[074d3d]: / mne / bem.py

Download this file

2538 lines (2215 with data), 86.9 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# The computations in this code were primarily derived from Matti Hämäläinen's
# C code.
import glob
import json
import os
import os.path as op
import shutil
from collections import OrderedDict
from copy import deepcopy
from functools import partial
from pathlib import Path
import numpy as np
from scipy.optimize import fmin_cobyla
from ._fiff._digitization import _dig_kind_dict, _dig_kind_ints, _dig_kind_rev
from ._fiff.constants import FIFF, FWD
from ._fiff.open import fiff_open
from ._fiff.tag import find_tag
from ._fiff.tree import dir_tree_find
from ._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_float,
write_float_matrix,
write_int,
write_int_matrix,
write_string,
)
from .fixes import _compare_version, _safe_svd
from .surface import (
_complete_sphere_surf,
_compute_nearest,
_fast_cross_nd_sum,
_get_ico_surface,
_get_solids,
complete_surface_info,
decimate_surface,
read_surface,
read_tri,
transform_surface_to,
write_surface,
)
from .transforms import Transform, _ensure_trans, apply_trans
from .utils import (
_check_fname,
_check_freesurfer_home,
_check_head_radius,
_check_option,
_ensure_int,
_import_h5io_funcs,
_import_nibabel,
_on_missing,
_path_like,
_pl,
_TempDir,
_validate_type,
_verbose_safe_false,
get_subjects_dir,
logger,
path_like,
run_subprocess,
verbose,
warn,
)
from .viz.misc import plot_bem
# ############################################################################
# Compute BEM solution
# The following approach is based on:
#
# de Munck JC: "A linear discretization of the volume conductor boundary
# integral equation using analytically integrated elements",
# IEEE Trans Biomed Eng. 1992 39(9) : 986 - 990
#
class ConductorModel(dict):
"""BEM or sphere model.
See :func:`~mne.make_bem_model` and :func:`~mne.make_bem_solution` to create a
:class:`mne.bem.ConductorModel`.
"""
def __repr__(self): # noqa: D105
if self["is_sphere"]:
center = ", ".join(f"{x * 1000.0:.1f}" for x in self["r0"])
rad = self.radius
if rad is None: # no radius / MEG only
extra = f"Sphere (no layers): r0=[{center}] mm"
else:
extra = (
f"Sphere ({len(self['layers']) - 1} layer{_pl(self['layers'])}): "
f"r0=[{center}] R={rad * 1000.0:1.0f} mm"
)
else:
extra = f"BEM ({len(self['surfs'])} layer{_pl(self['surfs'])})"
extra += f" solver={self['solver']}"
return f"<ConductorModel | {extra}>"
def copy(self):
"""Return copy of ConductorModel instance."""
return deepcopy(self)
@property
def radius(self):
"""Sphere radius if an EEG sphere model."""
if not self["is_sphere"]:
raise RuntimeError("radius undefined for BEM")
return None if len(self["layers"]) == 0 else self["layers"][-1]["rad"]
def _calc_beta(rk, rk_norm, rk1, rk1_norm):
"""Compute coefficients for calculating the magic vector omega."""
rkk1 = rk1[0] - rk[0]
size = np.linalg.norm(rkk1)
rkk1 /= size
num = rk_norm + np.dot(rk, rkk1)
den = rk1_norm + np.dot(rk1, rkk1)
res = np.log(num / den) / size
return res
def _lin_pot_coeff(fros, tri_rr, tri_nn, tri_area):
"""Compute the linear potential matrix element computations."""
omega = np.zeros((len(fros), 3))
# we replicate a little bit of the _get_solids code here for speed
# (we need some of the intermediate values later)
v1 = tri_rr[np.newaxis, 0, :] - fros
v2 = tri_rr[np.newaxis, 1, :] - fros
v3 = tri_rr[np.newaxis, 2, :] - fros
triples = _fast_cross_nd_sum(v1, v2, v3)
l1 = np.linalg.norm(v1, axis=1)
l2 = np.linalg.norm(v2, axis=1)
l3 = np.linalg.norm(v3, axis=1)
ss = l1 * l2 * l3
ss += np.einsum("ij,ij,i->i", v1, v2, l3)
ss += np.einsum("ij,ij,i->i", v1, v3, l2)
ss += np.einsum("ij,ij,i->i", v2, v3, l1)
solids = np.arctan2(triples, ss)
# We *could* subselect the good points from v1, v2, v3, triples, solids,
# l1, l2, and l3, but there are *very* few bad points. So instead we do
# some unnecessary calculations, and then omit them from the final
# solution. These three lines ensure we don't get invalid values in
# _calc_beta.
bad_mask = np.abs(solids) < np.pi / 1e6
l1[bad_mask] = 1.0
l2[bad_mask] = 1.0
l3[bad_mask] = 1.0
# Calculate the magic vector vec_omega
beta = [
_calc_beta(v1, l1, v2, l2)[:, np.newaxis],
_calc_beta(v2, l2, v3, l3)[:, np.newaxis],
_calc_beta(v3, l3, v1, l1)[:, np.newaxis],
]
vec_omega = (beta[2] - beta[0]) * v1
vec_omega += (beta[0] - beta[1]) * v2
vec_omega += (beta[1] - beta[2]) * v3
area2 = 2.0 * tri_area
n2 = 1.0 / (area2 * area2)
# leave omega = 0 otherwise
# Put it all together...
yys = [v1, v2, v3]
idx = [0, 1, 2, 0, 2]
for k in range(3):
diff = yys[idx[k - 1]] - yys[idx[k + 1]]
zdots = _fast_cross_nd_sum(yys[idx[k + 1]], yys[idx[k - 1]], tri_nn)
omega[:, k] = -n2 * (
area2 * zdots * 2.0 * solids - triples * (diff * vec_omega).sum(axis=-1)
)
# omit the bad points from the solution
omega[bad_mask] = 0.0
return omega
def _correct_auto_elements(surf, mat):
"""Improve auto-element approximation."""
pi2 = 2.0 * np.pi
tris_flat = surf["tris"].ravel()
misses = pi2 - mat.sum(axis=1)
for j, miss in enumerate(misses):
# How much is missing?
n_memb = len(surf["neighbor_tri"][j])
assert n_memb > 0 # should be guaranteed by our surface checks
# The node itself receives one half
mat[j, j] = miss / 2.0
# The rest is divided evenly among the member nodes...
miss /= 4.0 * n_memb
members = np.where(j == tris_flat)[0]
mods = members % 3
offsets = np.array([[1, 2], [-1, 1], [-1, -2]])
tri_1 = members + offsets[mods, 0]
tri_2 = members + offsets[mods, 1]
for t1, t2 in zip(tri_1, tri_2):
mat[j, tris_flat[t1]] += miss
mat[j, tris_flat[t2]] += miss
return
def _fwd_bem_lin_pot_coeff(surfs):
"""Calculate the coefficients for linear collocation approach."""
# taken from fwd_bem_linear_collocation.c
nps = [surf["np"] for surf in surfs]
np_tot = sum(nps)
coeff = np.zeros((np_tot, np_tot))
offsets = np.cumsum(np.concatenate(([0], nps)))
for si_1, surf1 in enumerate(surfs):
rr_ord = np.arange(nps[si_1])
for si_2, surf2 in enumerate(surfs):
logger.info(
f" {_bem_surf_name[surf1['id']]} ({nps[si_1]:d}) -> "
f"{_bem_surf_name[surf2['id']]} ({nps[si_2]}) ..."
)
tri_rr = surf2["rr"][surf2["tris"]]
tri_nn = surf2["tri_nn"]
tri_area = surf2["tri_area"]
submat = coeff[
offsets[si_1] : offsets[si_1 + 1], offsets[si_2] : offsets[si_2 + 1]
] # view
for k in range(surf2["ntri"]):
tri = surf2["tris"][k]
if si_1 == si_2:
skip_idx = (
(rr_ord == tri[0]) | (rr_ord == tri[1]) | (rr_ord == tri[2])
)
else:
skip_idx = list()
# No contribution from a triangle that
# this vertex belongs to
# if sidx1 == sidx2 and (tri == j).any():
# continue
# Otherwise do the hard job
coeffs = _lin_pot_coeff(
fros=surf1["rr"],
tri_rr=tri_rr[k],
tri_nn=tri_nn[k],
tri_area=tri_area[k],
)
coeffs[skip_idx] = 0.0
submat[:, tri] -= coeffs
if si_1 == si_2:
_correct_auto_elements(surf1, submat)
return coeff
def _fwd_bem_multi_solution(solids, gamma, nps):
"""Do multi surface solution.
* Invert I - solids/(2*M_PI)
* Take deflation into account
* The matrix is destroyed after inversion
* This is the general multilayer case
"""
pi2 = 1.0 / (2 * np.pi)
n_tot = np.sum(nps)
assert solids.shape == (n_tot, n_tot)
nsurf = len(nps)
defl = 1.0 / n_tot
# Modify the matrix
offsets = np.cumsum(np.concatenate(([0], nps)))
for si_1 in range(nsurf):
for si_2 in range(nsurf):
mult = pi2 if gamma is None else pi2 * gamma[si_1, si_2]
slice_j = slice(offsets[si_1], offsets[si_1 + 1])
slice_k = slice(offsets[si_2], offsets[si_2 + 1])
solids[slice_j, slice_k] = defl - solids[slice_j, slice_k] * mult
solids += np.eye(n_tot)
return np.linalg.inv(solids)
def _fwd_bem_homog_solution(solids, nps):
"""Make a homogeneous solution."""
return _fwd_bem_multi_solution(solids, gamma=None, nps=nps)
def _fwd_bem_ip_modify_solution(solution, ip_solution, ip_mult, n_tri):
"""Modify the solution according to the IP approach."""
n_last = n_tri[-1]
mult = (1.0 + ip_mult) / ip_mult
logger.info(" Combining...")
offsets = np.cumsum(np.concatenate(([0], n_tri)))
for si in range(len(n_tri)):
# Pick the correct submatrix (right column) and multiply
sub = solution[offsets[si] : offsets[si + 1], np.sum(n_tri[:-1]) :]
# Multiply
sub -= 2 * np.dot(sub, ip_solution)
# The lower right corner is a special case
sub[-n_last:, -n_last:] += mult * ip_solution
# Final scaling
logger.info(" Scaling...")
solution *= ip_mult
return
def _check_complete_surface(surf, copy=False, incomplete="raise", extra=""):
surf = complete_surface_info(surf, copy=copy, verbose=_verbose_safe_false())
fewer = np.where([len(t) < 3 for t in surf["neighbor_tri"]])[0]
if len(fewer) > 0:
fewer = list(fewer)
fewer = (fewer[:80] + ["..."]) if len(fewer) > 80 else fewer
fewer = ", ".join(str(f) for f in fewer)
msg = (
f"Surface {_bem_surf_name[surf['id']]} has topological defects: "
f"{len(fewer)} / {len(surf['rr'])} vertices have fewer than three "
f"neighboring triangles [{fewer}]{extra}"
)
_on_missing(on_missing=incomplete, msg=msg, name="on_defects")
return surf
def _fwd_bem_linear_collocation_solution(bem):
"""Compute the linear collocation potential solution."""
