# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numpy as np
from scipy.linalg import eigh
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from .._fiff.meas_info import Info, create_info
from .._fiff.pick import _picks_to_idx
from ..cov import Covariance, _regularized_covariance
from ..defaults import _handle_default
from ..filter import filter_data
from ..rank import compute_rank
from ..time_frequency import psd_array_welch
from ..utils import (
_time_mask,
_validate_type,
_verbose_safe_false,
fill_doc,
logger,
)
from .transformer import MNETransformerMixin
@fill_doc
class SSD(MNETransformerMixin, BaseEstimator):
"""
Signal decomposition using the Spatio-Spectral Decomposition (SSD).
SSD seeks to maximize the power at a frequency band of interest while
simultaneously minimizing it at the flanking (surrounding) frequency bins
(considered noise). It extremizes the covariance matrices associated with
signal and noise :footcite:`NikulinEtAl2011`.
SSD can either be used as a dimensionality reduction method or a
‘denoised’ low rank factorization method :footcite:`HaufeEtAl2014b`.
Parameters
----------
%(info_not_none)s Must match the input data.
filt_params_signal : dict
Filtering for the frequencies of interest.
filt_params_noise : dict
Filtering for the frequencies of non-interest.
reg : float | str | None (default)
Which covariance estimator to use.
If not None (same as 'empirical'), allow regularization for covariance
estimation. If float, shrinkage is used (0 <= shrinkage <= 1). For str
options, reg will be passed to method :func:`mne.compute_covariance`.
n_components : int | None (default None)
The number of components to extract from the signal.
If None, the number of components equal to the rank of the data are
returned (see ``rank``).
picks : array of int | None (default None)
The indices of good channels.
sort_by_spectral_ratio : bool (default True)
If set to True, the components are sorted according to the spectral
ratio.
See Eq. (24) in :footcite:`NikulinEtAl2011`.
return_filtered : bool (default False)
If return_filtered is True, data is bandpassed and projected onto the
SSD components.
n_fft : int (default None)
If sort_by_spectral_ratio is set to True, then the SSD sources will be
sorted according to their spectral ratio which is calculated based on
:func:`mne.time_frequency.psd_array_welch`. The n_fft parameter sets the
length of FFT used. The default (None) will use 1 second of data.
See :func:`mne.time_frequency.psd_array_welch` for more information.
cov_method_params : dict | None (default None)
As in :class:`mne.decoding.SPoC`
The default is None.
rank : None | dict | ‘info’ | ‘full’
As in :class:`mne.decoding.SPoC`
This controls the rank computation that can be read from the
measurement info or estimated from the data, which determines the
maximum possible number of components.
See Notes of :func:`mne.compute_rank` for details.
We recommend to use 'full' when working with epoched data.
Attributes
----------
filters_ : array, shape (n_channels, n_components)
The spatial filters to be multiplied with the signal.
patterns_ : array, shape (n_components, n_channels)
The patterns for reconstructing the signal from the filtered data.
References
----------
.. footbibliography::
"""
def __init__(
self,
info,
filt_params_signal,
filt_params_noise,
reg=None,
n_components=None,
picks=None,
sort_by_spectral_ratio=True,
return_filtered=False,
n_fft=None,
cov_method_params=None,
rank=None,
):
"""Initialize instance."""
self.info = info
self.filt_params_signal = filt_params_signal
self.filt_params_noise = filt_params_noise
self.reg = reg
self.n_components = n_components
self.picks = picks
self.sort_by_spectral_ratio = sort_by_spectral_ratio
self.return_filtered = return_filtered
self.n_fft = n_fft
self.cov_method_params = cov_method_params
self.rank = rank
def _validate_params(self, X):
if isinstance(self.info, float): # special case, mostly for testing
self.sfreq_ = self.info
else:
_validate_type(self.info, Info, "info")
self.sfreq_ = self.info["sfreq"]
dicts = {"signal": self.filt_params_signal, "noise": self.filt_params_noise}
for param, dd in [("l", 0), ("h", 0), ("l", 1), ("h", 1)]:
key = ("signal", "noise")[dd]
if param + "_freq" not in dicts[key]:
raise ValueError(
f"{param + '_freq'} must be defined in filter parameters for {key}"
)
val = dicts[key][param + "_freq"]
if not isinstance(val, int | float):
_validate_type(val, ("numeric",), f"{key} {param}_freq")
# check freq bands
if (
self.filt_params_noise["l_freq"] > self.filt_params_signal["l_freq"]
or self.filt_params_signal["h_freq"] > self.filt_params_noise["h_freq"]
):
raise ValueError(
"Wrongly specified frequency bands!\n"
"The signal band-pass must be within the noise "
"band-pass!"
