[074d3d]: / mne / channels / channels.py

Download this file

2317 lines (2035 with data), 82.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from __future__ import annotations # only needed for Python ≤ 3.9
import os.path as op
import string
import sys
from collections import OrderedDict
from copy import deepcopy
from dataclasses import dataclass
from functools import partial
from pathlib import Path
import numpy as np
from scipy.io import loadmat
from scipy.sparse import csr_array, lil_array
from scipy.spatial import Delaunay
from scipy.stats import zscore
from .._fiff.constants import FIFF
from .._fiff.meas_info import ( # noqa F401
Info,
MontageMixin,
_merge_info,
_rename_comps,
_unit2human, # TODO: pybv relies on this, should be made public
create_info,
)
from .._fiff.pick import (
_check_excludes_includes,
_pick_data_channels,
_picks_by_type,
_picks_to_idx,
_second_rules,
channel_indices_by_type,
channel_type,
pick_channels,
pick_info,
pick_types,
)
from .._fiff.proj import _has_eeg_average_ref_proj, setup_proj
from .._fiff.reference import add_reference_channels, set_eeg_reference
from .._fiff.tag import _rename_list
from ..bem import _check_origin
from ..defaults import HEAD_SIZE_DEFAULT, _handle_default
from ..utils import (
_check_dict_keys,
_check_fname,
_check_option,
_check_preload,
_get_stim_channel,
_on_missing,
_validate_type,
fill_doc,
legacy,
logger,
verbose,
warn,
)
def _get_meg_system(info):
"""Educated guess for the helmet type based on channels."""
have_helmet = True
for ch in info["chs"]:
if ch["kind"] == FIFF.FIFFV_MEG_CH:
# Only take first 16 bits, as higher bits store CTF grad comp order
coil_type = ch["coil_type"] & 0xFFFF
nmag = np.sum([c["kind"] == FIFF.FIFFV_MEG_CH for c in info["chs"]])
if coil_type == FIFF.FIFFV_COIL_NM_122:
system = "122m"
break
elif coil_type // 1000 == 3: # All Vectorview coils are 30xx
system = "306m"
break
elif (
coil_type == FIFF.FIFFV_COIL_MAGNES_MAG
or coil_type == FIFF.FIFFV_COIL_MAGNES_GRAD
):
system = "Magnes_3600wh" if nmag > 150 else "Magnes_2500wh"
break
elif coil_type == FIFF.FIFFV_COIL_CTF_GRAD:
system = "CTF_275"
break
elif coil_type == FIFF.FIFFV_COIL_KIT_GRAD:
system = "KIT"
# Our helmet does not match very well, so let's just create it
have_helmet = False
break
elif coil_type == FIFF.FIFFV_COIL_BABY_GRAD:
system = "BabySQUID"
break
elif coil_type == FIFF.FIFFV_COIL_ARTEMIS123_GRAD:
system = "ARTEMIS123"
have_helmet = False
break
elif coil_type == FIFF.FIFFV_COIL_KERNEL_OPM_MAG_GEN1:
system = "Kernel_Flux"
have_helmet = True
break
else:
system = "unknown"
have_helmet = False
return system, have_helmet
@verbose
def equalize_channels(instances, copy=True, verbose=None):
"""Equalize channel picks and ordering across multiple MNE-Python objects.
First, all channels that are not common to each object are dropped. Then,
using the first object in the list as a template, the channels of each
object are re-ordered to match the template. The end result is that all
given objects define the same channels, in the same order.
Parameters
----------
instances : list
A list of MNE-Python objects to equalize the channels for. Objects can
be of type Raw, Epochs, Evoked, AverageTFR, Forward, Covariance,
CrossSpectralDensity or Info.
copy : bool
When dropping and/or re-ordering channels, an object will be copied
when this parameter is set to ``True``. When set to ``False`` (the
default) the dropping and re-ordering of channels happens in-place.
.. versionadded:: 0.20.0
%(verbose)s
Returns
-------
equalized_instances : list
A list of MNE-Python objects that have the same channels defined in the
same order.
Notes
-----
This function operates inplace.
"""
from ..cov import Covariance
from ..epochs import BaseEpochs
from ..evoked import Evoked
from ..forward import Forward
from ..io import BaseRaw
from ..time_frequency import BaseTFR, CrossSpectralDensity
# Instances need to have a `ch_names` attribute and a `pick_channels`
# method that supports `ordered=True`.
allowed_types = (
BaseRaw,
BaseEpochs,
Evoked,
BaseTFR,
Forward,
Covariance,
CrossSpectralDensity,
Info,
)
allowed_types_str = (
"Raw, Epochs, Evoked, TFR, Forward, Covariance, CrossSpectralDensity or Info"
)
for inst in instances:
_validate_type(
inst, allowed_types, "Instances to be modified", allowed_types_str
)
chan_template = instances[0].ch_names
logger.info("Identifying common channels ...")
channels = [set(inst.ch_names) for inst in instances]
common_channels = set(chan_template).intersection(*channels)
all_channels = set(chan_template).union(*channels)
dropped = list(set(all_channels - common_channels))
# Preserve the order of chan_template
order = np.argsort([chan_template.index(ch) for ch in common_channels])
common_channels = np.array(list(common_channels))[order].tolist()
# Update all instances to match the common_channels list
reordered = False
equalized_instances = []
for inst in instances:
# Only perform picking when needed
if inst.ch_names != common_channels:
if isinstance(inst, Info):
sel = pick_channels(
inst.ch_names, common_channels, exclude=[], ordered=True
)
inst = pick_info(inst, sel, copy=copy, verbose=False)
else:
if copy:
inst = inst.copy()
# TODO change to .pick() once CSD, Cov, and Fwd have `.pick()` methods
inst.pick_channels(common_channels, ordered=True)
if len(inst.ch_names) == len(common_channels):
reordered = True
equalized_instances.append(inst)
if dropped:
logger.info(f"Dropped the following channels:\n{dropped}")
elif reordered:
logger.info("Channels have been re-ordered.")
return equalized_instances
def unify_bad_channels(insts):
"""Unify bad channels across a list of instances.
All instances must be of the same type and have matching channel names and channel
order. The ``.info["bads"]`` of each instance will be set to the union of
``.info["bads"]`` across all instances.
Parameters
----------
insts : list
List of instances (:class:`~mne.io.Raw`, :class:`~mne.Epochs`,
:class:`~mne.Evoked`, :class:`~mne.time_frequency.Spectrum`,
:class:`~mne.time_frequency.EpochsSpectrum`) across which to unify bad channels.
Returns
-------
insts : list
List of instances with bad channels unified across instances.
See Also
--------
mne.channels.equalize_channels
mne.channels.rename_channels
mne.channels.combine_channels
Notes
-----
This function modifies the instances in-place.
.. versionadded:: 1.6
"""
from ..epochs import Epochs
from ..evoked import Evoked
from ..io import BaseRaw
from ..time_frequency.spectrum import BaseSpectrum
# ensure input is list-like
_validate_type(insts, (list, tuple), "insts")
# ensure non-empty
if len(insts) == 0:
raise ValueError("insts must not be empty")
# ensure all insts are MNE objects, and all the same type
inst_type = type(insts[0])
valid_types = (BaseRaw, Epochs, Evoked, BaseSpectrum)
for inst in insts:
_validate_type(inst, valid_types, "each object in insts")
if type(inst) is not inst_type:
raise ValueError("All insts must be the same type")
# ensure all insts have the same channels and channel order
ch_names = insts[0].ch_names
for inst in insts[1:]:
dif = set(inst.ch_names) ^ set(ch_names)
if len(dif):
raise ValueError(
"Channels do not match across the objects in insts. Consider calling "
"equalize_channels before calling this function."
)
elif inst.ch_names != ch_names:
raise ValueError(
"Channel names are sorted differently across instances. Please use "
"mne.channels.equalize_channels."
)
# collect bads as dict keys so that insertion order is preserved, then cast to list
all_bads = dict()
for inst in insts:
all_bads.update(dict.fromkeys(inst.info["bads"]))
all_bads = list(all_bads)
# update bads on all instances
for inst in insts:
inst.info["bads"] = all_bads
return insts
class ReferenceMixin(MontageMixin):
"""Mixin class for Raw, Evoked, Epochs."""
@verbose
def set_eeg_reference(
self,
ref_channels="average",
projection=False,
ch_type="auto",
forward=None,
*,
joint=False,
verbose=None,
):
"""Specify which reference to use for EEG data.
Use this function to explicitly specify the desired reference for EEG.
This can be either an existing electrode or a new virtual channel.
This function will re-reference the data according to the desired
reference.
