# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# The computations in this code were primarily derived from Matti Hämäläinen's
# C code.
import glob
import json
import os
import os.path as op
import shutil
from collections import OrderedDict
from copy import deepcopy
from functools import partial
from pathlib import Path
import numpy as np
from scipy.optimize import fmin_cobyla
from ._fiff._digitization import _dig_kind_dict, _dig_kind_ints, _dig_kind_rev
from ._fiff.constants import FIFF, FWD
from ._fiff.open import fiff_open
from ._fiff.tag import find_tag
from ._fiff.tree import dir_tree_find
from ._fiff.write import (
end_block,
start_and_end_file,
start_block,
write_float,
write_float_matrix,
write_int,
write_int_matrix,
write_string,
)
from .fixes import _compare_version, _safe_svd
from .surface import (
_complete_sphere_surf,
_compute_nearest,
_fast_cross_nd_sum,
_get_ico_surface,
_get_solids,
complete_surface_info,
decimate_surface,
read_surface,
read_tri,
transform_surface_to,
write_surface,
)
from .transforms import Transform, _ensure_trans, apply_trans
from .utils import (
_check_fname,
_check_freesurfer_home,
_check_head_radius,
_check_option,
_ensure_int,
_import_h5io_funcs,
_import_nibabel,
_on_missing,
_path_like,
_pl,
_TempDir,
_validate_type,
_verbose_safe_false,
get_subjects_dir,
logger,
path_like,
run_subprocess,
verbose,
warn,
)
from .viz.misc import plot_bem
# ############################################################################
# Compute BEM solution
# The following approach is based on:
#
# de Munck JC: "A linear discretization of the volume conductor boundary
# integral equation using analytically integrated elements",
# IEEE Trans Biomed Eng. 1992 39(9) : 986 - 990
#
class ConductorModel(dict):
"""BEM or sphere model.
See :func:`~mne.make_bem_model` and :func:`~mne.make_bem_solution` to create a
:class:`mne.bem.ConductorModel`.
"""
def __repr__(self): # noqa: D105
if self["is_sphere"]:
center = ", ".join(f"{x * 1000.0:.1f}" for x in self["r0"])
rad = self.radius
if rad is None: # no radius / MEG only
extra = f"Sphere (no layers): r0=[{center}] mm"
else:
extra = (
f"Sphere ({len(self['layers']) - 1} layer{_pl(self['layers'])}): "
f"r0=[{center}] R={rad * 1000.0:1.0f} mm"
)
else:
extra = f"BEM ({len(self['surfs'])} layer{_pl(self['surfs'])})"
extra += f" solver={self['solver']}"
return f"<ConductorModel | {extra}>"
def copy(self):
"""Return copy of ConductorModel instance."""
return deepcopy(self)
@property
def radius(self):
"""Sphere radius if an EEG sphere model."""
if not self["is_sphere"]:
raise RuntimeError("radius undefined for BEM")
return None if len(self["layers"]) == 0 else self["layers"][-1]["rad"]
def _calc_beta(rk, rk_norm, rk1, rk1_norm):
"""Compute coefficients for calculating the magic vector omega."""
rkk1 = rk1[0] - rk[0]
size = np.linalg.norm(rkk1)
rkk1 /= size
num = rk_norm + np.dot(rk, rkk1)
den = rk1_norm + np.dot(rk1, rkk1)
res = np.log(num / den) / size
return res
def _lin_pot_coeff(fros, tri_rr, tri_nn, tri_area):
"""Compute the linear potential matrix element computations."""
omega = np.zeros((len(fros), 3))
# we replicate a little bit of the _get_solids code here for speed
# (we need some of the intermediate values later)
v1 = tri_rr[np.newaxis, 0, :] - fros
v2 = tri_rr[np.newaxis, 1, :] - fros
v3 = tri_rr[np.newaxis, 2, :] - fros
triples = _fast_cross_nd_sum(v1, v2, v3)
l1 = np.linalg.norm(v1, axis=1)
l2 = np.linalg.norm(v2, axis=1)
l3 = np.linalg.norm(v3, axis=1)
ss = l1 * l2 * l3
ss += np.einsum("ij,ij,i->i", v1, v2, l3)
ss += np.einsum("ij,ij,i->i", v1, v3, l2)
ss += np.einsum("ij,ij,i->i", v2, v3, l1)
solids = np.arctan2(triples, ss)
# We *could* subselect the good points from v1, v2, v3, triples, solids,
# l1, l2, and l3, but there are *very* few bad points. So instead we do
# some unnecessary calculations, and then omit them from the final
# solution. These three lines ensure we don't get invalid values in
# _calc_beta.
bad_mask = np.abs(solids) < np.pi / 1e6
l1[bad_mask] = 1.0
l2[bad_mask] = 1.0
l3[bad_mask] = 1.0
# Calculate the magic vector vec_omega
beta = [
_calc_beta(v1, l1, v2, l2)[:, np.newaxis],
_calc_beta(v2, l2, v3, l3)[:, np.newaxis],
_calc_beta(v3, l3, v1, l1)[:, np.newaxis],
]
vec_omega = (beta[2] - beta[0]) * v1
vec_omega += (beta[0] - beta[1]) * v2
vec_omega += (beta[1] - beta[2]) * v3
area2 = 2.0 * tri_area
n2 = 1.0 / (area2 * area2)
# leave omega = 0 otherwise
# Put it all together...
yys = [v1, v2, v3]
idx = [0, 1, 2, 0, 2]
for k in range(3):
diff = yys[idx[k - 1]] - yys[idx[k + 1]]
zdots = _fast_cross_nd_sum(yys[idx[k + 1]], yys[idx[k - 1]], tri_nn)
omega[:, k] = -n2 * (
area2 * zdots * 2.0 * solids - triples * (diff * vec_omega).sum(axis=-1)
)
# omit the bad points from the solution
omega[bad_mask] = 0.0
return omega
def _correct_auto_elements(surf, mat):
"""Improve auto-element approximation."""
pi2 = 2.0 * np.pi
tris_flat = surf["tris"].ravel()
misses = pi2 - mat.sum(axis=1)
for j, miss in enumerate(misses):
# How much is missing?
n_memb = len(surf["neighbor_tri"][j])
assert n_memb > 0 # should be guaranteed by our surface checks
# The node itself receives one half
mat[j, j] = miss / 2.0
# The rest is divided evenly among the member nodes...
miss /= 4.0 * n_memb
members = np.where(j == tris_flat)[0]
mods = members % 3
offsets = np.array([[1, 2], [-1, 1], [-1, -2]])
tri_1 = members + offsets[mods, 0]
tri_2 = members + offsets[mods, 1]
for t1, t2 in zip(tri_1, tri_2):
mat[j, tris_flat[t1]] += miss
mat[j, tris_flat[t2]] += miss
return
def _fwd_bem_lin_pot_coeff(surfs):
"""Calculate the coefficients for linear collocation approach."""
# taken from fwd_bem_linear_collocation.c
nps = [surf["np"] for surf in surfs]
np_tot = sum(nps)
coeff = np.zeros((np_tot, np_tot))
offsets = np.cumsum(np.concatenate(([0], nps)))
for si_1, surf1 in enumerate(surfs):
rr_ord = np.arange(nps[si_1])
for si_2, surf2 in enumerate(surfs):
logger.info(
f" {_bem_surf_name[surf1['id']]} ({nps[si_1]:d}) -> "
f"{_bem_surf_name[surf2['id']]} ({nps[si_2]}) ..."
)
tri_rr = surf2["rr"][surf2["tris"]]
tri_nn = surf2["tri_nn"]
tri_area = surf2["tri_area"]
submat = coeff[
offsets[si_1] : offsets[si_1 + 1], offsets[si_2] : offsets[si_2 + 1]
] # view
for k in range(surf2["ntri"]):
tri = surf2["tris"][k]
if si_1 == si_2:
skip_idx = (
(rr_ord == tri[0]) | (rr_ord == tri[1]) | (rr_ord == tri[2])
)
else:
skip_idx = list()
# No contribution from a triangle that
# this vertex belongs to
# if sidx1 == sidx2 and (tri == j).any():
# continue
# Otherwise do the hard job
coeffs = _lin_pot_coeff(
fros=surf1["rr"],
tri_rr=tri_rr[k],
tri_nn=tri_nn[k],
tri_area=tri_area[k],
)
coeffs[skip_idx] = 0.0
submat[:, tri] -= coeffs
if si_1 == si_2:
_correct_auto_elements(surf1, submat)
return coeff
def _fwd_bem_multi_solution(solids, gamma, nps):
"""Do multi surface solution.
* Invert I - solids/(2*M_PI)
* Take deflation into account
* The matrix is destroyed after inversion
* This is the general multilayer case
"""
pi2 = 1.0 / (2 * np.pi)
n_tot = np.sum(nps)
assert solids.shape == (n_tot, n_tot)
nsurf = len(nps)
defl = 1.0 / n_tot
# Modify the matrix
offsets = np.cumsum(np.concatenate(([0], nps)))
for si_1 in range(nsurf):
for si_2 in range(nsurf):
mult = pi2 if gamma is None else pi2 * gamma[si_1, si_2]
slice_j = slice(offsets[si_1], offsets[si_1 + 1])
slice_k = slice(offsets[si_2], offsets[si_2 + 1])
solids[slice_j, slice_k] = defl - solids[slice_j, slice_k] * mult
solids += np.eye(n_tot)
return np.linalg.inv(solids)
def _fwd_bem_homog_solution(solids, nps):
"""Make a homogeneous solution."""
return _fwd_bem_multi_solution(solids, gamma=None, nps=nps)
def _fwd_bem_ip_modify_solution(solution, ip_solution, ip_mult, n_tri):
"""Modify the solution according to the IP approach."""
n_last = n_tri[-1]
mult = (1.0 + ip_mult) / ip_mult
logger.info(" Combining...")
offsets = np.cumsum(np.concatenate(([0], n_tri)))
for si in range(len(n_tri)):
# Pick the correct submatrix (right column) and multiply
sub = solution[offsets[si] : offsets[si + 1], np.sum(n_tri[:-1]) :]
# Multiply
sub -= 2 * np.dot(sub, ip_solution)
# The lower right corner is a special case
sub[-n_last:, -n_last:] += mult * ip_solution
# Final scaling
logger.info(" Scaling...")
solution *= ip_mult
return
def _check_complete_surface(surf, copy=False, incomplete="raise", extra=""):
surf = complete_surface_info(surf, copy=copy, verbose=_verbose_safe_false())
fewer = np.where([len(t) < 3 for t in surf["neighbor_tri"]])[0]
if len(fewer) > 0:
fewer = list(fewer)
fewer = (fewer[:80] + ["..."]) if len(fewer) > 80 else fewer
fewer = ", ".join(str(f) for f in fewer)
msg = (
f"Surface {_bem_surf_name[surf['id']]} has topological defects: "
f"{len(fewer)} / {len(surf['rr'])} vertices have fewer than three "
f"neighboring triangles [{fewer}]{extra}"
)
_on_missing(on_missing=incomplete, msg=msg, name="on_defects")
return surf
def _fwd_bem_linear_collocation_solution(bem):
"""Compute the linear collocation potential solution."""
