# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import numbers
import numpy as np
from scipy.stats import pearsonr
from sklearn.base import (
BaseEstimator,
MetaEstimatorMixin,
clone,
is_regressor,
)
from sklearn.exceptions import NotFittedError
from sklearn.metrics import r2_score
from ..utils import _validate_type, fill_doc, pinv
from .base import _check_estimator, get_coef
from .time_delaying_ridge import TimeDelayingRidge
@fill_doc
class ReceptiveField(MetaEstimatorMixin, BaseEstimator):
"""Fit a receptive field model.
This allows you to fit an encoding model (stimulus to brain) or a decoding
model (brain to stimulus) using time-lagged input features (for example, a
spectro- or spatio-temporal receptive field, or STRF)
:footcite:`TheunissenEtAl2001,WillmoreSmyth2003,CrosseEtAl2016,HoldgrafEtAl2016`.
Parameters
----------
tmin : float
The starting lag, in seconds (or samples if ``sfreq`` == 1).
tmax : float
The ending lag, in seconds (or samples if ``sfreq`` == 1).
Must be >= tmin.
sfreq : float
The sampling frequency used to convert times into samples.
feature_names : array, shape (n_features,) | None
Names for input features to the model. If None, feature names will
be auto-generated from the shape of input data after running `fit`.
estimator : instance of sklearn.base.BaseEstimator | float | None
The model used in fitting inputs and outputs. This can be any
scikit-learn-style model that contains a fit and predict method. If a
float is passed, it will be interpreted as the ``alpha`` parameter
to be passed to a Ridge regression model. If `None`, then a Ridge
regression model with an alpha of 0 will be used.
fit_intercept : bool | None
If True (default), the sample mean is removed before fitting.
If ``estimator`` is a :class:`sklearn.base.BaseEstimator`,
this must be None or match ``estimator.fit_intercept``.
scoring : ['r2', 'corrcoef']
Defines how predictions will be scored. Currently must be one of
'r2' (coefficient of determination) or 'corrcoef' (the correlation
coefficient).
patterns : bool
If True, inverse coefficients will be computed upon fitting using the
covariance matrix of the inputs, and the cross-covariance of the
inputs/outputs, according to :footcite:`HaufeEtAl2014`. Defaults to
False.
n_jobs : int | str
Number of jobs to run in parallel. Can be 'cuda' if CuPy
is installed properly and ``estimator is None``.
.. versionadded:: 0.18
edge_correction : bool
If True (default), correct the autocorrelation coefficients for
non-zero delays for the fact that fewer samples are available.
Disabling this speeds up performance at the cost of accuracy
depending on the relationship between epoch length and model
duration. Only used if ``estimator`` is float or None.
.. versionadded:: 0.18
Attributes
----------
coef_ : array, shape ([n_outputs, ]n_features, n_delays)
The coefficients from the model fit, reshaped for easy visualization.
During :meth:`mne.decoding.ReceptiveField.fit`, if ``y`` has one
dimension (time), the ``n_outputs`` dimension here is omitted.
patterns_ : array, shape ([n_outputs, ]n_features, n_delays)
If fit, the inverted coefficients from the model.
delays_ : array, shape (n_delays,), dtype int
The delays used to fit the model, in indices. To return the delays
in seconds, use ``self.delays_ / self.sfreq``
valid_samples_ : slice
The rows to keep during model fitting after removing rows with
missing values due to time delaying. This can be used to get an
output equivalent to using :func:`numpy.convolve` or
:func:`numpy.correlate` with ``mode='valid'``.
See Also
--------
mne.decoding.TimeDelayingRidge
Notes
-----
For a causal system, the encoding model will have significant
non-zero values only at positive lags. In other words, lags point
backward in time relative to the input, so positive lags correspond
to previous input time samples, while negative lags correspond to
future input time samples.