Parameters
----------
%(ref_channels_set_eeg_reference)s
%(projection_set_eeg_reference)s
%(ch_type_set_eeg_reference)s
%(forward_set_eeg_reference)s
%(joint_set_eeg_reference)s
%(verbose)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
Data with EEG channels re-referenced. If ``ref_channels='average'``
and ``projection=True`` a projection will be added instead of
directly re-referencing the data.
%(set_eeg_reference_see_also_notes)s
"""
return set_eeg_reference(
self,
ref_channels=ref_channels,
copy=False,
projection=projection,
ch_type=ch_type,
forward=forward,
joint=joint,
)[0]
class UpdateChannelsMixin:
"""Mixin class for Raw, Evoked, Epochs, Spectrum, AverageTFR."""
@verbose
@legacy(alt="inst.pick(...)")
def pick_types(
self,
meg=False,
eeg=False,
stim=False,
eog=False,
ecg=False,
emg=False,
ref_meg="auto",
*,
misc=False,
resp=False,
chpi=False,
exci=False,
ias=False,
syst=False,
seeg=False,
dipole=False,
gof=False,
bio=False,
ecog=False,
fnirs=False,
csd=False,
dbs=False,
temperature=False,
gsr=False,
eyetrack=False,
include=(),
exclude="bads",
selection=None,
verbose=None,
):
"""Pick some channels by type and names.
Parameters
----------
%(pick_types_params)s
%(verbose)s
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
pick_channels
Notes
-----
.. versionadded:: 0.9.0
"""
idx = pick_types(
self.info,
meg=meg,
eeg=eeg,
stim=stim,
eog=eog,
ecg=ecg,
emg=emg,
ref_meg=ref_meg,
misc=misc,
resp=resp,
chpi=chpi,
exci=exci,
ias=ias,
syst=syst,
seeg=seeg,
dipole=dipole,
gof=gof,
bio=bio,
ecog=ecog,
fnirs=fnirs,
csd=csd,
dbs=dbs,
temperature=temperature,
gsr=gsr,
eyetrack=eyetrack,
include=include,
exclude=exclude,
selection=selection,
)
self._pick_drop_channels(idx)
# remove dropped channel types from reject and flat
if getattr(self, "reject", None) is not None:
# use list(self.reject) to avoid RuntimeError for changing dictionary size
# during iteration
for ch_type in list(self.reject):
if ch_type not in self:
del self.reject[ch_type]
if getattr(self, "flat", None) is not None:
for ch_type in list(self.flat):
if ch_type not in self:
del self.flat[ch_type]
return self
@verbose
@legacy(alt="inst.pick(...)")
def pick_channels(self, ch_names, ordered=True, *, verbose=None):
"""Pick some channels.
Parameters
----------
ch_names : list
The list of channels to select.
%(ordered)s
%(verbose)s
.. versionadded:: 1.1
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
drop_channels
pick_types
reorder_channels
Notes
-----
If ``ordered`` is ``False``, the channel names given via ``ch_names`` are
assumed to be a set, that is, their order does not matter. In that case, the
original order of the channels in the data is preserved. Apart from using
``ordered=True``, you may also use ``reorder_channels`` to set channel order,
if necessary.
.. versionadded:: 0.9.0
"""
picks = pick_channels(self.info["ch_names"], ch_names, ordered=ordered)
return self._pick_drop_channels(picks)
@verbose
def pick(self, picks, exclude=(), *, verbose=None):
"""Pick a subset of channels.
Parameters
----------
%(picks_all)s
exclude : list | str
Set of channels to exclude, only used when picking based on
types (e.g., exclude="bads" when picks="meg").
%(verbose)s
.. versionadded:: 0.24.0
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
"""
picks = _picks_to_idx(self.info, picks, "all", exclude, allow_empty=False)
self._pick_drop_channels(picks)
# remove dropped channel types from reject and flat
if getattr(self, "reject", None) is not None:
# use list(self.reject) to avoid RuntimeError for changing dictionary size
# during iteration
for ch_type in list(self.reject):
if ch_type not in self:
del self.reject[ch_type]
if getattr(self, "flat", None) is not None:
for ch_type in list(self.flat):
if ch_type not in self:
del self.flat[ch_type]
return self
def reorder_channels(self, ch_names):
"""Reorder channels.
Parameters
----------
ch_names : list
The desired channel order.
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
drop_channels
pick_types
pick_channels
Notes
-----
Channel names must be unique. Channels that are not in ``ch_names``
are dropped.
.. versionadded:: 0.16.0
"""
_check_excludes_includes(ch_names)
idx = list()
for ch_name in ch_names:
ii = self.ch_names.index(ch_name)
if ii in idx:
raise ValueError(f"Channel name repeated: {ch_name}")
idx.append(ii)
return self._pick_drop_channels(idx)
@fill_doc
def drop_channels(self, ch_names, on_missing="raise"):
"""Drop channel(s).
Parameters
----------
ch_names : iterable or str
Iterable (e.g. list) of channel name(s) or channel name to remove.
%(on_missing_ch_names)s
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
reorder_channels
pick_channels
pick_types
Notes
-----
.. versionadded:: 0.9.0
"""
if isinstance(ch_names, str):
ch_names = [ch_names]
try:
all_str = all([isinstance(ch, str) for ch in ch_names])
except TypeError:
raise ValueError(
f"'ch_names' must be iterable, got type {type(ch_names)} ({ch_names})."
)
if not all_str:
raise ValueError(
"Each element in 'ch_names' must be str, got "
f"{[type(ch) for ch in ch_names]}."
)
missing = [ch for ch in ch_names if ch not in self.ch_names]
if len(missing) > 0:
msg = "Channel(s) {0} not found, nothing dropped."
_on_missing(on_missing, msg.format(", ".join(missing)))
bad_idx = [self.ch_names.index(ch) for ch in ch_names if ch in self.ch_names]
idx = np.setdiff1d(np.arange(len(self.ch_names)), bad_idx)
if len(idx) == 0:
raise ValueError("All channels would be dropped.")
return self._pick_drop_channels(idx)
@verbose
def _pick_drop_channels(self, idx, *, verbose=None):
# avoid circular imports
from ..io import BaseRaw
msg = "adding, dropping, or reordering channels"
if isinstance(self, BaseRaw):
if self._projector is not None:
_check_preload(self, f"{msg} after calling .apply_proj()")
else:
_check_preload(self, msg)
if getattr(self, "picks", None) is not None:
self.picks = self.picks[idx]
if getattr(self, "_read_picks", None) is not None:
self._read_picks = [r[idx] for r in self._read_picks]
if hasattr(self, "_cals"):
self._cals = self._cals[idx]
pick_info(self.info, idx, copy=False)
for key in ("_comp", "_projector"):
mat = getattr(self, key, None)
if mat is not None:
setattr(self, key, mat[idx][:, idx])
if hasattr(self, "_dims"): # Spectrum and "new-style" TFRs
axis = self._dims.index("channel")
else: # All others (Evoked, Epochs, Raw) have chs axis=-2
axis = -2
if hasattr(self, "_data"): # skip non-preloaded Raw
self._data = self._data.take(idx, axis=axis)
else:
assert isinstance(self, BaseRaw) and not self.preload
if isinstance(self, BaseRaw):
self.annotations._prune_ch_names(self.info, on_missing="ignore")
self._orig_units = {
k: v for k, v in self._orig_units.items() if k in self.ch_names
}
self._pick_projs()
return self
def _pick_projs(self):
"""Keep only projectors which apply to at least 1 data channel."""
drop_idx = []
for idx, proj in enumerate(self.info["projs"]):
if not set(self.info["ch_names"]) & set(proj["data"]["col_names"]):
drop_idx.append(idx)
for idx in drop_idx:
logger.info(f"Removing projector {self.info['projs'][idx]}")
if drop_idx and hasattr(self, "del_proj"):
self.del_proj(drop_idx)
return self
def add_channels(self, add_list, force_update_info=False):
"""Append new channels from other MNE objects to the instance.
Parameters
----------
add_list : list
A list of MNE objects to append to the current instance.
The channels contained in the other instances are appended to the
channels of the current instance. Therefore, all other instances
must be of the same type as the current object.
See notes on how to add data coming from an array.
force_update_info : bool
If True, force the info for objects to be appended to match the
values of the current instance. This should generally only be
used when adding stim channels for which important metadata won't
be overwritten.
.. versionadded:: 0.12
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
See Also
--------
drop_channels
Notes
-----
If ``self`` is a Raw instance that has been preloaded into a
:obj:`numpy.memmap` instance, the memmap will be resized.