# first, add surface geometries
logger.info("Computing the linear collocation solution...")
logger.info(" Matrix coefficients...")
coeff = _fwd_bem_lin_pot_coeff(bem["surfs"])
bem["nsol"] = len(coeff)
logger.info(" Inverting the coefficient matrix...")
nps = [surf["np"] for surf in bem["surfs"]]
bem["solution"] = _fwd_bem_multi_solution(coeff, bem["gamma"], nps)
if len(bem["surfs"]) == 3:
ip_mult = bem["sigma"][1] / bem["sigma"][2]
if ip_mult <= FWD.BEM_IP_APPROACH_LIMIT:
logger.info("IP approach required...")
logger.info(" Matrix coefficients (homog)...")
coeff = _fwd_bem_lin_pot_coeff([bem["surfs"][-1]])
logger.info(" Inverting the coefficient matrix (homog)...")
ip_solution = _fwd_bem_homog_solution(coeff, [bem["surfs"][-1]["np"]])
logger.info(
" Modify the original solution to incorporate IP approach..."
)
_fwd_bem_ip_modify_solution(bem["solution"], ip_solution, ip_mult, nps)
bem["bem_method"] = FIFF.FIFFV_BEM_APPROX_LINEAR
bem["solver"] = "mne"
def _import_openmeeg(what="compute a BEM solution using OpenMEEG"):
try:
import openmeeg as om
except Exception as exc:
raise ImportError(
f"The OpenMEEG module must be installed to {what}, but "
f'"import openmeeg" resulted in: {exc}'
) from None
if not _compare_version(om.__version__, ">=", "2.5.6"):
raise ImportError(f"OpenMEEG 2.5.6+ is required, got {om.__version__}")
return om
def _make_openmeeg_geometry(bem, mri_head_t=None):
# OpenMEEG
om = _import_openmeeg()
meshes = []
for surf in bem["surfs"][::-1]:
if mri_head_t is not None:
surf = transform_surface_to(surf, "head", mri_head_t, copy=True)
points, faces = surf["rr"], surf["tris"]
faces = faces[:, [1, 0, 2]] # swap faces
meshes.append((points, faces))
conductivity = bem["sigma"][::-1]
return om.make_nested_geometry(meshes, conductivity)
def _fwd_bem_openmeeg_solution(bem):
om = _import_openmeeg()
logger.info("Creating BEM solution using OpenMEEG")
logger.info("Computing the openmeeg head matrix solution...")
logger.info(" Matrix coefficients...")
geom = _make_openmeeg_geometry(bem)
hm = om.HeadMat(geom)
bem["nsol"] = hm.nlin()
logger.info(" Inverting the coefficient matrix...")
hm.invert() # invert inplace
bem["solution"] = hm.array_flat()
bem["bem_method"] = FIFF.FIFFV_BEM_APPROX_LINEAR
bem["solver"] = "openmeeg"
@verbose
def make_bem_solution(surfs, *, solver="mne", verbose=None):
"""Create a BEM solution using the linear collocation approach.
Parameters
----------
surfs : list of dict
The BEM surfaces to use (from :func:`mne.make_bem_model`).
solver : str
Can be ``'mne'`` (default) to use MNE-Python, or ``'openmeeg'`` to use the
`OpenMEEG <https://openmeeg.github.io>`__ package.
.. versionadded:: 1.2
%(verbose)s
Returns
-------
bem : instance of ConductorModel
The BEM solution.
See Also
--------
make_bem_model
read_bem_surfaces
write_bem_surfaces
read_bem_solution
write_bem_solution
Notes
-----
.. versionadded:: 0.10.0
"""
_validate_type(solver, str, "solver")
_check_option("method", solver.lower(), ("mne", "openmeeg"))
bem = _ensure_bem_surfaces(surfs)
_add_gamma_multipliers(bem)
if len(bem["surfs"]) == 3:
logger.info("Three-layer model surfaces loaded.")
elif len(bem["surfs"]) == 1:
logger.info("Homogeneous model surface loaded.")
else:
raise RuntimeError("Only 1- or 3-layer BEM computations supported")
_check_bem_size(bem["surfs"])
for surf in bem["surfs"]:
_check_complete_surface(surf)
if solver.lower() == "openmeeg":
_fwd_bem_openmeeg_solution(bem)
else:
assert solver.lower() == "mne"
_fwd_bem_linear_collocation_solution(bem)
logger.info("Solution ready.")
logger.info("BEM geometry computations complete.")
return bem
# ############################################################################
# Make BEM model
def _ico_downsample(surf, dest_grade):
"""Downsample the surface if isomorphic to a subdivided icosahedron."""
n_tri = len(surf["tris"])
bad_msg = (
f"Cannot decimate to requested ico grade {dest_grade}. The provided "
f"BEM surface has {n_tri} triangles, which cannot be isomorphic with "
"a subdivided icosahedron. Consider manually decimating the surface to "
"a suitable density and then use ico=None in make_bem_model."
)
if n_tri % 20 != 0:
raise RuntimeError(bad_msg)
n_tri = n_tri // 20
found = int(round(np.log(n_tri) / np.log(4)))
if n_tri != 4**found:
raise RuntimeError(bad_msg)
del n_tri
if dest_grade > found:
raise RuntimeError(
f"For this surface, decimation grade should be {found} or less, "
f"not {dest_grade}."
)
source = _get_ico_surface(found)
dest = _get_ico_surface(dest_grade, patch_stats=True)
del dest["tri_cent"]
del dest["tri_nn"]
del dest["neighbor_tri"]
del dest["tri_area"]
if not np.array_equal(source["tris"], surf["tris"]):
raise RuntimeError(
"The source surface has a matching number of "
"triangles but ordering is wrong"
)
logger.info(
f"Going from {found}th to {dest_grade}th subdivision of an icosahedron "
f"(n_tri: {len(surf['tris'])} -> {len(dest['tris'])})"
)
# Find the mapping
dest["rr"] = surf["rr"][_get_ico_map(source, dest)]
return dest
def _get_ico_map(fro, to):
"""Get a mapping between ico surfaces."""
nearest, dists = _compute_nearest(fro["rr"], to["rr"], return_dists=True)
n_bads = (dists > 5e-3).sum()
if n_bads > 0:
raise RuntimeError(f"No matching vertex for {n_bads} destination vertices")
return nearest
def _order_surfaces(surfs):
"""Reorder the surfaces."""
if len(surfs) != 3:
return surfs
# we have three surfaces
surf_order = [
FIFF.FIFFV_BEM_SURF_ID_HEAD,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_BRAIN,
]
ids = np.array([surf["id"] for surf in surfs])
if set(ids) != set(surf_order):
raise RuntimeError(f"bad surface ids: {ids}")
order = [np.where(ids == id_)[0][0] for id_ in surf_order]
surfs = [surfs[idx] for idx in order]
return surfs
def _assert_complete_surface(surf, incomplete="raise"):
"""Check the sum of solid angles as seen from inside."""
# from surface_checks.c
# Center of mass....
cm = surf["rr"].mean(axis=0)
logger.info(
f"{_bem_surf_name[surf['id']]} CM is "
f"{1000 * cm[0]:6.2f} "
f"{1000 * cm[1]:6.2f} "
f"{1000 * cm[2]:6.2f} mm"
)
tot_angle = _get_solids(surf["rr"][surf["tris"]], cm[np.newaxis, :])[0]
prop = tot_angle / (2 * np.pi)
if np.abs(prop - 1.0) > 1e-5:
msg = (
f"Surface {_bem_surf_name[surf['id']]} is not complete (sum of "
f"solid angles yielded {prop}, should be 1.)"
)
_on_missing(incomplete, msg, name="incomplete", error_klass=RuntimeError)
def _assert_inside(fro, to):
"""Check one set of points is inside a surface."""
# this is "is_inside" in surface_checks.c
fro_name = _bem_surf_name[fro["id"]]
to_name = _bem_surf_name[to["id"]]
logger.info(f"Checking that surface {fro_name} is inside surface {to_name} ...")
tot_angle = _get_solids(to["rr"][to["tris"]], fro["rr"])
if (np.abs(tot_angle / (2 * np.pi) - 1.0) > 1e-5).any():
raise RuntimeError(
f"Surface {fro_name} is not completely inside surface {to_name}"
)
def _check_surfaces(surfs, incomplete="raise"):
"""Check that the surfaces are complete and non-intersecting."""
for surf in surfs:
_assert_complete_surface(surf, incomplete=incomplete)
# Then check the topology
for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
_assert_inside(surf_2, surf_1)
def _check_surface_size(surf):
"""Check that the coordinate limits are reasonable."""
sizes = surf["rr"].max(axis=0) - surf["rr"].min(axis=0)
if (sizes < 0.05).any():
raise RuntimeError(
f"Dimensions of the surface {_bem_surf_name[surf['id']]} seem too "
f"small ({1000 * sizes.min():9.5f}). Maybe the unit of measure"
" is meters instead of mm"
)
def _check_thicknesses(surfs):
"""Compute how close we are."""
for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
min_dist = _compute_nearest(surf_1["rr"], surf_2["rr"], return_dists=True)[1]
min_dist = min_dist.min()
fro = _bem_surf_name[surf_1["id"]]
to = _bem_surf_name[surf_2["id"]]
logger.info(f"Checking distance between {fro} and {to} surfaces...")
logger.info(
f"Minimum distance between the {fro} and {to} surfaces is "
f"approximately {1000 * min_dist:6.1f} mm"
)
def _surfaces_to_bem(
surfs, ids, sigmas, ico=None, rescale=True, incomplete="raise", extra=""
):
"""Convert surfaces to a BEM."""