# first, add surface geometries
logger.info("Computing the linear collocation solution...")
logger.info(" Matrix coefficients...")
coeff = _fwd_bem_lin_pot_coeff(bem["surfs"])
bem["nsol"] = len(coeff)
logger.info(" Inverting the coefficient matrix...")
nps = [surf["np"] for surf in bem["surfs"]]
bem["solution"] = _fwd_bem_multi_solution(coeff, bem["gamma"], nps)
if len(bem["surfs"]) == 3:
ip_mult = bem["sigma"][1] / bem["sigma"][2]
if ip_mult <= FWD.BEM_IP_APPROACH_LIMIT:
logger.info("IP approach required...")
logger.info(" Matrix coefficients (homog)...")
coeff = _fwd_bem_lin_pot_coeff([bem["surfs"][-1]])
logger.info(" Inverting the coefficient matrix (homog)...")
ip_solution = _fwd_bem_homog_solution(coeff, [bem["surfs"][-1]["np"]])
logger.info(
" Modify the original solution to incorporate IP approach..."
)
_fwd_bem_ip_modify_solution(bem["solution"], ip_solution, ip_mult, nps)
bem["bem_method"] = FIFF.FIFFV_BEM_APPROX_LINEAR
bem["solver"] = "mne"
def _import_openmeeg(what="compute a BEM solution using OpenMEEG"):
try:
import openmeeg as om
except Exception as exc:
raise ImportError(
f"The OpenMEEG module must be installed to {what}, but "
f'"import openmeeg" resulted in: {exc}'
) from None
if not _compare_version(om.__version__, ">=", "2.5.6"):
raise ImportError(f"OpenMEEG 2.5.6+ is required, got {om.__version__}")
return om
def _make_openmeeg_geometry(bem, mri_head_t=None):
# OpenMEEG
om = _import_openmeeg()
meshes = []
for surf in bem["surfs"][::-1]:
if mri_head_t is not None:
surf = transform_surface_to(surf, "head", mri_head_t, copy=True)
points, faces = surf["rr"], surf["tris"]
faces = faces[:, [1, 0, 2]] # swap faces
meshes.append((points, faces))
conductivity = bem["sigma"][::-1]
return om.make_nested_geometry(meshes, conductivity)
def _fwd_bem_openmeeg_solution(bem):
om = _import_openmeeg()
logger.info("Creating BEM solution using OpenMEEG")
logger.info("Computing the openmeeg head matrix solution...")
logger.info(" Matrix coefficients...")
geom = _make_openmeeg_geometry(bem)
hm = om.HeadMat(geom)
bem["nsol"] = hm.nlin()
logger.info(" Inverting the coefficient matrix...")
hm.invert() # invert inplace
bem["solution"] = hm.array_flat()
bem["bem_method"] = FIFF.FIFFV_BEM_APPROX_LINEAR
bem["solver"] = "openmeeg"
@verbose
def make_bem_solution(surfs, *, solver="mne", verbose=None):
"""Create a BEM solution using the linear collocation approach.
Parameters
----------
surfs : list of dict
The BEM surfaces to use (from :func:`mne.make_bem_model`).
solver : str
Can be ``'mne'`` (default) to use MNE-Python, or ``'openmeeg'`` to use the
`OpenMEEG <https://openmeeg.github.io>`__ package.
.. versionadded:: 1.2
%(verbose)s
Returns
-------
bem : instance of ConductorModel
The BEM solution.
See Also
--------
make_bem_model
read_bem_surfaces
write_bem_surfaces
read_bem_solution
write_bem_solution
Notes
-----
.. versionadded:: 0.10.0
"""
_validate_type(solver, str, "solver")
_check_option("method", solver.lower(), ("mne", "openmeeg"))
bem = _ensure_bem_surfaces(surfs)
_add_gamma_multipliers(bem)
if len(bem["surfs"]) == 3:
logger.info("Three-layer model surfaces loaded.")
elif len(bem["surfs"]) == 1:
logger.info("Homogeneous model surface loaded.")
else:
raise RuntimeError("Only 1- or 3-layer BEM computations supported")
_check_bem_size(bem["surfs"])
for surf in bem["surfs"]:
_check_complete_surface(surf)
if solver.lower() == "openmeeg":
_fwd_bem_openmeeg_solution(bem)
else:
assert solver.lower() == "mne"
_fwd_bem_linear_collocation_solution(bem)
logger.info("Solution ready.")
logger.info("BEM geometry computations complete.")
return bem
# ############################################################################
# Make BEM model
def _ico_downsample(surf, dest_grade):
"""Downsample the surface if isomorphic to a subdivided icosahedron."""
n_tri = len(surf["tris"])
bad_msg = (
f"Cannot decimate to requested ico grade {dest_grade}. The provided "
f"BEM surface has {n_tri} triangles, which cannot be isomorphic with "
"a subdivided icosahedron. Consider manually decimating the surface to "
"a suitable density and then use ico=None in make_bem_model."
)
if n_tri % 20 != 0:
raise RuntimeError(bad_msg)
n_tri = n_tri // 20
found = int(round(np.log(n_tri) / np.log(4)))
if n_tri != 4**found:
raise RuntimeError(bad_msg)
del n_tri
if dest_grade > found:
raise RuntimeError(
f"For this surface, decimation grade should be {found} or less, "
f"not {dest_grade}."
)
source = _get_ico_surface(found)
dest = _get_ico_surface(dest_grade, patch_stats=True)
del dest["tri_cent"]
del dest["tri_nn"]
del dest["neighbor_tri"]
del dest["tri_area"]
if not np.array_equal(source["tris"], surf["tris"]):
raise RuntimeError(
"The source surface has a matching number of "
"triangles but ordering is wrong"
)
logger.info(
f"Going from {found}th to {dest_grade}th subdivision of an icosahedron "
f"(n_tri: {len(surf['tris'])} -> {len(dest['tris'])})"
)
# Find the mapping
dest["rr"] = surf["rr"][_get_ico_map(source, dest)]
return dest
def _get_ico_map(fro, to):
"""Get a mapping between ico surfaces."""
nearest, dists = _compute_nearest(fro["rr"], to["rr"], return_dists=True)
n_bads = (dists > 5e-3).sum()
if n_bads > 0:
raise RuntimeError(f"No matching vertex for {n_bads} destination vertices")
return nearest
def _order_surfaces(surfs):
"""Reorder the surfaces."""
if len(surfs) != 3:
return surfs
# we have three surfaces
surf_order = [
FIFF.FIFFV_BEM_SURF_ID_HEAD,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_BRAIN,
]
ids = np.array([surf["id"] for surf in surfs])
if set(ids) != set(surf_order):
raise RuntimeError(f"bad surface ids: {ids}")
order = [np.where(ids == id_)[0][0] for id_ in surf_order]
surfs = [surfs[idx] for idx in order]
return surfs
def _assert_complete_surface(surf, incomplete="raise"):
"""Check the sum of solid angles as seen from inside."""
# from surface_checks.c
# Center of mass....
cm = surf["rr"].mean(axis=0)
logger.info(
f"{_bem_surf_name[surf['id']]} CM is "
f"{1000 * cm[0]:6.2f} "
f"{1000 * cm[1]:6.2f} "
f"{1000 * cm[2]:6.2f} mm"
)
tot_angle = _get_solids(surf["rr"][surf["tris"]], cm[np.newaxis, :])[0]
prop = tot_angle / (2 * np.pi)
if np.abs(prop - 1.0) > 1e-5:
msg = (
f"Surface {_bem_surf_name[surf['id']]} is not complete (sum of "
f"solid angles yielded {prop}, should be 1.)"
)
_on_missing(incomplete, msg, name="incomplete", error_klass=RuntimeError)
def _assert_inside(fro, to):
"""Check one set of points is inside a surface."""
# this is "is_inside" in surface_checks.c
fro_name = _bem_surf_name[fro["id"]]
to_name = _bem_surf_name[to["id"]]
logger.info(f"Checking that surface {fro_name} is inside surface {to_name} ...")
tot_angle = _get_solids(to["rr"][to["tris"]], fro["rr"])
if (np.abs(tot_angle / (2 * np.pi) - 1.0) > 1e-5).any():
raise RuntimeError(
f"Surface {fro_name} is not completely inside surface {to_name}"
)
def _check_surfaces(surfs, incomplete="raise"):
"""Check that the surfaces are complete and non-intersecting."""
for surf in surfs:
_assert_complete_surface(surf, incomplete=incomplete)
# Then check the topology
for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
_assert_inside(surf_2, surf_1)
def _check_surface_size(surf):
"""Check that the coordinate limits are reasonable."""
sizes = surf["rr"].max(axis=0) - surf["rr"].min(axis=0)
if (sizes < 0.05).any():
raise RuntimeError(
f"Dimensions of the surface {_bem_surf_name[surf['id']]} seem too "
f"small ({1000 * sizes.min():9.5f}). Maybe the unit of measure"
" is meters instead of mm"
)
def _check_thicknesses(surfs):
"""Compute how close we are."""
for surf_1, surf_2 in zip(surfs[:-1], surfs[1:]):
min_dist = _compute_nearest(surf_1["rr"], surf_2["rr"], return_dists=True)[1]
min_dist = min_dist.min()
fro = _bem_surf_name[surf_1["id"]]
to = _bem_surf_name[surf_2["id"]]
logger.info(f"Checking distance between {fro} and {to} surfaces...")
logger.info(
f"Minimum distance between the {fro} and {to} surfaces is "
f"approximately {1000 * min_dist:6.1f} mm"
)
def _surfaces_to_bem(
surfs, ids, sigmas, ico=None, rescale=True, incomplete="raise", extra=""
):
"""Convert surfaces to a BEM."""