This function expects an MNE object to be appended (e.g. :class:`~mne.io.Raw`,
:class:`~mne.Epochs`, :class:`~mne.Evoked`). If you simply want to add a
channel based on values of an np.ndarray, you need to create a
:class:`~mne.io.RawArray`.
See <https://mne.tools/mne-project-template/auto_examples/plot_mne_objects_from_arrays.html>`_
"""
# avoid circular imports
from ..epochs import BaseEpochs
from ..io import BaseRaw
from ..time_frequency import EpochsTFR
_validate_type(add_list, (list, tuple), "Input")
# Object-specific checks
for inst in add_list + [self]:
_check_preload(inst, "adding channels")
if isinstance(self, BaseRaw):
con_axis = 0
comp_class = BaseRaw
elif isinstance(self, BaseEpochs):
con_axis = 1
comp_class = BaseEpochs
elif isinstance(self, EpochsTFR):
con_axis = 1
comp_class = EpochsTFR
else:
con_axis = 0
comp_class = type(self)
for inst in add_list:
_validate_type(inst, comp_class, "All input")
data = [inst._data for inst in [self] + add_list]
# Make sure that all dimensions other than channel axis are the same
compare_axes = [i for i in range(data[0].ndim) if i != con_axis]
shapes = np.array([dat.shape for dat in data])[:, compare_axes]
for shape in shapes:
if not ((shapes[0] - shape) == 0).all():
raise ValueError(
"All data dimensions except channels must match, got "
f"{shapes[0]} != {shape}"
)
del shapes
# Create final data / info objects
infos = [self.info] + [inst.info for inst in add_list]
new_info = _merge_info(infos, force_update_to_first=force_update_info)
# Now update the attributes
if (
isinstance(self._data, np.memmap)
and con_axis == 0
and sys.platform != "darwin"
): # resizing not available--no mremap
# Use a resize and fill in other ones
out_shape = (sum(d.shape[0] for d in data),) + data[0].shape[1:]
n_bytes = np.prod(out_shape) * self._data.dtype.itemsize
self._data.flush()
self._data.base.resize(n_bytes)
self._data = np.memmap(
self._data.filename, mode="r+", dtype=self._data.dtype, shape=out_shape
)
assert self._data.shape == out_shape
assert self._data.nbytes == n_bytes
offset = len(data[0])
for d in data[1:]:
this_len = len(d)
self._data[offset : offset + this_len] = d
offset += this_len
else:
self._data = np.concatenate(data, axis=con_axis)
self.info = new_info
if isinstance(self, BaseRaw):
self._cals = np.concatenate(
[getattr(inst, "_cals") for inst in [self] + add_list]
)
# We should never use these since data are preloaded, let's just
# set it to something large and likely to break (2 ** 31 - 1)
extra_idx = [2147483647] * sum(info["nchan"] for info in infos[1:])
assert all(len(r) == infos[0]["nchan"] for r in self._read_picks)
self._read_picks = [
np.concatenate([r, extra_idx]) for r in self._read_picks
]
assert all(len(r) == self.info["nchan"] for r in self._read_picks)
for other in add_list:
self._orig_units.update(other._orig_units)
elif isinstance(self, BaseEpochs):
self.picks = np.arange(self._data.shape[1])
if hasattr(self, "_projector"):
activate = False if self._do_delayed_proj else self.proj
self._projector, self.info = setup_proj(
self.info, False, activate=activate
)
return self
@fill_doc
def add_reference_channels(self, ref_channels):
"""Add reference channels to data that consists of all zeros.
Adds reference channels to data that were not included during
recording. This is useful when you need to re-reference your data
to different channels. These added channels will consist of all zeros.
Parameters
----------
%(ref_channels)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
The modified instance.
"""
return add_reference_channels(self, ref_channels, copy=False)
class InterpolationMixin:
"""Mixin class for Raw, Evoked, Epochs."""
@verbose
def interpolate_bads(
self,
reset_bads=True,
mode="accurate",
origin="auto",
method=None,
exclude=(),
verbose=None,
):
"""Interpolate bad MEG and EEG channels.
Operates in place.
Parameters
----------
reset_bads : bool
If True, remove the bads from info.
mode : str
Either ``'accurate'`` or ``'fast'``, determines the quality of the
Legendre polynomial expansion used for interpolation of channels
using the minimum-norm method.
origin : array-like, shape (3,) | str
Origin of the sphere in the head coordinate frame and in meters.
Can be ``'auto'`` (default), which means a head-digitization-based
origin fit.
.. versionadded:: 0.17
method : dict | str | None
Method to use for each channel type.
- ``"meg"`` channels support ``"MNE"`` (default) and ``"nan"``
- ``"eeg"`` channels support ``"spline"`` (default), ``"MNE"`` and ``"nan"``
- ``"fnirs"`` channels support ``"nearest"`` (default) and ``"nan"``
- ``"ecog"`` channels support ``"spline"`` (default) and ``"nan"``
- ``"seeg"`` channels support ``"spline"`` (default) and ``"nan"``
None is an alias for::
method=dict(meg="MNE", eeg="spline", fnirs="nearest")
If a :class:`str` is provided, the method will be applied to all channel
types supported and available in the instance. The method ``"nan"`` will
replace the channel data with ``np.nan``.
.. warning::
Be careful when using ``method="nan"``; the default value
``reset_bads=True`` may not be what you want.
.. versionadded:: 0.21
exclude : list | tuple
The channels to exclude from interpolation. If excluded a bad
channel will stay in bads.
%(verbose)s
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The modified instance.
Notes
-----
The ``"MNE"`` method uses minimum-norm projection to a sphere and back.
.. versionadded:: 0.9.0
"""
from .interpolation import (
_interpolate_bads_ecog,
_interpolate_bads_eeg,
_interpolate_bads_meeg,
_interpolate_bads_nan,
_interpolate_bads_nirs,
_interpolate_bads_seeg,
)
_check_preload(self, "interpolation")
_validate_type(method, (dict, str, None), "method")
method = _handle_default("interpolation_method", method)
ch_types = self.get_channel_types(unique=True)
# figure out if we have "mag" for "meg", "hbo" for "fnirs", ... to filter the
# "method" dictionary and keep only keys that correspond to existing channels.
for ch_type in ("meg", "fnirs"):
for sub_ch_type in _second_rules[ch_type][1].values():
if sub_ch_type in ch_types:
ch_types.remove(sub_ch_type)
if ch_type not in ch_types:
ch_types.append(ch_type)
keys2delete = set(method) - set(ch_types)
for key in keys2delete:
del method[key]
valids = {
"eeg": ("spline", "MNE", "nan"),
"meg": ("MNE", "nan"),
"fnirs": ("nearest", "nan"),
"ecog": ("spline", "nan"),
"seeg": ("spline", "nan"),
}
for key in method:
_check_option("method[key]", key, tuple(valids))
_check_option(f"method['{key}']", method[key], valids[key])
logger.info("Setting channel interpolation method to %s.", method)
idx = _picks_to_idx(self.info, list(method), exclude=(), allow_empty=True)
if idx.size == 0 or len(pick_info(self.info, idx)["bads"]) == 0:
warn("No bad channels to interpolate. Doing nothing...")
return self
for ch_type in method.copy():
idx = _picks_to_idx(self.info, ch_type, exclude=(), allow_empty=True)
if len(pick_info(self.info, idx)["bads"]) == 0:
method.pop(ch_type)
logger.info("Interpolating bad channels.")
needs_origin = [key != "seeg" and val != "nan" for key, val in method.items()]
if any(needs_origin):
origin = _check_origin(origin, self.info)
for ch_type, interp in method.items():
if interp == "nan":
_interpolate_bads_nan(self, ch_type, exclude=exclude)
if method.get("eeg", "") == "spline":
_interpolate_bads_eeg(self, origin=origin, exclude=exclude)
meg_mne = method.get("meg", "") == "MNE"
eeg_mne = method.get("eeg", "") == "MNE"
if meg_mne or eeg_mne:
_interpolate_bads_meeg(
self,
mode=mode,
meg=meg_mne,
eeg=eeg_mne,
origin=origin,
exclude=exclude,
method=method,
)
if method.get("fnirs", "") == "nearest":
_interpolate_bads_nirs(self, exclude=exclude)
if method.get("ecog", "") == "spline":
_interpolate_bads_ecog(self, origin=origin, exclude=exclude)
if method.get("seeg", "") == "spline":
_interpolate_bads_seeg(self, exclude=exclude)
if reset_bads is True:
if "nan" in method.values():
warn(
"interpolate_bads was called with method='nan' and "
"reset_bads=True. Consider setting reset_bads=False so that the "
"nan-containing channels can be easily excluded from later "
"computations."