References
----------
.. footbibliography::
""" # noqa E501
def __init__(
self,
tmin,
tmax,
sfreq,
feature_names=None,
estimator=None,
fit_intercept=None,
scoring="r2",
patterns=False,
n_jobs=None,
edge_correction=True,
):
self.tmin = tmin
self.tmax = tmax
self.sfreq = sfreq
self.feature_names = feature_names
self.estimator = 0.0 if estimator is None else estimator
self.fit_intercept = fit_intercept
self.scoring = scoring
self.patterns = patterns
self.n_jobs = n_jobs
self.edge_correction = edge_correction
def __repr__(self): # noqa: D105
s = f"tmin, tmax : ({self.tmin:.3f}, {self.tmax:.3f}), "
estimator = self.estimator
if not isinstance(estimator, str):
estimator = type(self.estimator)
s += f"estimator : {estimator}, "
if hasattr(self, "coef_"):
if self.feature_names is not None:
feats = self.feature_names
if len(feats) == 1:
s += f"feature: {feats[0]}, "
else:
s += f"features : [{feats[0]}, ..., {feats[-1]}], "
s += "fit: True"
else:
s += "fit: False"
if hasattr(self, "scores_"):
s += f"scored ({self.scoring})"
return f"<ReceptiveField | {s}>"
def _delay_and_reshape(self, X, y=None):
"""Delay and reshape the variables."""
if not isinstance(self.estimator_, TimeDelayingRidge):
# X is now shape (n_times, n_epochs, n_feats, n_delays)
X = _delay_time_series(
X,
self.tmin,
self.tmax,
self.sfreq_,
fill_mean=self.fit_intercept_,
)
X = _reshape_for_est(X)
# Concat times + epochs
if y is not None:
y = y.reshape(-1, y.shape[-1], order="F")
return X, y
def fit(self, X, y):
"""Fit a receptive field model.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_features)
The input features for the model.
y : array, shape (n_times[, n_epochs][, n_outputs])
The output features for the model.
Returns
-------
self : instance
The instance so you can chain operations.
"""
if self.scoring not in _SCORERS.keys():
raise ValueError(
f"scoring must be one of {sorted(_SCORERS.keys())}, got {self.scoring} "
)
self.sfreq_ = float(self.sfreq)
X, y, _, self._y_dim = self._check_dimensions(X, y)
if self.tmin > self.tmax:
raise ValueError(f"tmin ({self.tmin}) must be at most tmax ({self.tmax})")
# Initialize delays
self.delays_ = _times_to_delays(self.tmin, self.tmax, self.sfreq_)
# Define the slice that we should use in the middle
self.valid_samples_ = _delays_to_slice(self.delays_)
if isinstance(self.estimator, numbers.Real):
if self.fit_intercept is None:
self.fit_intercept_ = True
else:
self.fit_intercept_ = self.fit_intercept
estimator = TimeDelayingRidge(
self.tmin,
self.tmax,
self.sfreq_,
alpha=self.estimator,
fit_intercept=self.fit_intercept_,
n_jobs=self.n_jobs,
edge_correction=self.edge_correction,
)
elif is_regressor(self.estimator):
estimator = clone(self.estimator)
if (
self.fit_intercept is not None
and estimator.fit_intercept != self.fit_intercept
):
raise ValueError(
f"Estimator fit_intercept ({estimator.fit_intercept}) != "
f"initialization fit_intercept ({self.fit_intercept}), initialize "
"ReceptiveField with the same fit_intercept value or use "
"fit_intercept=None"
)
self.fit_intercept_ = estimator.fit_intercept
else:
raise ValueError(
"`estimator` must be a float or an instance of `BaseEstimator`, got "
f"type {self.estimator}."
)
self.estimator_ = estimator
del estimator
_check_estimator(self.estimator_)
# Create input features
n_times, n_epochs, n_feats = X.shape
n_outputs = y.shape[-1]
n_delays = len(self.delays_)
# Update feature names if we have none
if (self.feature_names is not None) and (len(self.feature_names) != n_feats):
raise ValueError(
f"n_features in X does not match feature names ({n_feats} != "
f"{len(self.feature_names)})"
)
# Create input features
X, y = self._delay_and_reshape(X, y)
self.estimator_.fit(X, y)
coef = get_coef(self.estimator_, "coef_") # (n_targets, n_features)
shape = [n_feats, n_delays]
if self._y_dim > 1:
shape.insert(0, -1)
self.coef_ = coef.reshape(shape)
# Inverse-transform model weights
if self.patterns:
if isinstance(self.estimator_, TimeDelayingRidge):
cov_ = self.estimator_.cov_ / float(n_times * n_epochs - 1)
y = y.reshape(-1, y.shape[-1], order="F")
else:
X = X - X.mean(0, keepdims=True)
cov_ = np.cov(X.T)
del X
# Inverse output covariance
if y.ndim == 2 and y.shape[1] != 1:
y = y - y.mean(0, keepdims=True)
inv_Y = pinv(np.cov(y.T))
else:
inv_Y = 1.0 / float(n_times * n_epochs - 1)
del y
# Inverse coef according to Haufe's method
# patterns has shape (n_feats * n_delays, n_outputs)
coef = np.reshape(self.coef_, (n_feats * n_delays, n_outputs))
patterns = cov_.dot(coef.dot(inv_Y))
self.patterns_ = patterns.reshape(shape)
return self
def predict(self, X):
"""Generate predictions with a receptive field.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_channels)
The input features for the model.