# equivalent of mne_surf2bem
# surfs can be strings (filenames) or surface dicts
if len(surfs) not in (1, 3) or not (len(surfs) == len(ids) == len(sigmas)):
raise ValueError(
"surfs, ids, and sigmas must all have the same number of elements (1 or 3)"
)
for si, surf in enumerate(surfs):
if isinstance(surf, str | Path | os.PathLike):
surfs[si] = surf = read_surface(surf, return_dict=True)[-1]
# Downsampling if the surface is isomorphic with a subdivided icosahedron
if ico is not None:
for si, surf in enumerate(surfs):
surfs[si] = _ico_downsample(surf, ico)
for surf, id_ in zip(surfs, ids):
# Do topology checks (but don't save data) to fail early
surf["id"] = id_
_check_complete_surface(surf, copy=True, incomplete=incomplete, extra=extra)
surf["coord_frame"] = surf.get("coord_frame", FIFF.FIFFV_COORD_MRI)
surf.update(np=len(surf["rr"]), ntri=len(surf["tris"]))
if rescale:
surf["rr"] /= 1000.0 # convert to meters
# Shifting surfaces is not implemented here...
# Order the surfaces for the benefit of the topology checks
for surf, sigma in zip(surfs, sigmas):
surf["sigma"] = sigma
surfs = _order_surfaces(surfs)
# Check topology as best we can
_check_surfaces(surfs, incomplete=incomplete)
for surf in surfs:
_check_surface_size(surf)
_check_thicknesses(surfs)
logger.info("Surfaces passed the basic topology checks.")
return surfs
@verbose
def make_bem_model(
subject, ico=4, conductivity=(0.3, 0.006, 0.3), subjects_dir=None, verbose=None
):
"""Create a BEM model for a subject.
Use :func:`~mne.make_bem_solution` to turn the returned surfaces into a
:class:`~mne.bem.ConductorModel` suitable for forward calculation.
.. note:: To get a single layer bem corresponding to the --homog flag in
the command line tool set the ``conductivity`` parameter
to a float (e.g. ``0.3``).
Parameters
----------
%(subject)s
ico : int | None
The surface ico downsampling to use, e.g. ``5=20484``, ``4=5120``,
``3=1280``. If None, no subsampling is applied.
conductivity : float | array of float of shape (3,) or (1,)
The conductivities to use for each shell. Should be a single element
for a one-layer model, or three elements for a three-layer model.
Defaults to ``[0.3, 0.006, 0.3]``. The MNE-C default for a
single-layer model is ``[0.3]``.
%(subjects_dir)s
%(verbose)s
Returns
-------
surfaces : list of dict
The BEM surfaces. Use :func:`~mne.make_bem_solution` to turn these into a
:class:`~mne.bem.ConductorModel` suitable for forward calculation.
See Also
--------
make_bem_solution
make_sphere_model
read_bem_surfaces
write_bem_surfaces
Notes
-----
.. versionadded:: 0.10.0
"""
conductivity = np.atleast_1d(conductivity).astype(float)
if conductivity.ndim != 1 or conductivity.size not in (1, 3):
raise ValueError(
"conductivity must be a float or a 1D array-like with 1 or 3 elements"
)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = subjects_dir / subject
bem_dir = subject_dir / "bem"
inner_skull = bem_dir / "inner_skull.surf"
outer_skull = bem_dir / "outer_skull.surf"
outer_skin = bem_dir / "outer_skin.surf"
surfaces = [inner_skull, outer_skull, outer_skin]
ids = [
FIFF.FIFFV_BEM_SURF_ID_BRAIN,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
]
logger.info("Creating the BEM geometry...")
if len(conductivity) == 1:
surfaces = surfaces[:1]
ids = ids[:1]
surfaces = _surfaces_to_bem(surfaces, ids, conductivity, ico)
_check_bem_size(surfaces)
logger.info("Complete.\n")
return surfaces
# ############################################################################
# Compute EEG sphere model
def _fwd_eeg_get_multi_sphere_model_coeffs(m, n_terms):
"""Get the model depended weighting factor for n."""
nlayer = len(m["layers"])
if nlayer in (0, 1):
return 1.0
# Initialize the arrays
c1 = np.zeros(nlayer - 1)
c2 = np.zeros(nlayer - 1)
cr = np.zeros(nlayer - 1)
cr_mult = np.zeros(nlayer - 1)
for k in range(nlayer - 1):
c1[k] = m["layers"][k]["sigma"] / m["layers"][k + 1]["sigma"]
c2[k] = c1[k] - 1.0
cr_mult[k] = m["layers"][k]["rel_rad"]
cr[k] = cr_mult[k]
cr_mult[k] *= cr_mult[k]
coeffs = np.zeros(n_terms - 1)
for n in range(1, n_terms):
# Increment the radius coefficients
for k in range(nlayer - 1):
cr[k] *= cr_mult[k]
# Multiply the matrices
M = np.eye(2)
n1 = n + 1.0
for k in range(nlayer - 2, -1, -1):
M = np.dot(
[
[n + n1 * c1[k], n1 * c2[k] / cr[k]],
[n * c2[k] * cr[k], n1 + n * c1[k]],
],
M,
)
num = n * (2.0 * n + 1.0) ** (nlayer - 1)
coeffs[n - 1] = num / (n * M[1, 1] + n1 * M[1, 0])
return coeffs
def _compose_linear_fitting_data(mu, u):
"""Get the linear fitting data."""
k1 = np.arange(1, u["nterms"])
mu1ns = mu[0] ** k1
# data to be fitted
y = u["w"][:-1] * (u["fn"][1:] - mu1ns * u["fn"][0])
# model matrix
M = u["w"][:-1, np.newaxis] * (mu[1:] ** k1[:, np.newaxis] - mu1ns[:, np.newaxis])
uu, sing, vv = _safe_svd(M, full_matrices=False)
ncomp = u["nfit"] - 1
uu, sing, vv = uu[:, :ncomp], sing[:ncomp], vv[:ncomp]
return y, uu, sing, vv
def _compute_linear_parameters(mu, u):
"""Compute the best-fitting linear parameters."""
y, uu, sing, vv = _compose_linear_fitting_data(mu, u)
# Compute the residuals
vec = np.dot(y, uu)
resi = y - np.dot(uu, vec)
vec /= sing
lambda_ = np.zeros(u["nfit"])
lambda_[1:] = np.dot(vec, vv)
lambda_[0] = u["fn"][0] - np.sum(lambda_[1:])
rv = np.dot(resi, resi) / np.dot(y, y)
return rv, lambda_
def _one_step(mu, u):
"""Evaluate the residual sum of squares fit for one set of mu values."""
if np.abs(mu).max() >= 1.0:
return 100.0
# Compose the data for the linear fitting, compute SVD, then residuals
y, uu, sing, vv = _compose_linear_fitting_data(mu, u)
resi = y - np.dot(uu, np.dot(y, uu))
return np.dot(resi, resi)
def _fwd_eeg_fit_berg_scherg(m, nterms, nfit):
"""Fit the Berg-Scherg equivalent spherical model dipole parameters."""
assert nfit >= 2
u = dict(nfit=nfit, nterms=nterms)
# (1) Calculate the coefficients of the true expansion
u["fn"] = _fwd_eeg_get_multi_sphere_model_coeffs(m, nterms + 1)
# (2) Calculate the weighting
f = min([layer["rad"] for layer in m["layers"]]) / max(
[layer["rad"] for layer in m["layers"]]
)
# correct weighting
k = np.arange(1, nterms + 1)
u["w"] = np.sqrt((2.0 * k + 1) * (3.0 * k + 1.0) / k) * np.power(f, (k - 1.0))
u["w"][-1] = 0
# Do the nonlinear minimization, constraining mu to the interval [-1, +1]
mu_0 = np.zeros(3)
fun = partial(_one_step, u=u)
catol = 1e-6
max_ = 1.0 - 2 * catol
def cons(x):
return max_ - np.abs(x)
mu = fmin_cobyla(fun, mu_0, [cons], rhobeg=0.5, rhoend=1e-5, catol=catol)
# (6) Do the final step: calculation of the linear parameters
rv, lambda_ = _compute_linear_parameters(mu, u)
order = np.argsort(mu)[::-1]
mu, lambda_ = mu[order], lambda_[order] # sort: largest mu first
m["mu"] = mu
# This division takes into account the actual conductivities
m["lambda"] = lambda_ / m["layers"][-1]["sigma"]
m["nfit"] = nfit
return rv
@verbose
def make_sphere_model(
r0=(0.0, 0.0, 0.04),
head_radius=0.09,
info=None,
relative_radii=(0.90, 0.92, 0.97, 1.0),
sigmas=(0.33, 1.0, 0.004, 0.33),
verbose=None,
):
"""Create a spherical model for forward solution calculation.
Parameters
----------
r0 : array-like | str
Head center to use (in head coordinates). If 'auto', the head
center will be calculated from the digitization points in info.
head_radius : float | str | None
If float, compute spherical shells for EEG using the given radius.
If ``'auto'``, estimate an appropriate radius from the dig points in the
:class:`~mne.Info` provided by the argument ``info``.
If None, exclude shells (single layer sphere model).
%(info)s Only needed if ``r0`` or ``head_radius`` are ``'auto'``.
relative_radii : array-like
Relative radii for the spherical shells.
sigmas : array-like
Sigma values for the spherical shells.
%(verbose)s
Returns
-------
sphere : instance of ConductorModel
The resulting spherical conductor model.
See Also
--------
make_bem_model
make_bem_solution
Notes
-----
The default model has::
relative_radii = (0.90, 0.92, 0.97, 1.0)
sigmas = (0.33, 1.0, 0.004, 0.33)
These correspond to compartments (with relative radii in ``m`` and
conductivities σ in ``S/m``) for the brain, CSF, skull, and scalp,
respectively.