)
self.info["bads"] = [ch for ch in self.info["bads"] if ch in exclude]
return self
def interpolate_to(self, sensors, origin="auto", method="spline", reg=0.0):
"""Interpolate EEG data onto a new montage.
.. warning::
Be careful, only EEG channels are interpolated. Other channel types are
not interpolated.
Parameters
----------
sensors : DigMontage
The target montage containing channel positions to interpolate onto.
origin : array-like, shape (3,) | str
Origin of the sphere in the head coordinate frame and in meters.
Can be ``'auto'`` (default), which means a head-digitization-based
origin fit.
method : str
Method to use for EEG channels.
Supported methods are 'spline' (default) and 'MNE'.
reg : float
The regularization parameter for the interpolation method
(only used when the method is 'spline').
Returns
-------
inst : instance of Raw, Epochs, or Evoked
The instance with updated channel locations and data.
Notes
-----
This method is useful for standardizing EEG layouts across datasets.
However, some attributes may be lost after interpolation.
.. versionadded:: 1.10.0
"""
from ..epochs import BaseEpochs, EpochsArray
from ..evoked import Evoked, EvokedArray
from ..forward._field_interpolation import _map_meg_or_eeg_channels
from ..io import RawArray
from ..io.base import BaseRaw
from .interpolation import _make_interpolation_matrix
from .montage import DigMontage
# Check that the method option is valid.
_check_option("method", method, ["spline", "MNE"])
_validate_type(sensors, DigMontage, "sensors")
# Get target positions from the montage
ch_pos = sensors.get_positions().get("ch_pos", {})
target_ch_names = list(ch_pos.keys())
if not target_ch_names:
raise ValueError(
"The provided sensors configuration has no channel positions."
)
# Get original channel order
orig_names = self.info["ch_names"]
# Identify EEG channel
picks_good_eeg = pick_types(self.info, meg=False, eeg=True, exclude="bads")
if len(picks_good_eeg) == 0:
raise ValueError("No good EEG channels available for interpolation.")
# Also get the full list of EEG channel indices (including bad channels)
picks_remove_eeg = pick_types(self.info, meg=False, eeg=True, exclude=[])
eeg_names_orig = [orig_names[i] for i in picks_remove_eeg]
# Identify non-EEG channels in original order
non_eeg_names_ordered = [ch for ch in orig_names if ch not in eeg_names_orig]
# Create destination info for new EEG channels
sfreq = self.info["sfreq"]
info_interp = create_info(
ch_names=target_ch_names,
sfreq=sfreq,
ch_types=["eeg"] * len(target_ch_names),
)
info_interp.set_montage(sensors)
info_interp["bads"] = [ch for ch in self.info["bads"] if ch in target_ch_names]
# Do not assign "projs" directly.
# Compute the interpolation mapping
if method == "spline":
origin_val = _check_origin(origin, self.info)
pos_from = self.info._get_channel_positions(picks_good_eeg) - origin_val
pos_to = np.stack(list(ch_pos.values()), axis=0)
def _check_pos_sphere(pos):
d = np.linalg.norm(pos, axis=-1)
d_norm = np.mean(d / np.mean(d))
if np.abs(1.0 - d_norm) > 0.1:
warn("Your spherical fit is poor; interpolation may be inaccurate.")
_check_pos_sphere(pos_from)
_check_pos_sphere(pos_to)
mapping = _make_interpolation_matrix(pos_from, pos_to, alpha=reg)
else:
assert method == "MNE"
info_eeg = pick_info(self.info, picks_good_eeg)
# If the original info has an average EEG reference projector but
# the destination info does not,
# update info_interp via a temporary RawArray.
if _has_eeg_average_ref_proj(self.info) and not _has_eeg_average_ref_proj(
info_interp
):
# Create dummy data: shape (n_channels, 1)
temp_data = np.zeros((len(info_interp["ch_names"]), 1))
temp_raw = RawArray(temp_data, info_interp, first_samp=0)
# Using the public API, add an average reference projector.
temp_raw.set_eeg_reference(
ref_channels="average", projection=True, verbose=False
)
# Extract the updated info.
info_interp = temp_raw.info
mapping = _map_meg_or_eeg_channels(
info_eeg, info_interp, mode="accurate", origin=origin
)
# Interpolate EEG data
data_good = self.get_data(picks=picks_good_eeg)
data_interp = mapping @ data_good
# Create a new instance for the interpolated EEG channels
# TODO: Creating a new instance leads to a loss of information.
# We should consider updating the existing instance in the future
# by 1) drop channels, 2) add channels, 3) re-order channels.
if isinstance(self, BaseRaw):
inst_interp = RawArray(data_interp, info_interp, first_samp=self.first_samp)
elif isinstance(self, BaseEpochs):
inst_interp = EpochsArray(data_interp, info_interp)
else:
assert isinstance(self, Evoked)
inst_interp = EvokedArray(data_interp, info_interp)
# Merge only if non-EEG channels exist
if not non_eeg_names_ordered:
return inst_interp
inst_non_eeg = self.copy().pick(non_eeg_names_ordered).load_data()
inst_out = inst_non_eeg.add_channels([inst_interp], force_update_info=True)
# Reorder channels
# Insert the entire new EEG block at the position of the first EEG channel.
orig_names_arr = np.array(orig_names)
mask_eeg = np.isin(orig_names_arr, eeg_names_orig)
if mask_eeg.any():
first_eeg_index = np.where(mask_eeg)[0][0]
pre = orig_names_arr[:first_eeg_index]
new_eeg = np.array(info_interp["ch_names"])
post = orig_names_arr[first_eeg_index:]
post = post[~np.isin(orig_names_arr[first_eeg_index:], eeg_names_orig)]
new_order = np.concatenate((pre, new_eeg, post)).tolist()
else:
new_order = orig_names
inst_out.reorder_channels(new_order)
return inst_out
@verbose
def rename_channels(info, mapping, allow_duplicates=False, *, verbose=None):
"""Rename channels.
Parameters
----------
%(info_not_none)s Note: modified in place.
%(mapping_rename_channels_duplicates)s
%(verbose)s
"""
_validate_type(info, Info, "info")
info._check_consistency()
bads = list(info["bads"]) # make our own local copies
ch_names = list(info["ch_names"])
# first check and assemble clean mappings of index and name
if isinstance(mapping, dict):
_check_dict_keys(
mapping,
ch_names,
key_description="channel name(s)",
valid_key_source="info",
)
new_names = [
(ch_names.index(ch_name), new_name) for ch_name, new_name in mapping.items()
]
elif callable(mapping):
new_names = [(ci, mapping(ch_name)) for ci, ch_name in enumerate(ch_names)]
else:
raise ValueError(f"mapping must be callable or dict, not {type(mapping)}")
# check we got all strings out of the mapping
for new_name in new_names:
_validate_type(new_name[1], "str", "New channel mappings")
# do the remapping locally
for c_ind, new_name in new_names:
for bi, bad in enumerate(bads):
if bad == ch_names[c_ind]:
bads[bi] = new_name
ch_names[c_ind] = new_name
# check that all the channel names are unique
if len(ch_names) != len(np.unique(ch_names)) and not allow_duplicates:
raise ValueError("New channel names are not unique, renaming failed")
# do the remapping in info
info["bads"] = []
ch_names_mapping = dict()
for ch, ch_name in zip(info["chs"], ch_names):
ch_names_mapping[ch["ch_name"]] = ch_name
ch["ch_name"] = ch_name
# .get b/c fwd info omits it
_rename_comps(info.get("comps", []), ch_names_mapping)
if "projs" in info: # fwd might omit it
for proj in info["projs"]:
proj["data"]["col_names"][:] = _rename_list(
proj["data"]["col_names"], ch_names_mapping
)
info._update_redundant()
info["bads"] = bads
info._check_consistency()
def _recursive_flatten(cell, dtype):
"""Unpack mat files in Python."""
