[074d3d]: / mne / _fiff / pick.py

Download this file

1414 lines (1273 with data), 43.0 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
from copy import deepcopy
import numpy as np
from ..utils import (
_check_option,
_ensure_int,
_validate_type,
fill_doc,
logger,
verbose,
)
from .constants import FIFF
def get_channel_type_constants(include_defaults=False):
"""Return all known channel types, and associated FIFF constants.
Parameters
----------
include_defaults : bool
Whether to include default values for "unit" and "coil_type" for all
entries (see Notes). Defaults are generally based on values normally
present for a VectorView MEG system. Defaults to ``False``.
Returns
-------
channel_types : dict
The keys are channel type strings, and the values are dictionaries of
FIFF constants for "kind", and possibly "unit" and "coil_type".
Notes
-----
Values which might vary within a channel type across real data
recordings are excluded unless ``include_defaults=True``. For example,
"ref_meg" channels may have coil type
``FIFFV_COIL_MAGNES_OFFDIAG_REF_GRAD``, ``FIFFV_COIL_VV_MAG_T3``, etc
(depending on the recording system), so no "coil_type" entry is given
for "ref_meg" unless ``include_defaults`` is requested.
"""
base = dict(
grad=dict(kind=FIFF.FIFFV_MEG_CH, unit=FIFF.FIFF_UNIT_T_M),
mag=dict(kind=FIFF.FIFFV_MEG_CH, unit=FIFF.FIFF_UNIT_T),
ref_meg=dict(kind=FIFF.FIFFV_REF_MEG_CH),
eeg=dict(
kind=FIFF.FIFFV_EEG_CH, unit=FIFF.FIFF_UNIT_V, coil_type=FIFF.FIFFV_COIL_EEG
),
seeg=dict(
kind=FIFF.FIFFV_SEEG_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_EEG,
),
dbs=dict(
kind=FIFF.FIFFV_DBS_CH, unit=FIFF.FIFF_UNIT_V, coil_type=FIFF.FIFFV_COIL_EEG
),
ecog=dict(
kind=FIFF.FIFFV_ECOG_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_EEG,
),
eog=dict(kind=FIFF.FIFFV_EOG_CH, unit=FIFF.FIFF_UNIT_V),
emg=dict(kind=FIFF.FIFFV_EMG_CH, unit=FIFF.FIFF_UNIT_V),
ecg=dict(kind=FIFF.FIFFV_ECG_CH, unit=FIFF.FIFF_UNIT_V),
resp=dict(kind=FIFF.FIFFV_RESP_CH, unit=FIFF.FIFF_UNIT_V),
bio=dict(kind=FIFF.FIFFV_BIO_CH, unit=FIFF.FIFF_UNIT_V),
misc=dict(kind=FIFF.FIFFV_MISC_CH, unit=FIFF.FIFF_UNIT_V),
stim=dict(kind=FIFF.FIFFV_STIM_CH),
exci=dict(kind=FIFF.FIFFV_EXCI_CH),
syst=dict(kind=FIFF.FIFFV_SYST_CH),
ias=dict(kind=FIFF.FIFFV_IAS_CH),
gof=dict(kind=FIFF.FIFFV_GOODNESS_FIT),
dipole=dict(kind=FIFF.FIFFV_DIPOLE_WAVE),
chpi=dict(
kind=[
FIFF.FIFFV_QUAT_0,
FIFF.FIFFV_QUAT_1,
FIFF.FIFFV_QUAT_2,
FIFF.FIFFV_QUAT_3,
FIFF.FIFFV_QUAT_4,
FIFF.FIFFV_QUAT_5,
FIFF.FIFFV_QUAT_6,
FIFF.FIFFV_HPI_G,
FIFF.FIFFV_HPI_ERR,
FIFF.FIFFV_HPI_MOV,
]
),
fnirs_cw_amplitude=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE,
),
fnirs_fd_ac_amplitude=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_V,
coil_type=FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE,
),
fnirs_fd_phase=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_RAD,
coil_type=FIFF.FIFFV_COIL_FNIRS_FD_PHASE,
),
fnirs_od=dict(kind=FIFF.FIFFV_FNIRS_CH, coil_type=FIFF.FIFFV_COIL_FNIRS_OD),