)
self.freqs_signal_ = (
self.filt_params_signal["l_freq"],
self.filt_params_signal["h_freq"],
)
self.freqs_noise_ = (
self.filt_params_noise["l_freq"],
self.filt_params_noise["h_freq"],
)
_validate_type(self.sort_by_spectral_ratio, (bool,), "sort_by_spectral_ratio")
_validate_type(self.n_fft, ("numeric", None), "n_fft")
self.n_fft_ = min(
int(self.n_fft if self.n_fft is not None else self.sfreq_),
X.shape[-1],
)
_validate_type(self.return_filtered, (bool,), "return_filtered")
if isinstance(self.info, Info):
ch_types = self.info.get_channel_types(picks=self.picks, unique=True)
if len(ch_types) > 1:
raise ValueError(
"At this point SSD only supports fitting "
f"single channel types. Your info has {len(ch_types)} types."
)
def _check_X(self, X, *, y=None, fit=False):
"""Check input data."""
X = self._check_data(X, y=y, fit=fit, atleast_3d=False)
n_chan = X.shape[-2]
if isinstance(self.info, Info) and n_chan != self.info["nchan"]:
raise ValueError(
"Info must match the input data."
f"Found {n_chan} channels but expected {self.info['nchan']}."
)
return X
def fit(self, X, y=None):
"""Estimate the SSD decomposition on raw or epoched data.
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array
obtained from continuous data or 3D array obtained from epoched
data.
y : None
Ignored; exists for compatibility with scikit-learn pipelines.
Returns
-------
self : instance of SSD
Returns the modified instance.
"""
X = self._check_X(X, y=y, fit=True)
self._validate_params(X)
if isinstance(self.info, Info):
info = self.info
else:
info = create_info(X.shape[-2], self.sfreq_, ch_types="eeg")
self.picks_ = _picks_to_idx(info, self.picks, none="data", exclude="bads")
X_aux = X[..., self.picks_, :]
X_signal = filter_data(X_aux, self.sfreq_, **self.filt_params_signal)
X_noise = filter_data(X_aux, self.sfreq_, **self.filt_params_noise)
X_noise -= X_signal
if X.ndim == 3:
X_signal = np.hstack(X_signal)
X_noise = np.hstack(X_noise)
# prevent rank change when computing cov with rank='full'
cov_signal = _regularized_covariance(
X_signal,
reg=self.reg,
method_params=self.cov_method_params,
rank="full",
info=info,
)
cov_noise = _regularized_covariance(
X_noise,
reg=self.reg,
method_params=self.cov_method_params,
rank="full",
info=info,
)
# project cov to rank subspace
cov_signal, cov_noise, rank_proj = _dimensionality_reduction(
cov_signal, cov_noise, info, self.rank
)
eigvals_, eigvects_ = eigh(cov_signal, cov_noise)
# sort in descending order
ix = np.argsort(eigvals_)[::-1]
self.eigvals_ = eigvals_[ix]
# project back to sensor space
self.filters_ = np.matmul(rank_proj, eigvects_[:, ix])
self.patterns_ = np.linalg.pinv(self.filters_)
# We assume that ordering by spectral ratio is more important
# than the initial ordering. This ordering should be also learned when
# fitting.
X_ssd = self.filters_.T @ X[..., self.picks_, :]
sorter_spec = slice(None)
if self.sort_by_spectral_ratio:
_, sorter_spec = self.get_spectral_ratio(ssd_sources=X_ssd)
self.sorter_spec_ = sorter_spec
logger.info("Done.")
return self
def transform(self, X):
"""Estimate epochs sources given the SSD filters.
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array
obtained from continuous data or 3D array obtained from epoched
data.
Returns
-------
X_ssd : array, shape ([n_epochs, ]n_components, n_times)
The processed data.
"""
check_is_fitted(self, "filters_")
X = self._check_X(X)
if self.return_filtered:
X_aux = X[..., self.picks_, :]
X = filter_data(X_aux, self.sfreq_, **self.filt_params_signal)
X_ssd = self.filters_.T @ X[..., self.picks_, :]
X_ssd = X_ssd[..., self.sorter_spec_, :][..., : self.n_components, :]
return X_ssd
def fit_transform(self, X, y=None, **fit_params):
"""Fit SSD to data, then transform it.
