoch += self._offset
return epoch
def iter_evoked(self, copy=False):
"""Iterate over epochs as a sequence of Evoked objects.
The Evoked objects yielded will each contain a single epoch (i.e., no
averaging is performed).
This method resets the object iteration state to the first epoch.
Parameters
----------
copy : bool
If False copies of data and measurement info will be omitted
to save time.
"""
self.__iter__()
while True:
try:
out = self.__next__(True)
except StopIteration:
break
data, event_id = out
tmin = self.times[0]
info = self.info
if copy:
info = deepcopy(self.info)
data = data.copy()
yield EvokedArray(data, info, tmin, comment=str(event_id))
def subtract_evoked(self, evoked=None):
"""Subtract an evoked response from each epoch.
Can be used to exclude the evoked response when analyzing induced
activity, see e.g. [1]_.
Parameters
----------
evoked : instance of Evoked | None
The evoked response to subtract. If None, the evoked response
is computed from Epochs itself.
Returns
-------
self : instance of Epochs
The modified instance (instance is also modified inplace).
References
----------
.. [1] David et al. "Mechanisms of evoked and induced responses in
MEG/EEG", NeuroImage, vol. 31, no. 4, pp. 1580-1591, July 2006.
"""
logger.info("Subtracting Evoked from Epochs")
if evoked is None:
picks = _pick_data_channels(self.info, exclude=[])
evoked = self.average(picks)
# find the indices of the channels to use
picks = pick_channels(evoked.ch_names, include=self.ch_names, ordered=False)
# make sure the omitted channels are not data channels
if len(picks) < len(self.ch_names):
sel_ch = [evoked.ch_names[ii] for ii in picks]
diff_ch = list(set(self.ch_names).difference(sel_ch))
diff_idx = [self.ch_names.index(ch) for ch in diff_ch]
diff_types = [channel_type(self.info, idx) for idx in diff_idx]
bad_idx = [
diff_types.index(t) for t in diff_types if t in _DATA_CH_TYPES_SPLIT
]
if len(bad_idx) > 0:
bad_str = ", ".join([diff_ch[ii] for ii in bad_idx])
raise ValueError(
"The following data channels are missing "
f"in the evoked response: {bad_str}"
)
logger.info(
" The following channels are not included in the subtraction: "
+ ", ".join(diff_ch)
)
# make sure the times match
if (
len(self.times) != len(evoked.times)
or np.max(np.abs(self.times - evoked.times)) >= 1e-7
):
raise ValueError(
"Epochs and Evoked object do not contain the same time points."
)
# handle SSPs
if not self.proj and evoked.proj:
warn("Evoked has SSP applied while Epochs has not.")
if self.proj and not evoked.proj:
evoked = evoked.copy().apply_proj()
# find the indices of the channels to use in Epochs
ep_picks = [self.ch_names.index(evoked.ch_names[ii]) for ii in picks]
# do the subtraction
if self.preload:
self._data[:, ep_picks, :] -= evoked.data[picks][None, :, :]
else:
if self._offset is None:
self._offset = np.zeros(
(len(self.ch_names), len(self.times)), dtype=np.float64
)
self._offset[ep_picks] -= evoked.data[picks]
logger.info("[done]")
return self
@fill_doc
def average(self, picks=None, method="mean", by_event_type=False):
"""Compute an average over epochs.
Parameters
----------
%(picks_all_data)s
method : str | callable
How to combine the data. If "mean"/"median", the mean/median
are returned.
Otherwise, must be a callable which, when passed an array of shape
(n_epochs, n_channels, n_time) returns an array of shape
(n_channels, n_time).
Note that due to file type limitations, the kind for all
these will be "average".
%(by_event_type)s
Returns
-------
%(evoked_by_event_type_returns)s
Notes
-----
Computes an average of all epochs in the instance, even if
they correspond to different conditions. To average by condition,
do ``epochs[condition].average()`` for each condition separately.
When picks is None and epochs contain only ICA channels, no channels
are selected, resulting in an error. This is because ICA channels
are not considered data channels (they are of misc type) and only data
channels are selected when picks is None.
The ``method`` parameter allows e.g. robust averaging.
For example, one could do:
>>> from scipy.stats import trim_mean # doctest:+SKIP
>>> trim = lambda x: trim_mean(x, 0.1, axis=0) # doctest:+SKIP
>>> epochs.average(method=trim) # doctest:+SKIP
This would compute the trimmed mean.
"""
self._handle_empty("raise", "average")
if by_event_type:
evokeds = list()
for event_type in self.event_id.keys():
ev = self[event_type]._compute_aggregate(picks=picks, mode=method)
ev.comment = event_type
evokeds.append(ev)
else:
evokeds = self._compute_aggregate(picks=picks, mode=method)
return evokeds
@fill_doc
def standard_error(self, picks=None, by_event_type=False):
"""Compute standard error over epochs.
Parameters
----------
%(picks_all_data)s
%(by_event_type)s
Returns
-------
%(std_err_by_event_type_returns)s
"""
return self.average(picks=picks, method="std", by_event_type=by_event_type)
def _compute_aggregate(self, picks, mode="mean"):
"""Compute the mean, median, or std over epochs and return Evoked."""
# if instance contains ICA channels they won't be included unless picks
# is specified
if picks is None:
check_ICA = [x.startswith("ICA") for x in self.ch_names]
if np.all(check_ICA):
raise TypeError(
"picks must be specified (i.e. not None) for ICA channel data"
)
elif np.any(check_ICA):
warn(
"ICA channels will not be included unless explicitly "
"selected in picks"
)
n_channels = len(self.ch_names)
n_times = len(self.times)
if self.preload:
n_events = len(self.events)
fun = _check_combine(mode, valid=("mean", "median", "std"))
data = fun(self._data)
assert len(self.events) == len(self._data)
if data.shape != self._data.shape[1:]:
raise RuntimeError(
f"You passed a function that resulted n data of shape "
f"{data.shape}, but it should be {self._data.shape[1:]}."
)
else:
if mode not in {"mean", "std"}:
raise ValueError(
"If data are not preloaded, can only compute "
"mean or standard deviation."
)
data = np.zeros((n_channels, n_times))
n_events = 0
for e in self:
if np.iscomplexobj(e):
data = data.astype(np.complex128)
data += e
n_events += 1
if n_events > 0:
data /= n_events
else:
data.fill(np.nan)
# convert to stderr if requested, could do in one pass but do in
# two (slower) in case there are large numbers
if mode == "std":
data_mean = data.copy()
data.fill(0.0)
for e in self:
data += (e - data_mean) ** 2
data = np.sqrt(data / n_events)
if mode == "std":
kind = "standard_error"
data /= np.sqrt(n_events)
else:
kind = "average"
return self._evoked_from_epoch_data(
data, self.info, picks, n_events, kind, self._name
)
@property
def _name(self):
"""Give a nice string representation based on event ids."""
return self._get_name()
def _get_name(self, count="frac", ms="×", sep="+"):
"""Generate human-readable name for epochs and evokeds from event_id.
Parameters
----------
count : 'frac' | 'total'
Whether to include the fraction or total number of epochs that each
event type contributes to the number of all epochs.
Ignored if only one event type is present.
ms : str | None
The multiplication sign to use. Pass ``None`` to omit the sign.
Ignored if only one event type is present.
sep : str
How to separate the different events names. Ignored if only one
event type is present.
"""
_check_option("count", value=count, allowed_values=["frac", "total"])
if len(self.event_id) == 1:
comment = next(iter(self.event_id.keys()))
else:
counter = Counter(self.events[:, 2])
comments = list()
# Take care of padding
if ms is None:
ms = " "
else:
ms = f" {ms} "
for event_name, event_code in self.event_id.items():
if count == "frac":
frac = float(counter[event_code]) / len(self.events)
comment = f"{frac:.2f}{ms}{event_name}"
else: # 'total'
comment = f"{counter[event_code]}{ms}{event_name}"
comments.append(comment)
comment = f" {sep} ".join(comments)
return comment
def _evoked_from_epoch_data(self, data, info, picks, n_events, kind, comment):
"""Create an evoked object from epoch data."""
info = deepcopy(info)
# don't apply baseline correction; we'll set evoked.baseline manually
evoked = EvokedArray(
data,
info,
tmin=self.times[0],
comment=comment,
nave=n_events,
kind=kind,
baseline=None,
)
evoked.baseline = self.baseline
# the above constructor doesn't recreate the times object precisely
# due to numerical precision issues
evoked._set_times(self.times.copy())
# pick channels
picks = _picks_to_idx(self.info, picks, "data_or_ica", ())
ch_names = [evoked.ch_names[p] for p in picks]
evoked.pick(ch_names)
if len(evoked.info["ch_names"]) == 0:
raise ValueError("No data channel found when averaging.")
if evoked.nave < 1:
warn("evoked object is empty (based on less than 1 epoch)")
return evoked
@property
def ch_names(self):
"""Channel names."""
return self.info["ch_names"]
@copy_function_doc_to_method_doc(plot_epochs)
def plot(
self,
picks=None,
scalings=None,
n_epochs=20,
n_channels=20,
title=None,
events=False,
event_color=None,
order=None,
show=True,
block=False,
decim="auto",
noise_cov=None,
butterfly=False,
show_scrollbars=True,
show_scalebars=True,
epoch_colors=None,
event_id=None,
group_by="type",
precompute=None,
use_opengl=None,
*,
theme=None,
overview_mode=None,
splash=True,
):
return plot_epochs(
self,
picks=picks,
scalings=scalings,
n_epochs=n_epochs,
n_channels=n_channels,
title=title,
events=events,
event_color=event_color,
order=order,
show=show,
block=block,
decim=decim,
noise_cov=noise_cov,
butterfly=butterfly,
show_scrollbars=show_scrollbars,
show_scalebars=show_scalebars,
epoch_colors=epoch_colors,
event_id=event_id,
group_by=group_by,
precompute=precompute,
use_opengl=use_opengl,
theme=theme,
overview_mode=overview_mode,
splash=splash,
)
@copy_function_doc_to_method_doc(plot_topo_image_epochs)
def plot_topo_image(
self,
layout=None,
sigma=0.0,
vmin=None,
vmax=None,
colorbar=None,
order=None,
cmap="RdBu_r",
layout_scale=0.95,
title=None,
scalings=None,
border="none",
fig_facecolor="k",
fig_background=None,
font_color="w",
select=False,
show=True,
):
return plot_topo_image_epochs(
self,
layout=layout,
sigma=sigma,
vmin=vmin,
vmax=vmax,
colorbar=colorbar,
order=order,
cmap=cmap,
layout_scale=layout_scale,
title=title,
scalings=scalings,
border=border,
fig_facecolor=fig_facecolor,
fig_background=fig_background,
font_color=font_color,
select=select,
show=show,
)
@verbose
def drop_bad(self, reject="existing", flat="existing", verbose=None):
"""Drop bad epochs without retaining the epochs data.
Should be used before slicing operations.
.. warning:: This operation is slow since all epochs have to be read
from disk. To avoid reading epochs from disk multiple
times, use :meth:`mne.Epochs.load_data()`.
.. note:: To constrain the time period used for estimation of signal
quality, set ``epochs.reject_tmin`` and
``epochs.reject_tmax``, respectively.
Parameters
----------
%(reject_drop_bad)s
%(flat_drop_bad)s
%(verbose)s
Returns
-------
epochs : instance of Epochs
The epochs with bad epochs dropped. Operates in-place.
Notes
-----
Dropping bad epochs can be done multiple times with different
``reject`` and ``flat`` parameters. However, once an epoch is
dropped, it is dropped forever, so if more lenient thresholds may
subsequently be applied, :meth:`epochs.copy <mne.Epochs.copy>` should be
used.
"""
if reject == "existing":
if flat == "existing" and self._bad_dropped:
return
reject = self.reject
if flat == "existing":
flat = self.flat
if any(isinstance(rej, str) and rej != "existing" for rej in (reject, flat)):
raise ValueError('reject and flat, if strings, must be "existing"')
self._reject_setup(reject, flat, allow_callable=True)
self._get_data(out=False, verbose=verbose)
return self
def drop_log_stats(self, ignore=("IGNORED",)):
"""Compute the channel stats based on a drop_log from Epochs.
Parameters
----------
ignore : list
The drop reasons to ignore.
Returns
-------
perc : float
Total percentage of epochs dropped.
See Also
--------
plot_drop_log
"""
return _drop_log_stats(self.drop_log, ignore)
@copy_function_doc_to_method_doc(plot_drop_log)
def plot_drop_log(
self,
threshold=0,
n_max_plot=20,
subject=None,
color=(0.9, 0.9, 0.9),
width=0.8,
ignore=("IGNORED",),
show=True,
):
if not self._bad_dropped:
raise ValueError(
"You cannot use plot_drop_log since bad "
"epochs have not yet been dropped. "
"Use epochs.drop_bad()."
)
return plot_drop_log(
self.drop_log,
threshold,
n_max_plot,
subject,
color=color,
width=width,
ignore=ignore,
show=show,
)
@copy_function_doc_to_method_doc(plot_epochs_image)
def plot_image(
self,
picks=None,
sigma=0.0,
vmin=None,
vmax=None,
colorbar=True,
order=None,
show=True,
units=None,
scalings=None,
cmap=None,
fig=None,
axes=None,
overlay_times=None,
combine=None,
group_by=None,
evoked=True,
ts_args=None,
title=None,
clear=False,
):
return plot_epochs_image(
self,
picks=picks,
sigma=sigma,
vmin=vmin,
vmax=vmax,
colorbar=colorbar,
order=order,
show=show,
units=units,
scalings=scalings,
cmap=cmap,
fig=fig,
axes=axes,
overlay_times=overlay_times,
combine=combine,
group_by=group_by,
evoked=evoked,
ts_args=ts_args,
title=title,
clear=clear,
)
@verbose
def drop(self, indices, reason="USER", verbose=None):
"""Drop epochs based on indices or boolean mask.
.. note:: The indices refer to the current set of undropped epochs
rather than the complete set of dropped and undropped epochs.
They are therefore not necessarily consistent with any
external indices (e.g., behavioral logs). To drop epochs
based on external criteria, do not use the ``preload=True``
flag when constructing an Epochs object, and call this
method before calling the :meth:`mne.Epochs.drop_bad` or
:meth:`mne.Epochs.load_data` methods.