hbo=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_MOL,
coil_type=FIFF.FIFFV_COIL_FNIRS_HBO,
),
hbr=dict(
kind=FIFF.FIFFV_FNIRS_CH,
unit=FIFF.FIFF_UNIT_MOL,
coil_type=FIFF.FIFFV_COIL_FNIRS_HBR,
),
csd=dict(
kind=FIFF.FIFFV_EEG_CH,
unit=FIFF.FIFF_UNIT_V_M2,
coil_type=FIFF.FIFFV_COIL_EEG_CSD,
),
temperature=dict(kind=FIFF.FIFFV_TEMPERATURE_CH, unit=FIFF.FIFF_UNIT_CEL),
gsr=dict(kind=FIFF.FIFFV_GALVANIC_CH, unit=FIFF.FIFF_UNIT_S),
eyegaze=dict(
kind=FIFF.FIFFV_EYETRACK_CH, coil_type=FIFF.FIFFV_COIL_EYETRACK_POS
),
pupil=dict(
kind=FIFF.FIFFV_EYETRACK_CH, coil_type=FIFF.FIFFV_COIL_EYETRACK_PUPIL
),
)
if include_defaults:
coil_none = dict(coil_type=FIFF.FIFFV_COIL_NONE)
unit_none = dict(unit=FIFF.FIFF_UNIT_NONE)
defaults = dict(
grad=dict(coil_type=FIFF.FIFFV_COIL_VV_PLANAR_T1),
mag=dict(coil_type=FIFF.FIFFV_COIL_VV_MAG_T3),
ref_meg=dict(coil_type=FIFF.FIFFV_COIL_VV_MAG_T3, unit=FIFF.FIFF_UNIT_T),
misc=dict(**coil_none, **unit_none), # NB: overwrites UNIT_V
stim=dict(unit=FIFF.FIFF_UNIT_V, **coil_none),
eog=coil_none,
ecg=coil_none,
emg=coil_none,
bio=coil_none,
fnirs_od=unit_none,
pupil=unit_none,
eyegaze=dict(unit=FIFF.FIFF_UNIT_PX),
)
for key, value in defaults.items():
base[key].update(value)
return base
_first_rule = {
FIFF.FIFFV_MEG_CH: "meg",
FIFF.FIFFV_REF_MEG_CH: "ref_meg",
FIFF.FIFFV_EEG_CH: "eeg",
FIFF.FIFFV_STIM_CH: "stim",
FIFF.FIFFV_EOG_CH: "eog",
FIFF.FIFFV_EMG_CH: "emg",
FIFF.FIFFV_ECG_CH: "ecg",
FIFF.FIFFV_RESP_CH: "resp",
FIFF.FIFFV_MISC_CH: "misc",
FIFF.FIFFV_EXCI_CH: "exci",
FIFF.FIFFV_IAS_CH: "ias",
FIFF.FIFFV_SYST_CH: "syst",
FIFF.FIFFV_SEEG_CH: "seeg",
FIFF.FIFFV_DBS_CH: "dbs",
FIFF.FIFFV_BIO_CH: "bio",
FIFF.FIFFV_QUAT_0: "chpi",
FIFF.FIFFV_QUAT_1: "chpi",
FIFF.FIFFV_QUAT_2: "chpi",
FIFF.FIFFV_QUAT_3: "chpi",
FIFF.FIFFV_QUAT_4: "chpi",
FIFF.FIFFV_QUAT_5: "chpi",
FIFF.FIFFV_QUAT_6: "chpi",
FIFF.FIFFV_HPI_G: "chpi",
FIFF.FIFFV_HPI_ERR: "chpi",
FIFF.FIFFV_HPI_MOV: "chpi",
FIFF.FIFFV_DIPOLE_WAVE: "dipole",
FIFF.FIFFV_GOODNESS_FIT: "gof",
FIFF.FIFFV_ECOG_CH: "ecog",
FIFF.FIFFV_FNIRS_CH: "fnirs",
FIFF.FIFFV_TEMPERATURE_CH: "temperature",
FIFF.FIFFV_GALVANIC_CH: "gsr",
FIFF.FIFFV_EYETRACK_CH: "eyetrack",
}
# How to reduce our categories in channel_type (originally)
_second_rules = {
"meg": ("unit", {FIFF.FIFF_UNIT_T_M: "grad", FIFF.FIFF_UNIT_T: "mag"}),
"fnirs": (
"coil_type",
{
FIFF.FIFFV_COIL_FNIRS_HBO: "hbo",
FIFF.FIFFV_COIL_FNIRS_HBR: "hbr",
FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE: "fnirs_cw_amplitude",
FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE: "fnirs_fd_ac_amplitude",
FIFF.FIFFV_COIL_FNIRS_FD_PHASE: "fnirs_fd_phase",
FIFF.FIFFV_COIL_FNIRS_OD: "fnirs_od",
},
),
"eeg": (
"coil_type",
{
FIFF.FIFFV_COIL_EEG: "eeg",
FIFF.FIFFV_COIL_EEG_BIPOLAR: "eeg",
FIFF.FIFFV_COIL_NONE: "eeg", # MNE-C backward compat
FIFF.FIFFV_COIL_EEG_CSD: "csd",
},
),
"eyetrack": (
"coil_type",
{
FIFF.FIFFV_COIL_EYETRACK_POS: "eyegaze",
FIFF.FIFFV_COIL_EYETRACK_PUPIL: "pupil",
},
),
}
@fill_doc
def channel_type(info, idx):
"""Get channel type.
