[074d3d]: / mne / decoding / tests / test_receptive_field.py

Download this file

632 lines (585 with data), 23.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from pathlib import Path
import numpy as np
import pytest
from numpy import einsum
from numpy.fft import irfft, rfft
from numpy.testing import assert_allclose, assert_array_equal, assert_equal
pytest.importorskip("sklearn")
from sklearn.linear_model import Ridge
from sklearn.utils.estimator_checks import parametrize_with_checks
from mne.decoding import ReceptiveField, TimeDelayingRidge
from mne.decoding.receptive_field import (
_SCORERS,
_delay_time_series,
_delays_to_slice,
_times_to_delays,
)
from mne.decoding.time_delaying_ridge import _compute_corrs, _compute_reg_neighbors
data_dir = Path(__file__).parents[2] / "io" / "tests" / "data"
raw_fname = data_dir / "test_raw.fif"
event_name = data_dir / "test-eve.fif"
tmin, tmax = -0.1, 0.5
event_id = dict(aud_l=1, vis_l=3)
# Loading raw data
n_jobs_test = (1, "cuda")
def test_compute_reg_neighbors():
"""Test fast calculation of laplacian regularizer."""
for reg_type in (
("ridge", "ridge"),
("ridge", "laplacian"),
("laplacian", "ridge"),
("laplacian", "laplacian"),
):
for n_ch_x, n_delays in (
(1, 1),
(1, 2),
(2, 1),
(1, 3),
(3, 1),
(1, 4),
(4, 1),
(2, 2),
(2, 3),
(3, 2),
(3, 3),
(2, 4),
(4, 2),
(3, 4),
(4, 3),
(4, 4),
(5, 4),
(4, 5),
(5, 5),
(20, 9),
(9, 20),
):
for normed in (True, False):
reg_direct = _compute_reg_neighbors(
n_ch_x, n_delays, reg_type, "direct", normed=normed
)
reg_csgraph = _compute_reg_neighbors(
n_ch_x, n_delays, reg_type, "csgraph", normed=normed
)
assert_allclose(
reg_direct,
reg_csgraph,
atol=1e-7,
err_msg=f"{reg_type}: {(n_ch_x, n_delays)}",
)
def test_rank_deficiency():
"""Test signals that are rank deficient."""
# See GH#4253
N = 256
fs = 1.0
tmin, tmax = -50, 100
reg = 0.1
rng = np.random.RandomState(0)
eeg = rng.randn(N, 1)
eeg *= 100
eeg = rfft(eeg, axis=0)
eeg[N // 4 :] = 0 # rank-deficient lowpass
eeg = irfft(eeg, axis=0)
win = np.hanning(N // 8)
win /= win.mean()
y = np.apply_along_axis(np.convolve, 0, eeg, win, mode="same")
y += rng.randn(*y.shape) * 100
for est in (Ridge(reg), reg):
rf = ReceptiveField(tmin, tmax, fs, estimator=est, patterns=True)
rf.fit(eeg, y)
pred = rf.predict(eeg)
assert_equal(y.shape, pred.shape)
corr = np.corrcoef(y.ravel(), pred.ravel())[0, 1]
assert corr > 0.995
def test_time_delay():
"""Test that time-delaying w/ times and samples works properly."""