# equivalent of mne_surf2bem
# surfs can be strings (filenames) or surface dicts
if len(surfs) not in (1, 3) or not (len(surfs) == len(ids) == len(sigmas)):
raise ValueError(
"surfs, ids, and sigmas must all have the same number of elements (1 or 3)"
)
for si, surf in enumerate(surfs):
if isinstance(surf, str | Path | os.PathLike):
surfs[si] = surf = read_surface(surf, return_dict=True)[-1]
# Downsampling if the surface is isomorphic with a subdivided icosahedron
if ico is not None:
for si, surf in enumerate(surfs):
surfs[si] = _ico_downsample(surf, ico)
for surf, id_ in zip(surfs, ids):
# Do topology checks (but don't save data) to fail early
surf["id"] = id_
_check_complete_surface(surf, copy=True, incomplete=incomplete, extra=extra)
surf["coord_frame"] = surf.get("coord_frame", FIFF.FIFFV_COORD_MRI)
surf.update(np=len(surf["rr"]), ntri=len(surf["tris"]))
if rescale:
surf["rr"] /= 1000.0 # convert to meters
# Shifting surfaces is not implemented here...
# Order the surfaces for the benefit of the topology checks
for surf, sigma in zip(surfs, sigmas):
surf["sigma"] = sigma
surfs = _order_surfaces(surfs)
# Check topology as best we can
_check_surfaces(surfs, incomplete=incomplete)
for surf in surfs:
_check_surface_size(surf)
_check_thicknesses(surfs)
logger.info("Surfaces passed the basic topology checks.")
return surfs
@verbose
def make_bem_model(
subject, ico=4, conductivity=(0.3, 0.006, 0.3), subjects_dir=None, verbose=None
):
"""Create a BEM model for a subject.
Use :func:`~mne.make_bem_solution` to turn the returned surfaces into a
:class:`~mne.bem.ConductorModel` suitable for forward calculation.
.. note:: To get a single layer bem corresponding to the --homog flag in
the command line tool set the ``conductivity`` parameter
to a float (e.g. ``0.3``).
Parameters
----------
%(subject)s
ico : int | None
The surface ico downsampling to use, e.g. ``5=20484``, ``4=5120``,
``3=1280``. If None, no subsampling is applied.
conductivity : float | array of float of shape (3,) or (1,)
The conductivities to use for each shell. Should be a single element
for a one-layer model, or three elements for a three-layer model.
Defaults to ``[0.3, 0.006, 0.3]``. The MNE-C default for a
single-layer model is ``[0.3]``.
%(subjects_dir)s
%(verbose)s
Returns
-------
surfaces : list of dict
The BEM surfaces. Use :func:`~mne.make_bem_solution` to turn these into a
:class:`~mne.bem.ConductorModel` suitable for forward calculation.
See Also
--------
make_bem_solution
make_sphere_model
read_bem_surfaces
write_bem_surfaces
Notes
-----
.. versionadded:: 0.10.0
"""
conductivity = np.atleast_1d(conductivity).astype(float)
if conductivity.ndim != 1 or conductivity.size not in (1, 3):
raise ValueError(
"conductivity must be a float or a 1D array-like with 1 or 3 elements"
)
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = subjects_dir / subject
bem_dir = subject_dir / "bem"
inner_skull = bem_dir / "inner_skull.surf"
outer_skull = bem_dir / "outer_skull.surf"
outer_skin = bem_dir / "outer_skin.surf"
surfaces = [inner_skull, outer_skull, outer_skin]
ids = [
FIFF.FIFFV_BEM_SURF_ID_BRAIN,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_HEAD,
]
logger.info("Creating the BEM geometry...")
if len(conductivity) == 1:
surfaces = surfaces[:1]
ids = ids[:1]
surfaces = _surfaces_to_bem(surfaces, ids, conductivity, ico)
_check_bem_size(surfaces)
logger.info("Complete.\n")
return surfaces
# ############################################################################
# Compute EEG sphere model
def _fwd_eeg_get_multi_sphere_model_coeffs(m, n_terms):
"""Get the model depended weighting factor for n."""
nlayer = len(m["layers"])
if nlayer in (0, 1):
return 1.0
# Initialize the arrays
c1 = np.zeros(nlayer - 1)
c2 = np.zeros(nlayer - 1)
cr = np.zeros(nlayer - 1)
cr_mult = np.zeros(nlayer - 1)
for k in range(nlayer - 1):
c1[k] = m["layers"][k]["sigma"] / m["layers"][k + 1]["sigma"]
c2[k] = c1[k] - 1.0
cr_mult[k] = m["layers"][k]["rel_rad"]
cr[k] = cr_mult[k]
cr_mult[k] *= cr_mult[k]
coeffs = np.zeros(n_terms - 1)
for n in range(1, n_terms):
# Increment the radius coefficients
for k in range(nlayer - 1):
cr[k] *= cr_mult[k]
# Multiply the matrices
M = np.eye(2)
n1 = n + 1.0
for k in range(nlayer - 2, -1, -1):
M = np.dot(
[
[n + n1 * c1[k], n1 * c2[k] / cr[k]],
[n * c2[k] * cr[k], n1 + n * c1[k]],
],
M,
)
num = n * (2.0 * n + 1.0) ** (nlayer - 1)
coeffs[n - 1] = num / (n * M[1, 1] + n1 * M[1, 0])
return coeffs
def _compose_linear_fitting_data(mu, u):
"""Get the linear fitting data."""
k1 = np.arange(1, u["nterms"])
mu1ns = mu[0] ** k1
# data to be fitted
y = u["w"][:-1] * (u["fn"][1:] - mu1ns * u["fn"][0])
# model matrix
M = u["w"][:-1, np.newaxis] * (mu[1:] ** k1[:, np.newaxis] - mu1ns[:, np.newaxis])
uu, sing, vv = _safe_svd(M, full_matrices=False)
ncomp = u["nfit"] - 1
uu, sing, vv = uu[:, :ncomp], sing[:ncomp], vv[:ncomp]
return y, uu, sing, vv
def _compute_linear_parameters(mu, u):
"""Compute the best-fitting linear parameters."""
y, uu, sing, vv = _compose_linear_fitting_data(mu, u)
# Compute the residuals
vec = np.dot(y, uu)
resi = y - np.dot(uu, vec)
vec /= sing
lambda_ = np.zeros(u["nfit"])
lambda_[1:] = np.dot(vec, vv)
lambda_[0] = u["fn"][0] - np.sum(lambda_[1:])
rv = np.dot(resi, resi) / np.dot(y, y)
return rv, lambda_
def _one_step(mu, u):
"""Evaluate the residual sum of squares fit for one set of mu values."""
if np.abs(mu).max() >= 1.0:
return 100.0
# Compose the data for the linear fitting, compute SVD, then residuals
y, uu, sing, vv = _compose_linear_fitting_data(mu, u)
resi = y - np.dot(uu, np.dot(y, uu))
return np.dot(resi, resi)
def _fwd_eeg_fit_berg_scherg(m, nterms, nfit):
"""Fit the Berg-Scherg equivalent spherical model dipole parameters."""
assert nfit >= 2
u = dict(nfit=nfit, nterms=nterms)
# (1) Calculate the coefficients of the true expansion
u["fn"] = _fwd_eeg_get_multi_sphere_model_coeffs(m, nterms + 1)
# (2) Calculate the weighting
f = min([layer["rad"] for layer in m["layers"]]) / max(
[layer["rad"] for layer in m["layers"]]
)
# correct weighting
k = np.arange(1, nterms + 1)
u["w"] = np.sqrt((2.0 * k + 1) * (3.0 * k + 1.0) / k) * np.power(f, (k - 1.0))
u["w"][-1] = 0
# Do the nonlinear minimization, constraining mu to the interval [-1, +1]
mu_0 = np.zeros(3)
fun = partial(_one_step, u=u)
catol = 1e-6
max_ = 1.0 - 2 * catol
def cons(x):
return max_ - np.abs(x)
mu = fmin_cobyla(fun, mu_0, [cons], rhobeg=0.5, rhoend=1e-5, catol=catol)
# (6) Do the final step: calculation of the linear parameters
rv, lambda_ = _compute_linear_parameters(mu, u)
order = np.argsort(mu)[::-1]
mu, lambda_ = mu[order], lambda_[order] # sort: largest mu first
m["mu"] = mu
# This division takes into account the actual conductivities
m["lambda"] = lambda_ / m["layers"][-1]["sigma"]
m["nfit"] = nfit
return rv
@verbose
def make_sphere_model(
r0=(0.0, 0.0, 0.04),
head_radius=0.09,
info=None,
relative_radii=(0.90, 0.92, 0.97, 1.0),
sigmas=(0.33, 1.0, 0.004, 0.33),
verbose=None,
):
"""Create a spherical model for forward solution calculation.
Parameters
----------
r0 : array-like | str
Head center to use (in head coordinates). If 'auto', the head
center will be calculated from the digitization points in info.
head_radius : float | str | None
If float, compute spherical shells for EEG using the given radius.
If ``'auto'``, estimate an appropriate radius from the dig points in the
:class:`~mne.Info` provided by the argument ``info``.
If None, exclude shells (single layer sphere model).
%(info)s Only needed if ``r0`` or ``head_radius`` are ``'auto'``.
relative_radii : array-like
Relative radii for the spherical shells.
sigmas : array-like
Sigma values for the spherical shells.
%(verbose)s
Returns
-------
sphere : instance of ConductorModel
The resulting spherical conductor model.
See Also
--------
make_bem_model
make_bem_solution
Notes
-----
The default model has::
relative_radii = (0.90, 0.92, 0.97, 1.0)
sigmas = (0.33, 1.0, 0.004, 0.33)
These correspond to compartments (with relative radii in ``m`` and
conductivities σ in ``S/m``) for the brain, CSF, skull, and scalp,
respectively.
.. versionadded:: 0.9.0
"""
for name in ("r0", "head_radius"):
param = locals()[name]
if isinstance(param, str):
if param != "auto":
raise ValueError(f'{name}, if str, must be "auto" not "{param}"')
relative_radii = np.array(relative_radii, float).ravel()
sigmas = np.array(sigmas, float).ravel()
if len(relative_radii) != len(sigmas):
raise ValueError(
f"relative_radii length ({len(relative_radii)}) must match that of sigmas ("
f"{len(sigmas)})"
)
if len(sigmas) <= 1 and head_radius is not None:
raise ValueError(
"at least 2 sigmas must be supplied if head_radius is not None, got "
f"{len(sigmas)}"
)
if (isinstance(r0, str) and r0 == "auto") or (
isinstance(head_radius, str) and head_radius == "auto"
):
if info is None:
raise ValueError("Info must not be None for auto mode")
head_radius_fit, r0_fit = fit_sphere_to_headshape(info, units="m")[:2]
if isinstance(r0, str):
r0 = r0_fit
if isinstance(head_radius, str):
head_radius = head_radius_fit
sphere = ConductorModel(
is_sphere=True, r0=np.array(r0), coord_frame=FIFF.FIFFV_COORD_HEAD
)
sphere["layers"] = list()
if head_radius is not None:
# Eventually these could be configurable...
relative_radii = np.array(relative_radii, float)
sigmas = np.array(sigmas, float)
order = np.argsort(relative_radii)
relative_radii = relative_radii[order]
sigmas = sigmas[order]
for rel_rad, sig in zip(relative_radii, sigmas):
# sort layers by (relative) radius, and scale radii
layer = dict(rad=rel_rad, sigma=sig)
layer["rel_rad"] = layer["rad"] = rel_rad
sphere["layers"].append(layer)
# scale the radii
R = sphere["layers"][-1]["rad"]
rR = sphere["layers"][-1]["rel_rad"]
for layer in sphere["layers"]:
layer["rad"] /= R
layer["rel_rad"] /= rR
#
# Setup the EEG sphere model calculations
#
# Scale the relative radii
for k in range(len(relative_radii)):
sphere["layers"][k]["rad"] = head_radius * sphere["layers"][k]["rel_rad"]
rv = _fwd_eeg_fit_berg_scherg(sphere, 200, 3)
logger.info(f"\nEquiv. model fitting -> RV = {100 * rv:g} %%")
for k in range(3):
s_k = sphere["layers"][-1]["sigma"] * sphere["lambda"][k]
logger.info(f"mu{k + 1} = {sphere['mu'][k]:g} lambda{k + 1} = {s_k:g}")
logger.info(
f"Set up EEG sphere model with scalp radius {1000 * head_radius:7.1f} mm\n"
)
return sphere
# #############################################################################
# Sphere fitting
@verbose
def fit_sphere_to_headshape(info, dig_kinds="auto", units="m", verbose=None):
"""Fit a sphere to the headshape points to determine head center.