.. versionadded:: 0.9.0
"""
for name in ("r0", "head_radius"):
param = locals()[name]
if isinstance(param, str):
if param != "auto":
raise ValueError(f'{name}, if str, must be "auto" not "{param}"')
relative_radii = np.array(relative_radii, float).ravel()
sigmas = np.array(sigmas, float).ravel()
if len(relative_radii) != len(sigmas):
raise ValueError(
f"relative_radii length ({len(relative_radii)}) must match that of sigmas ("
f"{len(sigmas)})"
)
if len(sigmas) <= 1 and head_radius is not None:
raise ValueError(
"at least 2 sigmas must be supplied if head_radius is not None, got "
f"{len(sigmas)}"
)
if (isinstance(r0, str) and r0 == "auto") or (
isinstance(head_radius, str) and head_radius == "auto"
):
if info is None:
raise ValueError("Info must not be None for auto mode")
head_radius_fit, r0_fit = fit_sphere_to_headshape(info, units="m")[:2]
if isinstance(r0, str):
r0 = r0_fit
if isinstance(head_radius, str):
head_radius = head_radius_fit
sphere = ConductorModel(
is_sphere=True, r0=np.array(r0), coord_frame=FIFF.FIFFV_COORD_HEAD
)
sphere["layers"] = list()
if head_radius is not None:
# Eventually these could be configurable...
relative_radii = np.array(relative_radii, float)
sigmas = np.array(sigmas, float)
order = np.argsort(relative_radii)
relative_radii = relative_radii[order]
sigmas = sigmas[order]
for rel_rad, sig in zip(relative_radii, sigmas):
# sort layers by (relative) radius, and scale radii
layer = dict(rad=rel_rad, sigma=sig)
layer["rel_rad"] = layer["rad"] = rel_rad
sphere["layers"].append(layer)
# scale the radii
R = sphere["layers"][-1]["rad"]
rR = sphere["layers"][-1]["rel_rad"]
for layer in sphere["layers"]:
layer["rad"] /= R
layer["rel_rad"] /= rR
#
# Setup the EEG sphere model calculations
#
# Scale the relative radii
for k in range(len(relative_radii)):
sphere["layers"][k]["rad"] = head_radius * sphere["layers"][k]["rel_rad"]
rv = _fwd_eeg_fit_berg_scherg(sphere, 200, 3)
logger.info(f"\nEquiv. model fitting -> RV = {100 * rv:g} %%")
for k in range(3):
s_k = sphere["layers"][-1]["sigma"] * sphere["lambda"][k]
logger.info(f"mu{k + 1} = {sphere['mu'][k]:g} lambda{k + 1} = {s_k:g}")
logger.info(
f"Set up EEG sphere model with scalp radius {1000 * head_radius:7.1f} mm\n"
)
return sphere
# #############################################################################
# Sphere fitting
@verbose
def fit_sphere_to_headshape(info, dig_kinds="auto", units="m", verbose=None):
"""Fit a sphere to the headshape points to determine head center.
Parameters
----------
%(info_not_none)s
%(dig_kinds)s
units : str
Can be ``"m"`` (default) or ``"mm"``.
.. versionadded:: 0.12
%(verbose)s
Returns
-------
radius : float
Sphere radius.
origin_head: ndarray, shape (3,)
Head center in head coordinates.
origin_device: ndarray, shape (3,)
Head center in device coordinates.
Notes
-----
This function excludes any points that are low and frontal
(``z < 0 and y > 0``) to improve the fit.
"""
if not isinstance(units, str) or units not in ("m", "mm"):
raise ValueError('units must be a "m" or "mm"')
radius, origin_head, origin_device = _fit_sphere_to_headshape(info, dig_kinds)
if units == "mm":
radius *= 1e3
origin_head *= 1e3
origin_device *= 1e3
return radius, origin_head, origin_device
@verbose
def get_fitting_dig(info, dig_kinds="auto", exclude_frontal=True, verbose=None):
"""Get digitization points suitable for sphere fitting.
Parameters
----------
%(info_not_none)s
%(dig_kinds)s
%(exclude_frontal)s
Default is True.
.. versionadded:: 0.19
%(verbose)s
Returns
-------
dig : array, shape (n_pts, 3)
The digitization points (in head coordinates) to use for fitting.
Notes
-----
This will exclude digitization locations that have ``z < 0 and y > 0``,
i.e. points on the nose and below the nose on the face.
.. versionadded:: 0.14
"""
_validate_type(info, "info")
if info["dig"] is None:
raise RuntimeError(
'Cannot fit headshape without digitization, info["dig"] is None'
)
if isinstance(dig_kinds, str):
if dig_kinds == "auto":
# try "extra" first
try:
return get_fitting_dig(info, "extra")
except ValueError:
pass
return get_fitting_dig(info, ("extra", "eeg"))
else:
dig_kinds = (dig_kinds,)
# convert string args to ints (first make dig_kinds mutable in case tuple)
dig_kinds = list(dig_kinds)
for di, d in enumerate(dig_kinds):
dig_kinds[di] = _dig_kind_dict.get(d, d)
if dig_kinds[di] not in _dig_kind_ints:
raise ValueError(
f"dig_kinds[{di}] ({d}) must be one of {sorted(_dig_kind_dict)}"
)
# get head digization points of the specified kind(s)
dig = [p for p in info["dig"] if p["kind"] in dig_kinds]
if len(dig) == 0:
raise ValueError(f"No digitization points found for dig_kinds={dig_kinds}")
if any(p["coord_frame"] != FIFF.FIFFV_COORD_HEAD for p in dig):
raise RuntimeError(
f"Digitization points dig_kinds={dig_kinds} not in head "
"coordinates, contact mne-python developers"
)
hsp = [p["r"] for p in dig]
del dig
# exclude some frontal points (nose etc.)
if exclude_frontal:
hsp = [p for p in hsp if not (p[2] < -1e-6 and p[1] > 1e-6)]
hsp = np.array(hsp)
if len(hsp) <= 10:
kinds_str = ", ".join([f'"{_dig_kind_rev[d]}"' for d in sorted(dig_kinds)])
msg = (
f"Only {len(hsp)} head digitization points of the specified "
f"kind{_pl(dig_kinds)} ({kinds_str},)"
)
if len(hsp) < 4:
raise ValueError(msg + ", at least 4 required")
else:
warn(msg + ", fitting may be inaccurate")
return hsp
@verbose
def _fit_sphere_to_headshape(info, dig_kinds, *, verbose=None):
"""Fit a sphere to the given head shape."""
hsp = get_fitting_dig(info, dig_kinds)
radius, origin_head = _fit_sphere(np.array(hsp))
# compute origin in device coordinates
dev_head_t = info["dev_head_t"]
if dev_head_t is None:
dev_head_t = Transform("meg", "head")
head_to_dev = _ensure_trans(dev_head_t, "head", "meg")
origin_device = apply_trans(head_to_dev, origin_head)
logger.info("Fitted sphere radius:".ljust(30) + f"{radius * 1e3:0.1f} mm")
_check_head_radius(radius)
# > 2 cm away from head center in X or Y is strange
o_mm = origin_head * 1e3
o_d = origin_device * 1e3
if np.linalg.norm(origin_head[:2]) > 0.02:
warn(
f"(X, Y) fit ({o_mm[0]:0.1f}, {o_mm[1]:0.1f}) "
"more than 20 mm from head frame origin"
)
logger.info(
"Origin head coordinates:".ljust(30)
+ f"{o_mm[0]:0.1f} {o_mm[1]:0.1f} {o_mm[2]:0.1f} mm"
)
logger.info(
"Origin device coordinates:".ljust(30)
+ f"{o_d[0]:0.1f} {o_d[1]:0.1f} {o_d[2]:0.1f} mm"
)
return radius, origin_head, origin_device
def _fit_sphere(points):
"""Fit a sphere to an arbitrary set of points."""
# linear least-squares sphere fit, see for example
# https://stackoverflow.com/a/78909044
# TODO: At some point we should maybe reject outliers first...
A = np.c_[2 * points, np.ones((len(points), 1))]
b = (points**2).sum(axis=1)
x, _, _, _ = np.linalg.lstsq(A, b, rcond=1e-6)
origin = x[:3]
radius = np.sqrt(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3])
return radius, origin
def _check_origin(origin, info, coord_frame="head", disp=False):
"""Check or auto-determine the origin."""
if isinstance(origin, str):
if origin != "auto":
raise ValueError(
f'origin must be a numerical array, or "auto", not {origin}'
)
if coord_frame == "head":
R, origin = fit_sphere_to_headshape(
info, verbose=_verbose_safe_false(), units="m"
)[:2]
logger.info(f" Automatic origin fit: head of radius {R * 1000:0.1f} mm")
del R
else:
origin = (0.0, 0.0, 0.0)
origin = np.array(origin, float)
if origin.shape != (3,):
raise ValueError("origin must be a 3-element array")
if disp:
origin_str = ", ".join([f"{o * 1000:0.1f}" for o in origin])
msg = f" Using origin {origin_str} mm in the {coord_frame} frame"
if coord_frame == "meg" and info["dev_head_t"] is not None:
o_dev = apply_trans(info["dev_head_t"], origin)
origin_str = ", ".join(f"{o * 1000:0.1f}" for o in o_dev)
msg += f" ({origin_str} mm in the head frame)"
logger.info(msg)
return origin
# ############################################################################
# Create BEM surfaces
@verbose
def make_watershed_bem(
subject,
subjects_dir=None,
overwrite=False,
volume="T1",
atlas=False,
gcaatlas=False,
preflood=None,
show=False,
copy=True,
T1=None,
brainmask="ws.mgz",
verbose=None,
):
"""Create BEM surfaces using the FreeSurfer watershed algorithm.
See :ref:`bem_watershed_algorithm` for additional information.
Parameters
----------
subject : str
Subject name.
%(subjects_dir)s
%(overwrite)s
volume : str
Defaults to T1.
atlas : bool
Specify the ``--atlas option`` for ``mri_watershed``.
gcaatlas : bool
Specify the ``--brain_atlas`` option for ``mri_watershed``.
preflood : int
Change the preflood height.
show : bool
Show surfaces to visually inspect all three BEM surfaces (recommended).
.. versionadded:: 0.12
copy : bool
If True (default), use copies instead of symlinks for surfaces
(if they do not already exist).
.. versionadded:: 0.18
.. versionchanged:: 1.1 Use copies instead of symlinks.
T1 : bool | None
If True, pass the ``-T1`` flag.
By default (None), this takes the same value as ``gcaatlas``.
.. versionadded:: 0.19
brainmask : str
The filename for the brainmask output file relative to the
``$SUBJECTS_DIR/$SUBJECT/bem/watershed/`` directory.
Can be for example ``"../../mri/brainmask.mgz"`` to overwrite
the brainmask obtained via ``recon-all -autorecon1``.
.. versionadded:: 0.19
%(verbose)s
See Also
--------
mne.viz.plot_bem
Notes
-----
If your BEM meshes do not look correct when viewed in
:func:`mne.viz.plot_alignment` or :func:`mne.viz.plot_bem`, consider
potential solutions from the :ref:`FAQ <faq_watershed_bem_meshes>`.
.. versionadded:: 0.10
"""
env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir)
tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD
run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir)
subjects_dir = env["SUBJECTS_DIR"] # Set by _prepare_env() above.
subject_dir = op.join(subjects_dir, subject)
ws_dir = op.join(bem_dir, "watershed")
T1_dir = op.join(mri_dir, volume)
T1_mgz = T1_dir
if not T1_dir.endswith(".mgz"):
T1_mgz += ".mgz"
if not op.isdir(bem_dir):
os.makedirs(bem_dir)
_check_fname(T1_mgz, overwrite="read", must_exist=True, name="MRI data")
if op.isdir(ws_dir):
if not overwrite:
raise RuntimeError(
f"{ws_dir} already exists. Use the --overwrite option to recreate it."