# Explicit delays + sfreq
X = np.random.RandomState(0).randn(1000, 2)
assert (X == 0).sum() == 0 # need this for later
test_tlims = [
((1, 2), 1),
((1, 1), 1),
((0, 2), 1),
((0, 1), 1),
((0, 0), 1),
((-1, 2), 1),
((-1, 1), 1),
((-1, 0), 1),
((-1, -1), 1),
((-2, 2), 1),
((-2, 1), 1),
((-2, 0), 1),
((-2, -1), 1),
((-2, -1), 1),
((0, 0.2), 10),
((-0.1, 0.1), 10),
]
for (tmin, tmax), isfreq in test_tlims:
# sfreq must be int/float
with pytest.raises(TypeError, match="`sfreq` must be an instance of"):
_delay_time_series(X, tmin, tmax, sfreq=[1])
# Delays must be int/float
with pytest.raises(TypeError, match=".*complex.*"):
_delay_time_series(X, np.complex128(tmin), tmax, 1)
# Make sure swapaxes works
start, stop = int(round(tmin * isfreq)), int(round(tmax * isfreq)) + 1
n_delays = stop - start
X_delayed = _delay_time_series(X, tmin, tmax, isfreq)
assert_equal(X_delayed.shape, (1000, 2, n_delays))
# Make sure delay slice is correct
delays = _times_to_delays(tmin, tmax, isfreq)
assert_array_equal(delays, np.arange(start, stop))
keep = _delays_to_slice(delays)
expected = np.where((X_delayed != 0).all(-1).all(-1))[0]
got = np.arange(len(X_delayed))[keep]
assert_array_equal(got, expected)
assert X_delayed[keep].shape[-1] > 0
assert (X_delayed[keep] == 0).sum() == 0
del_zero = int(round(-tmin * isfreq))
for ii in range(-2, 3):
idx = del_zero + ii
err_msg = f"[{tmin},{tmax}] ({isfreq}): {ii} {idx}"
if 0 <= idx < X_delayed.shape[-1]:
if ii == 0:
assert_array_equal(X_delayed[:, :, idx], X, err_msg=err_msg)
elif ii < 0: # negative delay
assert_array_equal(
X_delayed[:ii, :, idx], X[-ii:, :], err_msg=err_msg
)
assert_array_equal(X_delayed[ii:, :, idx], 0.0)
else:
assert_array_equal(
X_delayed[ii:, :, idx], X[:-ii, :], err_msg=err_msg
)
assert_array_equal(X_delayed[:ii, :, idx], 0.0)
@pytest.mark.slowtest # slow on Azure
@pytest.mark.parametrize("n_jobs", n_jobs_test)
@pytest.mark.filterwarnings("ignore:Estimator .* has no __sklearn_tags__.*")
def test_receptive_field_basic(n_jobs):
"""Test model prep and fitting."""
# Make sure estimator pulling works
mod = Ridge()
rng = np.random.RandomState(1337)
# Test the receptive field model
# Define parameters for the model and simulate inputs + weights
tmin, tmax = -10.0, 0
n_feats = 3
rng = np.random.RandomState(0)
X = rng.randn(10000, n_feats)
w = rng.randn(int((tmax - tmin) + 1) * n_feats)
# Delay inputs and cut off first 4 values since they'll be cut in the fit
X_del = np.concatenate(
_delay_time_series(X, tmin, tmax, 1.0).transpose(2, 0, 1), axis=1
)
y = np.dot(X_del, w)
# Fit the model and test values
feature_names = [f"feature_{ii}" for ii in [0, 1, 2]]
rf = ReceptiveField(tmin, tmax, 1, feature_names, estimator=mod, patterns=True)
rf.fit(X, y)
assert rf.coef_.shape == (3, 11)
assert_array_equal(rf.delays_, np.arange(tmin, tmax + 1))
y_pred = rf.predict(X)
assert_allclose(y[rf.valid_samples_], y_pred[rf.valid_samples_], atol=1e-2)
scores = rf.score(X, y)
assert scores > 0.99
assert_allclose(rf.coef_.T.ravel(), w, atol=1e-3)
# Make sure different input shapes work
rf.fit(X[:, np.newaxis :], y[:, np.newaxis])
rf.fit(X, y[:, np.newaxis])
with pytest.raises(ValueError, match="If X has 3 .* y must have 2 or 3"):
rf.fit(X[..., np.newaxis], y)
with pytest.raises(ValueError, match="X must be shape"):
rf.fit(X[:, 0], y)
with pytest.raises(ValueError, match="X and y do not have the same n_epo"):