Parameters
----------
%(info_not_none)s
%(dig_kinds)s
units : str
Can be ``"m"`` (default) or ``"mm"``.
.. versionadded:: 0.12
%(verbose)s
Returns
-------
radius : float
Sphere radius.
origin_head: ndarray, shape (3,)
Head center in head coordinates.
origin_device: ndarray, shape (3,)
Head center in device coordinates.
Notes
-----
This function excludes any points that are low and frontal
(``z < 0 and y > 0``) to improve the fit.
"""
if not isinstance(units, str) or units not in ("m", "mm"):
raise ValueError('units must be a "m" or "mm"')
radius, origin_head, origin_device = _fit_sphere_to_headshape(info, dig_kinds)
if units == "mm":
radius *= 1e3
origin_head *= 1e3
origin_device *= 1e3
return radius, origin_head, origin_device
@verbose
def get_fitting_dig(info, dig_kinds="auto", exclude_frontal=True, verbose=None):
"""Get digitization points suitable for sphere fitting.
Parameters
----------
%(info_not_none)s
%(dig_kinds)s
%(exclude_frontal)s
Default is True.
.. versionadded:: 0.19
%(verbose)s
Returns
-------
dig : array, shape (n_pts, 3)
The digitization points (in head coordinates) to use for fitting.
Notes
-----
This will exclude digitization locations that have ``z < 0 and y > 0``,
i.e. points on the nose and below the nose on the face.
.. versionadded:: 0.14
"""
_validate_type(info, "info")
if info["dig"] is None:
raise RuntimeError(
'Cannot fit headshape without digitization, info["dig"] is None'
)
if isinstance(dig_kinds, str):
if dig_kinds == "auto":
# try "extra" first
try:
return get_fitting_dig(info, "extra")
except ValueError:
pass
return get_fitting_dig(info, ("extra", "eeg"))
else:
dig_kinds = (dig_kinds,)
# convert string args to ints (first make dig_kinds mutable in case tuple)
dig_kinds = list(dig_kinds)
for di, d in enumerate(dig_kinds):
dig_kinds[di] = _dig_kind_dict.get(d, d)
if dig_kinds[di] not in _dig_kind_ints:
raise ValueError(
f"dig_kinds[{di}] ({d}) must be one of {sorted(_dig_kind_dict)}"
)
# get head digization points of the specified kind(s)
dig = [p for p in info["dig"] if p["kind"] in dig_kinds]
if len(dig) == 0:
raise ValueError(f"No digitization points found for dig_kinds={dig_kinds}")
if any(p["coord_frame"] != FIFF.FIFFV_COORD_HEAD for p in dig):
raise RuntimeError(
f"Digitization points dig_kinds={dig_kinds} not in head "
"coordinates, contact mne-python developers"
)
hsp = [p["r"] for p in dig]
del dig
# exclude some frontal points (nose etc.)
if exclude_frontal:
hsp = [p for p in hsp if not (p[2] < -1e-6 and p[1] > 1e-6)]
hsp = np.array(hsp)
if len(hsp) <= 10:
kinds_str = ", ".join([f'"{_dig_kind_rev[d]}"' for d in sorted(dig_kinds)])
msg = (
f"Only {len(hsp)} head digitization points of the specified "
f"kind{_pl(dig_kinds)} ({kinds_str},)"
)
if len(hsp) < 4:
raise ValueError(msg + ", at least 4 required")
else:
warn(msg + ", fitting may be inaccurate")
return hsp
@verbose
def _fit_sphere_to_headshape(info, dig_kinds, *, verbose=None):
"""Fit a sphere to the given head shape."""
hsp = get_fitting_dig(info, dig_kinds)
radius, origin_head = _fit_sphere(np.array(hsp))
# compute origin in device coordinates
dev_head_t = info["dev_head_t"]
if dev_head_t is None:
dev_head_t = Transform("meg", "head")
head_to_dev = _ensure_trans(dev_head_t, "head", "meg")
origin_device = apply_trans(head_to_dev, origin_head)
logger.info("Fitted sphere radius:".ljust(30) + f"{radius * 1e3:0.1f} mm")
_check_head_radius(radius)
# > 2 cm away from head center in X or Y is strange
o_mm = origin_head * 1e3
o_d = origin_device * 1e3
if np.linalg.norm(origin_head[:2]) > 0.02:
warn(
f"(X, Y) fit ({o_mm[0]:0.1f}, {o_mm[1]:0.1f}) "
"more than 20 mm from head frame origin"
)
logger.info(
"Origin head coordinates:".ljust(30)
+ f"{o_mm[0]:0.1f} {o_mm[1]:0.1f} {o_mm[2]:0.1f} mm"
)
logger.info(
"Origin device coordinates:".ljust(30)
+ f"{o_d[0]:0.1f} {o_d[1]:0.1f} {o_d[2]:0.1f} mm"
)
return radius, origin_head, origin_device
def _fit_sphere(points):
"""Fit a sphere to an arbitrary set of points."""
# linear least-squares sphere fit, see for example
# https://stackoverflow.com/a/78909044
# TODO: At some point we should maybe reject outliers first...
A = np.c_[2 * points, np.ones((len(points), 1))]
b = (points**2).sum(axis=1)
x, _, _, _ = np.linalg.lstsq(A, b, rcond=1e-6)
origin = x[:3]
radius = np.sqrt(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3])
return radius, origin
def _check_origin(origin, info, coord_frame="head", disp=False):
"""Check or auto-determine the origin."""
if isinstance(origin, str):
if origin != "auto":
raise ValueError(
f'origin must be a numerical array, or "auto", not {origin}'
)
if coord_frame == "head":
R, origin = fit_sphere_to_headshape(
info, verbose=_verbose_safe_false(), units="m"
)[:2]
logger.info(f" Automatic origin fit: head of radius {R * 1000:0.1f} mm")
del R
else:
origin = (0.0, 0.0, 0.0)
origin = np.array(origin, float)
if origin.shape != (3,):
raise ValueError("origin must be a 3-element array")
if disp:
origin_str = ", ".join([f"{o * 1000:0.1f}" for o in origin])
msg = f" Using origin {origin_str} mm in the {coord_frame} frame"
if coord_frame == "meg" and info["dev_head_t"] is not None:
o_dev = apply_trans(info["dev_head_t"], origin)
origin_str = ", ".join(f"{o * 1000:0.1f}" for o in o_dev)
msg += f" ({origin_str} mm in the head frame)"
logger.info(msg)
return origin
# ############################################################################
# Create BEM surfaces
@verbose
def make_watershed_bem(
subject,
subjects_dir=None,
overwrite=False,
volume="T1",
atlas=False,
gcaatlas=False,
preflood=None,
show=False,
copy=True,
T1=None,
brainmask="ws.mgz",
verbose=None,
):
"""Create BEM surfaces using the FreeSurfer watershed algorithm.
See :ref:`bem_watershed_algorithm` for additional information.
Parameters
----------
subject : str
Subject name.
%(subjects_dir)s
%(overwrite)s
volume : str
Defaults to T1.
atlas : bool
Specify the ``--atlas option`` for ``mri_watershed``.
gcaatlas : bool
Specify the ``--brain_atlas`` option for ``mri_watershed``.
preflood : int
Change the preflood height.
show : bool
Show surfaces to visually inspect all three BEM surfaces (recommended).
.. versionadded:: 0.12
copy : bool
If True (default), use copies instead of symlinks for surfaces
(if they do not already exist).
.. versionadded:: 0.18
.. versionchanged:: 1.1 Use copies instead of symlinks.
T1 : bool | None
If True, pass the ``-T1`` flag.
By default (None), this takes the same value as ``gcaatlas``.
.. versionadded:: 0.19
brainmask : str
The filename for the brainmask output file relative to the
``$SUBJECTS_DIR/$SUBJECT/bem/watershed/`` directory.
Can be for example ``"../../mri/brainmask.mgz"`` to overwrite
the brainmask obtained via ``recon-all -autorecon1``.
.. versionadded:: 0.19
%(verbose)s
See Also
--------
mne.viz.plot_bem
Notes
-----
If your BEM meshes do not look correct when viewed in
:func:`mne.viz.plot_alignment` or :func:`mne.viz.plot_bem`, consider
potential solutions from the :ref:`FAQ <faq_watershed_bem_meshes>`.
.. versionadded:: 0.10
"""
env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir)
tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD
run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir)
subjects_dir = env["SUBJECTS_DIR"] # Set by _prepare_env() above.
subject_dir = op.join(subjects_dir, subject)
ws_dir = op.join(bem_dir, "watershed")
T1_dir = op.join(mri_dir, volume)
T1_mgz = T1_dir
if not T1_dir.endswith(".mgz"):
T1_mgz += ".mgz"
if not op.isdir(bem_dir):
os.makedirs(bem_dir)
_check_fname(T1_mgz, overwrite="read", must_exist=True, name="MRI data")
if op.isdir(ws_dir):
if not overwrite:
raise RuntimeError(
f"{ws_dir} already exists. Use the --overwrite option to recreate it."
)
else:
shutil.rmtree(ws_dir)
# put together the command
cmd = ["mri_watershed"]
if preflood:
cmd += ["-h", f"{int(preflood)}"]
if T1 is None:
T1 = gcaatlas
if T1:
cmd += ["-T1"]
if gcaatlas:
fname = op.join(env["FREESURFER_HOME"], "average", "RB_all_withskull_*.gca")
fname = sorted(glob.glob(fname))[::-1][0]
# check if FS>8 didn't generate talairach_with_skull.lta
talairach_with_skull_path = os.path.join(
subject_dir, "mri/transforms/talairach_with_skull.lta"
)
if not os.path.exists(talairach_with_skull_path):
logger.info(
f"{talairach_with_skull_path} does not exist. Running mri_em_register."