Parameters
----------
indices : array of int or bool
Set epochs to remove by specifying indices to remove or a boolean
mask to apply (where True values get removed). Events are
correspondingly modified.
reason : list | tuple | str
Reason(s) for dropping the epochs ('ECG', 'timeout', 'blink' etc).
Reason(s) are applied to all indices specified.
Default: 'USER'.
%(verbose)s
Returns
-------
epochs : instance of Epochs
The epochs with indices dropped. Operates in-place.
"""
indices = np.atleast_1d(indices)
if indices.ndim > 1:
raise TypeError("indices must be a scalar or a 1-d array")
# Check if indices and reasons are of the same length
# if using collection to drop epochs
if indices.dtype == np.dtype(bool):
indices = np.where(indices)[0]
try_idx = np.where(indices < 0, indices + len(self.events), indices)
out_of_bounds = (try_idx < 0) | (try_idx >= len(self.events))
if out_of_bounds.any():
first = indices[out_of_bounds][0]
raise IndexError(f"Epoch index {first} is out of bounds")
keep = np.setdiff1d(np.arange(len(self.events)), try_idx)
self._getitem(keep, reason, copy=False, drop_event_id=False)
count = len(try_idx)
logger.info(
"Dropped %d epoch%s: %s",
count,
_pl(count),
", ".join(map(str, np.sort(try_idx))),
)
return self
def _get_epoch_from_raw(self, idx, verbose=None):
"""Get a given epoch from disk."""
raise NotImplementedError
def _project_epoch(self, epoch):
"""Process a raw epoch based on the delayed param."""
# whenever requested, the first epoch is being projected.
if (epoch is None) or isinstance(epoch, str):
# can happen if t < 0 or reject based on annotations
return epoch
proj = self._do_delayed_proj or self.proj
if self._projector is not None and proj is True:
epoch = np.dot(self._projector, epoch)
return epoch
def _handle_empty(self, on_empty, meth):
if len(self.events) == 0:
msg = (
f"epochs.{meth}() can't run because this Epochs-object is empty. "
f"You might want to check Epochs.drop_log or Epochs.plot_drop_log()"
f" to see why epochs were dropped."
)
_on_missing(on_empty, msg, error_klass=RuntimeError)
@verbose
def _get_data(
self,
out=True,
picks=None,
item=None,
*,
units=None,
tmin=None,
tmax=None,
copy=False,
on_empty="warn",
verbose=None,
):
"""Load all data, dropping bad epochs along the way.
Parameters
----------
out : bool
Return the data. Setting this to False is used to reject bad
epochs without caching all the data, which saves memory.
%(picks_all)s
item : slice | array-like | str | list | None
See docstring of get_data method.
%(units)s
tmin : int | float | None
Start time of data to get in seconds.
tmax : int | float | None
End time of data to get in seconds.
%(verbose)s
"""
from .io.base import _get_ch_factors
if copy is not None:
_validate_type(copy, bool, "copy")
# Handle empty epochs
self._handle_empty(on_empty, "_get_data")
# if called with 'out=False', the call came from 'drop_bad()'
# if no reasons to drop, just declare epochs as good and return
if not out:
# make sure first and last epoch not out of bounds of raw
in_bounds = self.preload or (
self._get_epoch_from_raw(idx=0) is not None
and self._get_epoch_from_raw(idx=-1) is not None
)
# might be BaseEpochs or Epochs, only the latter has the attribute
reject_by_annotation = getattr(self, "reject_by_annotation", False)
if (
self.reject is None
and self.flat is None
and in_bounds
and self._reject_time is None
and not reject_by_annotation
):
logger.debug("_get_data is a noop, returning")
self._bad_dropped = True
return None
start, stop = self._handle_tmin_tmax(tmin, tmax)
if item is None:
item = slice(None)
elif not self._bad_dropped:
raise ValueError(
"item must be None in epochs.get_data() unless bads have been "
"dropped. Consider using epochs.drop_bad()."
)
select = self._item_to_select(item) # indices or slice
use_idx = np.arange(len(self.events))[select]
n_events = len(use_idx)
# in case there are no good events
if self.preload:
# we will store our result in our existing array
data = self._data
else:
# we start out with an empty array, allocate only if necessary
data = np.empty((0, len(self.info["ch_names"]), len(self.times)))
msg = (
f"for {n_events} events and {len(self._raw_times)} original time points"
)
if self._decim > 1:
msg += " (prior to decimation)"
if getattr(self._raw, "preload", False):
logger.info(f"Using data from preloaded Raw {msg} ...")
else:
logger.info(f"Loading data {msg} ...")
orig_picks = picks
if orig_picks is None:
picks = _picks_to_idx(self.info, picks, "all", exclude=())
else:
picks = _picks_to_idx(self.info, picks)
# handle units param only if we are going to return data (out==True)
if (units is not None) and out:
ch_factors = _get_ch_factors(self, units, picks)
else:
ch_factors = None
if self._bad_dropped:
if not out:
return
if self.preload:
return self._data_sel_copy_scale(
data,
select=select,
orig_picks=orig_picks,
picks=picks,
ch_factors=ch_factors,
start=start,
stop=stop,
copy=copy,
)
# we need to load from disk, drop, and return data
detrend_picks = self._detrend_picks
for ii, idx in enumerate(use_idx):
# faster to pre-allocate memory here
epoch_noproj = self._get_epoch_from_raw(idx)
epoch_noproj = self._detrend_offset_decim(epoch_noproj, detrend_picks)
if self._do_delayed_proj:
epoch_out = epoch_noproj
else:
epoch_out = self._project_epoch(epoch_noproj)
if ii == 0:
data = np.empty(
(n_events, len(self.ch_names), len(self.times)),
dtype=epoch_out.dtype,
)
data[ii] = epoch_out
else:
# bads need to be dropped, this might occur after a preload
# e.g., when calling drop_bad w/new params
good_idx = []
n_out = 0
drop_log = list(self.drop_log)
assert n_events == len(self.selection)
if not self.preload:
detrend_picks = self._detrend_picks
for idx, sel in enumerate(self.selection):
if self.preload: # from memory
if self._do_delayed_proj:
epoch_noproj = self._data[idx]
epoch = self._project_epoch(epoch_noproj)
else:
epoch_noproj = None
epoch = self._data[idx]
else: # from disk
epoch_noproj = self._get_epoch_from_raw(idx)
epoch_noproj = self._detrend_offset_decim(
epoch_noproj, detrend_picks
)
epoch = self._project_epoch(epoch_noproj)
epoch_out = epoch_noproj if self._do_delayed_proj else epoch
is_good, bad_tuple = self._is_good_epoch(epoch, verbose=verbose)
if not is_good:
assert isinstance(bad_tuple, tuple)
assert all(isinstance(x, str) for x in bad_tuple)
drop_log[sel] = drop_log[sel] + bad_tuple
continue
good_idx.append(idx)
# store the epoch if there is a reason to (output or update)
if out or self.preload:
# faster to pre-allocate, then trim as necessary
if n_out == 0 and not self.preload:
data = np.empty(
(n_events, epoch_out.shape[0], epoch_out.shape[1]),
dtype=epoch_out.dtype,
order="C",
)
data[n_out] = epoch_out
n_out += 1
self.drop_log = tuple(drop_log)
del drop_log
self._bad_dropped = True
n_bads_dropped = n_events - len(good_idx)
logger.info(f"{n_bads_dropped} bad epochs dropped")
if n_bads_dropped == n_events:
warn(
"All epochs were dropped!\n"
"You might need to alter reject/flat-criteria "
"or drop bad channels to avoid this. "
"You can use Epochs.plot_drop_log() to see which "
"channels are responsible for the dropping of epochs."
)
# adjust the data size if there is a reason to (output or update)
if out or self.preload:
if data.flags["OWNDATA"] and data.flags["C_CONTIGUOUS"]:
data.resize((n_out,) + data.shape[1:], refcheck=False)
else:
data = data[:n_out]
if self.preload:
self._data = data
# Now update our properties (excepd data, which is already fixed)
self._getitem(
good_idx, None, copy=False, drop_event_id=False, select_data=False
)
if not out:
return
return self._data_sel_copy_scale(
data,
select=slice(None),
orig_picks=orig_picks,
picks=picks,
ch_factors=ch_factors,
start=start,
stop=stop,
copy=copy,
)
def _data_sel_copy_scale(
self, data, *, select, orig_picks, picks, ch_factors, start, stop, copy
):
# data arg starts out as self._data when data is preloaded
data_is_self_data = bool(self.preload)
logger.debug(f"Data is self data: {data_is_self_data}")
# only two types of epoch subselection allowed
assert isinstance(select, slice | np.ndarray), type(select)
if not isinstance(select, slice):
logger.debug(" Copying, fancy indexed epochs")
data_is_self_data = False # copy (fancy indexing)
elif select != slice(None):
logger.debug(" Slicing epochs")
if orig_picks is not None:
logger.debug(" Copying, fancy indexed picks")
assert isinstance(picks, np.ndarray), type(picks)
data_is_self_data = False # copy (fancy indexing)
else:
picks = slice(None)
if not all(isinstance(x, slice) and x == slice(None) for x in (select, picks)):
data = data[select][:, picks]
del picks
if start != 0 or stop != self.times.size:
logger.debug(" Slicing time")
data = data[..., start:stop] # view (slice)
if ch_factors is not None:
if data_is_self_data:
logger.debug(" Copying, scale factors applied")
data = data.copy()
data_is_self_data = False
data *= ch_factors[:, np.newaxis]
if not data_is_self_data:
return data
if copy:
logger.debug(" Copying, copy=True")
data = data.copy()
return data
@property
def _detrend_picks(self):
if self._do_baseline:
return _pick_data_channels(
self.info, with_ref_meg=True, with_aux=True, exclude=()
)
else:
return []
@verbose
def get_data(
self,
picks=None,
item=None,
units=None,
tmin=None,
tmax=None,
*,
copy=True,
verbose=None,
):
"""Get all epochs as a 3D array.
Parameters
----------
%(picks_all)s
item : slice | array-like | str | list | None
The items to get. See :meth:`mne.Epochs.__getitem__` for
a description of valid options. This can be substantially faster
for obtaining an ndarray than :meth:`~mne.Epochs.__getitem__`
for repeated access on large Epochs objects.
None (default) is an alias for ``slice(None)``.
.. versionadded:: 0.20
%(units)s
.. versionadded:: 0.24
tmin : int | float | None
Start time of data to get in seconds.
.. versionadded:: 0.24.0
tmax : int | float | None
End time of data to get in seconds.
.. versionadded:: 0.24.0
copy : bool
Whether to return a copy of the object's data, or (if possible) a view.
See :ref:`the NumPy docs <numpy:basics.copies-and-views>` for an
explanation. Default is ``False`` in 1.6 but will change to ``True`` in 1.7,
set it explicitly to avoid a warning in some cases. A view is only possible
when ``item is None``, ``picks is None``, ``units is None``, and data are
preloaded.
.. warning::
Using ``copy=False`` and then modifying the returned ``data`` will in
turn modify the Epochs object. Use with caution!
.. versionchanged:: 1.7
The default changed from ``False`` to ``True``.
.. versionadded:: 1.6
%(verbose)s
Returns
-------
data : array of shape (n_epochs, n_channels, n_times)
The epochs data. Will be a copy when ``copy=True`` and will be a view
when possible when ``copy=False``.
"""
return self._get_data(
picks=picks, item=item, units=units, tmin=tmin, tmax=tmax, copy=copy
)
@verbose
def apply_function(
self,
fun,
picks=None,
dtype=None,
n_jobs=None,
channel_wise=True,
verbose=None,
**kwargs,
):
"""Apply a function to a subset of channels.
%(applyfun_summary_epochs)s
Parameters
----------
%(fun_applyfun)s
%(picks_all_data_noref)s
%(dtype_applyfun)s
%(n_jobs)s Ignored if ``channel_wise=False`` as the workload
is split across channels.
%(channel_wise_applyfun_epo)s
%(verbose)s
%(kwargs_fun)s
Returns
-------
self : instance of Epochs
The epochs object with transformed data.
"""
_check_preload(self, "epochs.apply_function")
picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False)
if not callable(fun):
raise ValueError("fun needs to be a function")
data_in = self._data
if dtype is not None and dtype != self._data.dtype:
self._data = self._data.astype(dtype)
args = getfullargspec(fun).args + getfullargspec(fun).kwonlyargs
if channel_wise is False:
if ("ch_idx" in args) or ("ch_name" in args):
raise ValueError(
"apply_function cannot access ch_idx or ch_name "
"when channel_wise=False"
)
if "ch_idx" in args:
logger.info("apply_function requested to access ch_idx")
if "ch_name" in args:
logger.info("apply_function requested to access ch_name")
if channel_wise:
parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs)
if n_jobs == 1:
_fun = partial(_check_fun, fun)
# modify data inplace to save memory
for ch_idx in picks:
if "ch_idx" in args:
kwargs.update(ch_idx=ch_idx)
if "ch_name" in args:
kwargs.update(ch_name=self.info["ch_names"][ch_idx])
self._data[:, ch_idx, :] = np.apply_along_axis(
_fun, -1, data_in[:, ch_idx, :], **kwargs
)
else:
# use parallel function
_fun = partial(np.apply_along_axis, fun, -1)
data_picks_new = parallel(
p_fun(
_fun,
data_in[:, ch_idx, :],
**kwargs,
**{
k: v
for k, v in [
("ch_name", self.info["ch_names"][ch_idx]),
("ch_idx", ch_idx),
]
if k in args
},
)
for ch_idx in picks
)
for run_idx, ch_idx in enumerate(picks):
self._data[:, ch_idx, :] = data_picks_new[run_idx]
else:
self._data = _check_fun(fun, data_in, **kwargs)
return self
@property
def filename(self) -> Path | None:
"""The filename if the epochs are loaded from disk.