)
else:
shutil.rmtree(ws_dir)
# put together the command
cmd = ["mri_watershed"]
if preflood:
cmd += ["-h", f"{int(preflood)}"]
if T1 is None:
T1 = gcaatlas
if T1:
cmd += ["-T1"]
if gcaatlas:
fname = op.join(env["FREESURFER_HOME"], "average", "RB_all_withskull_*.gca")
fname = sorted(glob.glob(fname))[::-1][0]
# check if FS>8 didn't generate talairach_with_skull.lta
talairach_with_skull_path = os.path.join(
subject_dir, "mri/transforms/talairach_with_skull.lta"
)
if not os.path.exists(talairach_with_skull_path):
logger.info(
f"{talairach_with_skull_path} does not exist. Running mri_em_register."
)
em_reg_cmd = [
"mri_em_register",
"-skull",
subject_dir + "/mri/nu.mgz",
fname,
talairach_with_skull_path,
]
run_subprocess_env(em_reg_cmd)
logger.info(f"Using GCA atlas: {fname}")
cmd += [
"-atlas",
"-brain_atlas",
fname,
subject_dir + "/mri/transforms/talairach_with_skull.lta",
]
elif atlas:
cmd += ["-atlas"]
if op.exists(T1_mgz):
cmd += [
"-useSRAS",
"-surf",
op.join(ws_dir, subject),
T1_mgz,
op.join(ws_dir, brainmask),
]
else:
cmd += [
"-useSRAS",
"-surf",
op.join(ws_dir, subject),
T1_dir,
op.join(ws_dir, brainmask),
]
# report and run
logger.info(
"\nRunning mri_watershed for BEM segmentation with the following parameters:\n"
f"\nResults dir = {ws_dir}\nCommand = {' '.join(cmd)}\n"
)
os.makedirs(op.join(ws_dir))
run_subprocess_env(cmd)
del tempdir # clean up directory
if op.isfile(T1_mgz):
new_info = _extract_volume_info(T1_mgz)
if not new_info:
warn(
"nibabel is not available or the volume info is invalid. Volume info "
"not updated in the written surface."
)
surfs = ["brain", "inner_skull", "outer_skull", "outer_skin"]
for s in surfs:
surf_ws_out = op.join(ws_dir, f"{subject}_{s}_surface")
rr, tris, volume_info = read_surface(surf_ws_out, read_metadata=True)
# replace volume info, 'head' stays
volume_info.update(new_info)
write_surface(
surf_ws_out, rr, tris, volume_info=volume_info, overwrite=True
)
# Create symbolic links
surf_out = op.join(bem_dir, f"{s}.surf")
if not overwrite and op.exists(surf_out):
skip_symlink = True
else:
if op.exists(surf_out):
os.remove(surf_out)
_symlink(surf_ws_out, surf_out, copy)
skip_symlink = False
if skip_symlink:
logger.info(
"Unable to create all symbolic links to .surf files in bem folder. Use "
"--overwrite option to recreate them."
)
dest = op.join(bem_dir, "watershed")
else:
logger.info("Symbolic links to .surf files created in bem folder")
dest = bem_dir
logger.info(
"\nThank you for waiting.\nThe BEM triangulations for this subject are now "
f"available at:\n{dest}."
)
# Write a head file for coregistration
fname_head = op.join(bem_dir, subject + "-head.fif")
if op.isfile(fname_head):
os.remove(fname_head)
surf = _surfaces_to_bem(
[op.join(ws_dir, subject + "_outer_skin_surface")],
[FIFF.FIFFV_BEM_SURF_ID_HEAD],
sigmas=[1],
)
write_bem_surfaces(fname_head, surf)
# Show computed BEM surfaces
if show:
plot_bem(
subject=subject,
subjects_dir=subjects_dir,
orientation="coronal",
slices=None,
show=True,
)
logger.info(f"Created {fname_head}\n\nComplete.")
def _extract_volume_info(mgz):
"""Extract volume info from a mgz file."""
nib = _import_nibabel()
header = nib.load(mgz).header
version = header["version"]
vol_info = dict()
if version == 1:
version = f"{version} # volume info valid"
vol_info["valid"] = version
vol_info["filename"] = mgz
vol_info["volume"] = header["dims"][:3]
vol_info["voxelsize"] = header["delta"]
vol_info["xras"], vol_info["yras"], vol_info["zras"] = header["Mdc"]
vol_info["cras"] = header["Pxyz_c"]
return vol_info
# ############################################################################
# Read
@verbose
def read_bem_surfaces(
fname, patch_stats=False, s_id=None, on_defects="raise", verbose=None
):
"""Read the BEM surfaces from a FIF file.
Parameters
----------
fname : path-like
The name of the file containing the surfaces.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
s_id : int | None
If int, only read and return the surface with the given ``s_id``.
An error will be raised if it doesn't exist. If None, all
surfaces are read and returned.
%(on_defects)s
.. versionadded:: 0.23
%(verbose)s
Returns
-------
surf: list | dict
A list of dictionaries that each contain a surface. If ``s_id``
is not None, only the requested surface will be returned.
See Also
--------
write_bem_surfaces, write_bem_solution, make_bem_model
"""
# Open the file, create directory
_validate_type(s_id, ("int-like", None), "s_id")
fname = _check_fname(fname, "read", True, "fname")
if fname.suffix == ".h5":
surf = _read_bem_surfaces_h5(fname, s_id)
else:
surf = _read_bem_surfaces_fif(fname, s_id)
if s_id is not None and len(surf) != 1:
raise ValueError(f"surface with id {s_id} not found")
for this in surf:
if patch_stats or this["nn"] is None:
_check_complete_surface(this, incomplete=on_defects)
return surf[0] if s_id is not None else surf
def _read_bem_surfaces_h5(fname, s_id):
read_hdf5, _ = _import_h5io_funcs()
bem = read_hdf5(fname)
try:
[s["id"] for s in bem["surfs"]]
except Exception: # not our format
raise ValueError("BEM data not found")
surf = bem["surfs"]
if s_id is not None:
surf = [s for s in surf if s["id"] == s_id]
return surf
def _read_bem_surfaces_fif(fname, s_id):
# Default coordinate frame
coord_frame = FIFF.FIFFV_COORD_MRI
f, tree, _ = fiff_open(fname)
with f as fid:
# Find BEM
bem = dir_tree_find(tree, FIFF.FIFFB_BEM)
if bem is None or len(bem) == 0:
raise ValueError("BEM data not found")
bem = bem[0]
# Locate all surfaces
bemsurf = dir_tree_find(bem, FIFF.FIFFB_BEM_SURF)
if bemsurf is None:
raise ValueError("BEM surface data not found")
logger.info(f" {len(bemsurf)} BEM surfaces found")
# Coordinate frame possibly at the top level
tag = find_tag(fid, bem, FIFF.FIFF_BEM_COORD_FRAME)
if tag is not None:
coord_frame = tag.data
# Read all surfaces
if s_id is not None:
surf = [
_read_bem_surface(fid, bsurf, coord_frame, s_id) for bsurf in bemsurf
]
surf = [s for s in surf if s is not None]
else:
surf = list()
for bsurf in bemsurf:
logger.info(" Reading a surface...")
this = _read_bem_surface(fid, bsurf, coord_frame)
surf.append(this)
logger.info("[done]")
logger.info(f" {len(surf)} BEM surfaces read")
return surf
def _read_bem_surface(fid, this, def_coord_frame, s_id=None):
"""Read one bem surface."""
# fid should be open as a context manager here
res = dict()
# Read all the interesting stuff
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_ID)
if tag is None:
res["id"] = FIFF.FIFFV_BEM_SURF_ID_UNKNOWN
else:
res["id"] = int(tag.data.item())
if s_id is not None and res["id"] != s_id:
return None
tag = find_tag(fid, this, FIFF.FIFF_BEM_SIGMA)
res["sigma"] = 1.0 if tag is None else float(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NNODE)
if tag is None:
raise ValueError("Number of vertices not found")
res["np"] = int(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI)
if tag is None:
raise ValueError("Number of triangles not found")
res["ntri"] = int(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_BEM_COORD_FRAME)
if tag is None:
res["coord_frame"] = def_coord_frame
else:
res["coord_frame"] = int(tag.data.item())
else:
res["coord_frame"] = int(tag.data.item())
# Vertices, normals, and triangles
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NODES)
if tag is None:
raise ValueError("Vertex data not found")
res["rr"] = tag.data.astype(np.float64)
if res["rr"].shape[0] != res["np"]:
raise ValueError("Vertex information is incorrect")
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NORMALS)
if tag is None:
res["nn"] = None
else:
res["nn"] = tag.data.astype(np.float64)
if res["nn"].shape[0] != res["np"]:
raise ValueError("Vertex normal information is incorrect")
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES)
if tag is None:
raise ValueError("Triangulation not found")
res["tris"] = tag.data - 1 # index start at 0 in Python
if res["tris"].shape[0] != res["ntri"]:
raise ValueError("Triangulation information is incorrect")
return res
@verbose
def read_bem_solution(fname, *, verbose=None):
"""Read the BEM solution from a file.
Parameters
----------
fname : path-like
The file containing the BEM solution.
%(verbose)s
Returns
-------
bem : instance of ConductorModel
The BEM solution.