)
em_reg_cmd = [
"mri_em_register",
"-skull",
subject_dir + "/mri/nu.mgz",
fname,
talairach_with_skull_path,
]
run_subprocess_env(em_reg_cmd)
logger.info(f"Using GCA atlas: {fname}")
cmd += [
"-atlas",
"-brain_atlas",
fname,
subject_dir + "/mri/transforms/talairach_with_skull.lta",
]
elif atlas:
cmd += ["-atlas"]
if op.exists(T1_mgz):
cmd += [
"-useSRAS",
"-surf",
op.join(ws_dir, subject),
T1_mgz,
op.join(ws_dir, brainmask),
]
else:
cmd += [
"-useSRAS",
"-surf",
op.join(ws_dir, subject),
T1_dir,
op.join(ws_dir, brainmask),
]
# report and run
logger.info(
"\nRunning mri_watershed for BEM segmentation with the following parameters:\n"
f"\nResults dir = {ws_dir}\nCommand = {' '.join(cmd)}\n"
)
os.makedirs(op.join(ws_dir))
run_subprocess_env(cmd)
del tempdir # clean up directory
if op.isfile(T1_mgz):
new_info = _extract_volume_info(T1_mgz)
if not new_info:
warn(
"nibabel is not available or the volume info is invalid. Volume info "
"not updated in the written surface."
)
surfs = ["brain", "inner_skull", "outer_skull", "outer_skin"]
for s in surfs:
surf_ws_out = op.join(ws_dir, f"{subject}_{s}_surface")
rr, tris, volume_info = read_surface(surf_ws_out, read_metadata=True)
# replace volume info, 'head' stays
volume_info.update(new_info)
write_surface(
surf_ws_out, rr, tris, volume_info=volume_info, overwrite=True
)
# Create symbolic links
surf_out = op.join(bem_dir, f"{s}.surf")
if not overwrite and op.exists(surf_out):
skip_symlink = True
else:
if op.exists(surf_out):
os.remove(surf_out)
_symlink(surf_ws_out, surf_out, copy)
skip_symlink = False
if skip_symlink:
logger.info(
"Unable to create all symbolic links to .surf files in bem folder. Use "
"--overwrite option to recreate them."
)
dest = op.join(bem_dir, "watershed")
else:
logger.info("Symbolic links to .surf files created in bem folder")
dest = bem_dir
logger.info(
"\nThank you for waiting.\nThe BEM triangulations for this subject are now "
f"available at:\n{dest}."
)
# Write a head file for coregistration
fname_head = op.join(bem_dir, subject + "-head.fif")
if op.isfile(fname_head):
os.remove(fname_head)
surf = _surfaces_to_bem(
[op.join(ws_dir, subject + "_outer_skin_surface")],
[FIFF.FIFFV_BEM_SURF_ID_HEAD],
sigmas=[1],
)
write_bem_surfaces(fname_head, surf)
# Show computed BEM surfaces
if show:
plot_bem(
subject=subject,
subjects_dir=subjects_dir,
orientation="coronal",
slices=None,
show=True,
)
logger.info(f"Created {fname_head}\n\nComplete.")
def _extract_volume_info(mgz):
"""Extract volume info from a mgz file."""
nib = _import_nibabel()
header = nib.load(mgz).header
version = header["version"]
vol_info = dict()
if version == 1:
version = f"{version} # volume info valid"
vol_info["valid"] = version
vol_info["filename"] = mgz
vol_info["volume"] = header["dims"][:3]
vol_info["voxelsize"] = header["delta"]
vol_info["xras"], vol_info["yras"], vol_info["zras"] = header["Mdc"]
vol_info["cras"] = header["Pxyz_c"]
return vol_info
# ############################################################################
# Read
@verbose
def read_bem_surfaces(
fname, patch_stats=False, s_id=None, on_defects="raise", verbose=None
):
"""Read the BEM surfaces from a FIF file.
Parameters
----------
fname : path-like
The name of the file containing the surfaces.
patch_stats : bool, optional (default False)
Calculate and add cortical patch statistics to the surfaces.
s_id : int | None
If int, only read and return the surface with the given ``s_id``.
An error will be raised if it doesn't exist. If None, all
surfaces are read and returned.
%(on_defects)s
.. versionadded:: 0.23
%(verbose)s
Returns
-------
surf: list | dict
A list of dictionaries that each contain a surface. If ``s_id``
is not None, only the requested surface will be returned.
See Also
--------
write_bem_surfaces, write_bem_solution, make_bem_model
"""
# Open the file, create directory
_validate_type(s_id, ("int-like", None), "s_id")
fname = _check_fname(fname, "read", True, "fname")
if fname.suffix == ".h5":
surf = _read_bem_surfaces_h5(fname, s_id)
else:
surf = _read_bem_surfaces_fif(fname, s_id)
if s_id is not None and len(surf) != 1:
raise ValueError(f"surface with id {s_id} not found")
for this in surf:
if patch_stats or this["nn"] is None:
_check_complete_surface(this, incomplete=on_defects)
return surf[0] if s_id is not None else surf
def _read_bem_surfaces_h5(fname, s_id):
read_hdf5, _ = _import_h5io_funcs()
bem = read_hdf5(fname)
try:
[s["id"] for s in bem["surfs"]]
except Exception: # not our format
raise ValueError("BEM data not found")
surf = bem["surfs"]
if s_id is not None:
surf = [s for s in surf if s["id"] == s_id]
return surf
def _read_bem_surfaces_fif(fname, s_id):
# Default coordinate frame
coord_frame = FIFF.FIFFV_COORD_MRI
f, tree, _ = fiff_open(fname)
with f as fid:
# Find BEM
bem = dir_tree_find(tree, FIFF.FIFFB_BEM)
if bem is None or len(bem) == 0:
raise ValueError("BEM data not found")
bem = bem[0]
# Locate all surfaces
bemsurf = dir_tree_find(bem, FIFF.FIFFB_BEM_SURF)
if bemsurf is None:
raise ValueError("BEM surface data not found")
logger.info(f" {len(bemsurf)} BEM surfaces found")
# Coordinate frame possibly at the top level
tag = find_tag(fid, bem, FIFF.FIFF_BEM_COORD_FRAME)
if tag is not None:
coord_frame = tag.data
# Read all surfaces
if s_id is not None:
surf = [
_read_bem_surface(fid, bsurf, coord_frame, s_id) for bsurf in bemsurf
]
surf = [s for s in surf if s is not None]
else:
surf = list()
for bsurf in bemsurf:
logger.info(" Reading a surface...")
this = _read_bem_surface(fid, bsurf, coord_frame)
surf.append(this)
logger.info("[done]")
logger.info(f" {len(surf)} BEM surfaces read")
return surf
def _read_bem_surface(fid, this, def_coord_frame, s_id=None):
"""Read one bem surface."""
# fid should be open as a context manager here
res = dict()
# Read all the interesting stuff
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_ID)
if tag is None:
res["id"] = FIFF.FIFFV_BEM_SURF_ID_UNKNOWN
else:
res["id"] = int(tag.data.item())
if s_id is not None and res["id"] != s_id:
return None
tag = find_tag(fid, this, FIFF.FIFF_BEM_SIGMA)
res["sigma"] = 1.0 if tag is None else float(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NNODE)
if tag is None:
raise ValueError("Number of vertices not found")
res["np"] = int(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NTRI)
if tag is None:
raise ValueError("Number of triangles not found")
res["ntri"] = int(tag.data.item())
tag = find_tag(fid, this, FIFF.FIFF_MNE_COORD_FRAME)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_BEM_COORD_FRAME)
if tag is None:
res["coord_frame"] = def_coord_frame
else:
res["coord_frame"] = int(tag.data.item())
else:
res["coord_frame"] = int(tag.data.item())
# Vertices, normals, and triangles
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NODES)
if tag is None:
raise ValueError("Vertex data not found")
res["rr"] = tag.data.astype(np.float64)
if res["rr"].shape[0] != res["np"]:
raise ValueError("Vertex information is incorrect")
tag = find_tag(fid, this, FIFF.FIFF_MNE_SOURCE_SPACE_NORMALS)
if tag is None:
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_NORMALS)
if tag is None:
res["nn"] = None
else:
res["nn"] = tag.data.astype(np.float64)
if res["nn"].shape[0] != res["np"]:
raise ValueError("Vertex normal information is incorrect")
tag = find_tag(fid, this, FIFF.FIFF_BEM_SURF_TRIANGLES)
if tag is None:
raise ValueError("Triangulation not found")
res["tris"] = tag.data - 1 # index start at 0 in Python
if res["tris"].shape[0] != res["ntri"]:
raise ValueError("Triangulation information is incorrect")
return res
@verbose
def read_bem_solution(fname, *, verbose=None):
"""Read the BEM solution from a file.
Parameters
----------
fname : path-like
The file containing the BEM solution.
%(verbose)s
Returns
-------
bem : instance of ConductorModel
The BEM solution.
See Also
--------
read_bem_surfaces
write_bem_surfaces
make_bem_solution
write_bem_solution
"""
fname = _check_fname(fname, "read", True, "fname")
# mirrors fwd_bem_load_surfaces from fwd_bem_model.c
if fname.suffix == ".h5":
read_hdf5, _ = _import_h5io_funcs()
logger.info("Loading surfaces and solution...")
bem = read_hdf5(fname)
if "solver" not in bem:
bem["solver"] = "mne"
else:
bem = _read_bem_solution_fif(fname)
if len(bem["surfs"]) == 3:
logger.info("Three-layer model surfaces loaded.")
needed = np.array(
[
FIFF.FIFFV_BEM_SURF_ID_HEAD,
FIFF.FIFFV_BEM_SURF_ID_SKULL,
FIFF.FIFFV_BEM_SURF_ID_BRAIN,
]
)
if not all(x["id"] in needed for x in bem["surfs"]):
raise RuntimeError("Could not find necessary BEM surfaces")
# reorder surfaces as necessary (shouldn't need to?)
reorder = [None] * 3
for x in bem["surfs"]:
reorder[np.where(x["id"] == needed)[0][0]] = x
bem["surfs"] = reorder
elif len(bem["surfs"]) == 1:
if not bem["surfs"][0]["id"] == FIFF.FIFFV_BEM_SURF_ID_BRAIN:
raise RuntimeError("BEM Surfaces not found")
logger.info("Homogeneous model surface loaded.")