rf.fit(X[:, np.newaxis], np.tile(y[:, np.newaxis, np.newaxis], [1, 2, 1]))
with pytest.raises(ValueError, match="X and y do not have the same n_tim"):
rf.fit(X, y[:-2])
with pytest.raises(ValueError, match="n_features in X does not match"):
rf.fit(X[:, :1], y)
# auto-naming features
feature_names = [f"feature_{ii}" for ii in [0, 1, 2]]
rf = ReceptiveField(tmin, tmax, 1, estimator=mod, feature_names=feature_names)
assert_equal(rf.feature_names, feature_names)
rf = ReceptiveField(tmin, tmax, 1, estimator=mod)
rf.fit(X, y)
assert_equal(rf.feature_names, None)
# Float becomes ridge
rf = ReceptiveField(tmin, tmax, 1, ["one", "two", "three"], estimator=0)
str(rf) # repr works before fit
rf.fit(X, y)
assert isinstance(rf.estimator_, TimeDelayingRidge)
str(rf) # repr works after fit
rf = ReceptiveField(tmin, tmax, 1, ["one"], estimator=0)
rf.fit(X[:, [0]], y)
str(rf) # repr with one feature
# Should only accept estimators or floats
with pytest.raises(ValueError, match="`estimator` must be a float or"):
ReceptiveField(tmin, tmax, 1, estimator="foo").fit(X, y)
with pytest.raises(ValueError, match="`estimator` must be a float or"):
ReceptiveField(tmin, tmax, 1, estimator=np.array([1, 2, 3])).fit(X, y)
with pytest.raises(ValueError, match="tmin .* must be at most tmax"):
ReceptiveField(5, 4, 1).fit(X, y)
# scorers
for key, val in _SCORERS.items():
rf = ReceptiveField(
tmin, tmax, 1, ["one"], estimator=0, scoring=key, patterns=True
)
rf.fit(X[:, [0]], y)
y_pred = rf.predict(X[:, [0]]).T.ravel()[:, np.newaxis]
assert_allclose(
val(y[:, np.newaxis], y_pred, multioutput="raw_values"),
rf.score(X[:, [0]], y),
rtol=1e-2,
)
with pytest.raises(ValueError, match="inputs must be shape"):
_SCORERS["corrcoef"](y.ravel(), y_pred, multioutput="raw_values")
# Need correct scorers
with pytest.raises(ValueError, match="scoring must be one of"):
ReceptiveField(tmin, tmax, 1.0, scoring="foo").fit(X, y)
@pytest.mark.parametrize("n_jobs", n_jobs_test)
def test_time_delaying_fast_calc(n_jobs):
"""Test time delaying and fast calculations."""
X = np.array([[1, 2, 3], [5, 7, 11]]).T
# all negative
smin, smax = 1, 2
X_del = _delay_time_series(X, smin, smax, 1.0)
# (n_times, n_features, n_delays) -> (n_times, n_features * n_delays)
X_del.shape = (X.shape[0], -1)
expected = np.array([[0, 1, 2], [0, 0, 1], [0, 5, 7], [0, 0, 5]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [[5, 2, 19, 10], [2, 1, 7, 5], [19, 7, 74, 35], [10, 5, 35, 25]]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# all positive
smin, smax = -2, -1
X_del = _delay_time_series(X, smin, smax, 1.0)
X_del.shape = (X.shape[0], -1)
expected = np.array([[3, 0, 0], [2, 3, 0], [11, 0, 0], [7, 11, 0]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [[9, 6, 33, 21], [6, 13, 22, 47], [33, 22, 121, 77], [21, 47, 77, 170]]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# both sides
smin, smax = -1, 1
X_del = _delay_time_series(X, smin, smax, 1.0)
X_del.shape = (X.shape[0], -1)
expected = np.array(
[[2, 3, 0], [1, 2, 3], [0, 1, 2], [7, 11, 0], [5, 7, 11], [0, 5, 7]]
).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [
[13, 8, 3, 47, 31, 15],
[8, 14, 8, 29, 52, 31],
[3, 8, 5, 11, 29, 19],
[47, 29, 11, 170, 112, 55],
[31, 52, 29, 112, 195, 112],
[15, 31, 19, 55, 112, 74],
]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# slightly harder to get the non-Toeplitz correction correct
X = np.array([[1, 2, 3, 5]]).T