See Also
--------
read_bem_surfaces
write_bem_surfaces
make_bem_solution
write_bem_solution
"""
fname = _check_fname(fname, "read", True, "fname")
# mirrors fwd_bem_load_surfaces from fwd_bem_model.c
if fname.suffix == ".h5":
read_hdf5, _ = _import_h5io_funcs()
logger.info("Loading surfaces and solution...")
bem = read_hdf5(fname)
if "solver" not in bem:
bem["solver"] = "mne"
else:
bem = _read_bem_solution_fif(fname)
if len(bem["surfs"]) == 3:
logger.info("Three-layer model surfaces loaded.")
needed = np.array(
[
FIFF.FIFFV_BEM_SURF_ID_HEAD,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_BRAIN,
]
)
if not all(x["id"] in needed for x in bem["surfs"]):
raise RuntimeError("Could not find necessary BEM surfaces")
# reorder surfaces as necessary (shouldn't need to?)
reorder = [None] * 3
for x in bem["surfs"]:
reorder[np.where(x["id"] == needed)[0][0]] = x
bem["surfs"] = reorder
elif len(bem["surfs"]) == 1:
if not bem["surfs"][0]["id"] == FIFF.FIFFV_BEM_SURF_ID_BRAIN:
raise RuntimeError("BEM Surfaces not found")
logger.info("Homogeneous model surface loaded.")
assert set(bem.keys()) == set(("surfs", "solution", "bem_method", "solver"))
bem = ConductorModel(bem)
bem["is_sphere"] = False
# sanity checks and conversions
_check_option(
"BEM approximation method", bem["bem_method"], (FIFF.FIFFV_BEM_APPROX_LINEAR,)
) # CONSTANT not supported
dim = 0
solver = bem.get("solver", "mne")
_check_option("BEM solver", solver, ("mne", "openmeeg"))
for si, surf in enumerate(bem["surfs"]):
assert bem["bem_method"] == FIFF.FIFFV_BEM_APPROX_LINEAR
dim += surf["np"]
if solver == "openmeeg" and si != 0:
dim += surf["ntri"]
dims = bem["solution"].shape
if solver == "openmeeg":
sz = (dim * (dim + 1)) // 2
if len(dims) != 1 or dims[0] != sz:
raise RuntimeError(
"For the given BEM surfaces, OpenMEEG should produce a "
f"solution matrix of shape ({sz},) but got {dims}"
)
bem["nsol"] = dim
else:
if len(dims) != 2 and solver != "openmeeg":
raise RuntimeError(
"Expected a two-dimensional solution matrix "
f"instead of a {dims[0]} dimensional one"
)
if dims[0] != dim or dims[1] != dim:
raise RuntimeError(
f"Expected a {dim} x {dim} solution matrix instead of "
f"a {dims[1]} x {dims[0]} one"
)
bem["nsol"] = bem["solution"].shape[0]
# Gamma factors and multipliers
_add_gamma_multipliers(bem)
extra = f"made by {solver}" if solver != "mne" else ""
logger.info(f"Loaded linear collocation BEM solution{extra} from {fname}")
return bem
def _read_bem_solution_fif(fname):
logger.info("Loading surfaces...")
surfs = read_bem_surfaces(fname, patch_stats=True, verbose=_verbose_safe_false())
# convert from surfaces to solution
logger.info("\nLoading the solution matrix...\n")
solver = "mne"
f, tree, _ = fiff_open(fname)
with f as fid:
# Find the BEM data
nodes = dir_tree_find(tree, FIFF.FIFFB_BEM)
if len(nodes) == 0:
raise RuntimeError(f"No BEM data in {fname}")
bem_node = nodes[0]
# Approximation method
tag = find_tag(f, bem_node, FIFF.FIFF_DESCRIPTION)
if tag is not None:
tag = json.loads(tag.data)
solver = tag["solver"]
tag = find_tag(f, bem_node, FIFF.FIFF_BEM_APPROX)
if tag is None:
raise RuntimeError(f"No BEM solution found in {fname}")
method = tag.data[0]
tag = find_tag(fid, bem_node, FIFF.FIFF_BEM_POT_SOLUTION)
sol = tag.data
return dict(solution=sol, bem_method=method, surfs=surfs, solver=solver)
def _add_gamma_multipliers(bem):
"""Add gamma and multipliers in-place."""
bem["sigma"] = np.array([surf["sigma"] for surf in bem["surfs"]])
# Dirty trick for the zero conductivity outside
sigma = np.r_[0.0, bem["sigma"]]
bem["source_mult"] = 2.0 / (sigma[1:] + sigma[:-1])
bem["field_mult"] = sigma[1:] - sigma[:-1]
# make sure subsequent "zip"s work correctly
assert len(bem["surfs"]) == len(bem["field_mult"])
bem["gamma"] = (sigma[1:] - sigma[:-1])[np.newaxis, :] / (sigma[1:] + sigma[:-1])[
:, np.newaxis
]
# In our BEM code we do not model the CSF so we assign the innermost surface
# the id BRAIN. Our 4-layer sphere we model CSF (at least by default), so when
# searching for and referring to surfaces we need to keep track of this.
_sm_surf_dict = OrderedDict(
[
("brain", FIFF.FIFFV_BEM_SURF_ID_BRAIN),
("inner_skull", FIFF.FIFFV_BEM_SURF_ID_CSF),
("outer_skull", FIFF.FIFFV_BEM_SURF_ID_SKULL),
("head", FIFF.FIFFV_BEM_SURF_ID_HEAD),
]
)
_bem_surf_dict = {
"inner_skull": FIFF.FIFFV_BEM_SURF_ID_BRAIN,
"outer_skull": FIFF.FIFFV_BEM_SURF_ID_SKULL,
"head": FIFF.FIFFV_BEM_SURF_ID_HEAD,
}
_bem_surf_name = {
FIFF.FIFFV_BEM_SURF_ID_BRAIN: "inner skull",
FIFF.FIFFV_BEM_SURF_ID_SKULL: "outer skull",
FIFF.FIFFV_BEM_SURF_ID_HEAD: "outer skin ",
FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: "unknown ",
FIFF.FIFFV_MNE_SURF_MEG_HELMET: "MEG helmet ",
}
_sm_surf_name = {
FIFF.FIFFV_BEM_SURF_ID_BRAIN: "brain",
FIFF.FIFFV_BEM_SURF_ID_CSF: "csf",
FIFF.FIFFV_BEM_SURF_ID_SKULL: "outer skull",
FIFF.FIFFV_BEM_SURF_ID_HEAD: "outer skin ",
FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: "unknown ",
FIFF.FIFFV_MNE_SURF_MEG_HELMET: "helmet",
}
def _bem_find_surface(bem, id_):
"""Find surface from already-loaded conductor model."""
if bem["is_sphere"]:
_surf_dict = _sm_surf_dict
_name_dict = _sm_surf_name
kind = "Sphere model"
tri = "boundary"
else:
_surf_dict = _bem_surf_dict
_name_dict = _bem_surf_name
kind = "BEM"
tri = "triangulation"
if isinstance(id_, str):
name = id_
id_ = _surf_dict[id_]
else:
name = _name_dict[id_]
kind = "Sphere model" if bem["is_sphere"] else "BEM"
idx = np.where(np.array([s["id"] for s in bem["surfs"]]) == id_)[0]
if len(idx) != 1:
raise RuntimeError(f"{kind} does not have the {name} {tri}")
return bem["surfs"][idx[0]]
# ############################################################################
# Write
@verbose
def write_bem_surfaces(fname, surfs, overwrite=False, *, verbose=None):
"""Write BEM surfaces to a FIF file.
Parameters
----------
fname : path-like
Filename to write. Can end with ``.h5`` to write using HDF5.
surfs : dict | list of dict
The surfaces, or a single surface.
%(overwrite)s
%(verbose)s
"""
if isinstance(surfs, dict):
surfs = [surfs]
fname = _check_fname(fname, overwrite=overwrite, name="fname")
if fname.suffix == ".h5":
_, write_hdf5 = _import_h5io_funcs()
write_hdf5(fname, dict(surfs=surfs), overwrite=True)
else:
with start_and_end_file(fname) as fid:
start_block(fid, FIFF.FIFFB_BEM)
write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, surfs[0]["coord_frame"])
_write_bem_surfaces_block(fid, surfs)
end_block(fid, FIFF.FIFFB_BEM)
@verbose
def write_head_bem(
fname, rr, tris, on_defects="raise", overwrite=False, *, verbose=None
):
"""Write a head surface to a FIF file.
Parameters
----------
fname : path-like
Filename to write.
rr : array, shape (n_vertices, 3)
Coordinate points in the MRI coordinate system.
tris : ndarray of int, shape (n_tris, 3)
Triangulation (each line contains indices for three points which
together form a face).
%(on_defects)s
%(overwrite)s
%(verbose)s
"""
surf = _surfaces_to_bem(
[dict(rr=rr, tris=tris)],
[FIFF.FIFFV_BEM_SURF_ID_HEAD],
[1],
rescale=False,
incomplete=on_defects,
)
write_bem_surfaces(fname, surf, overwrite=overwrite)
def _write_bem_surfaces_block(fid, surfs):
"""Write bem surfaces to open file handle."""
for surf in surfs:
start_block(fid, FIFF.FIFFB_BEM_SURF)
if "sigma" in surf:
write_float(fid, FIFF.FIFF_BEM_SIGMA, surf["sigma"])
write_int(fid, FIFF.FIFF_BEM_SURF_ID, surf["id"])
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, surf["coord_frame"])
write_int(fid, FIFF.FIFF_BEM_SURF_NNODE, surf["np"])
write_int(fid, FIFF.FIFF_BEM_SURF_NTRI, surf["ntri"])
write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NODES, surf["rr"])
# index start at 0 in Python
write_int_matrix(fid, FIFF.FIFF_BEM_SURF_TRIANGLES, surf["tris"] + 1)
if "nn" in surf and surf["nn"] is not None and len(surf["nn"]) > 0:
write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NORMALS, surf["nn"])
end_block(fid, FIFF.FIFFB_BEM_SURF)
@verbose
def write_bem_solution(fname, bem, overwrite=False, *, verbose=None):
"""Write a BEM model with solution.
Parameters
----------
fname : path-like
The filename to use. Can end with ``.h5`` to write using HDF5.
bem : instance of ConductorModel
The BEM model with solution to save.
%(overwrite)s
%(verbose)s
See Also
--------
read_bem_solution
"""
fname = _check_fname(fname, overwrite=overwrite, name="fname")
if fname.suffix == ".h5":
_, write_hdf5 = _import_h5io_funcs()
bem = {k: bem[k] for k in ("surfs", "solution", "bem_method")}
write_hdf5(fname, bem, overwrite=True)
else:
_write_bem_solution_fif(fname, bem)
def _write_bem_solution_fif(fname, bem):
_check_bem_size(bem["surfs"])
with start_and_end_file(fname) as fid:
start_block(fid, FIFF.FIFFB_BEM)
# Coordinate frame (mainly for backward compatibility)
write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, bem["surfs"][0]["coord_frame"])
solver = bem.get("solver", "mne")
if solver != "mne":
write_string(fid, FIFF.FIFF_DESCRIPTION, json.dumps(dict(solver=solver)))
# Surfaces
_write_bem_surfaces_block(fid, bem["surfs"])
# The potential solution
if "solution" in bem:
_check_option(
"bem_method", bem["bem_method"], (FIFF.FIFFV_BEM_APPROX_LINEAR,)
)
write_int(fid, FIFF.FIFF_BEM_APPROX, FIFF.FIFFV_BEM_APPROX_LINEAR)
write_float_matrix(fid, FIFF.FIFF_BEM_POT_SOLUTION, bem["solution"])
end_block(fid, FIFF.FIFFB_BEM)
# #############################################################################
# Create 3-Layers BEM model from Flash MRI images
def _prepare_env(subject, subjects_dir):
"""Prepare an env object for subprocess calls."""
env = os.environ.copy()
fs_home = _check_freesurfer_home()
_validate_type(subject, "str")
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = subjects_dir / subject
if not subject_dir.is_dir():
raise RuntimeError(f'Could not find the subject data directory "{subject_dir}"')
env.update(SUBJECT=subject, SUBJECTS_DIR=str(subjects_dir), FREESURFER_HOME=fs_home)
mri_dir = subject_dir / "mri"
bem_dir = subject_dir / "bem"
return env, mri_dir, bem_dir
def _write_echos(mri_dir, flash_echos, angle):
nib = _import_nibabel("write echoes")
from nibabel.spatialimages import SpatialImage
if _path_like(flash_echos):
flash_echos = nib.load(flash_echos)
if isinstance(flash_echos, SpatialImage):
flash_echo_imgs = []
data = np.asanyarray(flash_echos.dataobj)
affine = flash_echos.affine
if data.ndim == 3:
data = data[..., np.newaxis]
for echo_idx in range(data.shape[3]):
this_echo_img = flash_echos.__class__(
data[..., echo_idx], affine=affine, header=deepcopy(flash_echos.header)
)
flash_echo_imgs.append(this_echo_img)
flash_echos = flash_echo_imgs
del flash_echo_imgs
for idx, flash_echo in enumerate(flash_echos, 1):
if _path_like(flash_echo):
flash_echo = nib.load(flash_echo)
nib.save(flash_echo, op.join(mri_dir, "flash", f"mef{angle}_{idx:03d}.mgz"))
@verbose
def convert_flash_mris(
subject, flash30=True, unwarp=False, subjects_dir=None, flash5=True, verbose=None
):
"""Synthesize the flash 5 files for use with make_flash_bem.