assert set(bem.keys()) == set(("surfs", "solution", "bem_method", "solver"))
bem = ConductorModel(bem)
bem["is_sphere"] = False
# sanity checks and conversions
_check_option(
"BEM approximation method", bem["bem_method"], (FIFF.FIFFV_BEM_APPROX_LINEAR,)
) # CONSTANT not supported
dim = 0
solver = bem.get("solver", "mne")
_check_option("BEM solver", solver, ("mne", "openmeeg"))
for si, surf in enumerate(bem["surfs"]):
assert bem["bem_method"] == FIFF.FIFFV_BEM_APPROX_LINEAR
dim += surf["np"]
if solver == "openmeeg" and si != 0:
dim += surf["ntri"]
dims = bem["solution"].shape
if solver == "openmeeg":
sz = (dim * (dim + 1)) // 2
if len(dims) != 1 or dims[0] != sz:
raise RuntimeError(
"For the given BEM surfaces, OpenMEEG should produce a "
f"solution matrix of shape ({sz},) but got {dims}"
)
bem["nsol"] = dim
else:
if len(dims) != 2 and solver != "openmeeg":
raise RuntimeError(
"Expected a two-dimensional solution matrix "
f"instead of a {dims[0]} dimensional one"
)
if dims[0] != dim or dims[1] != dim:
raise RuntimeError(
f"Expected a {dim} x {dim} solution matrix instead of "
f"a {dims[1]} x {dims[0]} one"
)
bem["nsol"] = bem["solution"].shape[0]
# Gamma factors and multipliers
_add_gamma_multipliers(bem)
extra = f"made by {solver}" if solver != "mne" else ""
logger.info(f"Loaded linear collocation BEM solution{extra} from {fname}")
return bem
def _read_bem_solution_fif(fname):
logger.info("Loading surfaces...")
surfs = read_bem_surfaces(fname, patch_stats=True, verbose=_verbose_safe_false())
# convert from surfaces to solution
logger.info("\nLoading the solution matrix...\n")
solver = "mne"
f, tree, _ = fiff_open(fname)
with f as fid:
# Find the BEM data
nodes = dir_tree_find(tree, FIFF.FIFFB_BEM)
if len(nodes) == 0:
raise RuntimeError(f"No BEM data in {fname}")
bem_node = nodes[0]
# Approximation method
tag = find_tag(f, bem_node, FIFF.FIFF_DESCRIPTION)
if tag is not None:
tag = json.loads(tag.data)
solver = tag["solver"]
tag = find_tag(f, bem_node, FIFF.FIFF_BEM_APPROX)
if tag is None:
raise RuntimeError(f"No BEM solution found in {fname}")
method = tag.data[0]
tag = find_tag(fid, bem_node, FIFF.FIFF_BEM_POT_SOLUTION)
sol = tag.data
return dict(solution=sol, bem_method=method, surfs=surfs, solver=solver)
def _add_gamma_multipliers(bem):
"""Add gamma and multipliers in-place."""
bem["sigma"] = np.array([surf["sigma"] for surf in bem["surfs"]])
# Dirty trick for the zero conductivity outside
sigma = np.r_[0.0, bem["sigma"]]
bem["source_mult"] = 2.0 / (sigma[1:] + sigma[:-1])
bem["field_mult"] = sigma[1:] - sigma[:-1]
# make sure subsequent "zip"s work correctly
assert len(bem["surfs"]) == len(bem["field_mult"])
bem["gamma"] = (sigma[1:] - sigma[:-1])[np.newaxis, :] / (sigma[1:] + sigma[:-1])[
:, np.newaxis
]
# In our BEM code we do not model the CSF so we assign the innermost surface
# the id BRAIN. Our 4-layer sphere we model CSF (at least by default), so when
# searching for and referring to surfaces we need to keep track of this.
_sm_surf_dict = OrderedDict(
[
("brain", FIFF.FIFFV_BEM_SURF_ID_BRAIN),
("inner_skull", FIFF.FIFFV_BEM_SURF_ID_CSF),
("outer_skull", FIFF.FIFFV_BEM_SURF_ID_SKULL),
("head", FIFF.FIFFV_BEM_SURF_ID_HEAD),
]
)
_bem_surf_dict = {
"inner_skull": FIFF.FIFFV_BEM_SURF_ID_BRAIN,
"outer_skull": FIFF.FIFFV_BEM_SURF_ID_SKULL,
"head": FIFF.FIFFV_BEM_SURF_ID_HEAD,
}
_bem_surf_name = {
FIFF.FIFFV_BEM_SURF_ID_BRAIN: "inner skull",
FIFF.FIFFV_BEM_SURF_ID_SKULL: "outer skull",
FIFF.FIFFV_BEM_SURF_ID_HEAD: "outer skin ",
FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: "unknown ",
FIFF.FIFFV_MNE_SURF_MEG_HELMET: "MEG helmet ",
}
_sm_surf_name = {
FIFF.FIFFV_BEM_SURF_ID_BRAIN: "brain",
FIFF.FIFFV_BEM_SURF_ID_CSF: "csf",
FIFF.FIFFV_BEM_SURF_ID_SKULL: "outer skull",
FIFF.FIFFV_BEM_SURF_ID_HEAD: "outer skin ",
FIFF.FIFFV_BEM_SURF_ID_UNKNOWN: "unknown ",
FIFF.FIFFV_MNE_SURF_MEG_HELMET: "helmet",
}
def _bem_find_surface(bem, id_):
"""Find surface from already-loaded conductor model."""
if bem["is_sphere"]:
_surf_dict = _sm_surf_dict
_name_dict = _sm_surf_name
kind = "Sphere model"
tri = "boundary"
else:
_surf_dict = _bem_surf_dict
_name_dict = _bem_surf_name
kind = "BEM"
tri = "triangulation"
if isinstance(id_, str):
name = id_
id_ = _surf_dict[id_]
else:
name = _name_dict[id_]
kind = "Sphere model" if bem["is_sphere"] else "BEM"
idx = np.where(np.array([s["id"] for s in bem["surfs"]]) == id_)[0]
if len(idx) != 1:
raise RuntimeError(f"{kind} does not have the {name} {tri}")
return bem["surfs"][idx[0]]
# ############################################################################
# Write
@verbose
def write_bem_surfaces(fname, surfs, overwrite=False, *, verbose=None):
"""Write BEM surfaces to a FIF file.
Parameters
----------
fname : path-like
Filename to write. Can end with ``.h5`` to write using HDF5.
surfs : dict | list of dict
The surfaces, or a single surface.
%(overwrite)s
%(verbose)s
"""
if isinstance(surfs, dict):
surfs = [surfs]
fname = _check_fname(fname, overwrite=overwrite, name="fname")
if fname.suffix == ".h5":
_, write_hdf5 = _import_h5io_funcs()
write_hdf5(fname, dict(surfs=surfs), overwrite=True)
else:
with start_and_end_file(fname) as fid:
start_block(fid, FIFF.FIFFB_BEM)
write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, surfs[0]["coord_frame"])
_write_bem_surfaces_block(fid, surfs)
end_block(fid, FIFF.FIFFB_BEM)
@verbose
def write_head_bem(
fname, rr, tris, on_defects="raise", overwrite=False, *, verbose=None
):
"""Write a head surface to a FIF file.
Parameters
----------
fname : path-like
Filename to write.
rr : array, shape (n_vertices, 3)
Coordinate points in the MRI coordinate system.
tris : ndarray of int, shape (n_tris, 3)
Triangulation (each line contains indices for three points which
together form a face).
%(on_defects)s
%(overwrite)s
%(verbose)s
"""
surf = _surfaces_to_bem(
[dict(rr=rr, tris=tris)],
[FIFF.FIFFV_BEM_SURF_ID_HEAD],
[1],
rescale=False,
incomplete=on_defects,
)
write_bem_surfaces(fname, surf, overwrite=overwrite)
def _write_bem_surfaces_block(fid, surfs):
"""Write bem surfaces to open file handle."""
for surf in surfs:
start_block(fid, FIFF.FIFFB_BEM_SURF)
if "sigma" in surf:
write_float(fid, FIFF.FIFF_BEM_SIGMA, surf["sigma"])
write_int(fid, FIFF.FIFF_BEM_SURF_ID, surf["id"])
write_int(fid, FIFF.FIFF_MNE_COORD_FRAME, surf["coord_frame"])
write_int(fid, FIFF.FIFF_BEM_SURF_NNODE, surf["np"])
write_int(fid, FIFF.FIFF_BEM_SURF_NTRI, surf["ntri"])
write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NODES, surf["rr"])
# index start at 0 in Python
write_int_matrix(fid, FIFF.FIFF_BEM_SURF_TRIANGLES, surf["tris"] + 1)
if "nn" in surf and surf["nn"] is not None and len(surf["nn"]) > 0:
write_float_matrix(fid, FIFF.FIFF_BEM_SURF_NORMALS, surf["nn"])
end_block(fid, FIFF.FIFFB_BEM_SURF)
@verbose
def write_bem_solution(fname, bem, overwrite=False, *, verbose=None):
"""Write a BEM model with solution.
Parameters
----------
fname : path-like
The filename to use. Can end with ``.h5`` to write using HDF5.
bem : instance of ConductorModel
The BEM model with solution to save.
%(overwrite)s
%(verbose)s
See Also
--------
read_bem_solution
"""
fname = _check_fname(fname, overwrite=overwrite, name="fname")
if fname.suffix == ".h5":
_, write_hdf5 = _import_h5io_funcs()
bem = {k: bem[k] for k in ("surfs", "solution", "bem_method")}
write_hdf5(fname, bem, overwrite=True)
else:
_write_bem_solution_fif(fname, bem)
def _write_bem_solution_fif(fname, bem):
_check_bem_size(bem["surfs"])
with start_and_end_file(fname) as fid:
start_block(fid, FIFF.FIFFB_BEM)
# Coordinate frame (mainly for backward compatibility)
write_int(fid, FIFF.FIFF_BEM_COORD_FRAME, bem["surfs"][0]["coord_frame"])
solver = bem.get("solver", "mne")
if solver != "mne":
write_string(fid, FIFF.FIFF_DESCRIPTION, json.dumps(dict(solver=solver)))
# Surfaces
_write_bem_surfaces_block(fid, bem["surfs"])
# The potential solution
if "solution" in bem:
_check_option(
"bem_method", bem["bem_method"], (FIFF.FIFFV_BEM_APPROX_LINEAR,)
)
write_int(fid, FIFF.FIFF_BEM_APPROX, FIFF.FIFFV_BEM_APPROX_LINEAR)
write_float_matrix(fid, FIFF.FIFF_BEM_POT_SOLUTION, bem["solution"])
end_block(fid, FIFF.FIFFB_BEM)
# #############################################################################
# Create 3-Layers BEM model from Flash MRI images
def _prepare_env(subject, subjects_dir):
"""Prepare an env object for subprocess calls."""
env = os.environ.copy()
fs_home = _check_freesurfer_home()
_validate_type(subject, "str")
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
subject_dir = subjects_dir / subject
if not subject_dir.is_dir():
raise RuntimeError(f'Could not find the subject data directory "{subject_dir}"')
env.update(SUBJECT=subject, SUBJECTS_DIR=str(subjects_dir), FREESURFER_HOME=fs_home)
mri_dir = subject_dir / "mri"
bem_dir = subject_dir / "bem"
return env, mri_dir, bem_dir
def _write_echos(mri_dir, flash_echos, angle):
nib = _import_nibabel("write echoes")
from nibabel.spatialimages import SpatialImage
if _path_like(flash_echos):
flash_echos = nib.load(flash_echos)
if isinstance(flash_echos, SpatialImage):
flash_echo_imgs = []
data = np.asanyarray(flash_echos.dataobj)
affine = flash_echos.affine
if data.ndim == 3:
data = data[..., np.newaxis]
for echo_idx in range(data.shape[3]):
this_echo_img = flash_echos.__class__(
data[..., echo_idx], affine=affine, header=deepcopy(flash_echos.header)
)
flash_echo_imgs.append(this_echo_img)
flash_echos = flash_echo_imgs
del flash_echo_imgs
for idx, flash_echo in enumerate(flash_echos, 1):
if _path_like(flash_echo):
flash_echo = nib.load(flash_echo)
nib.save(flash_echo, op.join(mri_dir, "flash", f"mef{angle}_{idx:03d}.mgz"))
@verbose
def convert_flash_mris(
subject, flash30=True, unwarp=False, subjects_dir=None, flash5=True, verbose=None
):
"""Synthesize the flash 5 files for use with make_flash_bem.
