# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import glob
import importlib
import inspect
import logging
import os
import os.path as op
import sys
import tempfile
import time
import zipfile
from collections import OrderedDict
from pathlib import Path
from typing import cast
import numpy as np
from ..label import Label, read_labels_from_annot, write_labels_to_annot
from ..utils import (
_pl,
_safe_input,
_validate_type,
get_config,
get_subjects_dir,
logger,
set_config,
verbose,
)
from ..utils.docs import _docformat, docdict
from .config import MNE_DATASETS, _hcp_mmp_license_text
_data_path_doc = """Get path to local copy of {name} dataset.
Parameters
----------
path : None | str
Location of where to look for the {name} dataset.
If None, the environment variable or config parameter
``{conf}`` is used. If it doesn't exist, the
"~/mne_data" directory is used. If the {name} dataset
is not found under the given path, the data
will be automatically downloaded to the specified folder.
force_update : bool
Force update of the {name} dataset even if a local copy exists.
Default is False.
update_path : bool | None
If True (default), set the ``{conf}`` in mne-python
config to the given path. If None, the user is prompted.
download : bool
If False and the {name} dataset has not been downloaded yet,
it will not be downloaded and the path will be returned as
'' (empty string). This is mostly used for debugging purposes
and can be safely ignored by most users.
%(verbose)s
Returns
-------
path : instance of Path
Path to {name} dataset directory.
"""
_data_path_doc_accept = _data_path_doc.split("%(verbose)s")
_data_path_doc_accept[-1] = "%(verbose)s" + _data_path_doc_accept[-1]
_data_path_doc_accept.insert(1, " %(accept)s")
_data_path_doc_accept = "".join(_data_path_doc_accept)
_data_path_doc = _docformat(_data_path_doc, docdict)
_data_path_doc_accept = _docformat(_data_path_doc_accept, docdict)
_version_doc = """Get version of the local {name} dataset.
Returns
-------
version : str | None
Version of the {name} local dataset, or None if the dataset
does not exist locally.
"""
def _dataset_version(path, name):
"""Get the version of the dataset."""
ver_fname = op.join(path, "version.txt")
if op.exists(ver_fname):
with open(ver_fname) as fid:
version = fid.readline().strip() # version is on first line
else:
logger.debug(f"Version file missing: {ver_fname}")
# Sample dataset versioning was introduced after 0.3
# SPM dataset was introduced with 0.7
versions = dict(sample="0.7", spm="0.3")
version = versions.get(name, "0.0")
return version
@verbose
def default_path(*, verbose=None):
"""Get the default MNE_DATA path.
Parameters
----------
%(verbose)s
Returns
-------
data_path : instance of Path
Path to the default MNE_DATA directory.
"""
return _get_path(None, None, None)
def _get_path(path, key, name):
"""Get a dataset path."""
# 1. Input
_validate_type(path, ("path-like", None), path)
if path is not None:
return Path(path).expanduser()
# 2. get_config(key) — unless key is None or "" (special get_config values)
# 3. get_config('MNE_DATA')
path = get_config(key or "MNE_DATA", get_config("MNE_DATA"))
if path is not None:
path = Path(path).expanduser()
if not path.exists():
msg = (
f"Download location {path} as specified by MNE_DATA does "
f"not exist. Either create this directory manually and try "
f"again, or set MNE_DATA to an existing directory."
)
raise FileNotFoundError(msg)
return path
# 4. ~/mne_data (but use a fake home during testing so we don't
# unnecessarily create ~/mne_data)
extra = f" for {name}" if name else ""
logger.info(f"Using default location ~/mne_data{extra}...")
path = Path(os.getenv("_MNE_FAKE_HOME_DIR", "~")).expanduser() / "mne_data"
if not path.is_dir():
logger.info(f"Creating {path}")
try:
path.mkdir()
except OSError:
raise OSError(
"User does not have write permissions "
f"at '{path}', try giving the path as an "
"argument to data_path() where user has "
"write permissions, for ex:data_path"
"('/home/xyz/me2/')"
)
return path
def _do_path_update(path, update_path, key, name):
"""Update path."""
path = op.abspath(path)
identical = get_config(key, "", use_env=False) == path
if not identical:
if update_path is None:
update_path = True
if "--update-dataset-path" in sys.argv:
answer = "y"
else:
msg = (
f"Do you want to set the path:\n {path}\nas the default {name} "
"dataset path in the mne-python config [y]/n? "
)
answer = _safe_input(msg, alt="pass update_path=True")
if answer.lower() == "n":
update_path = False
if update_path:
set_config(key, str(path), set_env=False)
return path
# This is meant to be semi-public: let packages like mne-bids use it to make
# sure they don't accidentally set download=True in their tests, too
_MODULES_TO_ENSURE_DOWNLOAD_IS_FALSE_IN_TESTS = ("mne",)
def _check_in_testing_and_raise(name, download):
"""Check if we're in an MNE test and raise an error if download!=False."""