if len(cell) > 0:
while not isinstance(cell[0], dtype):
cell = [c for d in cell for c in d]
return cell
@dataclass
class _BuiltinChannelAdjacency:
name: str
description: str
fname: str
source_url: str | None
_ft_neighbor_url_t = string.Template(
"https://github.com/fieldtrip/fieldtrip/raw/master/template/neighbours/$fname"
)
_BUILTIN_CHANNEL_ADJACENCIES = [
_BuiltinChannelAdjacency(
name="biosemi16",
description="Biosemi 16-electrode cap",
fname="biosemi16_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="biosemi16_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="biosemi32",
description="Biosemi 32-electrode cap",
fname="biosemi32_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="biosemi32_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="biosemi64",
description="Biosemi 64-electrode cap",
fname="biosemi64_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="biosemi64_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="bti148",
description="BTI 148-channel system",
fname="bti148_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="bti148_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="bti248",
description="BTI 248-channel system",
fname="bti248_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="bti248_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="bti248grad",
description="BTI 248 gradiometer system",
fname="bti248grad_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="bti248grad_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="ctf64",
description="CTF 64 axial gradiometer",
fname="ctf64_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="ctf64_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="ctf151",
description="CTF 151 axial gradiometer",
fname="ctf151_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="ctf151_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="ctf275",
description="CTF 275 axial gradiometer",
fname="ctf275_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="ctf275_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="easycap32ch-avg",
description="",
fname="easycap32ch-avg_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="easycap32ch-avg_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="easycap64ch-avg",
description="",
fname="easycap64ch-avg_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="easycap64ch-avg_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="easycap128ch-avg",
description="",
fname="easycap128ch-avg_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="easycap128ch-avg_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="easycapM1",
description="Easycap M1",
fname="easycapM1_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="easycapM1_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="easycapM11",
description="Easycap M11",
fname="easycapM11_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="easycapM11_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="easycapM14",
description="Easycap M14",
fname="easycapM14_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="easycapM14_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="easycapM15",
description="Easycap M15",
fname="easycapM15_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="easycapM15_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="KIT-157",
description="",
fname="KIT-157_neighb.mat",
source_url=None,
),
_BuiltinChannelAdjacency(
name="KIT-208",
description="",
fname="KIT-208_neighb.mat",
source_url=None,
),
_BuiltinChannelAdjacency(
name="KIT-NYU-2019",
description="",
fname="KIT-NYU-2019_neighb.mat",
source_url=None,
),
_BuiltinChannelAdjacency(
name="KIT-UMD-1",
description="",
fname="KIT-UMD-1_neighb.mat",
source_url=None,
),
_BuiltinChannelAdjacency(
name="KIT-UMD-2",
description="",
fname="KIT-UMD-2_neighb.mat",
source_url=None,
),
_BuiltinChannelAdjacency(
name="KIT-UMD-3",
description="",
fname="KIT-UMD-3_neighb.mat",
source_url=None,
),
_BuiltinChannelAdjacency(
name="KIT-UMD-4",
description="",
fname="KIT-UMD-4_neighb.mat",
source_url=None,
),
_BuiltinChannelAdjacency(
name="neuromag306mag",
description="Neuromag306, only magnetometers",
fname="neuromag306mag_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="neuromag306mag_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="neuromag306planar",
description="Neuromag306, only planar gradiometers",
fname="neuromag306planar_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="neuromag306planar_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="neuromag122cmb",
description="Neuromag122, only combined planar gradiometers",
fname="neuromag122cmb_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="neuromag122cmb_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="neuromag306cmb",
description="Neuromag306, only combined planar gradiometers",
fname="neuromag306cmb_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="neuromag306cmb_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="ecog256",
description="ECOG 256channels, average referenced",
fname="ecog256_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="ecog256_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="ecog256bipolar",
description="ECOG 256channels, bipolar referenced",
fname="ecog256bipolar_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="ecog256bipolar_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="eeg1010_neighb",
description="",
fname="eeg1010_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="eeg1010_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="elec1005",
description="Standard 10-05 system",
fname="elec1005_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="elec1005_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="elec1010",
description="Standard 10-10 system",
fname="elec1010_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="elec1010_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="elec1020",
description="Standard 10-20 system",
fname="elec1020_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="elec1020_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="itab28",
description="ITAB 28-channel system",
fname="itab28_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="itab28_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="itab153",
description="ITAB 153-channel system",
fname="itab153_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="itab153_neighb.mat"),
),
_BuiltinChannelAdjacency(
name="language29ch-avg",
description="MPI for Psycholinguistic: Averaged 29-channel cap",
fname="language29ch-avg_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="language29ch-avg_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="mpi_59_channels",
description="MPI for Psycholinguistic: 59-channel cap",
fname="mpi_59_channels_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="mpi_59_channels_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="yokogawa160",
description="",
fname="yokogawa160_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="yokogawa160_neighb.mat"), # noqa: E501
),
_BuiltinChannelAdjacency(
name="yokogawa440",
description="",
fname="yokogawa440_neighb.mat",
source_url=_ft_neighbor_url_t.substitute(fname="yokogawa440_neighb.mat"), # noqa: E501
),
]
@fill_doc
def get_builtin_ch_adjacencies(*, descriptions=False):
"""Get a list of all FieldTrip neighbor definitions shipping with MNE.
The names of the these neighbor definitions can be passed to
:func:`read_ch_adjacency`.
Parameters
----------
descriptions : bool
Whether to return not only the neighbor definition names, but also
their corresponding descriptions. If ``True``, a list of tuples is
returned, where the first tuple element is the neighbor definition name
and the second is the description. If ``False`` (default), only the
names are returned.
Returns
-------
neighbor_name : list of str | list of tuple
If ``descriptions=False``, the names of all builtin FieldTrip neighbor
definitions that can be loaded directly via :func:`read_ch_adjacency`.
If ``descriptions=True``, a list of tuples ``(name, description)``.
Notes
-----
.. versionadded:: 1.1
"""
if descriptions:
return sorted(
[(m.name, m.description) for m in _BUILTIN_CHANNEL_ADJACENCIES],
key=lambda x: x[0].casefold(), # only sort based on name
)
else:
return sorted([m.name for m in _BUILTIN_CHANNEL_ADJACENCIES], key=str.casefold)
@fill_doc
def read_ch_adjacency(fname, picks=None):
"""Read a channel adjacency ("neighbors") file that ships with MNE.
More information on these neighbor definitions can be found on the related
`FieldTrip documentation pages
<http://www.fieldtriptoolbox.org/template/neighbours/>`__.
Parameters
----------
fname : path-like | str
The path to the file to load, or the name of a channel adjacency
matrix that ships with MNE-Python.
.. note::
You can retrieve the names of all
built-in channel adjacencies via
:func:`mne.channels.get_builtin_ch_adjacencies`.
%(picks_all_notypes)s
Returns
-------
ch_adjacency : scipy.sparse.csr_array, shape (n_channels, n_channels)
The adjacency matrix.
ch_names : list
The list of channel names present in adjacency matrix.
See Also
--------
get_builtin_ch_adjacencies
mne.viz.plot_ch_adjacency
find_ch_adjacency
mne.stats.combine_adjacency
Notes
-----
If the neighbor definition you need is not shipped by MNE-Python,
you may use :func:`find_ch_adjacency` to compute the
adjacency matrix based on your 2D sensor locations.
Note that depending on your use case, you may need to additionally use
:func:`mne.stats.combine_adjacency` to prepare a final "adjacency"
to pass to the eventual function.
"""
if op.isabs(fname):
fname = str(
_check_fname(
fname=fname,
overwrite="read",
must_exist=True,
)
)
else: # built-in FieldTrip neighbors
ch_adj_name = fname
del fname
if ch_adj_name.endswith("_neighb.mat"): # backward-compat
ch_adj_name = ch_adj_name.replace("_neighb.mat", "")
if ch_adj_name not in get_builtin_ch_adjacencies():
raise ValueError(
f"No built-in channel adjacency matrix found with name: "
f"{ch_adj_name}. Valid names are: "
f"{', '.join(get_builtin_ch_adjacencies())}"
)
ch_adj = [a for a in _BUILTIN_CHANNEL_ADJACENCIES if a.name == ch_adj_name][0]
fname = ch_adj.fname
templates_dir = Path(__file__).resolve().parent / "data" / "neighbors"
fname = str(
_check_fname( # only needed to convert to a string
fname=templates_dir / fname,
overwrite="read",
must_exist=True,
)
)
nb = loadmat(fname)["neighbours"]
ch_names = _recursive_flatten(nb["label"], str)
temp_info = create_info(ch_names, 1.0)
picks = _picks_to_idx(temp_info, picks, none="all")
neighbors = [_recursive_flatten(c, str) for c in nb["neighblabel"].flatten()]
assert len(ch_names) == len(neighbors)
adjacency = _ch_neighbor_adjacency(ch_names, neighbors)
# picking before constructing matrix is buggy
adjacency = adjacency[picks][:, picks]
ch_names = [ch_names[p] for p in picks]
return adjacency, ch_names
def _ch_neighbor_adjacency(ch_names, neighbors):
"""Compute sensor adjacency matrix.
Parameters
----------
ch_names : list of str
The channel names.
neighbors : list of list
A list of list of channel names. The neighbors to
which the channels in ch_names are connected with.
Must be of the same length as ch_names.
Returns
-------
ch_adjacency : scipy.sparse.spmatrix
The adjacency matrix.