This function aims to produce a synthesized flash 5 MRI from
multiecho flash (MEF) MRI data. This function can use MEF data
with 5 or 30 flip angles. If flash5 (and flash30) images are not
explicitly provided, it will assume that the different echos are available
in the mri/flash folder of the subject with the following naming
convention "mef<angle>_<echo>.mgz", e.g. "mef05_001.mgz"
or "mef30_001.mgz".
Parameters
----------
%(subject)s
flash30 : bool | list of SpatialImage or path-like | SpatialImage | path-like
If False do not use 30-degree flip angle data.
The list of flash 5 echos to use. If True it will look for files
named mef30_*.mgz in the subject's mri/flash directory and if not False
the list of flash 5 echos images will be written to the mri/flash
folder with convention mef05_<echo>.mgz. If a SpatialImage object
each frame of the image will be interpreted as an echo.
unwarp : bool
Run grad_unwarp with -unwarp option on each of the converted
data sets. It requires FreeSurfer's MATLAB toolbox to be properly
installed.
%(subjects_dir)s
flash5 : list of SpatialImage or path-like | SpatialImage | path-like | True
The list of flash 5 echos to use. If True it will look for files
named mef05_*.mgz in the subject's mri/flash directory and if not None
the list of flash 5 echos images will be written to the mri/flash
folder with convention mef05_<echo>.mgz. If a SpatialImage object
each frame of the image will be interpreted as an echo.
%(verbose)s
Returns
-------
flash5_img : path-like
The path the synthesized flash 5 MRI.
Notes
-----
This function assumes that the Freesurfer segmentation of the subject
has been completed. In particular, the T1.mgz and brain.mgz MRI volumes
should be, as usual, in the subject's mri directory.
""" # noqa: E501
env, mri_dir = _prepare_env(subject, subjects_dir)[:2]
tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD
run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir)
mri_dir = Path(mri_dir)
# Step 1a : Data conversion to mgz format
flash_dir = mri_dir / "flash"
pm_dir = flash_dir / "parameter_maps"
pm_dir.mkdir(parents=True, exist_ok=True)
echos_done = 0
if not isinstance(flash5, bool):
_write_echos(mri_dir, flash5, angle="05")
if not isinstance(flash30, bool):
_write_echos(mri_dir, flash30, angle="30")
# Step 1b : Run grad_unwarp on converted files
template = op.join(flash_dir, "mef*_*.mgz")
files = sorted(glob.glob(template))
if len(files) == 0:
raise ValueError(f"No suitable source files found ({template})")
if unwarp:
logger.info("\n---- Unwarp mgz data sets ----")
for infile in files:
outfile = infile.replace(".mgz", "u.mgz")
cmd = ["grad_unwarp", "-i", infile, "-o", outfile, "-unwarp", "true"]
run_subprocess_env(cmd)
# Clear parameter maps if some of the data were reconverted
if echos_done > 0 and pm_dir.exists():
shutil.rmtree(pm_dir)
logger.info("\nParameter maps directory cleared")
if not pm_dir.exists():
pm_dir.mkdir(parents=True, exist_ok=True)
# Step 2 : Create the parameter maps
if flash30:
logger.info("\n---- Creating the parameter maps ----")
if unwarp:
files = sorted(glob.glob(op.join(flash_dir, "mef05_*u.mgz")))
if len(os.listdir(pm_dir)) == 0:
cmd = ["mri_ms_fitparms"] + files + [str(pm_dir)]
run_subprocess_env(cmd)
else:
logger.info("Parameter maps were already computed")
# Step 3 : Synthesize the flash 5 images
logger.info("\n---- Synthesizing flash 5 images ----")
if not (pm_dir / "flash5.mgz").exists():
cmd = [
"mri_synthesize",
"20",
"5",
"5",
(pm_dir / "T1.mgz"),
(pm_dir / "PD.mgz"),
(pm_dir / "flash5.mgz"),
]
run_subprocess_env(cmd)
(pm_dir / "flash5_reg.mgz").unlink(missing_ok=True)
else:
logger.info("Synthesized flash 5 volume is already there")
else:
logger.info("\n---- Averaging flash5 echoes ----")
template = "mef05_*u.mgz" if unwarp else "mef05_*.mgz"
files = sorted(flash_dir.glob(template))
if len(files) == 0:
raise ValueError(f"No suitable source files found ({template})")
cmd = ["mri_average", "-noconform"] + files + [pm_dir / "flash5.mgz"]
run_subprocess_env(cmd)
(pm_dir / "flash5_reg.mgz").unlink(missing_ok=True)
del tempdir # finally done running subprocesses
assert (pm_dir / "flash5.mgz").exists()
return pm_dir / "flash5.mgz"
@verbose
def make_flash_bem(
subject,
overwrite=False,
show=True,
subjects_dir=None,
copy=True,
*,
flash5_img=None,
register=True,
verbose=None,
):
"""Create 3-Layer BEM model from prepared flash MRI images.
See :ref:`bem_flash_algorithm` for additional information.
Parameters
----------
%(subject)s
overwrite : bool
Write over existing .surf files in bem folder.
show : bool
Show surfaces to visually inspect all three BEM surfaces (recommended).
%(subjects_dir)s
copy : bool
If True (default), use copies instead of symlinks for surfaces
(if they do not already exist).
.. versionadded:: 0.18
.. versionchanged:: 1.1 Use copies instead of symlinks.
flash5_img : None | path-like | Nifti1Image
The path to the synthesized flash 5 MRI image or the image itself. If
None (default), the path defaults to
``mri/flash/parameter_maps/flash5.mgz`` within the subject
reconstruction. If not present the image is copied or written to the
default location.
.. versionadded:: 1.1.0
register : bool
Register the flash 5 image with T1.mgz file. If False, we assume
that the images are already coregistered.
.. versionadded:: 1.1.0
%(verbose)s
See Also
--------
convert_flash_mris
Notes
-----
This program assumes that FreeSurfer is installed and sourced properly.
This function extracts the BEM surfaces (outer skull, inner skull, and
outer skin) from a FLASH 5 MRI image synthesized from multiecho FLASH
images acquired with spin angles of 5 and 30 degrees.
"""
env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir)
tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD
run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir)
mri_dir = Path(mri_dir)
bem_dir = Path(bem_dir)
subjects_dir = env["SUBJECTS_DIR"]
flash_path = (mri_dir / "flash" / "parameter_maps").resolve()
flash_path.mkdir(exist_ok=True, parents=True)
logger.info(
"\nProcessing the flash MRI data to produce BEM meshes with the following "
f"parameters:\nSUBJECTS_DIR = {subjects_dir}\nSUBJECT = {subject}\nResult dir ="
f"{bem_dir / 'flash'}\n"
)
# Step 4 : Register with MPRAGE
flash5 = flash_path / "flash5.mgz"
if _path_like(flash5_img):
logger.info(f"Copying flash 5 image {flash5_img} to {flash5}")
cmd = ["mri_convert", Path(flash5_img).resolve(), flash5]
run_subprocess_env(cmd)
elif flash5_img is None:
if not flash5.exists():
raise ValueError(f"Flash 5 image cannot be found at {flash5}.")
else:
logger.info(f"Writing flash 5 image at {flash5}")
nib = _import_nibabel("write an MRI image")
nib.save(flash5_img, flash5)
if register:
logger.info("\n---- Registering flash 5 with T1 MPRAGE ----")
flash5_reg = flash_path / "flash5_reg.mgz"
if not flash5_reg.exists():
if (mri_dir / "T1.mgz").exists():
ref_volume = mri_dir / "T1.mgz"
else:
ref_volume = mri_dir / "T1"
cmd = [
"fsl_rigid_register",
"-r",
str(ref_volume),
"-i",
str(flash5),
"-o",
str(flash5_reg),
]
run_subprocess_env(cmd)
else:
logger.info("Registered flash 5 image is already there")
else:
flash5_reg = flash5
# Step 5a : Convert flash5 into COR
logger.info("\n---- Converting flash5 volume into COR format ----")
flash5_dir = mri_dir / "flash5"
shutil.rmtree(flash5_dir, ignore_errors=True)
flash5_dir.mkdir(exist_ok=True, parents=True)
cmd = ["mri_convert", flash5_reg, flash5_dir]
run_subprocess_env(cmd)
# Step 5b and c : Convert the mgz volumes into COR
convert_T1 = False
T1_dir = mri_dir / "T1"
if not T1_dir.is_dir() or next(T1_dir.glob("COR*")) is None:
convert_T1 = True
convert_brain = False
brain_dir = mri_dir / "brain"
if not brain_dir.is_dir() or next(brain_dir.glob("COR*")) is None:
convert_brain = True
logger.info("\n---- Converting T1 volume into COR format ----")
if convert_T1:
T1_fname = mri_dir / "T1.mgz"
if not T1_fname.is_file():
raise RuntimeError("Both T1 mgz and T1 COR volumes missing.")