root_dirs = [
importlib.import_module(ns)
for ns in _MODULES_TO_ENSURE_DOWNLOAD_IS_FALSE_IN_TESTS
]
root_dirs = [str(Path(ns.__file__).parent) for ns in root_dirs]
check = False
func = None
frame = inspect.currentframe()
try:
# First, traverse out of the data_path() call
while frame:
if frame.f_code.co_name in ("data_path", "load_data"):
func = frame.f_code.co_name
frame = frame.f_back.f_back # out of verbose decorator
break
frame = frame.f_back
# Next, see what the caller was
while frame:
fname = frame.f_code.co_filename
if fname is not None:
fname = Path(fname)
# in mne namespace, and
# (can't use is_relative_to here until 3.9)
if any(str(fname).startswith(rd) for rd in root_dirs) and (
# in tests/*.py
fname.parent.stem == "tests"
or
# or in a conftest.py
fname.stem == "conftest.py"
):
check = True
break
frame = frame.f_back
finally:
del frame
if check and download is not False:
raise RuntimeError(
f"Do not download dataset {repr(name)} in tests, pass "
f"{func}(download=False) to prevent accidental downloads"
)
def _download_mne_dataset(
name, processor, path, force_update, update_path, download, accept=False
) -> Path:
"""Aux function for downloading internal MNE datasets."""
import pooch
from mne.datasets._fetch import fetch_dataset
_check_in_testing_and_raise(name, download)
# import pooch library for handling the dataset downloading
dataset_params = MNE_DATASETS[name]
dataset_params["dataset_name"] = name
config_key = MNE_DATASETS[name]["config_key"]
folder_name = MNE_DATASETS[name]["folder_name"]
# get download path for specific dataset
path = _get_path(path=path, key=config_key, name=name)
# instantiate processor that unzips file
if processor == "nested_untar":
processor_ = pooch.Untar(extract_dir=op.join(path, folder_name))
elif processor == "nested_unzip":
processor_ = pooch.Unzip(extract_dir=op.join(path, folder_name))
else:
processor_ = processor
# handle case of multiple sub-datasets with different urls
if name == "visual_92_categories":
dataset_params = []
for name in ["visual_92_categories_1", "visual_92_categories_2"]:
this_dataset = MNE_DATASETS[name]
this_dataset["dataset_name"] = name
dataset_params.append(this_dataset)
return cast(
Path,
fetch_dataset(
dataset_params=dataset_params,
processor=processor_,
path=path,
force_update=force_update,
update_path=update_path,
download=download,
accept=accept,
),
)
def _get_version(name):
"""Get a dataset version."""
from mne.datasets._fetch import fetch_dataset
if not has_dataset(name):
return None
dataset_params = MNE_DATASETS[name]
dataset_params["dataset_name"] = name
config_key = MNE_DATASETS[name]["config_key"]
# get download path for specific dataset
path = _get_path(path=None, key=config_key, name=name)
return fetch_dataset(dataset_params, path=path, return_version=True)[1]
def has_dataset(name):
"""Check for presence of a dataset.
Parameters
----------
name : str | dict
The dataset to check. Strings refer to one of the supported datasets
listed :ref:`here <datasets>`. A :class:`dict` can be used to check for
user-defined datasets (see the Notes section of :func:`fetch_dataset`),
and must contain keys ``dataset_name``, ``archive_name``, ``url``,
``folder_name``, ``hash``.
Returns
-------
has : bool
True if the dataset is present.
"""
from mne.datasets._fetch import fetch_dataset
if isinstance(name, dict):
dataset_name = name["dataset_name"]
dataset_params = name
else:
dataset_name = "spm" if name == "spm_face" else name
dataset_params = MNE_DATASETS[dataset_name]
dataset_params["dataset_name"] = dataset_name
config_key = dataset_params["config_key"]
# get download path for specific dataset
path = _get_path(path=None, key=config_key, name=dataset_name)
dp = fetch_dataset(dataset_params, path=path, download=False, check_version=False)
if dataset_name.startswith("bst_"):
check = dataset_name
else:
check = MNE_DATASETS[dataset_name]["folder_name"]
return str(dp).endswith(check)
@verbose
def _download_all_example_data(verbose=True):
"""Download all datasets used in examples and tutorials."""