:type: :class:`pathlib.Path` | ``None``
"""
return self._filename
@filename.setter
def filename(self, value):
if value is not None:
value = _check_fname(value, overwrite="read", must_exist=True)
self._filename = value
def __repr__(self):
"""Build string representation."""
s = f"{len(self.events)} events "
s += "(all good)" if self._bad_dropped else "(good & bad)"
s += f", {self.tmin:.3f}".rstrip("0").rstrip(".")
s += f" – {self.tmax:.3f}".rstrip("0").rstrip(".")
s += " s (baseline "
if self.baseline is None:
s += "off"
else:
s += f"{self.baseline[0]:.3f}".rstrip("0").rstrip(".")
s += f" – {self.baseline[1]:.3f}".rstrip("0").rstrip(".")
s += " s"
if self.baseline != _check_baseline(
self.baseline,
times=self.times,
sfreq=self.info["sfreq"],
on_baseline_outside_data="adjust",
):
s += " (baseline period was cropped after baseline correction)"
s += f"), ~{sizeof_fmt(self._size)}"
s += f", data{'' if self.preload else ' not'} loaded"
s += ", with metadata" if self.metadata is not None else ""
max_events = 10
counts = [
f"{k!r}: {sum(self.events[:, 2] == v)}"
for k, v in list(self.event_id.items())[:max_events]
]
if len(self.event_id) > 0:
s += "," + "\n ".join([""] + counts)
if len(self.event_id) > max_events:
not_shown_events = len(self.event_id) - max_events
s += f"\n and {not_shown_events} more events ..."
class_name = self.__class__.__name__
class_name = "Epochs" if class_name == "BaseEpochs" else class_name
return f"<{class_name} | {s}>"
@repr_html
def _repr_html_(self):
if isinstance(self.event_id, dict):
event_strings = []
for k, v in sorted(self.event_id.items()):
n_events = sum(self.events[:, 2] == v)
event_strings.append(f"{k}: {n_events}")
elif isinstance(self.event_id, list):
event_strings = []
for k in self.event_id:
n_events = sum(self.events[:, 2] == k)
event_strings.append(f"{k}: {n_events}")
elif isinstance(self.event_id, int):
n_events = len(self.events[:, 2])
event_strings = [f"{self.event_id}: {n_events}"]
else:
event_strings = None
t = _get_html_template("repr", "epochs.html.jinja")
t = t.render(
inst=self,
filenames=(
[Path(self.filename).name]
if getattr(self, "filename", None) is not None
else None
),
event_counts=event_strings,
)
return t
@verbose
def crop(self, tmin=None, tmax=None, include_tmax=True, verbose=None):
"""Crop a time interval from the epochs.
Parameters
----------
tmin : float | None
Start time of selection in seconds.
tmax : float | None
End time of selection in seconds.
%(include_tmax)s
%(verbose)s
Returns
-------
epochs : instance of Epochs
The cropped epochs object, modified in-place.
Notes
-----
%(notes_tmax_included_by_default)s
"""
# XXX this could be made to work on non-preloaded data...
_check_preload(self, "Modifying data of epochs")
super().crop(tmin=tmin, tmax=tmax, include_tmax=include_tmax)
# Adjust rejection period
if self.reject_tmin is not None and self.reject_tmin < self.tmin:
logger.info(
f"reject_tmin is not in epochs time interval. "
f"Setting reject_tmin to epochs.tmin ({self.tmin} s)"
)
self.reject_tmin = self.tmin
if self.reject_tmax is not None and self.reject_tmax > self.tmax:
logger.info(
f"reject_tmax is not in epochs time interval. "
f"Setting reject_tmax to epochs.tmax ({self.tmax} s)"
)
self.reject_tmax = self.tmax
return self
def copy(self):
"""Return copy of Epochs instance.
Returns
-------
epochs : instance of Epochs
A copy of the object.
"""
return deepcopy(self)
def __deepcopy__(self, memodict):
"""Make a deepcopy."""
cls = self.__class__
result = cls.__new__(cls)
for k, v in self.__dict__.items():
# drop_log is immutable and _raw is private (and problematic to
# deepcopy)
if k in ("drop_log", "_raw", "_times_readonly"):
memodict[id(v)] = v
else:
v = deepcopy(v, memodict)
result.__dict__[k] = v
return result
@verbose
def save(
self,
fname,
split_size="2GB",
fmt="single",
overwrite=False,
split_naming="neuromag",
verbose=None,
):
"""Save epochs in a fif file.
Parameters
----------
fname : path-like
The name of the file, which should end with ``-epo.fif`` or
``-epo.fif.gz``.
split_size : str | int
Large raw files are automatically split into multiple pieces. This
parameter specifies the maximum size of each piece. If the
parameter is an integer, it specifies the size in Bytes. It is
also possible to pass a human-readable string, e.g., 100MB.
Note: Due to FIFF file limitations, the maximum split size is 2GB.
.. versionadded:: 0.10.0
fmt : str
Format to save data. Valid options are 'double' or
'single' for 64- or 32-bit float, or for 128- or
64-bit complex numbers respectively. Note: Data are processed with
double precision. Choosing single-precision, the saved data
will slightly differ due to the reduction in precision.
.. versionadded:: 0.17
%(overwrite)s
To overwrite original file (the same one that was loaded),
data must be preloaded upon reading. This defaults to True in 0.18
but will change to False in 0.19.
.. versionadded:: 0.18
%(split_naming)s
.. versionadded:: 0.24
%(verbose)s
Returns
-------
fnames : List of path-like
List of path-like objects containing the path to each file split.
.. versionadded:: 1.9
Notes
-----
Bad epochs will be dropped before saving the epochs to disk.
"""
check_fname(
fname, "epochs", ("-epo.fif", "-epo.fif.gz", "_epo.fif", "_epo.fif.gz")
)
# check for file existence and expand `~` if present
fname = str(
_check_fname(
fname=fname,
overwrite=overwrite,
check_bids_split=True,
name="fname",
)
)
split_size_bytes = _get_split_size(split_size)
_check_option("fmt", fmt, ["single", "double"])
# to know the length accurately. The get_data() call would drop
# bad epochs anyway
self.drop_bad()
# total_size tracks sizes that get split
# over_size tracks overhead (tags, things that get written to each)
if len(self) == 0:
warn("Saving epochs with no data")
total_size = 0
else:
d = self[0].get_data(copy=False)
# this should be guaranteed by subclasses
assert d.dtype in (">f8", "<f8", ">c16", "<c16")
total_size = d.nbytes * len(self)
self._check_consistency()
over_size = 0
if fmt == "single":
total_size //= 2 # 64bit data converted to 32bit before writing.
over_size += 32 # FIF tags
# Account for all the other things we write, too
# 1. meas_id block plus main epochs block
over_size += 132
# 2. measurement info (likely slight overestimate, but okay)
over_size += object_size(self.info) + 16 * len(self.info)
# 3. events and event_id in its own block
total_size += self.events.size * 4
over_size += len(_event_id_string(self.event_id)) + 72
# 4. Metadata in a block of its own
if self.metadata is not None:
total_size += len(_prepare_write_metadata(self.metadata))
over_size += 56
# 5. first sample, last sample, baseline
over_size += 40 * (self.baseline is not None) + 40
# 6. drop log: gets written to each, with IGNORE for ones that are
# not part of it. So make a fake one with all having entries.
drop_size = len(json.dumps(self.drop_log)) + 16
drop_size += 8 * (len(self.selection) - 1) # worst case: all but one
over_size += drop_size
# 7. reject params
reject_params = _pack_reject_params(self)
if reject_params:
over_size += len(json.dumps(reject_params)) + 16
# 8. selection
total_size += self.selection.size * 4
over_size += 16
# 9. end of file tags
over_size += _NEXT_FILE_BUFFER
logger.debug(f" Overhead size: {str(over_size).rjust(15)}")
logger.debug(f" Splittable size: {str(total_size).rjust(15)}")
logger.debug(f" Split size: {str(split_size_bytes).rjust(15)}")
# need at least one per
n_epochs = len(self)
n_per = total_size // n_epochs if n_epochs else 0
min_size = n_per + over_size
if split_size_bytes < min_size:
raise ValueError(
f"The split size {split_size} is too small to safely write "
"the epochs contents, minimum split size is "
f"{sizeof_fmt(min_size)} ({min_size} bytes)"
)
# This is like max(int(ceil(total_size / split_size)), 1) but cleaner
n_parts = max((total_size - 1) // (split_size_bytes - over_size) + 1, 1)
assert n_parts >= 1, n_parts
if n_parts > 1:
logger.info(f"Splitting into {n_parts} parts")
if n_parts > 100: # This must be an error
raise ValueError(
f"Split size {split_size} would result in writing {n_parts} files"
)
if len(self.drop_log) > 100000:
warn(
f"epochs.drop_log contains {len(self.drop_log)} entries "
f"which will incur up to a {sizeof_fmt(drop_size)} writing "
f"overhead (per split file), consider using "
f"epochs.reset_drop_log_selection() prior to writing"
)
epoch_idxs = np.array_split(np.arange(n_epochs), n_parts)
_check_option("split_naming", split_naming, ("neuromag", "bids"))
split_fnames = _make_split_fnames(fname, n_parts, split_naming)
for part_idx, epoch_idx in enumerate(epoch_idxs):
this_epochs = self[epoch_idx] if n_parts > 1 else self
# avoid missing event_ids in splits
this_epochs.event_id = self.event_id
_save_split(this_epochs, split_fnames, part_idx, n_parts, fmt, overwrite)
return split_fnames
@verbose
def export(self, fname, fmt="auto", *, overwrite=False, verbose=None):
"""Export Epochs to external formats.
%(export_fmt_support_epochs)s
%(export_warning)s
Parameters
----------
%(fname_export_params)s
%(export_fmt_params_epochs)s
%(overwrite)s
.. versionadded:: 0.24.1
%(verbose)s
Notes
-----
.. versionadded:: 0.24
%(export_warning_note_epochs)s
%(export_eeglab_note)s
"""
from .export import export_epochs
export_epochs(fname, self, fmt, overwrite=overwrite, verbose=verbose)
@fill_doc
def equalize_event_counts(
self, event_ids=None, method="mintime", *, random_state=None
):
"""Equalize the number of trials in each condition.
It tries to make the remaining epochs occurring as close as possible in
time. This method works based on the idea that if there happened to be
some time-varying (like on the scale of minutes) noise characteristics
during a recording, they could be compensated for (to some extent) in
the equalization process. This method thus seeks to reduce any of
those effects by minimizing the differences in the times of the events
within a `~mne.Epochs` instance. For example, if one event type
occurred at time points ``[1, 2, 3, 4, 120, 121]`` and the another one
at ``[3.5, 4.5, 120.5, 121.5]``, this method would remove the events at
times ``[1, 2]`` for the first event type – and not the events at times
``[120, 121]``.
Parameters
----------
event_ids : None | list | dict
The event types to equalize.
If ``None`` (default), equalize the counts of **all** event types
present in the `~mne.Epochs` instance.
If a list, each element can either be a string (event name) or a
list of strings. In the case where one of the entries is a list of
strings, event types in that list will be grouped together before
equalizing trial counts across conditions.
If a dictionary, the keys are considered as the event names whose
counts to equalize, i.e., passing ``dict(A=1, B=2)`` will have the
same effect as passing ``['A', 'B']``. This is useful if you intend
to pass an ``event_id`` dictionary that was used when creating
`~mne.Epochs`.
In the case where partial matching is used (using ``/`` in
the event names), the event types will be matched according to the
provided tags, that is, processing works as if the ``event_ids``
matched by the provided tags had been supplied instead.
The ``event_ids`` must identify non-overlapping subsets of the
epochs.
%(equalize_events_method)s
%(random_state)s Used only if ``method='random'``.
Returns
-------
epochs : instance of Epochs
The modified instance. It is modified in-place.
indices : array of int
Indices from the original events list that were dropped.
Notes
-----
For example (if ``epochs.event_id`` was ``{'Left': 1, 'Right': 2,
'Nonspatial':3}``:
epochs.equalize_event_counts([['Left', 'Right'], 'Nonspatial'])
would equalize the number of trials in the ``'Nonspatial'`` condition
with the total number of trials in the ``'Left'`` and ``'Right'``
conditions combined.
If multiple indices are provided (e.g. ``'Left'`` and ``'Right'`` in
the example above), it is not guaranteed that after equalization the
conditions will contribute equally. E.g., it is possible to end up
with 70 ``'Nonspatial'`` epochs, 69 ``'Left'`` and 1 ``'Right'``.
.. versionchanged:: 0.23
Default to equalizing all events in the passed instance if no
event names were specified explicitly.
"""
from collections.abc import Iterable
_validate_type(
event_ids,
types=(Iterable, None),
item_name="event_ids",
type_name="list-like or None",
)
if isinstance(event_ids, str):
raise TypeError(
f"event_ids must be list-like or None, but "
f"received a string: {event_ids}"
)
if event_ids is None:
event_ids = list(self.event_id)
elif not event_ids:
raise ValueError("event_ids must have at least one element")
if not self._bad_dropped:
self.drop_bad()
# figure out how to equalize
eq_inds = list()
# deal with hierarchical tags
ids = self.event_id
orig_ids = list(event_ids)
tagging = False
if "/" in "".join(ids):
# make string inputs a list of length 1
event_ids = [[x] if isinstance(x, str) else x for x in event_ids]
for ids_ in event_ids: # check if tagging is attempted
if any([id_ not in ids for id_ in ids_]):
tagging = True
# 1. treat everything that's not in event_id as a tag
# 2a. for tags, find all the event_ids matched by the tags
# 2b. for non-tag ids, just pass them directly
# 3. do this for every input
event_ids = [
[
k for k in ids if all(tag in k.split("/") for tag in id_)
] # ids matching all tags
if all(id__ not in ids for id__ in id_)
else id_ # straight pass for non-tag inputs
for id_ in event_ids
]
for ii, id_ in enumerate(event_ids):
if len(id_) == 0:
raise KeyError(
f"{orig_ids[ii]} not found in the epoch object's event_id."
)
elif len({sub_id in ids for sub_id in id_}) != 1:
err = (
"Don't mix hierarchical and regular event_ids"
f" like in '{', '.join(id_)}'."
)
raise ValueError(err)
# raise for non-orthogonal tags
if tagging is True:
events_ = [set(self[x].events[:, 0]) for x in event_ids]
doubles = events_[0].intersection(events_[1])
if len(doubles):
raise ValueError(
"The two sets of epochs are "
"overlapping. Provide an "
"orthogonal selection."