This function aims to produce a synthesized flash 5 MRI from
multiecho flash (MEF) MRI data. This function can use MEF data
with 5 or 30 flip angles. If flash5 (and flash30) images are not
explicitly provided, it will assume that the different echos are available
in the mri/flash folder of the subject with the following naming
convention "mef<angle>_<echo>.mgz", e.g. "mef05_001.mgz"
or "mef30_001.mgz".
Parameters
----------
%(subject)s
flash30 : bool | list of SpatialImage or path-like | SpatialImage | path-like
If False do not use 30-degree flip angle data.
The list of flash 5 echos to use. If True it will look for files
named mef30_*.mgz in the subject's mri/flash directory and if not False
the list of flash 5 echos images will be written to the mri/flash
folder with convention mef05_<echo>.mgz. If a SpatialImage object
each frame of the image will be interpreted as an echo.
unwarp : bool
Run grad_unwarp with -unwarp option on each of the converted
data sets. It requires FreeSurfer's MATLAB toolbox to be properly
installed.
%(subjects_dir)s
flash5 : list of SpatialImage or path-like | SpatialImage | path-like | True
The list of flash 5 echos to use. If True it will look for files
named mef05_*.mgz in the subject's mri/flash directory and if not None
the list of flash 5 echos images will be written to the mri/flash
folder with convention mef05_<echo>.mgz. If a SpatialImage object
each frame of the image will be interpreted as an echo.
%(verbose)s
Returns
-------
flash5_img : path-like
The path the synthesized flash 5 MRI.
Notes
-----
This function assumes that the Freesurfer segmentation of the subject
has been completed. In particular, the T1.mgz and brain.mgz MRI volumes
should be, as usual, in the subject's mri directory.
""" # noqa: E501
env, mri_dir = _prepare_env(subject, subjects_dir)[:2]
tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD
run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir)
mri_dir = Path(mri_dir)
# Step 1a : Data conversion to mgz format
flash_dir = mri_dir / "flash"
pm_dir = flash_dir / "parameter_maps"
pm_dir.mkdir(parents=True, exist_ok=True)
echos_done = 0
if not isinstance(flash5, bool):
_write_echos(mri_dir, flash5, angle="05")
if not isinstance(flash30, bool):
_write_echos(mri_dir, flash30, angle="30")
# Step 1b : Run grad_unwarp on converted files
template = op.join(flash_dir, "mef*_*.mgz")
files = sorted(glob.glob(template))
if len(files) == 0:
raise ValueError(f"No suitable source files found ({template})")
if unwarp:
logger.info("\n---- Unwarp mgz data sets ----")
for infile in files:
outfile = infile.replace(".mgz", "u.mgz")
cmd = ["grad_unwarp", "-i", infile, "-o", outfile, "-unwarp", "true"]
run_subprocess_env(cmd)
# Clear parameter maps if some of the data were reconverted
if echos_done > 0 and pm_dir.exists():
shutil.rmtree(pm_dir)
logger.info("\nParameter maps directory cleared")
if not pm_dir.exists():
pm_dir.mkdir(parents=True, exist_ok=True)
# Step 2 : Create the parameter maps
if flash30:
logger.info("\n---- Creating the parameter maps ----")
if unwarp:
files = sorted(glob.glob(op.join(flash_dir, "mef05_*u.mgz")))
if len(os.listdir(pm_dir)) == 0:
cmd = ["mri_ms_fitparms"] + files + [str(pm_dir)]
run_subprocess_env(cmd)
else:
logger.info("Parameter maps were already computed")
# Step 3 : Synthesize the flash 5 images
logger.info("\n---- Synthesizing flash 5 images ----")
if not (pm_dir / "flash5.mgz").exists():
cmd = [
"mri_synthesize",
"20",
"5",
"5",
(pm_dir / "T1.mgz"),
(pm_dir / "PD.mgz"),
(pm_dir / "flash5.mgz"),
]
run_subprocess_env(cmd)
(pm_dir / "flash5_reg.mgz").unlink(missing_ok=True)
else:
logger.info("Synthesized flash 5 volume is already there")
else:
logger.info("\n---- Averaging flash5 echoes ----")
template = "mef05_*u.mgz" if unwarp else "mef05_*.mgz"
files = sorted(flash_dir.glob(template))
if len(files) == 0:
raise ValueError(f"No suitable source files found ({template})")
cmd = ["mri_average", "-noconform"] + files + [pm_dir / "flash5.mgz"]
run_subprocess_env(cmd)
(pm_dir / "flash5_reg.mgz").unlink(missing_ok=True)
del tempdir # finally done running subprocesses
assert (pm_dir / "flash5.mgz").exists()
return pm_dir / "flash5.mgz"
@verbose
def make_flash_bem(
subject,
overwrite=False,
show=True,
subjects_dir=None,
copy=True,
*,
flash5_img=None,
register=True,
verbose=None,
):
"""Create 3-Layer BEM model from prepared flash MRI images.
See :ref:`bem_flash_algorithm` for additional information.
Parameters
----------
%(subject)s
overwrite : bool
Write over existing .surf files in bem folder.
show : bool
Show surfaces to visually inspect all three BEM surfaces (recommended).
%(subjects_dir)s
copy : bool
If True (default), use copies instead of symlinks for surfaces
(if they do not already exist).
.. versionadded:: 0.18
.. versionchanged:: 1.1 Use copies instead of symlinks.
flash5_img : None | path-like | Nifti1Image
The path to the synthesized flash 5 MRI image or the image itself. If
None (default), the path defaults to
``mri/flash/parameter_maps/flash5.mgz`` within the subject
reconstruction. If not present the image is copied or written to the
default location.
.. versionadded:: 1.1.0
register : bool
Register the flash 5 image with T1.mgz file. If False, we assume
that the images are already coregistered.
.. versionadded:: 1.1.0
%(verbose)s
See Also
--------
convert_flash_mris
Notes
-----
This program assumes that FreeSurfer is installed and sourced properly.
This function extracts the BEM surfaces (outer skull, inner skull, and
outer skin) from a FLASH 5 MRI image synthesized from multiecho FLASH
images acquired with spin angles of 5 and 30 degrees.
"""
env, mri_dir, bem_dir = _prepare_env(subject, subjects_dir)
tempdir = _TempDir() # fsl and Freesurfer create some random junk in CWD
run_subprocess_env = partial(run_subprocess, env=env, cwd=tempdir)
mri_dir = Path(mri_dir)
bem_dir = Path(bem_dir)
subjects_dir = env["SUBJECTS_DIR"]
flash_path = (mri_dir / "flash" / "parameter_maps").resolve()
flash_path.mkdir(exist_ok=True, parents=True)
logger.info(
"\nProcessing the flash MRI data to produce BEM meshes with the following "
f"parameters:\nSUBJECTS_DIR = {subjects_dir}\nSUBJECT = {subject}\nResult dir ="
f"{bem_dir / 'flash'}\n"
)
# Step 4 : Register with MPRAGE
flash5 = flash_path / "flash5.mgz"
if _path_like(flash5_img):
logger.info(f"Copying flash 5 image {flash5_img} to {flash5}")
cmd = ["mri_convert", Path(flash5_img).resolve(), flash5]
run_subprocess_env(cmd)
elif flash5_img is None:
if not flash5.exists():
raise ValueError(f"Flash 5 image cannot be found at {flash5}.")
else:
logger.info(f"Writing flash 5 image at {flash5}")
nib = _import_nibabel("write an MRI image")
nib.save(flash5_img, flash5)
if register:
logger.info("\n---- Registering flash 5 with T1 MPRAGE ----")
flash5_reg = flash_path / "flash5_reg.mgz"
if not flash5_reg.exists():
if (mri_dir / "T1.mgz").exists():
ref_volume = mri_dir / "T1.mgz"
else:
ref_volume = mri_dir / "T1"
cmd = [
"fsl_rigid_register",
"-r",
str(ref_volume),
"-i",
str(flash5),
"-o",
str(flash5_reg),
]
run_subprocess_env(cmd)
else:
logger.info("Registered flash 5 image is already there")
else:
flash5_reg = flash5
# Step 5a : Convert flash5 into COR
logger.info("\n---- Converting flash5 volume into COR format ----")
flash5_dir = mri_dir / "flash5"
shutil.rmtree(flash5_dir, ignore_errors=True)
flash5_dir.mkdir(exist_ok=True, parents=True)
cmd = ["mri_convert", flash5_reg, flash5_dir]
run_subprocess_env(cmd)
# Step 5b and c : Convert the mgz volumes into COR
convert_T1 = False
T1_dir = mri_dir / "T1"
if not T1_dir.is_dir() or next(T1_dir.glob("COR*")) is None:
convert_T1 = True
convert_brain = False
brain_dir = mri_dir / "brain"
if not brain_dir.is_dir() or next(brain_dir.glob("COR*")) is None:
convert_brain = True
logger.info("\n---- Converting T1 volume into COR format ----")
if convert_T1:
T1_fname = mri_dir / "T1.mgz"
if not T1_fname.is_file():
raise RuntimeError("Both T1 mgz and T1 COR volumes missing.")