smin, smax = 0, 3
X_del = _delay_time_series(X, smin, smax, 1.0)
X_del.shape = (X.shape[0], -1)
expected = np.array([[1, 2, 3, 5], [0, 1, 2, 3], [0, 0, 1, 2], [0, 0, 0, 1]]).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = [[39, 23, 13, 5], [23, 14, 8, 3], [13, 8, 5, 2], [5, 3, 2, 1]]
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# even worse
X = np.array([[1, 2, 3], [5, 7, 11]]).T
smin, smax = 0, 2
X_del = _delay_time_series(X, smin, smax, 1.0)
X_del.shape = (X.shape[0], -1)
expected = np.array(
[[1, 2, 3], [0, 1, 2], [0, 0, 1], [5, 7, 11], [0, 5, 7], [0, 0, 5]]
).T
assert_allclose(X_del, expected)
Xt_X = np.dot(X_del.T, X_del)
expected = np.array(
[
[14, 8, 3, 52, 31, 15],
[8, 5, 2, 29, 19, 10],
[3, 2, 1, 11, 7, 5],
[52, 29, 11, 195, 112, 55],
[31, 19, 7, 112, 74, 35],
[15, 10, 5, 55, 35, 25],
]
)
assert_allclose(Xt_X, expected)
x_xt = _compute_corrs(X, np.zeros((X.shape[0], 1)), smin, smax + 1)[0]
assert_allclose(x_xt, expected)
# And a bunch of random ones for good measure
rng = np.random.RandomState(0)
X = rng.randn(25, 3)
y = np.empty((25, 2))
vals = (0, -1, 1, -2, 2, -11, 11)
for smax in vals:
for smin in vals:
if smin > smax:
continue
for ii in range(X.shape[1]):
kernel = rng.randn(smax - smin + 1)
kernel -= np.mean(kernel)
y[:, ii % y.shape[-1]] = np.convolve(X[:, ii], kernel, "same")
x_xt, x_yt, n_ch_x, _, _ = _compute_corrs(X, y, smin, smax + 1)
X_del = _delay_time_series(X, smin, smax, 1.0, fill_mean=False)
x_yt_true = einsum("tfd,to->ofd", X_del, y)
x_yt_true = np.reshape(x_yt_true, (x_yt_true.shape[0], -1)).T
assert_allclose(x_yt, x_yt_true, atol=1e-7, err_msg=(smin, smax))
X_del.shape = (X.shape[0], -1)
x_xt_true = np.dot(X_del.T, X_del).T
assert_allclose(x_xt, x_xt_true, atol=1e-7, err_msg=(smin, smax))
@pytest.mark.parametrize("n_jobs", n_jobs_test)
def test_receptive_field_1d(n_jobs):
"""Test that the fast solving works like Ridge."""
rng = np.random.RandomState(0)
x = rng.randn(500, 1)
for delay in range(-2, 3):
y = np.zeros(500)
slims = [(-2, 4)]
if delay == 0:
y[:] = x[:, 0]
elif delay < 0:
y[:delay] = x[-delay:, 0]
slims += [(-4, -1)]
else:
y[delay:] = x[:-delay, 0]
slims += [(1, 2)]
for ndim in (1, 2):
y.shape = (y.shape[0],) + (1,) * (ndim - 1)
for slim in slims:
smin, smax = slim
lap = TimeDelayingRidge(
smin,
smax,
1.0,
0.1,
"laplacian",
fit_intercept=False,
n_jobs=n_jobs,
)
for estimator in (Ridge(alpha=0.0), Ridge(alpha=0.1), 0.0, 0.1, lap):
for offset in (-100, 0, 100):
model = ReceptiveField(
smin, smax, 1.0, estimator=estimator, n_jobs=n_jobs
)
use_x = x + offset
model.fit(use_x, y)
if estimator is lap:
continue # these checks are too stringent
assert_allclose(model.estimator_.intercept_, -offset, atol=1e-1)
assert_array_equal(model.delays_, np.arange(smin, smax + 1))
expected = (model.delays_ == delay).astype(float)
expected = expected[np.newaxis] # features
if y.ndim == 2:
expected = expected[np.newaxis] # outputs
assert_equal(model.coef_.ndim, ndim + 1)
assert_allclose(model.coef_, expected, atol=1e-3)
start = model.valid_samples_.start or 0
stop = len(use_x) - (model.valid_samples_.stop or 0)
assert stop - start >= 495
assert_allclose(
model.predict(use_x)[model.valid_samples_],
y[model.valid_samples_],
atol=1e-2,
)
score = np.mean(model.score(use_x, y))
assert score > 0.9999
@pytest.mark.parametrize("n_jobs", n_jobs_test)
def test_receptive_field_nd(n_jobs):
"""Test multidimensional support."""