)
for eq in event_ids:
eq_inds.append(self._keys_to_idx(eq))
sample_nums = [self.events[e, 0] for e in eq_inds]
indices = _get_drop_indices(sample_nums, method, random_state)
# need to re-index indices
indices = np.concatenate([e[idx] for e, idx in zip(eq_inds, indices)])
self.drop(indices, reason="EQUALIZED_COUNT")
# actually remove the indices
return self, indices
@verbose
def compute_psd(
self,
method="multitaper",
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
remove_dc=True,
exclude=(),
*,
n_jobs=1,
verbose=None,
**method_kw,
):
"""Perform spectral analysis on sensor data.
Parameters
----------
%(method_psd)s
Default is ``'multitaper'``.
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(remove_dc)s
%(exclude_psd)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
spectrum : instance of EpochsSpectrum
The spectral representation of each epoch.
Notes
-----
.. versionadded:: 1.2
References
----------
.. footbibliography::
"""
method = _validate_method(method, type(self).__name__)
self._set_legacy_nfft_default(tmin, tmax, method, method_kw)
return EpochsSpectrum(
self,
method=method,
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
picks=picks,
exclude=exclude,
proj=proj,
remove_dc=remove_dc,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def compute_tfr(
self,
method,
freqs,
*,
tmin=None,
tmax=None,
picks=None,
proj=False,
output="power",
average=False,
return_itc=False,
decim=1,
n_jobs=None,
verbose=None,
**method_kw,
):
"""Compute a time-frequency representation of epoched data.
Parameters
----------
%(method_tfr_epochs)s
%(freqs_tfr_epochs)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(output_compute_tfr)s
average : bool
Whether to return average power across epochs (instead of single-trial
power). ``average=True`` is not compatible with ``output="complex"`` or
``output="phase"``. Ignored if ``method="stockwell"`` (Stockwell method
*requires* averaging). Default is ``False``.
return_itc : bool
Whether to return inter-trial coherence (ITC) as well as power estimates.
If ``True`` then must specify ``average=True`` (or ``method="stockwell",
average="auto"``). Default is ``False``.
%(decim_tfr)s
%(n_jobs)s
%(verbose)s
%(method_kw_epochs_tfr)s
Returns
-------
tfr : instance of EpochsTFR or AverageTFR
The time-frequency-resolved power estimates.
itc : instance of AverageTFR
The inter-trial coherence (ITC). Only returned if ``return_itc=True``.
Notes
-----
If ``average=True`` (or ``method="stockwell", average="auto"``) the result will
be an :class:`~mne.time_frequency.AverageTFR` instead of an
:class:`~mne.time_frequency.EpochsTFR`.
.. versionadded:: 1.7
References
----------
.. footbibliography::
"""
if method == "stockwell" and not average: # stockwell method *must* average
logger.info(
'Requested `method="stockwell"` so ignoring parameter `average=False`.'
)
average = True
if average:
# augment `output` value for use by tfr_array_* functions
_check_option("output", output, ("power",), extra=" when average=True")
method_kw["output"] = "avg_power_itc" if return_itc else "avg_power"
else:
msg = (
"compute_tfr() got incompatible parameters `average=False` and `{}` "
"({} requires averaging over epochs)."
)
if return_itc:
raise ValueError(msg.format("return_itc=True", "computing ITC"))
if method == "stockwell":
raise ValueError(msg.format('method="stockwell"', "Stockwell method"))
# `average` and `return_itc` both False, so "phase" and "complex" are OK
_check_option("output", output, ("power", "phase", "complex"))
method_kw["output"] = output
if method == "stockwell":
method_kw["return_itc"] = return_itc
method_kw.pop("output")
if isinstance(freqs, str):
_check_option("freqs", freqs, "auto")
else:
_validate_type(freqs, "array-like")
_check_option(
"freqs", np.array(freqs).shape, ((2,),), extra=" (wrong shape)."
)
if average:
out = AverageTFR(
inst=self,
method=method,
freqs=freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
# tfr_array_stockwell always returns ITC (but sometimes it's None)
if hasattr(out, "_itc"):
if out._itc is not None:
state = out.__getstate__()
state["data"] = out._itc
state["data_type"] = "Inter-trial coherence"
itc = AverageTFR(inst=state)
del out._itc
return out, itc
del out._itc
return out
# now handle average=False
return EpochsTFR(
inst=self,
method=method,
freqs=freqs,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
decim=decim,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def plot_psd(
self,
fmin=0,
fmax=np.inf,
tmin=None,
tmax=None,
picks=None,
proj=False,
*,
method="auto",
average=False,
dB=True,
estimate="power",
xscale="linear",
area_mode="std",
area_alpha=0.33,
color="black",
line_alpha=None,
spatial_colors=True,
sphere=None,
exclude="bads",
ax=None,
show=True,
n_jobs=1,
verbose=None,
**method_kw,
):
"""%(plot_psd_doc)s.
Parameters
----------
%(fmin_fmax_psd)s
%(tmin_tmax_psd)s
%(picks_good_data_noref)s
%(proj_psd)s
%(method_plot_psd_auto)s
%(average_plot_psd)s
%(dB_plot_psd)s
%(estimate_plot_psd)s
%(xscale_plot_psd)s
%(area_mode_plot_psd)s
%(area_alpha_plot_psd)s
%(color_plot_psd)s
%(line_alpha_plot_psd)s
%(spatial_colors_psd)s
%(sphere_topomap_auto)s
.. versionadded:: 0.22.0
exclude : list of str | 'bads'
Channels names to exclude from being shown. If 'bads', the bad
channels are excluded. Pass an empty list to plot all channels
(including channels marked "bad", if any).
.. versionadded:: 0.24.0
%(ax_plot_psd)s
%(show)s
%(n_jobs)s
%(verbose)s
%(method_kw_psd)s
Returns
-------
fig : instance of Figure
Figure with frequency spectra of the data channels.
Notes
-----
%(notes_plot_psd_meth)s
"""
return super().plot_psd(
fmin=fmin,
fmax=fmax,
tmin=tmin,
tmax=tmax,
picks=picks,
proj=proj,
reject_by_annotation=False,
method=method,
average=average,
dB=dB,
estimate=estimate,
xscale=xscale,
area_mode=area_mode,
area_alpha=area_alpha,
color=color,
line_alpha=line_alpha,
spatial_colors=spatial_colors,
sphere=sphere,
exclude=exclude,
ax=ax,
show=show,
n_jobs=n_jobs,
verbose=verbose,
**method_kw,
)
@verbose
def to_data_frame(
self,
picks=None,
index=None,
scalings=None,
copy=True,
long_format=False,
time_format=None,
*,
verbose=None,
):
"""Export data in tabular structure as a pandas DataFrame.
Channels are converted to columns in the DataFrame. By default,
additional columns "time", "epoch" (epoch number), and "condition"
(epoch event description) are added, unless ``index`` is not ``None``
(in which case the columns specified in ``index`` will be used to form
the DataFrame's index instead).
Parameters
----------
%(picks_all)s
%(index_df_epo)s
Valid string values are 'time', 'epoch', and 'condition'.
Defaults to ``None``.
%(scalings_df)s
%(copy_df)s
%(long_format_df_epo)s
%(time_format_df)s
.. versionadded:: 0.20
%(verbose)s
Returns
-------
%(df_return)s
"""
# check pandas once here, instead of in each private utils function
pd = _check_pandas_installed() # noqa
# arg checking
valid_index_args = ["time", "epoch", "condition"]
valid_time_formats = ["ms", "timedelta"]
index = _check_pandas_index_arguments(index, valid_index_args)
time_format = _check_time_format(time_format, valid_time_formats)
# get data
picks = _picks_to_idx(self.info, picks, "all", exclude=())
data = self._get_data(on_empty="raise")[:, picks, :]
times = self.times
n_epochs, n_picks, n_times = data.shape
data = np.hstack(data).T # (time*epochs) x signals
if copy:
data = data.copy()
data = _scale_dataframe_data(self, data, picks, scalings)
# prepare extra columns / multiindex
mindex = list()
times = np.tile(times, n_epochs)
times = _convert_times(times, time_format, self.info["meas_date"])
mindex.append(("time", times))
rev_event_id = {v: k for k, v in self.event_id.items()}
conditions = [rev_event_id[k] for k in self.events[:, 2]]
mindex.append(("condition", np.repeat(conditions, n_times)))
mindex.append(("epoch", np.repeat(self.selection, n_times)))
assert all(len(mdx) == len(mindex[0]) for mdx in mindex)
# build DataFrame
df = _build_data_frame(
self,
data,
picks,
long_format,
mindex,
index,
default_index=["condition", "epoch", "time"],
)
return df
def as_type(self, ch_type="grad", mode="fast"):
"""Compute virtual epochs using interpolated fields.
.. Warning:: Using virtual epochs to compute inverse can yield
unexpected results. The virtual channels have ``'_v'`` appended
at the end of the names to emphasize that the data contained in
them are interpolated.
Parameters
----------
ch_type : str
The destination channel type. It can be 'mag' or 'grad'.
mode : str
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used. ``'fast'`` should be sufficient
for most applications.
Returns
-------
epochs : instance of mne.EpochsArray
The transformed epochs object containing only virtual channels.
Notes
-----
This method returns a copy and does not modify the data it
operates on. It also returns an EpochsArray instance.
.. versionadded:: 0.20.0
"""
from .forward import _as_meg_type_inst
self._handle_empty("raise", "as_type")
return _as_meg_type_inst(self, ch_type=ch_type, mode=mode)
def _drop_log_stats(drop_log, ignore=("IGNORED",)):
"""Compute drop log stats.
Parameters
----------
drop_log : list of list
Epoch drop log from Epochs.drop_log.
ignore : list
The drop reasons to ignore.
Returns
-------
perc : float
Total percentage of epochs dropped.
"""
if (
not isinstance(drop_log, tuple)
or not all(isinstance(d, tuple) for d in drop_log)
or not all(isinstance(s, str) for d in drop_log for s in d)
):
raise TypeError("drop_log must be a tuple of tuple of str")
perc = 100 * np.mean(
[len(d) > 0 for d in drop_log if not any(r in ignore for r in d)]
)
return perc
def make_metadata(
events,
event_id,
tmin,
tmax,
sfreq,
row_events=None,
keep_first=None,
keep_last=None,
):
"""Automatically generate metadata for use with `mne.Epochs` from events.
This function mimics the epoching process (it constructs time windows
around time-locked "events of interest") and collates information about
any other events that occurred within those time windows. The information
is returned as a :class:`pandas.DataFrame`, suitable for use as
`~mne.Epochs` metadata: one row per time-locked event, and columns
indicating presence or absence and latency of each ancillary event type.
The function will also return a new ``events`` array and ``event_id``
dictionary that correspond to the generated metadata, which together can then be
readily fed into `~mne.Epochs`.
Parameters
----------
events : array, shape (m, 3)
The :term:`events array <events>`. By default, the returned metadata
:class:`~pandas.DataFrame` will have as many rows as the events array.
To create rows for only a subset of events, pass the ``row_events``
parameter.
event_id : dict
A mapping from event names (keys) to event IDs (values). The event
names will be incorporated as columns of the returned metadata
:class:`~pandas.DataFrame`.
tmin, tmax : float | str | list of str | None
If float, start and end of the time interval for metadata generation in seconds,
relative to the time-locked event of the respective time window (the "row
events").
.. note::
If you are planning to attach the generated metadata to
`~mne.Epochs` and intend to include only events that fall inside
your epoch's time interval, pass the same ``tmin`` and ``tmax``
values here as you use for your epochs.
If ``None``, the time window used for metadata generation is bounded by the
``row_events``. This is can be particularly practical if trial duration varies
greatly, but each trial starts with a known event (e.g., a visual cue or
fixation).
.. note::
If ``tmin=None``, the first time window for metadata generation starts with
the first row event. If ``tmax=None``, the last time window for metadata
generation ends with the last event in ``events``.
If a string or a list of strings, the events bounding the metadata around each
"row event". For ``tmin``, the events are assumed to occur **before** the row
event, and for ``tmax``, the events are assumed to occur **after** – unless
``tmin`` or ``tmax`` are equal to a row event, in which case the row event
serves as the bound.
.. versionchanged:: 1.6.0
Added support for ``None``.
.. versionadded:: 1.7.0
Added support for strings.
sfreq : float
The sampling frequency of the data from which the events array was
extracted.
row_events : list of str | str | None
Event types around which to create the time windows. For each of these
time-locked events, we will create a **row** in the returned metadata
:class:`pandas.DataFrame`. If provided, the string(s) must be keys of
``event_id``. If ``None`` (default), rows are created for **all** event types
present in ``event_id``.
keep_first : str | list of str | None
Specify subsets of :term:`hierarchical event descriptors` (HEDs,
inspired by :footcite:`BigdelyShamloEtAl2013`) matching events of which
the **first occurrence** within each time window shall be stored in
addition to the original events.
.. note::
There is currently no way to retain **all** occurrences of a
repeated event. The ``keep_first`` parameter can be used to specify
subsets of HEDs, effectively creating a new event type that is the
union of all events types described by the matching HED pattern.
Only the very first event of this set will be kept.
For example, you might have two response events types,
``response/left`` and ``response/right``; and in trials with both
responses occurring, you want to keep only the first response. In this
case, you can pass ``keep_first='response'``. This will add two new
columns to the metadata: ``response``, indicating at what **time** the
event occurred, relative to the time-locked event; and
``first_response``, stating which **type** (``'left'`` or ``'right'``)
of event occurred.
To match specific subsets of HEDs describing different sets of events,
pass a list of these subsets, e.g.
``keep_first=['response', 'stimulus']``. If ``None`` (default), no
event aggregation will take place and no new columns will be created.
.. note::
By default, this function will always retain the first instance
of any event in each time window. For example, if a time window
contains two ``'response'`` events, the generated ``response``
column will automatically refer to the first of the two events. In
this specific case, it is therefore **not** necessary to make use of
the ``keep_first`` parameter – unless you need to differentiate
between two types of responses, like in the example above.
keep_last : list of str | None
Same as ``keep_first``, but for keeping only the **last** occurrence
of matching events. The column indicating the **type** of an event
``myevent`` will be named ``last_myevent``.