Parameters
----------
%(info_not_none)s
idx : int
Index of channel.
Returns
-------
type : str
Type of channel. Will be one of::
{'bio', 'chpi', 'dbs', 'dipole', 'ecg', 'ecog', 'eeg', 'emg',
'eog', 'exci', 'eyetrack', 'fnirs', 'gof', 'gsr', 'ias', 'misc',
'meg', 'ref_meg', 'resp', 'seeg', 'stim', 'syst', 'temperature'}
"""
# This is faster than the original _channel_type_old now in test_pick.py
# because it uses (at most!) two dict lookups plus one conditional
# to get the channel type string.
ch = info["chs"][idx]
try:
first_kind = _first_rule[ch["kind"]]
except KeyError:
raise ValueError(
f'Unknown channel type ({ch["kind"]}) for channel "{ch["ch_name"]}"'
)
if first_kind in _second_rules:
key, second_rule = _second_rules[first_kind]
first_kind = second_rule[ch[key]]
return first_kind
@verbose
def pick_channels(ch_names, include, exclude=(), ordered=True, *, verbose=None):
"""Pick channels by names.
Returns the indices of ``ch_names`` in ``include`` but not in ``exclude``.
Parameters
----------
ch_names : list of str
List of channels.
include : list of str
List of channels to include (if empty include all available).
.. note:: This is to be treated as a set. The order of this list
is not used or maintained in ``sel``.
exclude : list of str
List of channels to exclude (if empty do not exclude any channel).
Defaults to [].
%(ordered)s
%(verbose)s
Returns
-------
sel : array of int
Indices of good channels.
See Also
--------
pick_channels_regexp, pick_types
"""
if len(np.unique(ch_names)) != len(ch_names):
raise RuntimeError("ch_names is not a unique list, picking is unsafe")
_validate_type(ordered, bool, "ordered")
_check_excludes_includes(include)
_check_excludes_includes(exclude)
if not isinstance(include, list):
include = list(include)
if len(include) == 0:
include = list(ch_names)
if not isinstance(exclude, list):
exclude = list(exclude)
sel, missing = list(), list()
for name in include:
if name in ch_names:
if name not in exclude:
sel.append(ch_names.index(name))
else:
missing.append(name)
if len(missing) and ordered:
raise ValueError(
f"Missing channels from ch_names required by include:\n{missing}"
)
if not ordered:
sel = np.unique(sel)
return np.array(sel, int)
def pick_channels_regexp(ch_names, regexp):
"""Pick channels using regular expression.
Returns the indices of the good channels in ch_names.
Parameters
----------
ch_names : list of str
List of channels.
regexp : str
The regular expression. See python standard module for regular
expressions.
Returns
-------
sel : array of int
Indices of good channels.
See Also
--------
pick_channels
Examples
--------
>>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG ...1')
[0]
>>> pick_channels_regexp(['MEG 2331', 'MEG 2332', 'MEG 2333'], 'MEG *')
[0, 1, 2]
"""
r = re.compile(regexp)
return [k for k, name in enumerate(ch_names) if r.match(name)]
def _triage_meg_pick(ch, meg):
"""Triage an MEG pick type."""
if meg is True:
return True
elif ch["unit"] == FIFF.FIFF_UNIT_T_M:
if meg == "grad":
return True
elif meg == "planar1" and ch["ch_name"].endswith("2"):
return True
elif meg == "planar2" and ch["ch_name"].endswith("3"):
return True
elif meg == "mag" and ch["unit"] == FIFF.FIFF_UNIT_T:
return True
return False
def _triage_fnirs_pick(ch, fnirs, warned):
"""Triage an fNIRS pick type."""
if fnirs is True:
return True
elif ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_HBO and "hbo" in fnirs:
return True
elif ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_HBR and "hbr" in fnirs:
return True
elif (
ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE
and "fnirs_cw_amplitude" in fnirs
):
return True
elif (
ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE
and "fnirs_fd_ac_amplitude" in fnirs
):
return True
elif (
ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_FD_PHASE and "fnirs_fd_phase" in fnirs
):
return True
elif ch["coil_type"] == FIFF.FIFFV_COIL_FNIRS_OD and "fnirs_od" in fnirs:
return True
return False
def _triage_eyetrack_pick(ch, eyetrack):
"""Triage an eyetrack pick type."""