Fits transformer to ``X`` and ``y`` with optional parameters ``fit_params``, and
returns a transformed version of ``X``.
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array obtained from
continuous data or 3D array obtained from epoched data.
y : None
Ignored; exists for compatibility with scikit-learn pipelines.
**fit_params : dict
Additional fitting parameters passed to the :meth:`mne.decoding.SSD.fit`
method. Not used for this class.
Returns
-------
X_ssd : array, shape ([n_epochs, ]n_components, n_times)
The processed data.
"""
# use parent TransformerMixin method but with custom docstring
return super().fit_transform(X, y=y, **fit_params)
def get_spectral_ratio(self, ssd_sources):
"""Get the spectal signal-to-noise ratio for each spatial filter.
Spectral ratio measure for best n_components selection
See :footcite:`NikulinEtAl2011`, Eq. (24).
Parameters
----------
ssd_sources : array
Data projected to SSD space.
Returns
-------
spec_ratio : array, shape (n_channels)
Array with the sprectal ratio value for each component.
sorter_spec : array, shape (n_channels)
Array of indices for sorting spec_ratio.
References
----------
.. footbibliography::
"""
psd, freqs = psd_array_welch(ssd_sources, sfreq=self.sfreq_, n_fft=self.n_fft_)
sig_idx = _time_mask(freqs, *self.freqs_signal_)
noise_idx = _time_mask(freqs, *self.freqs_noise_)
if psd.ndim == 3:
mean_sig = psd[:, :, sig_idx].mean(axis=2).mean(axis=0)
mean_noise = psd[:, :, noise_idx].mean(axis=2).mean(axis=0)
spec_ratio = mean_sig / mean_noise
else:
mean_sig = psd[:, sig_idx].mean(axis=1)
mean_noise = psd[:, noise_idx].mean(axis=1)
spec_ratio = mean_sig / mean_noise
sorter_spec = spec_ratio.argsort()[::-1]
return spec_ratio, sorter_spec
def inverse_transform(self):
"""Not implemented yet."""
raise NotImplementedError("inverse_transform is not yet available.")
def apply(self, X):
"""Remove selected components from the signal.
This procedure will reconstruct M/EEG signals from which the dynamics
described by the excluded components is subtracted
(denoised by low-rank factorization).
See :footcite:`HaufeEtAl2014b` for more information.
.. note:: Unlike in other classes with an apply method,
only NumPy arrays are supported (not instances of MNE objects).
Parameters
----------
X : array, shape ([n_epochs, ]n_channels, n_times)
The input data from which to estimate the SSD. Either 2D array
obtained from continuous data or 3D array obtained from epoched
data.
Returns
-------
X : array, shape ([n_epochs, ]n_channels, n_times)
The processed data.
"""
X_ssd = self.transform(X)
pick_patterns = self.patterns_[self.sorter_spec_][: self.n_components].T
X = pick_patterns @ X_ssd
return X
def _dimensionality_reduction(cov_signal, cov_noise, info, rank):
"""Perform dimensionality reduction on the covariance matrices."""
n_channels = cov_signal.shape[0]
# find ranks of covariance matrices
rank_signal = list(
compute_rank(
Covariance(
cov_signal,
info.ch_names,
list(),
list(),
0,
verbose=_verbose_safe_false(),
),
rank,
_handle_default("scalings_cov_rank", None),
info,
).values()
)[0]
rank_noise = list(
compute_rank(
Covariance(
cov_noise,
info.ch_names,
list(),
list(),
0,
verbose=_verbose_safe_false(),
),
rank,
_handle_default("scalings_cov_rank", None),
info,
).values()
)[0]
rank = np.min([rank_signal, rank_noise]) # should be identical
if rank < n_channels:
eigvals, eigvects = eigh(cov_signal)
# sort in descending order
ix = np.argsort(eigvals)[::-1]
eigvals = eigvals[ix]
eigvects = eigvects[:, ix]
# compute rank subspace projection matrix
rank_proj = np.matmul(
eigvects[:, :rank], np.eye(rank) * (eigvals[:rank] ** -0.5)
)
logger.info(
"Projecting covariance of %i channels to %i rank subspace",
n_channels,
rank,
)
else:
rank_proj = np.eye(n_channels)
logger.info("Preserving covariance rank (%i)", rank)
# project covariance matrices to rank subspace
cov_signal = np.matmul(rank_proj.T, np.matmul(cov_signal, rank_proj))
cov_noise = np.matmul(rank_proj.T, np.matmul(cov_noise, rank_proj))
return cov_signal, cov_noise, rank_proj