Returns
-------
metadata : pandas.DataFrame
Metadata for each row event, with the following columns:
- ``event_name``, with strings indicating the name of the time-locked
event ("row event") for that specific time window
- one column per event type in ``event_id``, with the same name; floats
indicating the latency of the event in seconds, relative to the
time-locked event
- if applicable, additional columns named after the ``keep_first`` and
``keep_last`` event types; floats indicating the latency of the
event in seconds, relative to the time-locked event
- if applicable, additional columns ``first_{event_type}`` and
``last_{event_type}`` for ``keep_first`` and ``keep_last`` event
types, respetively; the values will be strings indicating which event
types were matched by the provided HED patterns
events : array, shape (n, 3)
The events corresponding to the generated metadata, i.e. one
time-locked event per row.
event_id : dict
The event dictionary corresponding to the new events array. This will
be identical to the input dictionary unless ``row_events`` is supplied,
in which case it will only contain the events provided there.
Notes
-----
The time window used for metadata generation need not correspond to the
time window used to create the `~mne.Epochs`, to which the metadata will
be attached; it may well be much shorter or longer, or not overlap at all,
if desired. This can be useful, for example, to include events that
occurred before or after an epoch, e.g. during the inter-trial interval.
If either ``tmin``, ``tmax``, or both are ``None``, or a string referring e.g. to a
response event, the time window will typically vary, too.
.. versionadded:: 0.23
References
----------
.. footbibliography::
"""
pd = _check_pandas_installed()
_validate_type(events, types=("array-like",), item_name="events")
_validate_type(event_id, types=(dict,), item_name="event_id")
_validate_type(sfreq, types=("numeric",), item_name="sfreq")
_validate_type(tmin, types=("numeric", str, "array-like", None), item_name="tmin")
_validate_type(tmax, types=("numeric", str, "array-like", None), item_name="tmax")
_validate_type(row_events, types=(None, str, "array-like"), item_name="row_events")
_validate_type(keep_first, types=(None, str, "array-like"), item_name="keep_first")
_validate_type(keep_last, types=(None, str, "array-like"), item_name="keep_last")
if not event_id:
raise ValueError("event_id dictionary must contain at least one entry")
def _ensure_list(x):
if x is None:
return []
elif isinstance(x, str):
return [x]
else:
return list(x)
row_events = _ensure_list(row_events)
keep_first = _ensure_list(keep_first)
keep_last = _ensure_list(keep_last)
# Turn tmin, tmax into a list if they're strings or arrays of strings
try:
_validate_type(tmin, types=(str, "array-like"), item_name="tmin")
tmin = _ensure_list(tmin)
except TypeError:
pass
try:
_validate_type(tmax, types=(str, "array-like"), item_name="tmax")
tmax = _ensure_list(tmax)
except TypeError:
pass
keep_first_and_last = set(keep_first) & set(keep_last)
if keep_first_and_last:
raise ValueError(
f"The event names in keep_first and keep_last must "
f"be mutually exclusive. Specified in both: "
f"{', '.join(sorted(keep_first_and_last))}"
)
del keep_first_and_last
for param_name, values in dict(keep_first=keep_first, keep_last=keep_last).items():
for first_last_event_name in values:
try:
match_event_names(event_id, [first_last_event_name])
except KeyError:
raise ValueError(
f'Event "{first_last_event_name}", specified in '
f"{param_name}, cannot be found in event_id dictionary"
)
# If tmin, tmax are strings, ensure these event names are present in event_id
def _diff_input_strings_vs_event_id(input_strings, input_name, event_id):
event_name_diff = sorted(set(input_strings) - set(event_id.keys()))
if event_name_diff:
raise ValueError(
f"Present in {input_name}, but missing from event_id: "
f"{', '.join(event_name_diff)}"
)
_diff_input_strings_vs_event_id(
input_strings=row_events, input_name="row_events", event_id=event_id
)
if isinstance(tmin, list):
_diff_input_strings_vs_event_id(
input_strings=tmin, input_name="tmin", event_id=event_id
)
if isinstance(tmax, list):
_diff_input_strings_vs_event_id(
input_strings=tmax, input_name="tmax", event_id=event_id
)
# First and last sample of each epoch, relative to the time-locked event
# This follows the approach taken in mne.Epochs
# For strings and None, we don't know the start and stop samples in advance as the
# time window can vary.
if isinstance(tmin, type(None) | list):
start_sample = None
else:
start_sample = int(round(tmin * sfreq))
if isinstance(tmax, type(None) | list):
stop_sample = None
else:
stop_sample = int(round(tmax * sfreq)) + 1
# Make indexing easier
# We create the DataFrame before subsetting the events so we end up with
# indices corresponding to the original event indices. Not used for now,
# but might come in handy sometime later
events_df = pd.DataFrame(events, columns=("sample", "prev_id", "id"))
id_to_name_map = {v: k for k, v in event_id.items()}
# Only keep events that are of interest
events = events[np.isin(events[:, 2], list(event_id.values()))]
events_df = events_df.loc[events_df["id"].isin(event_id.values()), :]
# Prepare & condition the metadata DataFrame
# Avoid column name duplications if the exact same event name appears in
# event_id.keys() and keep_first / keep_last simultaneously
keep_first_cols = [col for col in keep_first if col not in event_id]
keep_last_cols = [col for col in keep_last if col not in event_id]
first_cols = [f"first_{col}" for col in keep_first_cols]
last_cols = [f"last_{col}" for col in keep_last_cols]
columns = [
"event_name",
*event_id.keys(),
*keep_first_cols,
*keep_last_cols,
*first_cols,
*last_cols,
]
data = np.empty((len(events_df), len(columns)), float)
metadata = pd.DataFrame(data=data, columns=columns, index=events_df.index)
# Event names
metadata["event_name"] = ""
# Event times
start_idx = 1
stop_idx = start_idx + len(event_id.keys()) + len(keep_first_cols + keep_last_cols)
metadata.iloc[:, start_idx:stop_idx] = np.nan
# keep_first and keep_last names
start_idx = stop_idx
metadata[columns[start_idx:]] = None
# We're all set, let's iterate over all events and fill in in the
# respective cells in the metadata. We will subset this to include only
# `row_events` later
for row_event in events_df.itertuples(name="RowEvent"):
row_idx = row_event.Index
metadata.loc[row_idx, "event_name"] = id_to_name_map[row_event.id]
# Determine which events fall into the current time window
if start_sample is None and isinstance(tmin, list):
# Lower bound is the the current or the closest previpus event with a name
# in "tmin"; if there is no such event (e.g., beginning of the recording is
# being approached), the upper lower becomes the last event in the
# recording.
prev_matching_events = events_df.loc[
(events_df["sample"] <= row_event.sample)
& (events_df["id"].isin([event_id[name] for name in tmin])),
:,
]
if prev_matching_events.size == 0:
# No earlier matching event. Use the current one as the beginning of the
# time window. This may occur at the beginning of a recording.
window_start_sample = row_event.sample
else:
# At least one earlier matching event. Use the closest one.
window_start_sample = prev_matching_events.iloc[-1]["sample"]
elif start_sample is None:
# Lower bound is the current event.
window_start_sample = row_event.sample
else:
# Lower bound is determined by tmin.
window_start_sample = row_event.sample + start_sample
if stop_sample is None and isinstance(tmax, list):
# Upper bound is the the current or the closest following event with a name
# in "tmax"; if there is no such event (e.g., end of the recording is being
# approached), the upper bound becomes the last event in the recording.
next_matching_events = events_df.loc[
(events_df["sample"] >= row_event.sample)
& (events_df["id"].isin([event_id[name] for name in tmax])),
:,
]
if next_matching_events.size == 0:
# No matching event after the current one; use the end of the recording
# as upper bound. This may occur at the end of a recording.
window_stop_sample = events_df["sample"].iloc[-1]
else:
# At least one matching later event. Use the closest one..
window_stop_sample = next_matching_events.iloc[0]["sample"]
elif stop_sample is None:
# Upper bound: next event of the same type, or the last event (of
# any type) if no later event of the same type can be found.
next_events = events_df.loc[
(events_df["sample"] > row_event.sample),
:,
]
if next_events.size == 0:
# We've reached the last event in the recording.
window_stop_sample = row_event.sample
elif next_events.loc[next_events["id"] == row_event.id, :].size > 0:
# There's still an event of the same type appearing after the
# current event. Stop one sample short, we don't want to include that
# last event here, but in the next iteration.
window_stop_sample = (
next_events.loc[next_events["id"] == row_event.id, :].iloc[0][
"sample"
]
- 1
)
else:
# There are still events after the current one, but not of the
# same type.
window_stop_sample = next_events.iloc[-1]["sample"]
else:
# Upper bound is determined by tmax.
window_stop_sample = row_event.sample + stop_sample
events_in_window = events_df.loc[
(events_df["sample"] >= window_start_sample)
& (events_df["sample"] <= window_stop_sample),
:,
]
assert not events_in_window.empty
# Store the metadata
for event in events_in_window.itertuples(name="Event"):
event_sample = event.sample - row_event.sample
event_time = event_sample / sfreq
event_time = 0 if np.isclose(event_time, 0) else event_time
event_name = id_to_name_map[event.id]
if not np.isnan(metadata.loc[row_idx, event_name]):
# Event already exists in current time window!
assert metadata.loc[row_idx, event_name] <= event_time
if event_name not in keep_last:
continue
metadata.loc[row_idx, event_name] = event_time
# Handle keep_first and keep_last event aggregation
for event_group_name in keep_first + keep_last:
if event_name not in match_event_names(event_id, [event_group_name]):
continue
if event_group_name in keep_first:
first_last_col = f"first_{event_group_name}"
else:
first_last_col = f"last_{event_group_name}"
old_time = metadata.loc[row_idx, event_group_name]
if not np.isnan(old_time):
if (event_group_name in keep_first and old_time <= event_time) or (
event_group_name in keep_last and old_time >= event_time
):
continue
if event_group_name not in event_id:
# This is an HED. Strip redundant information from the
# event name
name = (
event_name.replace(event_group_name, "")
.replace("//", "/")
.strip("/")
)
metadata.loc[row_idx, first_last_col] = name
del name
metadata.loc[row_idx, event_group_name] = event_time
# Only keep rows of interest
if row_events:
event_id_timelocked = {
name: val for name, val in event_id.items() if name in row_events
}
events = events[np.isin(events[:, 2], list(event_id_timelocked.values()))]
metadata = metadata.loc[metadata["event_name"].isin(event_id_timelocked)]
assert len(events) == len(metadata)
event_id = event_id_timelocked
return metadata, events, event_id
def _events_from_annotations(raw, events, event_id, annotations, on_missing):
"""Generate events and event_ids from annotations."""
events, event_id_tmp = events_from_annotations(raw)
if events.size == 0:
raise RuntimeError(
"No usable annotations found in the raw object. "
"Either `events` must be provided or the raw "
"object must have annotations to construct epochs"
)
if any(raw.annotations.duration > 0):
logger.info(
"Ignoring annotation durations and creating fixed-duration epochs "
"around annotation onsets."
)
if event_id is None:
event_id = event_id_tmp
# if event_id is the names of events, map to events integers
if isinstance(event_id, str):
event_id = [event_id]
if isinstance(event_id, list | tuple | set):
if not set(event_id).issubset(set(event_id_tmp)):
msg = (
"No matching annotations found for event_id(s) "
f"{set(event_id) - set(event_id_tmp)}"
)
_on_missing(on_missing, msg)
# remove extras if on_missing not error
event_id = set(event_id) & set(event_id_tmp)
event_id = {my_id: event_id_tmp[my_id] for my_id in event_id}
# remove any non-selected annotations
annotations.delete(~np.isin(raw.annotations.description, list(event_id)))
return events, event_id, annotations
@fill_doc
class Epochs(BaseEpochs):
"""Epochs extracted from a Raw instance.
Parameters
----------
%(raw_epochs)s
.. note::
If ``raw`` contains annotations, ``Epochs`` can be constructed around
``raw.annotations.onset``, but note that the durations of the annotations
are ignored in this case.
%(events_epochs)s
.. versionchanged:: 1.7
Allow ``events=None`` to use ``raw.annotations.onset`` as the source of
epoch times.
%(event_id)s
%(epochs_tmin_tmax)s
%(baseline_epochs)s
Defaults to ``(None, 0)``, i.e. beginning of the the data until
time point zero.
%(picks_all)s
preload : bool
%(epochs_preload)s
%(reject_epochs)s
%(flat)s
%(proj_epochs)s
%(decim)s
%(epochs_reject_tmin_tmax)s
%(detrend_epochs)s
%(on_missing_epochs)s
%(reject_by_annotation_epochs)s
%(metadata_epochs)s
.. versionadded:: 0.16
%(event_repeated_epochs)s
%(verbose)s
Attributes
----------
%(info_not_none)s
%(event_id_attr)s
ch_names : list of string
List of channel names.
%(selection_attr)s
preload : bool
Indicates whether epochs are in memory.
drop_log : tuple of tuple
A tuple of the same length as the event array used to initialize the
Epochs object. If the i-th original event is still part of the
selection, drop_log[i] will be an empty tuple; otherwise it will be
a tuple of the reasons the event is not longer in the selection, e.g.:
- 'IGNORED'
If it isn't part of the current subset defined by the user
- 'NO_DATA' or 'TOO_SHORT'
If epoch didn't contain enough data names of channels that exceeded
the amplitude threshold
- 'EQUALIZED_COUNTS'
See :meth:`~mne.Epochs.equalize_event_counts`
- 'USER'
For user-defined reasons (see :meth:`~mne.Epochs.drop`).
When dropping based on flat or reject parameters the tuple of
reasons contains a tuple of channels that satisfied the rejection
criteria.
filename : str
The filename of the object.
times : ndarray
Time vector in seconds. Goes from ``tmin`` to ``tmax``. Time interval
between consecutive time samples is equal to the inverse of the
sampling frequency.
See Also
--------
mne.epochs.combine_event_ids
mne.Epochs.equalize_event_counts
Notes
-----
When accessing data, Epochs are detrended, baseline-corrected, and
decimated, then projectors are (optionally) applied.
For indexing and slicing using ``epochs[...]``, see
:meth:`mne.Epochs.__getitem__`.
All methods for iteration over objects (using :meth:`mne.Epochs.__iter__`,
:meth:`mne.Epochs.iter_evoked` or :meth:`mne.Epochs.next`) use the same
internal state.