Returns
-------
y_pred : array, shape (n_times[, n_epochs][, n_outputs])
The output predictions. "Note that valid samples (those
unaffected by edge artifacts during the time delaying step) can
be obtained using ``y_pred[rf.valid_samples_]``.
"""
if not hasattr(self, "delays_"):
raise NotFittedError("Estimator has not been fit yet.")
X, _, X_dim = self._check_dimensions(X, None, predict=True)[:3]
del _
# convert to sklearn and back
pred_shape = X.shape[:-1]
if self._y_dim > 1:
pred_shape = pred_shape + (self.coef_.shape[0],)
X, _ = self._delay_and_reshape(X)
y_pred = self.estimator_.predict(X)
y_pred = y_pred.reshape(pred_shape, order="F")
shape = list(y_pred.shape)
if X_dim <= 2:
shape.pop(1) # epochs
extra = 0
else:
extra = 1
shape = shape[: self._y_dim + extra]
y_pred.shape = shape
return y_pred
def score(self, X, y):
"""Score predictions generated with a receptive field.
This calls ``self.predict``, then masks the output of this
and ``y` with ``self.valid_samples_``. Finally, it passes
this to a :mod:`sklearn.metrics` scorer.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_channels)
The input features for the model.
y : array, shape (n_times[, n_epochs][, n_outputs])
Used for scikit-learn compatibility.
Returns
-------
scores : list of float, shape (n_outputs,)
The scores estimated by the model for each output (e.g. mean
R2 of ``predict(X)``).
"""
# Create our scoring object
scorer_ = _SCORERS[self.scoring]
# Generate predictions, then reshape so we can mask time
X, y = self._check_dimensions(X, y, predict=True)[:2]
n_times, n_epochs, n_outputs = y.shape
y_pred = self.predict(X)
y_pred = y_pred[self.valid_samples_]
y = y[self.valid_samples_]
# Re-vectorize and call scorer
y = y.reshape([-1, n_outputs], order="F")
y_pred = y_pred.reshape([-1, n_outputs], order="F")
assert y.shape == y_pred.shape
scores = scorer_(y, y_pred, multioutput="raw_values")
return scores
def _check_dimensions(self, X, y, predict=False):
_validate_type(X, "array-like", "X")
_validate_type(y, ("array-like", None), "y")
X_dim = X.ndim
y_dim = y.ndim if y is not None else 0
if X_dim == 2:
# Ensure we have a 3D input by adding singleton epochs dimension
X = X[:, np.newaxis, :]
if y is not None:
if y_dim == 1:
y = y[:, np.newaxis, np.newaxis] # epochs, outputs
elif y_dim == 2:
y = y[:, np.newaxis, :] # epochs
else:
raise ValueError(
"y must be shape (n_times[, n_epochs][,n_outputs], got "
f"{y.shape}"
)
elif X.ndim == 3:
if y is not None:
if y.ndim == 2:
y = y[:, :, np.newaxis] # Add an outputs dim
elif y.ndim != 3:
raise ValueError(
"If X has 3 dimensions, y must have 2 or 3 dimensions"
)
else:
raise ValueError(
f"X must be shape (n_times[, n_epochs], n_features), got {X.shape}"
)
if y is not None:
if X.shape[0] != y.shape[0]:
raise ValueError(
f"X and y do not have the same n_times\n{X.shape[0]} != "
f"{y.shape[0]}"
)
if X.shape[1] != y.shape[1]:
raise ValueError(
f"X and y do not have the same n_epochs\n{X.shape[1]} != "
f"{y.shape[1]}"
)
if predict and y.shape[-1] not in (len(self.estimator_.coef_), 1):
raise ValueError(
"Number of outputs does not match estimator coefficients dimensions"
)
return X, y, X_dim, y_dim
def _delay_time_series(X, tmin, tmax, sfreq, fill_mean=False):
"""Return a time-lagged input time series.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_features)
The time series to delay. Must be 2D or 3D.
tmin : int | float
The starting lag.
tmax : int | float
The ending lag.