T1_dir.mkdir(exist_ok=True, parents=True)
cmd = ["mri_convert", T1_fname, T1_dir]
run_subprocess_env(cmd)
else:
logger.info("T1 volume is already in COR format")
logger.info("\n---- Converting brain volume into COR format ----")
if convert_brain:
brain_fname = mri_dir / "brain.mgz"
if not brain_fname.is_file():
raise RuntimeError("Both brain mgz and brain COR volumes missing.")
brain_dir.mkdir(exist_ok=True, parents=True)
cmd = ["mri_convert", brain_fname, brain_dir]
run_subprocess_env(cmd)
else:
logger.info("Brain volume is already in COR format")
# Finally ready to go
logger.info("\n---- Creating the BEM surfaces ----")
cmd = ["mri_make_bem_surfaces", subject]
run_subprocess_env(cmd)
del tempdir # ran our last subprocess; clean up directory
logger.info("\n---- Converting the tri files into surf files ----")
flash_bem_dir = bem_dir / "flash"
flash_bem_dir.mkdir(exist_ok=True, parents=True)
surfs = ["inner_skull", "outer_skull", "outer_skin"]
for surf in surfs:
out_fname = flash_bem_dir / (surf + ".tri")
shutil.move(bem_dir / (surf + ".tri"), out_fname)
nodes, tris = read_tri(out_fname, swap=True)
# Do not write volume info here because the tris are already in
# standard Freesurfer coords
write_surface(op.splitext(out_fname)[0] + ".surf", nodes, tris, overwrite=True)
# Cleanup section
logger.info("\n---- Cleaning up ----")
(bem_dir / "inner_skull_tmp.tri").unlink()
if convert_T1:
shutil.rmtree(T1_dir)
logger.info("Deleted the T1 COR volume")
if convert_brain:
shutil.rmtree(brain_dir)
logger.info("Deleted the brain COR volume")
shutil.rmtree(flash5_dir)
logger.info("Deleted the flash5 COR volume")
# Create symbolic links to the .surf files in the bem folder
logger.info("\n---- Creating symbolic links ----")
# os.chdir(bem_dir)
for surf in surfs:
surf = bem_dir / (surf + ".surf")
if not overwrite and surf.exists():
skip_symlink = True
else:
if surf.exists():
surf.unlink()
_symlink(flash_bem_dir / surf.name, surf, copy)
skip_symlink = False
if skip_symlink:
logger.info(
"Unable to create all symbolic links to .surf files "
"in bem folder. Use --overwrite option to recreate them."
)
dest = bem_dir / "flash"
else:
logger.info("Symbolic links to .surf files created in bem folder")
dest = bem_dir
logger.info(
"\nThank you for waiting.\nThe BEM triangulations for this "
f"subject are now available at:\n{dest}.\nWe hope the BEM meshes "
"created will facilitate your MEG and EEG data analyses."
)
# Show computed BEM surfaces
if show:
plot_bem(
subject=subject,
subjects_dir=subjects_dir,
orientation="coronal",
slices=None,
show=True,
)
def _check_bem_size(surfs):
"""Check bem surface sizes."""
if len(surfs) > 1 and surfs[0]["np"] > 10000:
warn(
f"The bem surfaces have {surfs[0]['np']} data points. 5120 (ico grade=4) "
"should be enough. Dense 3-layer bems may not save properly."
)
def _symlink(src, dest, copy=False):
"""Create a relative symlink (or just copy)."""
if not copy:
src_link = op.relpath(src, op.dirname(dest))
try:
os.symlink(src_link, dest)
except OSError:
warn(
f"Could not create symbolic link {dest}. Check that your "
"partition handles symbolic links. The file will be copied "
"instead."
)
copy = True
if copy:
shutil.copy(src, dest)
def _ensure_bem_surfaces(bem, extra_allow=(), name="bem"):
# by default only allow path-like and list, but handle None and
# ConductorModel properly if need be. Always return a ConductorModel
# even though it's incomplete (and might have is_sphere=True).
assert all(extra in (None, ConductorModel) for extra in extra_allow)
allowed = ("path-like", list) + extra_allow
_validate_type(bem, allowed, name)
if isinstance(bem, path_like):
# Load the surfaces
logger.info(f"Loading BEM surfaces from {bem}...")
bem = read_bem_surfaces(bem)
bem = ConductorModel(is_sphere=False, surfs=bem)
elif isinstance(bem, list):
for ii, this_surf in enumerate(bem):
_validate_type(this_surf, dict, f"{name}[{ii}]")
if isinstance(bem, list):
bem = ConductorModel(is_sphere=False, surfs=bem)
# add surfaces in the spherical case
if isinstance(bem, ConductorModel) and bem["is_sphere"]:
bem = bem.copy()
bem["surfs"] = []
if len(bem["layers"]) == 4:
for idx, id_ in enumerate(_sm_surf_dict.values()):
bem["surfs"].append(_complete_sphere_surf(bem, idx, 4, complete=False))
bem["surfs"][-1]["id"] = id_
return bem
def _check_file(fname, overwrite):
"""Prevent overwrites."""
if op.isfile(fname) and not overwrite:
raise OSError(f"File {fname} exists, use --overwrite to overwrite it")
_tri_levels = dict(
medium=30000,
sparse=2500,
)
@verbose
def make_scalp_surfaces(
subject,
subjects_dir=None,
force=True,
overwrite=False,
no_decimate=False,
*,
threshold=20,
mri="T1.mgz",
verbose=None,
):
"""Create surfaces of the scalp and neck.
The scalp surfaces are required for using the MNE coregistration GUI, and
allow for a visualization of the alignment between anatomy and channel
locations.
Parameters
----------
%(subject)s
%(subjects_dir)s
force : bool
Force creation of the surface even if it has some topological defects.
Defaults to ``True``. See :ref:`tut-fix-meshes` for ideas on how to
fix problematic meshes.
%(overwrite)s
no_decimate : bool
Disable the "medium" and "sparse" decimations. In this case, only
a "dense" surface will be generated. Defaults to ``False``, i.e.,
create surfaces for all three types of decimations.
threshold : int
The threshold to use with the MRI in the call to ``mkheadsurf``.
The default is ``20``.
.. versionadded:: 1.1
mri : str
The MRI to use. Should exist in ``$SUBJECTS_DIR/$SUBJECT/mri``.
.. versionadded:: 1.1
%(verbose)s
"""
subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
incomplete = "warn" if force else "raise"
subj_path = subjects_dir / subject
if not subj_path.exists():
raise RuntimeError(
f"{subj_path} does not exist. Please check your subject directory path."
)
# Backward compat for old FreeSurfer (?)
_validate_type(mri, str, "mri")
if mri == "T1.mgz":
mri = mri if (subj_path / "mri" / mri).exists() else "T1"
logger.info("1. Creating a dense scalp tessellation with mkheadsurf...")
def check_seghead(surf_path=subj_path / "surf"):
surf = None
for k in ["lh.seghead", "lh.smseghead"]:
this_surf = surf_path / k
if this_surf.exists():
surf = this_surf
break
return surf
my_seghead = check_seghead()
threshold = _ensure_int(threshold, "threshold")
if my_seghead is None:
this_env = deepcopy(os.environ)
this_env["SUBJECTS_DIR"] = str(subjects_dir)
this_env["SUBJECT"] = subject
this_env["subjdir"] = str(subj_path)
if "FREESURFER_HOME" not in this_env:
raise RuntimeError(
"The FreeSurfer environment needs to be set up to use "
"make_scalp_surfaces to create the outer skin surface "
"lh.seghead"
)
run_subprocess(
[
"mkheadsurf",
"-subjid",
subject,
"-srcvol",
mri,
"-thresh1",
str(threshold),
"-thresh2",
str(threshold),
],
env=this_env,
)
surf = check_seghead()
if surf is None:
raise RuntimeError("mkheadsurf did not produce the standard output file.")
bem_dir = subjects_dir / subject / "bem"
if not bem_dir.is_dir():
os.mkdir(bem_dir)
fname_template = bem_dir / (f"{subject}-head-{{}}.fif")
dense_fname = str(fname_template).format("dense")
logger.info(f"2. Creating {dense_fname} ...")
_check_file(dense_fname, overwrite)
# Helpful message if we get a topology error
msg = (
"\n\nConsider using pymeshfix directly to fix the mesh, or --force "
"to ignore the problem."
)
surf = _surfaces_to_bem(
[surf], [FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], incomplete=incomplete, extra=msg
)[0]
write_bem_surfaces(dense_fname, surf, overwrite=overwrite)
if os.getenv("_MNE_TESTING_SCALP", "false") == "true":
tris = [len(surf["tris"])] # don't actually decimate
for ii, (level, n_tri) in enumerate(_tri_levels.items(), 3):
if no_decimate:
break
logger.info(f"{ii}. Creating {level} tessellation...")
logger.info(
f"{ii}.1 Decimating the dense tessellation "
f"({len(surf['tris'])} -> {n_tri} triangles)..."
)
points, tris = decimate_surface(
points=surf["rr"], triangles=surf["tris"], n_triangles=n_tri
)
dec_fname = str(fname_template).format(level)
logger.info(f"{ii}.2 Creating {dec_fname}")
_check_file(dec_fname, overwrite)
dec_surf = _surfaces_to_bem(
[dict(rr=points, tris=tris)],
[FIFF.FIFFV_BEM_SURF_ID_HEAD],
[1],
rescale=False,
incomplete=incomplete,
extra=msg,
)
write_bem_surfaces(dec_fname, dec_surf, overwrite=overwrite)
logger.info("[done]")
@verbose
def distance_to_bem(pos, bem, trans=None, verbose=None):
"""Calculate the distance of positions to inner skull surface.
Parameters
----------
pos : array, shape (..., 3)
Position(s) in m, in head coordinates.
bem : instance of ConductorModel
Conductor model.
%(trans)s If None (default), assumes bem is in head coordinates.
.. versionchanged:: 0.19
Support for 'fsaverage' argument.
%(verbose)s
Returns
-------
distances : float | array, shape (...)
The computed distance(s). A float is returned if pos is
an array of shape (3,) corresponding to a single position.
Notes
-----
.. versionadded:: 1.1
"""
ndim = pos.ndim
if ndim == 1:
pos = pos[np.newaxis, :]
n = pos.shape[0]
distance = np.zeros((n,))
logger.info(
"Computing distance to inner skull surface for " + f"{n} position{_pl(n)}..."
)
if bem["is_sphere"]:
center = bem["r0"]
if trans:
center = apply_trans(trans, center, move=True)
radius = bem["layers"][0]["rad"]
distance = np.abs(radius - np.linalg.norm(pos - center, axis=1))
else: # is BEM
surface_points = bem["surfs"][0]["rr"]
if trans:
surface_points = apply_trans(trans, surface_points, move=True)
_, distance = _compute_nearest(surface_points, pos, return_dists=True)
if ndim == 1:
distance = distance[0] # return just a float if one pos is passed
return distance