If ``event_repeated`` is set to ``'merge'``, the coinciding events
(duplicates) will be merged into a single event_id and assigned a new
id_number as::
event_id['{event_id_1}/{event_id_2}/...'] = new_id_number
For example with the event_id ``{'aud': 1, 'vis': 2}`` and the events
``[[0, 0, 1], [0, 0, 2]]``, the "merge" behavior will update both event_id
and events to be: ``{'aud/vis': 3}`` and ``[[0, 0, 3]]`` respectively.
There is limited support for :class:`~mne.Annotations` in the
:class:`~mne.Epochs` class. Currently annotations that are present in the
:class:`~mne.io.Raw` object will be preserved in the resulting
:class:`~mne.Epochs` object, but:
1. It is not yet possible to add annotations
to the Epochs object programmatically (via code) or interactively
(through the plot window)
2. Concatenating :class:`~mne.Epochs` objects
that contain annotations is not supported, and any annotations will
be dropped when concatenating.
3. Annotations will be lost on save.
"""
@verbose
def __init__(
self,
raw,
events=None,
event_id=None,
tmin=-0.2,
tmax=0.5,
baseline=(None, 0),
picks=None,
preload=False,
reject=None,
flat=None,
proj=True,
decim=1,
reject_tmin=None,
reject_tmax=None,
detrend=None,
on_missing="raise",
reject_by_annotation=True,
metadata=None,
event_repeated="error",
verbose=None,
):
from .io import BaseRaw
if not isinstance(raw, BaseRaw):
raise ValueError(
"The first argument to `Epochs` must be an instance of mne.io.BaseRaw"
)
info = deepcopy(raw.info)
annotations = raw.annotations.copy()
# proj is on when applied in Raw
proj = proj or raw.proj
self.reject_by_annotation = reject_by_annotation
# keep track of original sfreq (needed for annotations)
raw_sfreq = raw.info["sfreq"]
# get events from annotations if no events given
if events is None:
events, event_id, annotations = _events_from_annotations(
raw, events, event_id, annotations, on_missing
)
# call BaseEpochs constructor
super().__init__(
info,
None,
events,
event_id,
tmin,
tmax,
metadata=metadata,
baseline=baseline,
raw=raw,
picks=picks,
reject=reject,
flat=flat,
decim=decim,
reject_tmin=reject_tmin,
reject_tmax=reject_tmax,
detrend=detrend,
proj=proj,
on_missing=on_missing,
preload_at_end=preload,
event_repeated=event_repeated,
verbose=verbose,
raw_sfreq=raw_sfreq,
annotations=annotations,
)
@verbose
def _get_epoch_from_raw(self, idx, verbose=None):
"""Load one epoch from disk.
Returns
-------
data : array | str | None
If string, it's details on rejection reason.
If array, it's the data in the desired range (good segment)
If None, it means no data is available.
"""
if self._raw is None:
# This should never happen, as raw=None only if preload=True
raise ValueError(
"An error has occurred, no valid raw file found. "
"Please report this to the mne-python "
"developers."
)
sfreq = self._raw.info["sfreq"]
event_samp = self.events[idx, 0]
# Read a data segment from "start" to "stop" in samples
first_samp = self._raw.first_samp
start = int(round(event_samp + self._raw_times[0] * sfreq))
start -= first_samp
stop = start + len(self._raw_times)
# reject_tmin, and reject_tmax need to be converted to samples to
# check the reject_by_annotation boundaries: reject_start, reject_stop
reject_tmin = self.reject_tmin
if reject_tmin is None:
reject_tmin = self._raw_times[0]
reject_start = int(round(event_samp + reject_tmin * sfreq))
reject_start -= first_samp
reject_tmax = self.reject_tmax
if reject_tmax is None:
reject_tmax = self._raw_times[-1]
diff = int(round((self._raw_times[-1] - reject_tmax) * sfreq))
reject_stop = stop - diff
logger.debug(f" Getting epoch for {start}-{stop}")
data = self._raw._check_bad_segment(
start,
stop,
self.picks,
reject_start,
reject_stop,
self.reject_by_annotation,
)
return data
@fill_doc
class EpochsArray(BaseEpochs):
"""Epochs object from numpy array.
Parameters
----------
data : array, shape (n_epochs, n_channels, n_times)
The channels' time series for each epoch. See notes for proper units of
measure.
%(info_not_none)s Consider using :func:`mne.create_info` to populate this
structure.
%(events_epochs)s
%(tmin_epochs)s
%(event_id)s
%(reject_epochs)s
%(flat)s
%(epochs_reject_tmin_tmax)s
%(baseline_epochs)s
Defaults to ``None``, i.e. no baseline correction.
%(proj_epochs)s
%(on_missing_epochs)s
%(metadata_epochs)s
.. versionadded:: 0.16
%(selection)s
%(drop_log)s
.. versionadded:: 1.3
%(raw_sfreq)s
.. versionadded:: 1.3
%(verbose)s
See Also
--------
create_info
EvokedArray
io.RawArray
Notes
-----
Proper units of measure:
* V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog
* T: mag
* T/m: grad
* M: hbo, hbr
* Am: dipole
* AU: misc
EpochsArray does not set `Annotations`. If you would like to create
simulated data with Annotations that are then preserved in the Epochs
object, you would use `mne.io.RawArray` first and then create an
`mne.Epochs` object.
"""
@verbose
def __init__(
self,
data,
info,
events=None,
tmin=0.0,
event_id=None,
reject=None,
flat=None,
reject_tmin=None,
reject_tmax=None,
baseline=None,
proj=True,
on_missing="raise",
metadata=None,
selection=None,
*,
drop_log=None,
raw_sfreq=None,
verbose=None,
):
dtype = np.complex128 if np.any(np.iscomplex(data)) else np.float64
data = np.asanyarray(data, dtype=dtype)
if data.ndim != 3:
raise ValueError(
"Data must be a 3D array of shape (n_epochs, n_channels, n_samples)"
)
if len(info["ch_names"]) != data.shape[1]:
raise ValueError("Info and data must have same number of channels.")
if events is None:
n_epochs = len(data)
events = _gen_events(n_epochs)
info = info.copy() # do not modify original info
tmax = (data.shape[2] - 1) / info["sfreq"] + tmin
super().__init__(
info,
data,
events,
event_id,
tmin,
tmax,
baseline,
reject=reject,
flat=flat,
reject_tmin=reject_tmin,
reject_tmax=reject_tmax,
decim=1,
metadata=metadata,
selection=selection,
proj=proj,
on_missing=on_missing,
drop_log=drop_log,
raw_sfreq=raw_sfreq,
verbose=verbose,
)
if self.baseline is not None:
self._do_baseline = True
if (
len(events)
!= np.isin(self.events[:, 2], list(self.event_id.values())).sum()
):
raise ValueError("The events must only contain event numbers from event_id")
detrend_picks = self._detrend_picks
for e in self._data:
# This is safe without assignment b/c there is no decim
self._detrend_offset_decim(e, detrend_picks)
self.drop_bad()
def combine_event_ids(epochs, old_event_ids, new_event_id, copy=True):
"""Collapse event_ids from an epochs instance into a new event_id.
Parameters
----------
epochs : instance of Epochs
The epochs to operate on.
old_event_ids : str, or list
Conditions to collapse together.
new_event_id : dict, or int
A one-element dict (or a single integer) for the new
condition. Note that for safety, this cannot be any
existing id (in epochs.event_id.values()).
copy : bool
Whether to return a new instance or modify in place.
Returns
-------
epochs : instance of Epochs
The modified epochs.
Notes
-----
This For example (if epochs.event_id was ``{'Left': 1, 'Right': 2}``::
combine_event_ids(epochs, ['Left', 'Right'], {'Directional': 12})
would create a 'Directional' entry in epochs.event_id replacing
'Left' and 'Right' (combining their trials).
"""
epochs = epochs.copy() if copy else epochs
old_event_ids = np.asanyarray(old_event_ids)
if isinstance(new_event_id, int):
new_event_id = {str(new_event_id): new_event_id}
else:
if not isinstance(new_event_id, dict):
raise ValueError("new_event_id must be a dict or int")
if not len(list(new_event_id.keys())) == 1:
raise ValueError("new_event_id dict must have one entry")
new_event_num = list(new_event_id.values())[0]
new_event_num = operator.index(new_event_num)
if new_event_num in epochs.event_id.values():
raise ValueError("new_event_id value must not already exist")
# could use .pop() here, but if a latter one doesn't exist, we're
# in trouble, so run them all here and pop() later
old_event_nums = np.array([epochs.event_id[key] for key in old_event_ids])
# find the ones to replace
inds = np.any(
epochs.events[:, 2][:, np.newaxis] == old_event_nums[np.newaxis, :], axis=1
)
# replace the event numbers in the events list
epochs.events[inds, 2] = new_event_num
# delete old entries
for key in old_event_ids:
epochs.event_id.pop(key)
# add the new entry
epochs.event_id.update(new_event_id)
return epochs
@fill_doc
def equalize_epoch_counts(epochs_list, method="mintime", *, random_state=None):
"""Equalize the number of trials in multiple Epochs or EpochsTFR instances.
Parameters
----------
epochs_list : list of Epochs instances
The Epochs instances to equalize trial counts for.
%(equalize_events_method)s
%(random_state)s Used only if ``method='random'``.
Notes
-----
The method ``'mintime'`` tries to make the remaining epochs occurring as close as
possible in time. This method is motivated by the possibility that if there happened
to be some time-varying (like on the scale of minutes) noise characteristics during
a recording, they could be compensated for (to some extent) in the
equalization process. This method thus seeks to reduce any of those effects
by minimizing the differences in the times of the events in the two sets of
epochs. For example, if one had event times [1, 2, 3, 4, 120, 121] and the
other one had [3.5, 4.5, 120.5, 121.5], it would remove events at times
[1, 2] in the first epochs and not [120, 121].
Examples
--------
>>> equalize_epoch_counts([epochs1, epochs2]) # doctest: +SKIP
"""
if not all(isinstance(epoch, BaseEpochs | EpochsTFR) for epoch in epochs_list):
raise ValueError("All inputs must be Epochs instances")
# make sure bad epochs are dropped
for epoch in epochs_list:
if not epoch._bad_dropped:
epoch.drop_bad()
sample_nums = [epoch.events[:, 0] for epoch in epochs_list]
indices = _get_drop_indices(sample_nums, method, random_state)
for epoch, inds in zip(epochs_list, indices):
epoch.drop(inds, reason="EQUALIZED_COUNT")
def _get_drop_indices(sample_nums, method, random_state):
"""Get indices to drop from multiple event timing lists."""
small_idx = np.argmin([e.size for e in sample_nums])
small_epoch_indices = sample_nums[small_idx]
_check_option("method", method, ["mintime", "truncate", "random"])
indices = list()
for event in sample_nums:
if method == "mintime":
mask = _minimize_time_diff(small_epoch_indices, event)
elif method == "truncate":
mask = np.ones(event.size, dtype=bool)
mask[small_epoch_indices.size :] = False
elif method == "random":
rng = check_random_state(random_state)
mask = np.zeros(event.size, dtype=bool)
idx = rng.choice(
np.arange(event.size), size=small_epoch_indices.size, replace=False
)
mask[idx] = True
indices.append(np.where(np.logical_not(mask))[0])
return indices
def _minimize_time_diff(t_shorter, t_longer):
"""Find a boolean mask to minimize timing differences."""
keep = np.ones((len(t_longer)), dtype=bool)
# special case: length zero or one
if len(t_shorter) < 2: # interp1d won't work
keep.fill(False)
if len(t_shorter) == 1:
idx = np.argmin(np.abs(t_longer - t_shorter))
keep[idx] = True
return keep
scores = np.ones(len(t_longer))
x1 = np.arange(len(t_shorter))
# The first set of keep masks to test
kwargs = dict(copy=False, bounds_error=False, assume_sorted=True)
shorter_interp = interp1d(x1, t_shorter, fill_value=t_shorter[-1], **kwargs)
for ii in range(len(t_longer) - len(t_shorter)):
scores.fill(np.inf)
# set up the keep masks to test, eliminating any rows that are already
# gone
keep_mask = ~np.eye(len(t_longer), dtype=bool)[keep]
keep_mask[:, ~keep] = False
# Check every possible removal to see if it minimizes
x2 = np.arange(len(t_longer) - ii - 1)
t_keeps = np.array([t_longer[km] for km in keep_mask])
longer_interp = interp1d(
x2, t_keeps, axis=1, fill_value=t_keeps[:, -1], **kwargs
)
d1 = longer_interp(x1) - t_shorter
d2 = shorter_interp(x2) - t_keeps
scores[keep] = np.abs(d1, d1).sum(axis=1) + np.abs(d2, d2).sum(axis=1)
keep[np.argmin(scores)] = False
return keep
@verbose
def _is_good(
e,
ch_names,
channel_type_idx,
reject,
flat,
full_report=False,
ignore_chs=(),
verbose=None,
):
"""Test if data segment e is good according to reject and flat.
The reject and flat parameters can accept functions as values.
If full_report=True, it will give True/False as well as a list of all
offending channels.