# This function is designed primarily to be used by CircleCI, to:
#
# 1. Streamline data downloading
# 2. Make CircleCI fail early (rather than later) if some necessary data
# cannot be retrieved.
# 3. Avoid download statuses and timing biases in rendered examples.
#
# verbose=True by default so we get nice status messages.
# Consider adding datasets from here to CircleCI for PR-auto-build
import openneuro
paths = dict()
for kind in (
"sample testing misc spm_face somato hf_sef multimodal "
"fnirs_motor opm mtrf fieldtrip_cmc kiloword phantom_kit phantom_4dbti "
"refmeg_noise ssvep epilepsy_ecog ucl_opm_auditory eyelink "
"erp_core brainstorm.bst_raw brainstorm.bst_auditory "
"brainstorm.bst_resting brainstorm.bst_phantom_ctf "
"brainstorm.bst_phantom_elekta phantom_kernel"
).split():
mod = importlib.import_module(f"mne.datasets.{kind}")
data_path_func = getattr(mod, "data_path")
kwargs = dict()
if "accept" in inspect.getfullargspec(data_path_func).args:
kwargs["accept"] = True
paths[kind] = data_path_func(**kwargs)
logger.info(f"[done {kind}]")
# Now for the exceptions:
from . import (
eegbci,
fetch_fsaverage,
fetch_hcp_mmp_parcellation,
fetch_infant_template,
fetch_phantom,
limo,
sleep_physionet,
)
eegbci.load_data(subjects=1, runs=[6, 10, 14], update_path=True)
eegbci.load_data(subjects=range(1, 5), runs=[3], update_path=True)
logger.info("[done eegbci]")
sleep_physionet.age.fetch_data(subjects=[0, 1], recording=[1])
logger.info("[done sleep_physionet]")
# If the user has SUBJECTS_DIR, respect it, if not, set it to the EEG one
# (probably on CircleCI, or otherwise advanced user)
fetch_fsaverage(subjects_dir=None)
logger.info("[done fsaverage]")
# Now also update the sample dataset path, if not already SUBJECTS_DIR
# (some tutorials make use of these files)
fetch_fsaverage(subjects_dir=paths["sample"] / "subjects")
fetch_infant_template("6mo")
logger.info("[done infant_template]")
fetch_hcp_mmp_parcellation(subjects_dir=paths["sample"] / "subjects", accept=True)
logger.info("[done hcp_mmp_parcellation]")
fetch_phantom("otaniemi", subjects_dir=paths["brainstorm.bst_phantom_elekta"])
logger.info("[done phantom]")
limo.load_data(subject=1, update_path=True)
logger.info("[done limo]")
# for ESG
ds = "ds004388"
target_dir = default_path() / ds
run_name = "sub-001/eeg/*median_run-03_eeg*.set"
if not glob.glob(str(target_dir / run_name)):
target_dir.mkdir(exist_ok=True)
openneuro.download(dataset=ds, target_dir=target_dir, include=run_name[:-4])
@verbose
def fetch_aparc_sub_parcellation(subjects_dir=None, verbose=None):
"""Fetch the modified subdivided aparc parcellation.
This will download and install the subdivided aparc parcellation
:footcite:'KhanEtAl2018' files for
FreeSurfer's fsaverage to the specified directory.
Parameters
----------
subjects_dir : path-like | None
The subjects directory to use. The file will be placed in
``subjects_dir + '/fsaverage/label'``.
%(verbose)s
References
----------
.. footbibliography::
"""
import pooch
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
destination = subjects_dir / "fsaverage" / "label"
urls = dict(lh="https://osf.io/p92yb/download", rh="https://osf.io/4kxny/download")
hashes = dict(
lh="9e4d8d6b90242b7e4b0145353436ef77", rh="dd6464db8e7762d969fc1d8087cd211b"
)
downloader = pooch.HTTPDownloader(**_downloader_params())
for hemi in ("lh", "rh"):
fname = f"{hemi}.aparc_sub.annot"
fpath = destination / fname
if not fpath.is_file():
pooch.retrieve(
url=urls[hemi],
known_hash=f"md5:{hashes[hemi]}",
path=destination,
downloader=downloader,
fname=fname,
)
@verbose
def fetch_hcp_mmp_parcellation(
subjects_dir=None, combine=True, *, accept=False, verbose=None
):
"""Fetch the HCP-MMP parcellation.
This will download and install the HCP-MMP parcellation
:footcite:`GlasserEtAl2016` files for FreeSurfer's fsaverage
:footcite:`Mills2016` to the specified directory.