# multidimensional
rng = np.random.RandomState(3)
x = rng.randn(1000, 3)
y = np.zeros((1000, 2))
smin, smax = 0, 5
# This is a weird assignment, but it's just a way to distribute some
# unique values at various delays, and "expected" explains how they
# should appear in the resulting RF
for ii in range(1, 5):
y[ii:, ii % 2] += (-1) ** ii * ii * x[:-ii, ii % 3]
y -= np.mean(y, axis=0)
x -= np.mean(x, axis=0)
x_off = x + 1e3
expected = [
[[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4, 0], [0, 0, 2, 0, 0, 0]],
[[0, 0, 0, -3, 0, 0], [0, -1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]],
]
tdr_l = TimeDelayingRidge(smin, smax, 1.0, 0.1, "laplacian", n_jobs=n_jobs)
tdr_nc = TimeDelayingRidge(
smin, smax, 1.0, 0.1, n_jobs=n_jobs, edge_correction=False
)
for estimator, atol in zip(
(Ridge(alpha=0.0), 0.0, 0.01, tdr_l, tdr_nc), (1e-3, 1e-3, 1e-3, 5e-3, 5e-2)
):
model = ReceptiveField(smin, smax, 1.0, estimator=estimator)
model.fit(x, y)
assert_array_equal(model.delays_, np.arange(smin, smax + 1))
assert_allclose(model.coef_, expected, atol=atol)
tdr = TimeDelayingRidge(smin, smax, 1.0, 0.01, reg_type="foo", n_jobs=n_jobs)
model = ReceptiveField(smin, smax, 1.0, estimator=tdr)
with pytest.raises(ValueError, match="reg_type entries must be one of"):
model.fit(x, y)
tdr = TimeDelayingRidge(
smin, smax, 1.0, 0.01, reg_type=["laplacian"], n_jobs=n_jobs
)
model = ReceptiveField(smin, smax, 1.0, estimator=tdr)
with pytest.raises(ValueError, match="reg_type must have two elements"):
model.fit(x, y)
model = ReceptiveField(smin, smax, 1, estimator=tdr, fit_intercept=False)
with pytest.raises(ValueError, match="fit_intercept"):
model.fit(x, y)
# Now check the intercept_
tdr = TimeDelayingRidge(smin, smax, 1.0, 0.0, n_jobs=n_jobs)
tdr_no = TimeDelayingRidge(smin, smax, 1.0, 0.0, fit_intercept=False, n_jobs=n_jobs)
for estimator in (
Ridge(alpha=0.0),
tdr,
Ridge(alpha=0.0, fit_intercept=False),
tdr_no,
):
# first with no intercept in the data
model = ReceptiveField(smin, smax, 1.0, estimator=estimator)
model.fit(x, y)
assert_allclose(
model.estimator_.intercept_, 0.0, atol=1e-7, err_msg=repr(estimator)
)
assert_allclose(model.coef_, expected, atol=1e-3, err_msg=repr(estimator))
y_pred = model.predict(x)
assert_allclose(
y_pred[model.valid_samples_],
y[model.valid_samples_],
atol=1e-2,
err_msg=repr(estimator),
)
score = np.mean(model.score(x, y))
assert score > 0.9999
# now with an intercept in the data
model.fit(x_off, y)
if estimator.fit_intercept:
val = [-6000, 4000]
itol = 0.5
ctol = 5e-4
else:
val = itol = 0.0
ctol = 2.0
assert_allclose(
model.estimator_.intercept_, val, atol=itol, err_msg=repr(estimator)
)
assert_allclose(
model.coef_, expected, atol=ctol, rtol=ctol, err_msg=repr(estimator)
)
if estimator.fit_intercept:
ptol = 1e-2
stol = 0.999999
else:
ptol = 10
stol = 0.6
y_pred = model.predict(x_off)[model.valid_samples_]
assert_allclose(
y_pred, y[model.valid_samples_], atol=ptol, err_msg=repr(estimator)
)
score = np.mean(model.score(x_off, y))
assert score > stol, estimator
model = ReceptiveField(smin, smax, 1.0, fit_intercept=False)
model.fit(x_off, y)
assert_allclose(model.estimator_.intercept_, 0.0, atol=1e-7)
score = np.mean(model.score(x_off, y))
assert score > 0.6
def _make_data(n_feats, n_targets, n_samples, tmin, tmax):
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_feats)
w = rng.randn(int((tmax - tmin) + 1) * n_feats, n_targets)
# Delay inputs
X_del = np.concatenate(
_delay_time_series(X, tmin, tmax, 1.0).transpose(2, 0, 1), axis=1
)
y = np.dot(X_del, w)
return X, y
def test_inverse_coef():
"""Test inverse coefficients computation."""