"""
bad_tuple = tuple()
has_printed = False
checkable = np.ones(len(ch_names), dtype=bool)
checkable[np.array([c in ignore_chs for c in ch_names], dtype=bool)] = False
for refl, f, t in zip([reject, flat], [np.greater, np.less], ["", "flat"]):
if refl is not None:
for key, refl in refl.items():
criterion = refl
idx = channel_type_idx[key]
name = key.upper()
if len(idx) > 0:
e_idx = e[idx]
checkable_idx = checkable[idx]
# Check if criterion is a function and apply it
if callable(criterion):
result = criterion(e_idx)
_validate_type(result, tuple, "reject/flat output")
if len(result) != 2:
raise TypeError(
"Function criterion must return a tuple of length 2"
)
cri_truth, reasons = result
_validate_type(cri_truth, (bool, np.bool_), cri_truth, "bool")
_validate_type(
reasons, (str, list, tuple), reasons, "str, list, or tuple"
)
idx_deltas = np.where(np.logical_and(cri_truth, checkable_idx))[
0
]
else:
deltas = np.max(e_idx, axis=1) - np.min(e_idx, axis=1)
idx_deltas = np.where(
np.logical_and(f(deltas, criterion), checkable_idx)
)[0]
if len(idx_deltas) > 0:
# Check to verify that refl is a callable that returns
# (bool, reason). Reason must be a str/list/tuple.
# If using tuple
if callable(refl):
if isinstance(reasons, str):
reasons = (reasons,)
for idx, reason in enumerate(reasons):
_validate_type(reason, str, reason)
bad_tuple += tuple(reasons)
else:
bad_names = [ch_names[idx[i]] for i in idx_deltas]
if not has_printed:
logger.info(
f" Rejecting {t} epoch based on {name} : "
f"{bad_names}"
)
has_printed = True
if not full_report:
return False
else:
bad_tuple += tuple(bad_names)
if not full_report:
return True
else:
if bad_tuple == ():
return True, None
else:
return False, bad_tuple
def _read_one_epoch_file(f, tree, preload):
"""Read a single FIF file."""
with f as fid:
# Read the measurement info
info, meas = read_meas_info(fid, tree, clean_bads=True)
# read in the Annotations if they exist
annotations = _read_annotations_fif(fid, tree)
try:
events, mappings = _read_events_fif(fid, tree)
except ValueError as e:
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if str(e) == "Could not find any events":
events = np.empty((0, 3), dtype=np.int32)
mappings = dict()
else:
raise
# Metadata
metadata = None
metadata_tree = dir_tree_find(tree, FIFF.FIFFB_MNE_METADATA)
if len(metadata_tree) > 0:
for dd in metadata_tree[0]["directory"]:
kind = dd.kind
pos = dd.pos
if kind == FIFF.FIFF_DESCRIPTION:
metadata = read_tag(fid, pos).data
metadata = _prepare_read_metadata(metadata)
break
# Locate the data of interest
processed = dir_tree_find(meas, FIFF.FIFFB_PROCESSED_DATA)
del meas
if len(processed) == 0:
raise ValueError("Could not find processed data")
epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
if len(epochs_node) == 0:
# before version 0.11 we errantly saved with this tag instead of
# an MNE tag
epochs_node = dir_tree_find(tree, FIFF.FIFFB_MNE_EPOCHS)
if len(epochs_node) == 0:
epochs_node = dir_tree_find(tree, 122) # 122 used before v0.11
if len(epochs_node) == 0:
raise ValueError("Could not find epochs data")
my_epochs = epochs_node[0]
# Now find the data in the block
data = None
data_tag = None
bmin, bmax = None, None
baseline = None
selection = None
drop_log = None
raw_sfreq = None
reject_params = {}
for k in range(my_epochs["nent"]):
kind = my_epochs["directory"][k].kind
pos = my_epochs["directory"][k].pos
if kind == FIFF.FIFF_FIRST_SAMPLE:
tag = read_tag(fid, pos)
first = int(tag.data.item())
elif kind == FIFF.FIFF_LAST_SAMPLE:
tag = read_tag(fid, pos)
last = int(tag.data.item())
elif kind == FIFF.FIFF_EPOCH:
# delay reading until later
fid.seek(pos, 0)
data_tag = _read_tag_header(fid, pos)
data_tag.type = data_tag.type ^ (1 << 30)
elif kind in [FIFF.FIFF_MNE_BASELINE_MIN, 304]:
# Constant 304 was used before v0.11
tag = read_tag(fid, pos)
bmin = float(tag.data.item())
elif kind in [FIFF.FIFF_MNE_BASELINE_MAX, 305]:
# Constant 305 was used before v0.11
tag = read_tag(fid, pos)
bmax = float(tag.data.item())
elif kind == FIFF.FIFF_MNE_EPOCHS_SELECTION:
tag = read_tag(fid, pos)
selection = np.array(tag.data)
elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG:
tag = read_tag(fid, pos)
drop_log = tag.data
drop_log = json.loads(drop_log)
drop_log = tuple(tuple(x) for x in drop_log)
elif kind == FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT:
tag = read_tag(fid, pos)
reject_params = json.loads(tag.data)
elif kind == FIFF.FIFF_MNE_EPOCHS_RAW_SFREQ:
tag = read_tag(fid, pos)
raw_sfreq = tag.data
if bmin is not None or bmax is not None:
baseline = (bmin, bmax)
n_samp = last - first + 1
logger.info(" Found the data of interest:")
logger.info(
f" t = {1000 * first / info['sfreq']:10.2f} ... "
f"{1000 * last / info['sfreq']:10.2f} ms"
)
if info["comps"] is not None:
logger.info(
f" {len(info['comps'])} CTF compensation matrices available"
)
# Inspect the data
if data_tag is None:
raise ValueError("Epochs data not found")
epoch_shape = (len(info["ch_names"]), n_samp)
size_expected = len(events) * np.prod(epoch_shape)
# on read double-precision is always used
if data_tag.type == FIFF.FIFFT_FLOAT:
datatype = np.float64
fmt = ">f4"
elif data_tag.type == FIFF.FIFFT_DOUBLE:
datatype = np.float64
fmt = ">f8"
elif data_tag.type == FIFF.FIFFT_COMPLEX_FLOAT:
datatype = np.complex128
fmt = ">c8"
elif data_tag.type == FIFF.FIFFT_COMPLEX_DOUBLE:
datatype = np.complex128
fmt = ">c16"
fmt_itemsize = np.dtype(fmt).itemsize
assert fmt_itemsize in (4, 8, 16)
size_actual = data_tag.size // fmt_itemsize - 16 // fmt_itemsize
if not size_actual == size_expected:
raise ValueError(
f"Incorrect number of samples ({size_actual} instead of "
f"{size_expected})."
)
# Calibration factors
cals = np.array(
[
[info["chs"][k]["cal"] * info["chs"][k].get("scale", 1.0)]
for k in range(info["nchan"])
],
np.float64,
)
# Read the data
if preload:
data = read_tag(fid, data_tag.pos).data.astype(datatype)
data *= cals
# Put it all together
tmin = first / info["sfreq"]
tmax = last / info["sfreq"]
event_id = (
{str(e): e for e in np.unique(events[:, 2])}
if mappings is None
else mappings
)
# In case epochs didn't have a FIFF.FIFF_MNE_EPOCHS_SELECTION tag
# (version < 0.8):
if selection is None:
selection = np.arange(len(events))
if drop_log is None:
drop_log = ((),) * len(events)
return (
info,
data,
data_tag,
events,
event_id,
metadata,
tmin,
tmax,
baseline,
selection,
drop_log,
epoch_shape,
cals,
reject_params,
fmt,
annotations,
raw_sfreq,
)
@verbose
def read_epochs(fname, proj=True, preload=True, verbose=None) -> "EpochsFIF":
"""Read epochs from a fif file.
Parameters
----------
%(fname_epochs)s
%(proj_epochs)s
preload : bool
If True, read all epochs from disk immediately. If ``False``, epochs
will be read on demand.
%(verbose)s
Returns
-------
epochs : instance of Epochs
The epochs.
"""
return EpochsFIF(fname, proj, preload, verbose)
class _RawContainer:
"""Helper for a raw data container."""
def __init__(self, fid, data_tag, event_samps, epoch_shape, cals, fmt):
self.fid = fid
self.data_tag = data_tag
self.event_samps = event_samps
self.epoch_shape = epoch_shape
self.cals = cals
self.proj = False
self.fmt = fmt
def __del__(self): # noqa: D105
self.fid.close()
@fill_doc
class EpochsFIF(BaseEpochs):
"""Epochs read from disk.
Parameters
----------
%(fname_epochs)s
%(proj_epochs)s
preload : bool
If True, read all epochs from disk immediately. If False, epochs will
be read on demand.
%(verbose)s
See Also
--------
mne.Epochs
mne.epochs.combine_event_ids
mne.Epochs.equalize_event_counts
"""
@verbose
def __init__(self, fname, proj=True, preload=True, verbose=None):
from .io.base import _get_fname_rep
if _path_like(fname):
check_fname(
fname=fname,
filetype="epochs",
endings=("-epo.fif", "-epo.fif.gz", "_epo.fif", "_epo.fif.gz"),
)
fname = _check_fname(fname=fname, must_exist=True, overwrite="read")
elif not preload:
raise ValueError("preload must be used with file-like objects")
fnames = [fname]
fname_rep = _get_fname_rep(fname)
ep_list = list()
raw = list()
for fname in fnames:
logger.info(f"Reading {fname_rep} ...")
fid, tree, _ = fiff_open(fname, preload=preload)
next_fname = _get_next_fname(fid, fname, tree)
(
info,
data,
data_tag,
events,
event_id,
metadata,
tmin,
tmax,
baseline,
selection,
drop_log,
epoch_shape,
cals,
reject_params,
fmt,
annotations,
raw_sfreq,
) = _read_one_epoch_file(fid, tree, preload)
if (events[:, 0] < 0).any():
events = events.copy()
warn(
"Incorrect events detected on disk, setting event "
"numbers to consecutive increasing integers"
)
events[:, 0] = np.arange(1, len(events) + 1)
# here we ignore missing events, since users should already be
# aware of missing events if they have saved data that way
# we also retain original baseline without re-applying baseline
# correction (data is being baseline-corrected when written to
# disk)
epoch = BaseEpochs(
info,
data,
events,
event_id,
tmin,
tmax,
baseline=None,
metadata=metadata,
on_missing="ignore",
selection=selection,
drop_log=drop_log,
proj=False,
verbose=False,
raw_sfreq=raw_sfreq,
)
epoch.baseline = baseline
epoch._do_baseline = False # might be superfluous but won't hurt
ep_list.append(epoch)
if not preload:
# store everything we need to index back to the original data
raw.append(
_RawContainer(
fiff_open(fname)[0],
data_tag,
events[:, 0].copy(),
epoch_shape,
cals,
fmt,
)
)
if next_fname is not None:
fnames.append(next_fname)
unsafe_annot_add = raw_sfreq is None
(
info,
data,
raw_sfreq,
events,
event_id,
tmin,
tmax,
metadata,
baseline,
selection,
drop_log,
) = _concatenate_epochs(
ep_list,
with_data=preload,
add_offset=False,
on_mismatch="raise",
)
# we need this uniqueness for non-preloaded data to work properly
if len(np.unique(events[:, 0])) != len(events):
raise RuntimeError("Event time samples were not unique")
# correct the drop log
assert len(drop_log) % len(fnames) == 0
step = len(drop_log) // len(fnames)
offsets = np.arange(step, len(drop_log) + 1, step)
drop_log = list(drop_log)
for i1, i2 in zip(offsets[:-1], offsets[1:]):
other_log = drop_log[i1:i2]
for k, (a, b) in enumerate(zip(drop_log, other_log)):
if a == ("IGNORED",) and b != ("IGNORED",):
drop_log[k] = b
drop_log = tuple(drop_log[:step])
# call BaseEpochs constructor
# again, ensure we're retaining the baseline period originally loaded
# from disk without trying to re-apply baseline correction
super().__init__(
info,
data,
events,
event_id,
tmin,
tmax,
baseline=None,
raw=raw,
proj=proj,
preload_at_end=False,
on_missing="ignore",
selection=selection,
drop_log=drop_log,
filename=fname_rep,
metadata=metadata,
verbose=verbose,
raw_sfreq=raw_sfreq,
annotations=annotations,
**reject_params,
)
self.baseline = baseline
self._do_baseline = False
# use the private property instead of drop_bad so that epochs
# are not all read from disk for preload=False
self._bad_dropped = True
# private property to suggest that people re-save epochs if they add
# annotations
self._unsafe_annot_add = unsafe_annot_add
@verbose
def _get_epoch_from_raw(self, idx, verbose=None):
"""Load one epoch from disk."""
# Find the right file and offset to use
event_samp = self.events[idx, 0]
for raw in self._raw:
idx = np.where(raw.event_samps == event_samp)[0]
if len(idx) == 1:
fmt = raw.fmt
idx = idx[0]
size = np.prod(raw.epoch_shape) * np.dtype(fmt).itemsize
offset = idx * size + 16 # 16 = Tag header
break
else:
# read the correct subset of the data
raise RuntimeError(
"Correct epoch could not be found, please contact mne-python developers"
)
# the following is equivalent to this, but faster:
#
# >>> data = read_tag(raw.fid, raw.data_tag.pos).data.astype(float)
# >>> data *= raw.cals[np.newaxis, :, :]
# >>> data = data[idx]
#
# Eventually this could be refactored in io/tag.py if other functions
# could make use of it
raw.fid.seek(raw.data_tag.pos + offset, 0)
if fmt == ">c8":
read_fmt = ">f4"
elif fmt == ">c16":
read_fmt = ">f8"
else:
read_fmt = fmt
data = np.frombuffer(raw.fid.read(size), read_fmt)
if read_fmt != fmt:
data = data.view(fmt)
data = data.astype(np.complex128)
else:
data = data.astype(np.float64)
data.shape = raw.epoch_shape
data *= raw.cals
return data
@fill_doc
def bootstrap(epochs, random_state=None):
"""Compute epochs selected by bootstrapping.
Parameters
----------
epochs : Epochs instance
epochs data to be bootstrapped
%(random_state)s
Returns
-------
epochs : Epochs instance
The bootstrap samples
"""
if not epochs.preload:
raise RuntimeError(
"Modifying data of epochs is only supported "
"when preloading is used. Use preload=True "
"in the constructor."
)
rng = check_random_state(random_state)
epochs_bootstrap = epochs.copy()
n_events = len(epochs_bootstrap.events)
idx = rng_uniform(rng)(0, n_events, n_events)
epochs_bootstrap = epochs_bootstrap[idx]
return epochs_bootstrap
def _concatenate_epochs(
epochs_list, *, with_data=True, add_offset=True, on_mismatch="raise"
):
"""Auxiliary function for concatenating epochs."""
if not isinstance(epochs_list, list | tuple):
raise TypeError(f"epochs_list must be a list or tuple, got {type(epochs_list)}")
# to make warning messages only occur once during concatenation
warned = False
for ei, epochs in enumerate(epochs_list):
if not isinstance(epochs, BaseEpochs):
raise TypeError(
f"epochs_list[{ei}] must be an instance of Epochs, got {type(epochs)}"
)
if (
getattr(epochs, "annotations", None) is not None
and len(epochs.annotations) > 0
and not warned
):
warned = True
warn(
"Concatenation of Annotations within Epochs is not supported yet. All "
"annotations will be dropped."