T1_dir.mkdir(exist_ok=True, parents=True)
cmd = ["mri_convert", T1_fname, T1_dir]
run_subprocess_env(cmd)
else:
logger.info("T1 volume is already in COR format")
logger.info("\n---- Converting brain volume into COR format ----")
if convert_brain:
brain_fname = mri_dir / "brain.mgz"
if not brain_fname.is_file():
raise RuntimeError("Both brain mgz and brain COR volumes missing.")
brain_dir.mkdir(exist_ok=True, parents=True)
cmd = ["mri_convert", brain_fname, brain_dir]
run_subprocess_env(cmd)
else:
logger.info("Brain volume is already in COR format")
# Finally ready to go
logger.info("\n---- Creating the BEM surfaces ----")
cmd = ["mri_make_bem_surfaces", subject]
run_subprocess_env(cmd)
del tempdir # ran our last subprocess; clean up directory
logger.info("\n---- Converting the tri files into surf files ----")
flash_bem_dir = bem_dir / "flash"
flash_bem_dir.mkdir(exist_ok=True, parents=True)
surfs = ["inner_skull", "outer_skull", "outer_skin"]
for surf in surfs:
out_fname = flash_bem_dir / (surf + ".tri")
shutil.move(bem_dir / (surf + ".tri"), out_fname)
nodes, tris = read_tri(out_fname, swap=True)
# Do not write volume info here because the tris are already in
# standard Freesurfer coords
write_surface(op.splitext(out_fname)[0] + ".surf", nodes, tris, overwrite=True)
# Cleanup section
logger.info("\n---- Cleaning up ----")
(bem_dir / "inner_skull_tmp.tri").unlink()
if convert_T1:
shutil.rmtree(T1_dir)
logger.info("Deleted the T1 COR volume")
if convert_brain:
shutil.rmtree(brain_dir)
logger.info("Deleted the brain COR volume")
shutil.rmtree(flash5_dir)
logger.info("Deleted the flash5 COR volume")
# Create symbolic links to the .surf files in the bem folder
logger.info("\n---- Creating symbolic links ----")
# os.chdir(bem_dir)
for surf in surfs:
surf = bem_dir / (surf + ".surf")
if not overwrite and surf.exists():
skip_symlink = True
else:
if surf.exists():
surf.unlink()
_symlink(flash_bem_dir / surf.name, surf, copy)
skip_symlink = False
if skip_symlink:
logger.info(
"Unable to create all symbolic links to .surf files "
"in bem folder. Use --overwrite option to recreate them."
)
dest = bem_dir / "flash"
else:
logger.info("Symbolic links to .surf files created in bem folder")
dest = bem_dir
logger.info(
"\nThank you for waiting.\nThe BEM triangulations for this "
f"subject are now available at:\n{dest}.\nWe hope the BEM meshes "
"created will facilitate your MEG and EEG data analyses."
)
# Show computed BEM surfaces
if show:
plot_bem(
subject=subject,
subjects_dir=subjects_dir,
orientation="coronal",
slices=None,
show=True,
)
def _check_bem_size(surfs):
"""Check bem surface sizes."""
if len(surfs) > 1 and surfs[0]["np"] > 10000:
warn(
f"The bem surfaces have {surfs[0]['np']} data points. 5120 (ico grade=4) "
"should be enough. Dense 3-layer bems may not save properly."
)
def _symlink(src, dest, copy=False):
"""Create a relative symlink (or just copy)."""
if not copy:
src_link = op.relpath(src, op.dirname(dest))
try:
os.symlink(src_link, dest)
except OSError:
warn(
f"Could not create symbolic link {dest}. Check that your "
"partition handles symbolic links. The file will be copied "
"instead."
)
copy = True
if copy:
shutil.copy(src, dest)
def _ensure_bem_surfaces(bem, extra_allow=(), name="bem"):
# by default only allow path-like and list, but handle None and
# ConductorModel properly if need be. Always return a ConductorModel
# even though it's incomplete (and might have is_sphere=True).
assert all(extra in (None, ConductorModel) for extra in extra_allow)
allowed = ("path-like", list) + extra_allow
_validate_type(bem, allowed, name)
if isinstance(bem, path_like):
# Load the surfaces
logger.info(f"Loading BEM surfaces from {bem}...")
bem = read_bem_surfaces(bem)
bem = ConductorModel(is_sphere=False, surfs=bem)
elif isinstance(bem, list):
for ii, this_surf in enumerate(bem):
_validate_type(this_surf, dict, f"{name}[{ii}]")
if isinstance(bem, list):
bem = ConductorModel(is_sphere=False, surfs=bem)
# add surfaces in the spherical case
if isinstance(bem, ConductorModel) and bem["is_sphere"]:
bem = bem.copy()
bem["surfs"] = []
if len(bem["layers"]) == 4:
for idx, id_ in enumerate(_sm_surf_dict.values()):
bem["surfs"].append(_complete_sphere_surf(bem, idx, 4, complete=False))
bem["surfs"][-1]["id"] = id_
return bem
def _check_file(fname, overwrite):
"""Prevent overwrites."""
if op.isfile(fname) and not overwrite:
raise OSError(f"File {fname} exists, use --overwrite to overwrite it")
_tri_levels = dict(
medium=30000,
sparse=2500,
)
@verbose
def make_scalp_surfaces(
subject,
subjects_dir=None,
force=True,
overwrite=False,
no_decimate=False,
*,
threshold=20,
mri="T1.mgz",
verbose=None,
):
"""Create surfaces of the scalp and neck.
The scalp surfaces are required for using the MNE coregistration GUI, and
allow for a visualization of the alignment between anatomy and channel
locations.
Parameters
----------
%(subject)s
%(subjects_dir)s
force : bool
Force creation of the surface even if it has some topological defects.
Defaults to ``True``. See :ref:`tut-fix-meshes` for ideas on how to
fix problematic meshes.
%(overwrite)s
no_decimate : bool
Disable the "medium" and "sparse" decimations. In this case, only
a "dense" surface will be generated. Defaults to ``False``, i.e.,
create surfaces for all three types of decimations.
threshold : int
The threshold to use with the MRI in the call to ``mkheadsurf``.
The default is ``20``.
.. versionadded:: 1.1
mri : str
The MRI to use. Should exist in ``$SUBJECTS_DIR/$SUBJECT/mri``.
.. versionadded:: 1.1
%(verbose)s
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
incomplete = "warn" if force else "raise"
subj_path = subjects_dir / subject
if not subj_path.exists():
raise RuntimeError(
f"{subj_path} does not exist. Please check your subject directory path."
)
# Backward compat for old FreeSurfer (?)
_validate_type(mri, str, "mri")
if mri == "T1.mgz":
mri = mri if (subj_path / "mri" / mri).exists() else "T1"
logger.info("1. Creating a dense scalp tessellation with mkheadsurf...")
def check_seghead(surf_path=subj_path / "surf"):
surf = None
for k in ["lh.seghead", "lh.smseghead"]:
this_surf = surf_path / k
if this_surf.exists():
surf = this_surf
break
return surf
my_seghead = check_seghead()
threshold = _ensure_int(threshold, "threshold")
if my_seghead is None:
this_env = deepcopy(os.environ)
this_env["SUBJECTS_DIR"] = str(subjects_dir)
this_env["SUBJECT"] = subject
this_env["subjdir"] = str(subj_path)
if "FREESURFER_HOME" not in this_env:
raise RuntimeError(
"The FreeSurfer environment needs to be set up to use "
"make_scalp_surfaces to create the outer skin surface "
"lh.seghead"
)
run_subprocess(
[
"mkheadsurf",
"-subjid",
subject,
"-srcvol",
mri,
"-thresh1",
str(threshold),
"-thresh2",
str(threshold),
],
env=this_env,
)
surf = check_seghead()
if surf is None:
raise RuntimeError("mkheadsurf did not produce the standard output file.")
bem_dir = subjects_dir / subject / "bem"
if not bem_dir.is_dir():
os.mkdir(bem_dir)
fname_template = bem_dir / (f"{subject}-head-{{}}.fif")
dense_fname = str(fname_template).format("dense")
logger.info(f"2. Creating {dense_fname} ...")
_check_file(dense_fname, overwrite)
# Helpful message if we get a topology error
msg = (
"\n\nConsider using pymeshfix directly to fix the mesh, or --force "
"to ignore the problem."
)
surf = _surfaces_to_bem(
[surf], [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], incomplete=incomplete, extra=msg
)[0]
write_bem_surfaces(dense_fname, surf, overwrite=overwrite)
if os.getenv("_MNE_TESTING_SCALP", "false") == "true":
tris = [len(surf["tris"])] # don't actually decimate
for ii, (level, n_tri) in enumerate(_tri_levels.items(), 3):
if no_decimate:
break
logger.info(f"{ii}. Creating {level} tessellation...")
logger.info(
f"{ii}.1 Decimating the dense tessellation "
f"({len(surf['tris'])} -> {n_tri} triangles)..."
)
points, tris = decimate_surface(
points=surf["rr"], triangles=surf["tris"], n_triangles=n_tri
)
dec_fname = str(fname_template).format(level)
logger.info(f"{ii}.2 Creating {dec_fname}")
_check_file(dec_fname, overwrite)
dec_surf = _surfaces_to_bem(
[dict(rr=points, tris=tris)],
[FIFF.FIFFV_BEM_SURF_ID_HEAD],
[1],
rescale=False,
incomplete=incomplete,
extra=msg,
)
write_bem_surfaces(dec_fname, dec_surf, overwrite=overwrite)
logger.info("[done]")
@verbose
def distance_to_bem(pos, bem, trans=None, verbose=None):
"""Calculate the distance of positions to inner skull surface.
Parameters
----------
pos : array, shape (..., 3)
Position(s) in m, in head coordinates.
bem : instance of ConductorModel
Conductor model.
%(trans)s If None (default), assumes bem is in head coordinates.
.. versionchanged:: 0.19
Support for 'fsaverage' argument.
%(verbose)s
Returns
-------
distances : float | array, shape (...)
The computed distance(s). A float is returned if pos is
an array of shape (3,) corresponding to a single position.
Notes
-----
.. versionadded:: 1.1
"""
ndim = pos.ndim
if ndim == 1:
pos = pos[np.newaxis, :]
n = pos.shape[0]
distance = np.zeros((n,))
logger.info(
"Computing distance to inner skull surface for " + f"{n} position{_pl(n)}..."
)
if bem["is_sphere"]:
center = bem["r0"]
if trans:
center = apply_trans(trans, center, move=True)
radius = bem["layers"][0]["rad"]
distance = np.abs(radius - np.linalg.norm(pos - center, axis=1))
else: # is BEM
surface_points = bem["surfs"][0]["rr"]
if trans:
surface_points = apply_trans(trans, surface_points, move=True)
_, distance = _compute_nearest(surface_points, pos, return_dists=True)
if ndim == 1:
distance = distance[0] # return just a float if one pos is passed
return distance