Parameters
----------
subjects_dir : path-like | None
The subjects directory to use. The file will be placed in
``subjects_dir + '/fsaverage/label'``.
combine : bool
If True, also produce the combined/reduced set of 23 labels per
hemisphere as ``HCPMMP1_combined.annot``
:footcite:`GlasserEtAl2016supp`.
%(accept)s
%(verbose)s
Notes
-----
Use of this parcellation is subject to terms of use on the
`HCP-MMP webpage <https://balsa.wustl.edu/WN56>`_.
References
----------
.. footbibliography::
"""
import pooch
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
destination = subjects_dir / "fsaverage" / "label"
fnames = [destination / f"{hemi}.HCPMMP1.annot" for hemi in ("lh", "rh")]
urls = dict(
lh="https://ndownloader.figshare.com/files/5528816",
rh="https://ndownloader.figshare.com/files/5528819",
)
hashes = dict(
lh="46a102b59b2fb1bb4bd62d51bf02e975", rh="75e96b331940227bbcb07c1c791c2463"
)
if not all(fname.exists() for fname in fnames):
if accept or "--accept-hcpmmp-license" in sys.argv:
answer = "y"
else:
answer = _safe_input(f"{_hcp_mmp_license_text}\nAgree (y/[n])? ")
if answer.lower() != "y":
raise RuntimeError("You must agree to the license to use this dataset")
downloader = pooch.HTTPDownloader(**_downloader_params())
for hemi, fpath in zip(("lh", "rh"), fnames):
if not op.isfile(fpath):
fname = fpath.name
pooch.retrieve(
url=urls[hemi],
known_hash=f"md5:{hashes[hemi]}",
path=destination,
downloader=downloader,
fname=fname,
)
if combine:
fnames = [
op.join(destination, f"{hemi}.HCPMMP1_combined.annot")
for hemi in ("lh", "rh")
]
if all(op.isfile(fname) for fname in fnames):
return
# otherwise, let's make them
logger.info("Creating combined labels")
groups = OrderedDict(
[
("Primary Visual Cortex (V1)", ("V1",)),
("Early Visual Cortex", ("V2", "V3", "V4")),
(
"Dorsal Stream Visual Cortex",
("V3A", "V3B", "V6", "V6A", "V7", "IPS1"),
),
(
"Ventral Stream Visual Cortex",
("V8", "VVC", "PIT", "FFC", "VMV1", "VMV2", "VMV3"),
),
(
"MT+ Complex and Neighboring Visual Areas",
("V3CD", "LO1", "LO2", "LO3", "V4t", "FST", "MT", "MST", "PH"),
),
("Somatosensory and Motor Cortex", ("4", "3a", "3b", "1", "2")),
(
"Paracentral Lobular and Mid Cingulate Cortex",
(
"24dd",
"24dv",
"6mp",
"6ma",
"SCEF",
"5m",
"5L",
"5mv",
),
),
("Premotor Cortex", ("55b", "6d", "6a", "FEF", "6v", "6r", "PEF")),
(
"Posterior Opercular Cortex",
("43", "FOP1", "OP4", "OP1", "OP2-3", "PFcm"),
),
("Early Auditory Cortex", ("A1", "LBelt", "MBelt", "PBelt", "RI")),
(
"Auditory Association Cortex",
(
"A4",
"A5",
"STSdp",
"STSda",
"STSvp",
"STSva",
"STGa",
"TA2",
),
),
(
"Insular and Frontal Opercular Cortex",
(
"52",
"PI",
"Ig",
"PoI1",
"PoI2",
"FOP2",
"FOP3",
"MI",
"AVI",
"AAIC",
"Pir",
"FOP4",
"FOP5",
),
),
(
"Medial Temporal Cortex",
(
"H",
"PreS",
"EC",
"PeEc",
"PHA1",
"PHA2",
"PHA3",
),
),
(
"Lateral Temporal Cortex",
(
"PHT",
"TE1p",
"TE1m",
"TE1a",
"TE2p",
"TE2a",
"TGv",
"TGd",
"TF",
),
),
(
"Temporo-Parieto-Occipital Junction",
(
"TPOJ1",
"TPOJ2",
"TPOJ3",
"STV",
"PSL",
),
),
(
"Superior Parietal Cortex",
(
"LIPv",
"LIPd",
"VIP",
"AIP",
"MIP",
"7PC",
"7AL",
"7Am",
"7PL",
"7Pm",
),
),
(
"Inferior Parietal Cortex",
(
"PGp",
"PGs",
"PGi",
"PFm",
"PF",
"PFt",
"PFop",
"IP0",
"IP1",
"IP2",
),
),
(
"Posterior Cingulate Cortex",
(
"DVT",
"ProS",
"POS1",
"POS2",
"RSC",
"v23ab",
"d23ab",
"31pv",
"31pd",
"31a",
"23d",
"23c",
"PCV",
"7m",
),
),
(
"Anterior Cingulate and Medial Prefrontal Cortex",
(
"33pr",
"p24pr",
"a24pr",
"p24",