)
# create a copy, so that the Annotations are not modified in place
# from the original object
epochs = epochs.copy()
epochs.set_annotations(None)
out = epochs_list[0]
offsets = [0]
if with_data:
out.drop_bad()
offsets.append(len(out))
events = [out.events]
metadata = [out.metadata]
baseline, tmin, tmax = out.baseline, out.tmin, out.tmax
raw_sfreq = out._raw_sfreq
info = deepcopy(out.info)
drop_log = out.drop_log
event_id = deepcopy(out.event_id)
selection = out.selection
# offset is the last epoch + tmax + 10 second
shift = np.int64((10 + tmax) * out.info["sfreq"])
# Allow reading empty epochs (ToDo: Maybe not anymore in the future)
if out._allow_empty:
events_offset = 0
else:
events_offset = int(np.max(events[0][:, 0])) + shift
events_offset = np.int64(events_offset)
events_overflow = False
warned = False
for ii, epochs in enumerate(epochs_list[1:], 1):
_ensure_infos_match(epochs.info, info, f"epochs[{ii}]", on_mismatch=on_mismatch)
if not np.allclose(epochs.times, epochs_list[0].times):
raise ValueError("Epochs must have same times")
if epochs.baseline != baseline:
raise ValueError("Baseline must be same for all epochs")
if epochs._raw_sfreq != raw_sfreq and not warned:
warned = True
warn(
"The original raw sampling rate of the Epochs does not "
"match for all Epochs. Please proceed cautiously."
)
# compare event_id
common_keys = list(set(event_id).intersection(set(epochs.event_id)))
for key in common_keys:
if not event_id[key] == epochs.event_id[key]:
msg = (
"event_id values must be the same for identical keys "
'for all concatenated epochs. Key "{}" maps to {} in '
"some epochs and to {} in others."
)
raise ValueError(msg.format(key, event_id[key], epochs.event_id[key]))
if with_data:
epochs.drop_bad()
offsets.append(len(epochs))
evs = epochs.events.copy()
if len(epochs.events) == 0:
warn("One of the Epochs objects to concatenate was empty.")
elif add_offset:
# We need to cast to a native Python int here to detect an
# overflow of a numpy int32 (which is the default on windows)
max_timestamp = int(np.max(evs[:, 0]))
evs[:, 0] += events_offset
events_offset += max_timestamp + shift
if events_offset > INT32_MAX:
warn(
f"Event number greater than {INT32_MAX} created, "
"events[:, 0] will be assigned consecutive increasing "
"integer values"
)
events_overflow = True
add_offset = False # we no longer need to add offset
events.append(evs)
selection = np.concatenate((selection, epochs.selection))
drop_log = drop_log + epochs.drop_log
event_id.update(epochs.event_id)
metadata.append(epochs.metadata)
events = np.concatenate(events, axis=0)
# check to see if we exceeded our maximum event offset
if events_overflow:
events[:, 0] = np.arange(1, len(events) + 1)
# Create metadata object (or make it None)
n_have = sum(this_meta is not None for this_meta in metadata)
if n_have == 0:
metadata = None
elif n_have != len(metadata):
raise ValueError(
f"{n_have} of {len(metadata)} epochs instances have metadata, either "
"all or none must have metadata"
)
else:
pd = _check_pandas_installed(strict=False)
if pd is not False:
metadata = pd.concat(metadata)
else: # dict of dicts
metadata = sum(metadata, list())
assert len(offsets) == (len(epochs_list) if with_data else 0) + 1
data = None
if with_data:
offsets = np.cumsum(offsets)
for start, stop, epochs in zip(offsets[:-1], offsets[1:], epochs_list):
this_data = epochs.get_data(copy=False)
if data is None:
data = np.empty(
(offsets[-1], len(out.ch_names), len(out.times)),
dtype=this_data.dtype,
)
data[start:stop] = this_data
return (
info,
data,
raw_sfreq,
events,
event_id,
tmin,
tmax,
metadata,
baseline,
selection,
drop_log,
)
@verbose
def concatenate_epochs(
epochs_list, add_offset=True, *, on_mismatch="raise", verbose=None
):
"""Concatenate a list of `~mne.Epochs` into one `~mne.Epochs` object.
.. note:: Unlike `~mne.concatenate_raws`, this function does **not**
modify any of the input data.
Parameters
----------
epochs_list : list
List of `~mne.Epochs` instances to concatenate (in that order).
add_offset : bool
If True, a fixed offset is added to the event times from different
Epochs sets, such that they are easy to distinguish after the
concatenation.
If False, the event times are unaltered during the concatenation.
%(on_mismatch_info)s
%(verbose)s
.. versionadded:: 0.24
Returns
-------
epochs : instance of EpochsArray
The result of the concatenation. All data will be loaded into memory.
Notes
-----
.. versionadded:: 0.9.0
"""
(
info,
data,
raw_sfreq,
events,
event_id,
tmin,
tmax,
metadata,
baseline,
selection,
drop_log,
) = _concatenate_epochs(
epochs_list,
with_data=True,
add_offset=add_offset,
on_mismatch=on_mismatch,
)
selection = np.where([len(d) == 0 for d in drop_log])[0]
out = EpochsArray(
data=data,
info=info,
events=events,
event_id=event_id,
tmin=tmin,
baseline=baseline,
selection=selection,
drop_log=drop_log,
proj=False,
on_missing="ignore",
metadata=metadata,
raw_sfreq=raw_sfreq,
)
out.drop_bad()
return out
@verbose
def average_movements(
epochs,
head_pos=None,
orig_sfreq=None,
picks=None,
origin="auto",
weight_all=True,
int_order=8,
ext_order=3,
destination=None,
ignore_ref=False,
return_mapping=False,
mag_scale=100.0,
verbose=None,
):
"""Average data using Maxwell filtering, transforming using head positions.
Parameters
----------
epochs : instance of Epochs
The epochs to operate on.
%(head_pos_maxwell)s
orig_sfreq : float | None
The original sample frequency of the data (that matches the
event sample numbers in ``epochs.events``). Can be ``None``
if data have not been decimated or resampled.
%(picks_all_data)s
%(origin_maxwell)s
weight_all : bool
If True, all channels are weighted by the SSS basis weights.
If False, only MEG channels are weighted, other channels
receive uniform weight per epoch.
%(int_order_maxwell)s
%(ext_order_maxwell)s
%(destination_maxwell_dest)s
%(ignore_ref_maxwell)s
return_mapping : bool
If True, return the mapping matrix.
%(mag_scale_maxwell)s
.. versionadded:: 0.13
%(verbose)s
Returns
-------
evoked : instance of Evoked
The averaged epochs.
See Also
--------
mne.preprocessing.maxwell_filter
mne.chpi.read_head_pos
Notes
-----
The Maxwell filtering version of this algorithm is described in [1]_,
in section V.B "Virtual signals and movement correction", equations
40-44. For additional validation, see [2]_.
Regularization has not been added because in testing it appears to
decrease dipole localization accuracy relative to using all components.
Fine calibration and cross-talk cancellation, however, could be added
to this algorithm based on user demand.
.. versionadded:: 0.11
References
----------
.. [1] Taulu S. and Kajola M. "Presentation of electromagnetic
multichannel data: The signal space separation method,"
Journal of Applied Physics, vol. 97, pp. 124905 1-10, 2005.
.. [2] Wehner DT, Hämäläinen MS, Mody M, Ahlfors SP. "Head movements
of children in MEG: Quantification, effects on source
estimation, and compensation. NeuroImage 40:541–550, 2008.
""" # noqa: E501
from .preprocessing.maxwell import (
_check_destination,
_check_usable,
_col_norm_pinv,
_get_coil_scale,
_get_mf_picks_fix_mags,
_get_n_moments,
_get_sensor_operator,
_prep_mf_coils,
_remove_meg_projs_comps,
_reset_meg_bads,
_trans_sss_basis,
)
if head_pos is None:
raise TypeError("head_pos must be provided and cannot be None")
from .chpi import head_pos_to_trans_rot_t
if not isinstance(epochs, BaseEpochs):
raise TypeError(f"epochs must be an instance of Epochs, not {type(epochs)}")
orig_sfreq = epochs.info["sfreq"] if orig_sfreq is None else orig_sfreq
orig_sfreq = float(orig_sfreq)
if isinstance(head_pos, np.ndarray):
head_pos = head_pos_to_trans_rot_t(head_pos)
trn, rot, t = head_pos
del head_pos
_check_usable(epochs, ignore_ref)
origin = _check_origin(origin, epochs.info, "head")
recon_trans = _check_destination(destination, epochs.info, "head")
logger.info(f"Aligning and averaging up to {len(epochs.events)} epochs")
if not np.array_equal(epochs.events[:, 0], np.unique(epochs.events[:, 0])):
raise RuntimeError("Epochs must have monotonically increasing events")
info_to = epochs.info.copy()
meg_picks, mag_picks, grad_picks, good_mask, _ = _get_mf_picks_fix_mags(
info_to, int_order, ext_order, ignore_ref
)
coil_scale, mag_scale = _get_coil_scale(
meg_picks, mag_picks, grad_picks, mag_scale, info_to
)
mult = _get_sensor_operator(epochs, meg_picks)
n_channels, n_times = len(epochs.ch_names), len(epochs.times)
other_picks = np.setdiff1d(np.arange(n_channels), meg_picks)
data = np.zeros((n_channels, n_times))
count = 0
# keep only MEG w/bad channels marked in "info_from"
info_from = pick_info(info_to, meg_picks[good_mask], copy=True)
all_coils_recon = _prep_mf_coils(info_to, ignore_ref=ignore_ref)
all_coils = _prep_mf_coils(info_from, ignore_ref=ignore_ref)
# remove MEG bads in "to" info
_reset_meg_bads(info_to)
# set up variables
w_sum = 0.0
n_in, n_out = _get_n_moments([int_order, ext_order])
S_decomp = 0.0 # this will end up being a weighted average
last_trans = None
decomp_coil_scale = coil_scale[good_mask]
exp = dict(int_order=int_order, ext_order=ext_order, head_frame=True, origin=origin)
n_in = _get_n_moments(int_order)
for ei, epoch in enumerate(epochs):
event_time = epochs.events[epochs._current - 1, 0] / orig_sfreq
use_idx = np.where(t <= event_time)[0]
if len(use_idx) == 0:
trans = info_to["dev_head_t"]["trans"]
else:
use_idx = use_idx[-1]
trans = np.vstack(
[np.hstack([rot[use_idx], trn[[use_idx]].T]), [[0.0, 0.0, 0.0, 1.0]]]
)
loc_str = ", ".join(f"{tr:0.1f}" for tr in (trans[:3, 3] * 1000))
if last_trans is None or not np.allclose(last_trans, trans):
logger.info(
f" Processing epoch {ei + 1} (device location: {loc_str} mm)"
)
reuse = False
last_trans = trans
else:
logger.info(f" Processing epoch {ei + 1} (device location: same)")
reuse = True
epoch = epoch.copy() # because we operate inplace
if not reuse:
S = _trans_sss_basis(exp, all_coils, trans, coil_scale=decomp_coil_scale)
# Get the weight from the un-regularized version (eq. 44)
weight = np.linalg.norm(S[:, :n_in])
# XXX Eventually we could do cross-talk and fine-cal here
S *= weight
S_decomp += S # eq. 41
epoch[slice(None) if weight_all else meg_picks] *= weight
data += epoch # eq. 42
w_sum += weight
count += 1
del info_from
mapping = None
if count == 0:
data.fill(np.nan)
else:
data[meg_picks] /= w_sum
data[other_picks] /= w_sum if weight_all else count
# Finalize weighted average decomp matrix
S_decomp /= w_sum
# Get recon matrix
# (We would need to include external here for regularization to work)
exp["ext_order"] = 0
S_recon = _trans_sss_basis(exp, all_coils_recon, recon_trans)
if mult is not None:
S_decomp = mult @ S_decomp
S_recon = mult @ S_recon
exp["ext_order"] = ext_order
# We could determine regularization on basis of destination basis
# matrix, restricted to good channels, as regularizing individual
# matrices within the loop above does not seem to work. But in
# testing this seemed to decrease localization quality in most cases,
# so we do not provide the option here.
S_recon /= coil_scale
# Invert
pS_ave = _col_norm_pinv(S_decomp)[0][:n_in]
pS_ave *= decomp_coil_scale.T
# Get mapping matrix
mapping = np.dot(S_recon, pS_ave)
# Apply mapping
data[meg_picks] = np.dot(mapping, data[meg_picks[good_mask]])
info_to["dev_head_t"] = recon_trans # set the reconstruction transform
evoked = epochs._evoked_from_epoch_data(
data, info_to, picks, n_events=count, kind="average", comment=epochs._name
)
_remove_meg_projs_comps(evoked, ignore_ref)
logger.info(f"Created Evoked dataset from {count} epochs")
return (evoked, mapping) if return_mapping else evoked
@verbose
def make_fixed_length_epochs(
raw,
duration=1.0,
preload=False,
reject_by_annotation=True,
proj=True,
overlap=0.0,
id=1, # noqa: A002
verbose=None,
):
"""Divide continuous raw data into equal-sized consecutive epochs.
Parameters
----------
raw : instance of Raw
Raw data to divide into segments.
duration : float
Duration of each epoch in seconds. Defaults to 1.
%(preload)s
%(reject_by_annotation_epochs)s
.. versionadded:: 0.21.0
%(proj_epochs)s
.. versionadded:: 0.22.0
overlap : float
The overlap between epochs, in seconds. Must be
``0 <= overlap < duration``. Default is 0, i.e., no overlap.
.. versionadded:: 0.23.0
id : int
The id to use (default 1).
.. versionadded:: 0.24.0
%(verbose)s
Returns
-------
epochs : instance of Epochs
Segmented data.
Notes
-----
.. versionadded:: 0.20
"""
events = make_fixed_length_events(raw, id=id, duration=duration, overlap=overlap)
delta = 1.0 / raw.info["sfreq"]
return Epochs(
raw,
events,
event_id=[id],
tmin=0,
tmax=duration - delta,
baseline=None,
preload=preload,
reject_by_annotation=reject_by_annotation,
proj=proj,
verbose=verbose,
)