Must be >= tmin.
sfreq : int | float
The sampling frequency of the series. Defaults to 1.0.
fill_mean : bool
If True, the fill value will be the mean along the time dimension
of the feature, and each cropped and delayed segment of data
will be shifted to have the same mean value (ensuring that mean
subtraction works properly). If False, the fill value will be zero.
Returns
-------
delayed : array, shape(n_times[, n_epochs][, n_features], n_delays)
The delayed data. It has the same shape as X, with an extra dimension
appended to the end.
Examples
--------
>>> tmin, tmax = -0.1, 0.2
>>> sfreq = 10.
>>> x = np.arange(1, 6)
>>> x_del = _delay_time_series(x, tmin, tmax, sfreq)
>>> print(x_del) # doctest:+SKIP
[[2. 1. 0. 0.]
[3. 2. 1. 0.]
[4. 3. 2. 1.]
[5. 4. 3. 2.]
[0. 5. 4. 3.]]
"""
_check_delayer_params(tmin, tmax, sfreq)
delays = _times_to_delays(tmin, tmax, sfreq)
# Iterate through indices and append
delayed = np.zeros(X.shape + (len(delays),))
if fill_mean:
mean_value = X.mean(axis=0)
if X.ndim == 3:
mean_value = np.mean(mean_value, axis=0)
delayed[:] = mean_value[:, np.newaxis]
for ii, ix_delay in enumerate(delays):
# Create zeros to populate w/ delays
if ix_delay < 0:
out = delayed[:ix_delay, ..., ii]
use_X = X[-ix_delay:]
elif ix_delay > 0:
out = delayed[ix_delay:, ..., ii]
use_X = X[:-ix_delay]
else: # == 0
out = delayed[..., ii]
use_X = X
out[:] = use_X
if fill_mean:
out[:] += mean_value - use_X.mean(axis=0)
return delayed
def _times_to_delays(tmin, tmax, sfreq):
"""Convert a tmin/tmax in seconds to delays."""
# Convert seconds to samples
delays = np.arange(int(np.round(tmin * sfreq)), int(np.round(tmax * sfreq) + 1))
return delays
def _delays_to_slice(delays):
"""Find the slice to be taken in order to remove missing values."""
# Negative values == cut off rows at the end
min_delay = None if delays[-1] <= 0 else delays[-1]
# Positive values == cut off rows at the end
max_delay = None if delays[0] >= 0 else delays[0]
return slice(min_delay, max_delay)
def _check_delayer_params(tmin, tmax, sfreq):
"""Check delayer input parameters. For future custom delay support."""
_validate_type(sfreq, "numeric", "`sfreq`")
for tlim in (tmin, tmax):
_validate_type(tlim, "numeric", "tmin/tmax")
if not tmin <= tmax:
raise ValueError("tmin must be <= tmax")
def _reshape_for_est(X_del):
"""Convert X_del to a sklearn-compatible shape."""
n_times, n_epochs, n_feats, n_delays = X_del.shape
X_del = X_del.reshape(n_times, n_epochs, -1) # concatenate feats
X_del = X_del.reshape(n_times * n_epochs, -1, order="F")
return X_del
# Create a correlation scikit-learn-style scorer
def _corr_score(y_true, y, multioutput=None):
assert multioutput == "raw_values"
for this_y in (y_true, y):
if this_y.ndim != 2:
raise ValueError(
f"inputs must be shape (samples, outputs), got {this_y.shape}"
)
return np.array([pearsonr(y_true[:, ii], y[:, ii])[0] for ii in range(y.shape[-1])])
def _r2_score(y_true, y, multioutput=None):
return r2_score(y_true, y, multioutput=multioutput)
_SCORERS = {"r2": _r2_score, "corrcoef": _corr_score}