tmin, tmax = 0.0, 10.0
n_feats, n_targets, n_samples = 3, 2, 1000
n_delays = int((tmax - tmin) + 1)
# Check coefficient dims, for all estimator types
X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax)
tdr = TimeDelayingRidge(tmin, tmax, 1.0, 0.1, "laplacian")
for estimator in (0.0, 0.01, Ridge(alpha=0.0), tdr):
rf = ReceptiveField(tmin, tmax, 1.0, estimator=estimator, patterns=True)
rf.fit(X, y)
inv_rf = ReceptiveField(tmin, tmax, 1.0, estimator=estimator, patterns=True)
inv_rf.fit(y, X)
assert_array_equal(
rf.coef_.shape, rf.patterns_.shape, (n_targets, n_feats, n_delays)
)
assert_array_equal(
inv_rf.coef_.shape, inv_rf.patterns_.shape, (n_feats, n_targets, n_delays)
)
# we should have np.dot(patterns.T,coef) ~ np.eye(n)
c0 = rf.coef_.reshape(n_targets, n_feats * n_delays)
c1 = rf.patterns_.reshape(n_targets, n_feats * n_delays)
assert_allclose(np.dot(c0, c1.T), np.eye(c0.shape[0]), atol=0.2)
def test_linalg_warning():
"""Test that warnings are issued when no regularization is applied."""
n_feats, n_targets, n_samples = 5, 60, 50
X, y = _make_data(n_feats, n_targets, n_samples, tmin, tmax)
for estimator in (0.0, Ridge(alpha=0.0)):
rf = ReceptiveField(tmin, tmax, 1.0, estimator=estimator)
with pytest.warns(
(RuntimeWarning, UserWarning), match="[Singular|scipy.linalg.solve]"
):
rf.fit(y, X)
@parametrize_with_checks([TimeDelayingRidge(0, 10, 1.0, 0.1, "laplacian", n_jobs=1)])
def test_tdr_sklearn_compliance(estimator, check):
"""Test sklearn estimator compliance."""
# We don't actually comply with a bunch of the regressor specs :(
ignores = (
"check_supervised_y_no_nan",
"check_regressor",
"check_parameters_default_constructible",
"check_estimators_unfitted",
"_invariance",
"check_complex_data",
"check_estimators_empty_data_messages",
"check_estimators_nan_inf",
"check_supervised_y_2d",
"check_n_features_in",
"check_fit2d_1sample",
"check_fit1d",
"check_fit2d_predict1d",
"check_requires_y_none",
)
if any(ignore in str(check) for ignore in ignores):
return
check(estimator)
@pytest.mark.filterwarnings("ignore:.*invalid value encountered in subtract.*:")
@parametrize_with_checks([ReceptiveField(-1, 2, 1.0, estimator=Ridge(), patterns=True)])
def test_rf_sklearn_compliance(estimator, check):
"""Test sklearn RF compliance."""
ignores = (
"check_parameters_default_constructible",
"_invariance",
"check_fit2d_1sample",
# Should probably fix these?
"check_complex_data",
"check_dtype_object",
"check_estimators_empty_data_messages",
"check_n_features_in",
"check_fit2d_predict1d",
"check_estimators_unfitted",
)
if any(ignore in str(check) for ignore in ignores):
return
check(estimator)