"""
if len(ch_names) != len(neighbors):
raise ValueError("`ch_names` and `neighbors` must have the same length")
set_neighbors = {c for d in neighbors for c in d}
rest = set_neighbors - set(ch_names)
if len(rest) > 0:
raise ValueError(
"Some of your neighbors are not present in the list of channel names"
)
for neigh in neighbors:
if not isinstance(neigh, list) and not all(isinstance(c, str) for c in neigh):
raise ValueError("`neighbors` must be a list of lists of str")
ch_adjacency = np.eye(len(ch_names), dtype=bool)
for ii, neigbs in enumerate(neighbors):
ch_adjacency[ii, [ch_names.index(i) for i in neigbs]] = True
ch_adjacency = csr_array(ch_adjacency)
return ch_adjacency
@fill_doc
def find_ch_adjacency(info, ch_type):
"""Find the adjacency matrix for the given channels.
This function tries to infer the appropriate adjacency matrix template
for the given channels. If a template is not found, the adjacency matrix
is computed using Delaunay triangulation based on 2D sensor locations.
Parameters
----------
%(info_not_none)s
ch_type : str | None
The channel type for computing the adjacency matrix. Currently
supports ``'mag'``, ``'grad'``, ``'eeg'`` and ``None``.
If ``None``, the info must contain only one channel type.
Returns
-------
ch_adjacency : scipy.sparse.csr_array, shape (n_channels, n_channels)
The adjacency matrix.
ch_names : list
The list of channel names present in adjacency matrix.
See Also
--------
mne.viz.plot_ch_adjacency
mne.stats.combine_adjacency
get_builtin_ch_adjacencies
read_ch_adjacency
Notes
-----
.. versionadded:: 0.15
Automatic detection of an appropriate adjacency matrix template only
works for MEG data at the moment. This means that the adjacency matrix
is always computed for EEG data and never loaded from a template file. If
you want to load a template for a given montage use
:func:`read_ch_adjacency` directly.
.. warning::
If Delaunay triangulation is used to calculate the adjacency matrix it
may yield partially unexpected results (e.g., include unwanted edges
between non-adjacent sensors). Therefore, it is recommended to check
(and, if necessary, manually modify) the result by inspecting it
via :func:`mne.viz.plot_ch_adjacency`.
Note that depending on your use case, you may need to additionally use
:func:`mne.stats.combine_adjacency` to prepare a final "adjacency"
to pass to the eventual function.
"""
from ..io.kit.constants import KIT_NEIGHBORS
if ch_type is None:
picks = channel_indices_by_type(info)
if sum([len(p) != 0 for p in picks.values()]) != 1:
raise ValueError(
"info must contain only one channel type if ch_type is None."
)
ch_type = channel_type(info, 0)
else:
_check_option("ch_type", ch_type, ["mag", "grad", "eeg"])
(
has_vv_mag,
has_vv_grad,
is_old_vv,
has_4D_mag,
ctf_other_types,
has_CTF_grad,
n_kit_grads,
has_any_meg,
has_eeg_coils,
has_eeg_coils_and_meg,
has_eeg_coils_only,
has_neuromag_122_grad,
has_csd_coils,
) = _get_ch_info(info)
conn_name = None
if has_vv_mag and ch_type == "mag":
conn_name = "neuromag306mag"
elif has_vv_grad and ch_type == "grad":
conn_name = "neuromag306planar"
elif has_4D_mag:
if "MEG 248" in info["ch_names"]:
idx = info["ch_names"].index("MEG 248")
grad = info["chs"][idx]["coil_type"] == FIFF.FIFFV_COIL_MAGNES_GRAD
mag = info["chs"][idx]["coil_type"] == FIFF.FIFFV_COIL_MAGNES_MAG
if ch_type == "grad" and grad:
conn_name = "bti248grad"
elif ch_type == "mag" and mag:
conn_name = "bti248"
elif "MEG 148" in info["ch_names"] and ch_type == "mag":
idx = info["ch_names"].index("MEG 148")
if info["chs"][idx]["coil_type"] == FIFF.FIFFV_COIL_MAGNES_MAG:
conn_name = "bti148"
elif has_CTF_grad and ch_type == "mag":
if info["nchan"] < 100:
conn_name = "ctf64"
elif info["nchan"] > 200:
conn_name = "ctf275"
else:
conn_name = "ctf151"
elif n_kit_grads > 0:
conn_name = KIT_NEIGHBORS.get(info["kit_system_id"])
if conn_name is not None:
logger.info(f"Reading adjacency matrix for {conn_name}.")
adjacency, ch_names = read_ch_adjacency(conn_name)
if conn_name.startswith("neuromag") and info["ch_names"][0].startswith("MEG "):
ch_names = [ch_name.replace("MEG", "MEG ") for ch_name in ch_names]
return adjacency, ch_names
logger.info(
"Could not find a adjacency matrix for the data. "
"Computing adjacency based on Delaunay triangulations."
)
return _compute_ch_adjacency(info, ch_type)
@fill_doc
def _compute_ch_adjacency(info, ch_type):
"""Compute channel adjacency matrix using Delaunay triangulations.
Parameters
----------
%(info_not_none)s
ch_type : str
The channel type for computing the adjacency matrix. Currently
supports ``'mag'``, ``'grad'`` and ``'eeg'``.
Returns
-------
ch_adjacency : scipy.sparse.csr_array, shape (n_channels, n_channels)
The adjacency matrix.
ch_names : list
The list of channel names present in adjacency matrix.
"""
from ..channels.layout import _find_topomap_coords, _pair_grad_sensors
from ..source_estimate import spatial_tris_adjacency
combine_grads = ch_type == "grad" and any(
[
coil_type in [ch["coil_type"] for ch in info["chs"]]
for coil_type in [FIFF.FIFFV_COIL_VV_PLANAR_T1, FIFF.FIFFV_COIL_NM_122]
]
)
picks = dict(_picks_by_type(info, exclude=[]))[ch_type]
ch_names = [info["ch_names"][pick] for pick in picks]
if combine_grads:
pairs = _pair_grad_sensors(info, topomap_coords=False, exclude=[])
if len(pairs) != len(picks):
raise RuntimeError(
"Cannot find a pair for some of the "
"gradiometers. Cannot compute adjacency "
"matrix."
)
# only for one of the pair
xy = _find_topomap_coords(info, picks[::2], sphere=HEAD_SIZE_DEFAULT)
else:
xy = _find_topomap_coords(info, picks, sphere=HEAD_SIZE_DEFAULT)
tri = Delaunay(xy)
neighbors = spatial_tris_adjacency(tri.simplices)
if combine_grads:
ch_adjacency = np.eye(len(picks), dtype=bool)
for idx, neigbs in zip(neighbors.row, neighbors.col):
for ii in range(2): # make sure each pair is included
for jj in range(2):
ch_adjacency[idx * 2 + ii, neigbs * 2 + jj] = True
ch_adjacency[idx * 2 + ii, idx * 2 + jj] = True # pair
ch_adjacency = csr_array(ch_adjacency)
else:
ch_adjacency = lil_array(neighbors)
ch_adjacency.setdiag(np.repeat(1, ch_adjacency.shape[0]))
ch_adjacency = ch_adjacency.tocsr()
return ch_adjacency, ch_names
@fill_doc
def fix_mag_coil_types(info, use_cal=False):
"""Fix magnetometer coil types.
Parameters
----------
%(info_not_none)s Corrections are done in-place.
use_cal : bool
If True, further refine the check for old coil types by checking
``info['chs'][ii]['cal']``.
Notes
-----
This function changes magnetometer coil types 3022 (T1: SQ20483N) and
3023 (T2: SQ20483-A) to 3024 (T3: SQ20950N) in the channel definition
records in the info structure.
Neuromag Vectorview systems can contain magnetometers with two
different coil sizes (3022 and 3023 vs. 3024). The systems
incorporating coils of type 3024 were introduced last and are used at
the majority of MEG sites. At some sites with 3024 magnetometers,
the data files have still defined the magnetometers to be of type
3022 to ensure compatibility with older versions of Neuromag software.
In the MNE software as well as in the present version of Neuromag
software coil type 3024 is fully supported. Therefore, it is now safe
to upgrade the data files to use the true coil type.
.. note:: The effect of the difference between the coil sizes on the
current estimates computed by the MNE software is very small.
Therefore the use of ``fix_mag_coil_types`` is not mandatory.