"a24",
"p32pr",
"a32pr",
"d32",
"p32",
"s32",
"8BM",
"9m",
"10v",
"10r",
"25",
),
),
(
"Orbital and Polar Frontal Cortex",
(
"47s",
"47m",
"a47r",
"11l",
"13l",
"a10p",
"p10p",
"10pp",
"10d",
"OFC",
"pOFC",
),
),
(
"Inferior Frontal Cortex",
(
"44",
"45",
"IFJp",
"IFJa",
"IFSp",
"IFSa",
"47l",
"p47r",
),
),
(
"DorsoLateral Prefrontal Cortex",
(
"8C",
"8Av",
"i6-8",
"s6-8",
"SFL",
"8BL",
"9p",
"9a",
"8Ad",
"p9-46v",
"a9-46v",
"46",
"9-46d",
),
),
("???", ("???",)),
]
)
assert len(groups) == 23
labels_out = list()
for hemi in ("lh", "rh"):
labels = read_labels_from_annot(
"fsaverage", "HCPMMP1", hemi=hemi, subjects_dir=subjects_dir, sort=False
)
label_names = [
"???" if label.name.startswith("???") else label.name.split("_")[1]
for label in labels
]
used = np.zeros(len(labels), bool)
for key, want in groups.items():
assert "\t" not in key
these_labels = [
li
for li, label_name in enumerate(label_names)
if label_name in want
]
assert not used[these_labels].any()
assert len(these_labels) == len(want)
used[these_labels] = True
these_labels = [labels[li] for li in these_labels]
# take a weighted average to get the color
# (here color == task activation)
w = np.array([len(label.vertices) for label in these_labels])
w = w / float(w.sum())
color = np.dot(w, [label.color for label in these_labels])
these_labels = sum(
these_labels, Label([], subject="fsaverage", hemi=hemi)
)
these_labels.name = key
these_labels.color = color
labels_out.append(these_labels)
assert used.all()
assert len(labels_out) == 46
for hemi, side in (("lh", "left"), ("rh", "right")):
table_name = f"./{side}.fsaverage164.label.gii"
write_labels_to_annot(
labels_out,
"fsaverage",
"HCPMMP1_combined",
hemi=hemi,
subjects_dir=subjects_dir,
sort=False,
table_name=table_name,
)
def _manifest_check_download(manifest_path, destination, url, hash_):
import pooch
with open(manifest_path) as fid:
names = [name.strip() for name in fid.readlines()]
need = list()
for name in names:
if not (destination / name).is_file():
need.append(name)
logger.info(
"%d file%s missing from %s in %s",
len(need),
_pl(need),
manifest_path.name,
destination,
)
if len(need) > 0:
downloader = pooch.HTTPDownloader(**_downloader_params())
with tempfile.TemporaryDirectory() as path:
logger.info("Downloading missing files remotely")
path = Path(path)
fname_path = path / "temp.zip"
pooch.retrieve(
url=url,
known_hash=f"md5:{hash_}",
path=path,
downloader=downloader,
fname=fname_path.name,
)
logger.info(f"Extracting missing file{_pl(need)}")
with zipfile.ZipFile(fname_path, "r") as ff:
members = set(f for f in ff.namelist() if not f.endswith("/"))
missing = sorted(members.symmetric_difference(set(names)))
if len(missing):
raise RuntimeError(
"Zip file did not have correct names:\n{'\n'.join(missing)}"
)
for name in need:
ff.extract(name, path=destination)
logger.info(f"Successfully extracted {len(need)} file{_pl(need)}")
def _log_time_size(t0, sz):
t = time.time() - t0
fmt = "%Ss"
if t > 60:
fmt = f"%Mm{fmt}"
if t > 3600:
fmt = f"%Hh{fmt}"
sz = sz / 1048576 # 1024 ** 2
t = time.strftime(fmt, time.gmtime(t))
logger.info(f"Download complete in {t} ({sz:.1f} MB)")
def _downloader_params(*, auth=None, token=None):
params = dict(timeout=15)
params["progressbar"] = (
logger.level <= logging.INFO and get_config("MNE_TQDM", "tqdm.auto") != "off"
)
if auth is not None:
params["auth"] = auth
if token is not None:
params["headers"] = {"Authorization": f"token {token}"}
return params