"""
old_mag_inds = _get_T1T2_mag_inds(info, use_cal)
n_mag = len(pick_types(info, meg="mag", exclude=[]))
for ii in old_mag_inds:
info["chs"][ii]["coil_type"] = FIFF.FIFFV_COIL_VV_MAG_T3
logger.info(f"{len(old_mag_inds)} of {n_mag} magnetometer types replaced with T3.")
info._check_consistency()
def _get_T1T2_mag_inds(info, use_cal=False):
"""Find T1/T2 magnetometer coil types."""
picks = pick_types(info, meg="mag", exclude=[])
old_mag_inds = []
# From email exchanges, systems with the larger T2 coil only use the cal
# value of 2.09e-11. Newer T3 magnetometers use 4.13e-11 or 1.33e-10
# (Triux). So we can use a simple check for > 3e-11.
for ii in picks:
ch = info["chs"][ii]
if ch["coil_type"] in (FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2):
if use_cal:
if ch["cal"] > 3e-11:
old_mag_inds.append(ii)
else:
old_mag_inds.append(ii)
return old_mag_inds
def _get_ch_info(info):
"""Get channel info for inferring acquisition device."""
chs = info["chs"]
# Only take first 16 bits, as higher bits store CTF comp order
coil_types = {ch["coil_type"] & 0xFFFF for ch in chs}
channel_types = {ch["kind"] for ch in chs}
has_vv_mag = any(
k in coil_types
for k in [
FIFF.FIFFV_COIL_VV_MAG_T1,
FIFF.FIFFV_COIL_VV_MAG_T2,
FIFF.FIFFV_COIL_VV_MAG_T3,
]
)
has_vv_grad = any(
k in coil_types
for k in [
FIFF.FIFFV_COIL_VV_PLANAR_T1,
FIFF.FIFFV_COIL_VV_PLANAR_T2,
FIFF.FIFFV_COIL_VV_PLANAR_T3,
]
)
has_neuromag_122_grad = any(k in coil_types for k in [FIFF.FIFFV_COIL_NM_122])
is_old_vv = " " in chs[0]["ch_name"]
has_4D_mag = FIFF.FIFFV_COIL_MAGNES_MAG in coil_types
ctf_other_types = (
FIFF.FIFFV_COIL_CTF_REF_MAG,
FIFF.FIFFV_COIL_CTF_REF_GRAD,
FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD,
)
has_CTF_grad = FIFF.FIFFV_COIL_CTF_GRAD in coil_types or (
FIFF.FIFFV_MEG_CH in channel_types
and any(k in ctf_other_types for k in coil_types)
)
# hack due to MNE-C bug in IO of CTF
# only take first 16 bits, as higher bits store CTF comp order
n_kit_grads = sum(
ch["coil_type"] & 0xFFFF == FIFF.FIFFV_COIL_KIT_GRAD for ch in chs
)
has_any_meg = any([has_vv_mag, has_vv_grad, has_4D_mag, has_CTF_grad, n_kit_grads])
has_eeg_coils = (
FIFF.FIFFV_COIL_EEG in coil_types and FIFF.FIFFV_EEG_CH in channel_types
)
has_eeg_coils_and_meg = has_eeg_coils and has_any_meg
has_eeg_coils_only = has_eeg_coils and not has_any_meg
has_csd_coils = (
FIFF.FIFFV_COIL_EEG_CSD in coil_types and FIFF.FIFFV_EEG_CH in channel_types
)
return (
has_vv_mag,
has_vv_grad,
is_old_vv,
has_4D_mag,
ctf_other_types,
has_CTF_grad,
n_kit_grads,
has_any_meg,
has_eeg_coils,
has_eeg_coils_and_meg,
has_eeg_coils_only,
has_neuromag_122_grad,
has_csd_coils,
)
@fill_doc
def make_1020_channel_selections(info, midline="z", *, return_ch_names=False):
"""Map hemisphere names to corresponding EEG channel names or indices.
This function uses a simple heuristic to separate channel names into three
Region of Interest-based selections: ``Left``, ``Midline`` and ``Right``.
The heuristic is that any of the channel names ending
with odd numbers are filed under ``Left``; those ending with even numbers
are filed under ``Right``; and those ending with the character(s) specified
in ``midline`` are filed under ``Midline``. Other channels are ignored.
This is appropriate for 10/20, 10/10, 10/05, …, sensor arrangements, but
not for other naming conventions.
Parameters
----------
%(info_not_none)s If channel locations are present, the channel lists will
be sorted from posterior to anterior; otherwise, the order specified in
``info["ch_names"]`` will be kept.
midline : str
Names ending in any of these characters are stored under the
``Midline`` key. Defaults to ``'z'``. Capitalization is ignored.
return_ch_names : bool
Whether to return channel names instead of channel indices.
.. versionadded:: 1.4.0
Returns
-------
selections : dict
A dictionary mapping from region of interest name to a list of channel
indices (if ``return_ch_names=False``) or to a list of channel names
(if ``return_ch_names=True``).
"""
_validate_type(info, "info")
try:
from .layout import find_layout
layout = find_layout(info)
pos = layout.pos
ch_names = layout.names
except RuntimeError: # no channel positions found
ch_names = info["ch_names"]
pos = None
selections = dict(Left=[], Midline=[], Right=[])
for pick, channel in enumerate(ch_names):
last_char = channel[-1].lower() # in 10/20, last char codes hemisphere
if last_char in midline:
selection = "Midline"
elif last_char.isdigit():
selection = "Left" if int(last_char) % 2 else "Right"
else: # ignore the channel
continue
selections[selection].append(pick)
if pos is not None:
# sort channels from front to center
# (y-coordinate of the position info in the layout)
selections = {
selection: np.array(picks)[pos[picks, 1].argsort()]
for selection, picks in selections.items()
}
# convert channel indices to names if requested
if return_ch_names:
for selection, ch_indices in selections.items():
selections[selection] = [info.ch_names[idx] for idx in ch_indices]
return selections
@verbose
def combine_channels(
inst, groups, method="mean", keep_stim=False, drop_bad=False, verbose=None
):
"""Combine channels based on specified channel grouping.
Parameters
----------
inst : instance of Raw, Epochs, or Evoked
An MNE-Python object to combine the channels for. The object can be of
type Raw, Epochs, or Evoked.
groups : dict
Specifies which channels are aggregated into a single channel, with
aggregation method determined by the ``method`` parameter. One new
pseudo-channel is made per dict entry; the dict values must be lists of
picks (integer indices of ``ch_names``). For example::
groups=dict(Left=[1, 2, 3, 4], Right=[5, 6, 7, 8])
Note that within a dict entry all channels must have the same type.
method : str | callable
Which method to use to combine channels. If a :class:`str`, must be one
of 'mean', 'median', or 'std' (standard deviation). If callable, the
callable must accept one positional input (data of shape ``(n_channels,
n_times)``, or ``(n_epochs, n_channels, n_times)``) and return an
:class:`array <numpy.ndarray>` of shape ``(n_times,)``, or ``(n_epochs,
n_times)``. For example with an instance of Raw or Evoked::
method = lambda data: np.mean(data, axis=0)
Another example with an instance of Epochs::
method = lambda data: np.median(data, axis=1)
Defaults to ``'mean'``.
keep_stim : bool
If ``True``, include stimulus channels in the resulting object.
Defaults to ``False``.
drop_bad : bool
If ``True``, drop channels marked as bad before combining. Defaults to
``False``.
%(verbose)s
Returns
-------
combined_inst : instance of Raw, Epochs, or Evoked
An MNE-Python object of the same type as the input ``inst``, containing
one virtual channel for each group in ``groups`` (and, if ``keep_stim``
is ``True``, also containing stimulus channels).
"""
from ..epochs import BaseEpochs, EpochsArray
from ..evoked import Evoked, EvokedArray
from ..io import BaseRaw, RawArray
ch_axis = 1 if isinstance(inst, BaseEpochs) else 0
ch_idx = list(range(inst.info["nchan"]))
ch_names = inst.info["ch_names"]
ch_types = inst.get_channel_types()
kwargs = dict()
if isinstance(inst, BaseEpochs):
kwargs["copy"] = False
inst_data = inst.get_data(**kwargs)
groups = OrderedDict(deepcopy(groups))
# Convert string values of ``method`` into callables
# XXX Possibly de-duplicate with _make_combine_callable of mne/viz/utils.py
if isinstance(method, str):
method_dict = {
key: partial(getattr(np, key), axis=ch_axis)
for key in ("mean", "median", "std")
}
try:
method = method_dict[method]
except KeyError:
raise ValueError(
'"method" must be a callable, or one of "mean", '
f'"median", or "std"; got "{method}".'
)
# Instantiate channel info and data
new_ch_names, new_ch_types, new_data = [], [], []
if not isinstance(keep_stim, bool):
raise TypeError(f'"keep_stim" must be of type bool, not {type(keep_stim)}.')
if keep_stim:
stim_ch_idx = list(pick_types(inst.info, meg=False, stim=True))
if stim_ch_idx:
new_ch_names = [ch_names[idx] for idx in stim_ch_idx]
new_ch_types = [ch_types[idx] for idx in stim_ch_idx]
new_data = [np.take(inst_data, idx, axis=ch_axis) for idx in stim_ch_idx]
else:
warn("Could not find stimulus channels.")
# Get indices of bad channels
ch_idx_bad = []
if not isinstance(drop_bad, bool):
raise TypeError(f'"drop_bad" must be of type bool, not {type(drop_bad)}.')
if drop_bad and inst.info["bads"]:
ch_idx_bad = pick_channels(ch_names, inst.info["bads"])
# Check correctness of combinations
for this_group, this_picks in groups.items():
# Check if channel indices are out of bounds
if not all(idx in ch_idx for idx in this_picks):
raise ValueError("Some channel indices are out of bounds.")
# Check if heterogeneous sensor type combinations
this_ch_type = np.array(ch_types)[this_picks]
if len(set(this_ch_type)) > 1:
types = ", ".join(set(this_ch_type))
raise ValueError(
"Cannot combine sensors of different types; "
f'"{this_group}" contains types {types}.'
)
# Remove bad channels
these_bads = [idx for idx in this_picks if idx in ch_idx_bad]
this_picks = [idx for idx in this_picks if idx not in ch_idx_bad]
if these_bads:
logger.info(
f"Dropped the following channels in group {this_group}: {these_bads}"
)
# Check if combining less than 2 channel
if len(set(this_picks)) < 2:
warn(
f'Less than 2 channels in group "{this_group}" when '
f'combining by method "{method}".'
)
# If all good create more detailed dict without bad channels
groups[this_group] = dict(picks=this_picks, ch_type=this_ch_type[0])
# Combine channels and add them to the new instance
for this_group, this_group_dict in groups.items():
new_ch_names.append(this_group)
new_ch_types.append(this_group_dict["ch_type"])
this_picks = this_group_dict["picks"]
this_data = np.take(inst_data, this_picks, axis=ch_axis)
new_data.append(method(this_data))
new_data = np.swapaxes(new_data, 0, ch_axis)
info = create_info(
sfreq=inst.info["sfreq"], ch_names=new_ch_names, ch_types=new_ch_types
)
# create new instances and make sure to copy important attributes
if isinstance(inst, BaseRaw):
combined_inst = RawArray(new_data, info, first_samp=inst.first_samp)
elif isinstance(inst, BaseEpochs):
combined_inst = EpochsArray(
new_data,
info,
events=inst.events,
event_id=inst.event_id,
tmin=inst.times[0],
baseline=inst.baseline,
)
if inst.metadata is not None:
combined_inst.metadata = inst.metadata.copy()
elif isinstance(inst, Evoked):
combined_inst = EvokedArray(
new_data, info, tmin=inst.times[0], baseline=inst.baseline
)
return combined_inst
# NeuroMag channel groupings
_SELECTIONS = [
"Vertex",
"Left-temporal",
"Right-temporal",
"Left-parietal",
"Right-parietal",
"Left-occipital",
"Right-occipital",
"Left-frontal",
"Right-frontal",
]
_EEG_SELECTIONS = ["EEG 1-32", "EEG 33-64", "EEG 65-96", "EEG 97-128"]
def _divide_to_regions(info, add_stim=True):
"""Divide channels to regions by positions."""
picks = _pick_data_channels(info, exclude=[])
chs_in_lobe = len(picks) // 4
pos = np.array([ch["loc"][:3] for ch in info["chs"]])
x, y, z = pos.T
frontal = picks[np.argsort(y[picks])[-chs_in_lobe:]]
picks = np.setdiff1d(picks, frontal)
occipital = picks[np.argsort(y[picks])[:chs_in_lobe]]
picks = np.setdiff1d(picks, occipital)
temporal = picks[np.argsort(z[picks])[:chs_in_lobe]]
picks = np.setdiff1d(picks, temporal)
lt, rt = _divide_side(temporal, x)
lf, rf = _divide_side(frontal, x)
lo, ro = _divide_side(occipital, x)
lp, rp = _divide_side(picks, x) # Parietal lobe from the remaining picks.
# Because of the way the sides are divided, there may be outliers in the
# temporal lobes. Here we switch the sides for these outliers. For other
# lobes it is not a big problem because of the vicinity of the lobes.
with np.errstate(invalid="ignore"): # invalid division, greater compare
zs = np.abs(zscore(x[rt]))
outliers = np.array(rt)[np.where(zs > 2.0)[0]]
rt = list(np.setdiff1d(rt, outliers))
with np.errstate(invalid="ignore"): # invalid division, greater compare
zs = np.abs(zscore(x[lt]))
outliers = np.append(outliers, (np.array(lt)[np.where(zs > 2.0)[0]]))
lt = list(np.setdiff1d(lt, outliers))
l_mean = np.mean(x[lt])
r_mean = np.mean(x[rt])
for outlier in outliers:
if abs(l_mean - x[outlier]) < abs(r_mean - x[outlier]):
lt.append(outlier)
else:
rt.append(outlier)
if add_stim:
stim_ch = _get_stim_channel(None, info, raise_error=False)
if len(stim_ch) > 0:
for region in [lf, rf, lo, ro, lp, rp, lt, rt]:
region.append(info["ch_names"].index(stim_ch[0]))
return OrderedDict(
[
("Left-frontal", lf),
("Right-frontal", rf),
("Left-parietal", lp),
("Right-parietal", rp),
("Left-occipital", lo),
("Right-occipital", ro),
("Left-temporal", lt),
("Right-temporal", rt),
]
)
def _divide_side(lobe, x):
"""Make a separation between left and right lobe evenly."""
lobe = np.asarray(lobe)
median = np.median(x[lobe])
left = lobe[np.where(x[lobe] < median)[0]]
right = lobe[np.where(x[lobe] > median)[0]]
medians = np.where(x[lobe] == median)[0]
left = np.sort(np.concatenate([left, lobe[medians[1::2]]]))
right = np.sort(np.concatenate([right, lobe[medians[::2]]]))
return list(left), list(right)
@verbose
def read_vectorview_selection(name, fname=None, info=None, verbose=None):
"""Read Neuromag Vector View channel selection from a file.
Parameters
----------
name : str | list of str
Name of the selection. If a list, the selections are combined.
Supported selections are: ``'Vertex'``, ``'Left-temporal'``,
``'Right-temporal'``, ``'Left-parietal'``, ``'Right-parietal'``,
``'Left-occipital'``, ``'Right-occipital'``, ``'Left-frontal'`` and
``'Right-frontal'``. Selections can also be matched and combined by
spcecifying common substrings. For example, ``name='temporal`` will
produce a combination of ``'Left-temporal'`` and ``'Right-temporal'``.
fname : path-like
Filename of the selection file (if ``None``, built-in selections are
used).
%(info)s Used to determine which channel naming convention to use, e.g.
``'MEG 0111'`` (with space) for old Neuromag systems and ``'MEG0111'``
(without space) for new ones.
%(verbose)s
Returns
-------
sel : list of str
List with channel names in the selection.
"""
# convert name to list of string
if not isinstance(name, list | tuple):
name = [name]
if isinstance(info, Info):
picks = pick_types(info, meg=True, exclude=())
if len(picks) > 0 and " " not in info["ch_names"][picks[0]]:
spacing = "new"
else:
spacing = "old"
elif info is not None:
raise TypeError(f"info must be an instance of Info or None, not {type(info)}")
else: # info is None
spacing = "old"
# use built-in selections by default
if fname is None:
fname = op.join(op.dirname(__file__), "..", "data", "mne_analyze.sel")
fname = str(_check_fname(fname, must_exist=True, overwrite="read"))
# use this to make sure we find at least one match for each name
name_found = {n: False for n in name}
with open(fname) as fid:
sel = []
for line in fid:
line = line.strip()
# skip blank lines and comments
if len(line) == 0 or line[0] == "#":
continue
# get the name of the selection in the file
pos = line.find(":")
if pos < 0:
logger.info('":" delimiter not found in selections file, skipping line')
continue
sel_name_file = line[:pos]
# search for substring match with name provided
for n in name:
if sel_name_file.find(n) >= 0:
sel.extend(line[pos + 1 :].split("|"))
name_found[n] = True
break
# make sure we found at least one match for each name
for n, found in name_found.items():
if not found:
raise ValueError(f'No match for selection name "{n}" found')
# make the selection a sorted list with unique elements
sel = list(set(sel))
sel.sort()
if spacing == "new": # "new" or "old" by now, "old" is default
sel = [s.replace("MEG ", "MEG") for s in sel]
return sel