if eyetrack is False:
return False
elif eyetrack is True:
return True
elif ch["coil_type"] == FIFF.FIFFV_COIL_EYETRACK_PUPIL and "pupil" in eyetrack:
return True
elif ch["coil_type"] == FIFF.FIFFV_COIL_EYETRACK_POS and "eyegaze" in eyetrack:
return True
return False
def _check_meg_type(meg, allow_auto=False):
"""Ensure a valid meg type."""
if isinstance(meg, str):
allowed_types = ["grad", "mag", "planar1", "planar2"]
allowed_types += ["auto"] if allow_auto else []
if meg not in allowed_types:
raise ValueError(
f"meg value must be one of {allowed_types} or bool, not {meg}"
)
def _check_info_exclude(info, exclude):
_validate_type(info, "info")
info._check_consistency()
if exclude is None:
raise ValueError('exclude must be a list of strings or "bads"')
elif exclude == "bads":
exclude = info.get("bads", [])
elif not isinstance(exclude, list | tuple):
raise ValueError(
'exclude must either be "bads" or a list of strings.'
" If only one channel is to be excluded, use "
"[ch_name] instead of passing ch_name."
)
return exclude
@fill_doc
def pick_types(
info,
meg=False,
eeg=False,
stim=False,
eog=False,
ecg=False,
emg=False,
ref_meg="auto",
*,
misc=False,
resp=False,
chpi=False,
exci=False,
ias=False,
syst=False,
seeg=False,
dipole=False,
gof=False,
bio=False,
ecog=False,
fnirs=False,
csd=False,
dbs=False,
temperature=False,
gsr=False,
eyetrack=False,
include=(),
exclude="bads",
selection=None,
):
"""Pick channels by type and names.
Parameters
----------
%(info_not_none)s
%(pick_types_params)s
Returns
-------
sel : array of int
Indices of good channels.
"""
# NOTE: Changes to this function's signature should also be changed in
# PickChannelsMixin
_validate_type(meg, (bool, str), "meg")
exclude = _check_info_exclude(info, exclude)
nchan = info["nchan"]
pick = np.zeros(nchan, dtype=bool)
_check_meg_type(ref_meg, allow_auto=True)
_check_meg_type(meg)
if isinstance(ref_meg, str) and ref_meg == "auto":
ref_meg = (
"comps" in info
and info["comps"] is not None
and len(info["comps"]) > 0
and meg is not False
)
for param in (
eeg,
stim,
eog,
ecg,
emg,
misc,
resp,
chpi,
exci,
ias,
syst,
seeg,
dipole,
gof,
bio,
ecog,
csd,
dbs,
temperature,
gsr,
):
if not isinstance(param, bool):
w = (
"Parameters for all channel types (with the exception of "
'"meg", "ref_meg", "fnirs", and "eyetrack") must be of type '
"bool, not {}."
)
raise ValueError(w.format(type(param)))
param_dict = dict(
eeg=eeg,
stim=stim,
eog=eog,
ecg=ecg,
emg=emg,
misc=misc,
resp=resp,
chpi=chpi,
exci=exci,
ias=ias,
syst=syst,
seeg=seeg,
dbs=dbs,
dipole=dipole,
gof=gof,
bio=bio,
ecog=ecog,
csd=csd,
temperature=temperature,
gsr=gsr,
eyetrack=eyetrack,
)
# avoid triage if possible
if isinstance(meg, bool):
for key in ("grad", "mag"):
param_dict[key] = meg
if isinstance(fnirs, bool):
for key in _FNIRS_CH_TYPES_SPLIT:
param_dict[key] = fnirs
warned = [False]
for k in range(nchan):
ch_type = channel_type(info, k)
try:
pick[k] = param_dict[ch_type]
except KeyError: # not so simple
assert (
ch_type
in ("grad", "mag", "ref_meg")
+ _FNIRS_CH_TYPES_SPLIT
+ _EYETRACK_CH_TYPES_SPLIT
)
if ch_type in ("grad", "mag"):
pick[k] = _triage_meg_pick(info["chs"][k], meg)
elif ch_type == "ref_meg":
pick[k] = _triage_meg_pick(info["chs"][k], ref_meg)
elif ch_type in ("eyegaze", "pupil"):
pick[k] = _triage_eyetrack_pick(info["chs"][k], eyetrack)
else: # ch_type in ('hbo', 'hbr')
pick[k] = _triage_fnirs_pick(info["chs"][k], fnirs, warned)
# restrict channels to selection if provided
if selection is not None:
# the selection only restricts these types of channels
sel_kind = [FIFF.FIFFV_MEG_CH, FIFF.FIFFV_REF_MEG_CH, FIFF.FIFFV_EEG_CH]
for k in np.where(pick)[0]:
if (
info["chs"][k]["kind"] in sel_kind
and info["ch_names"][k] not in selection
):
pick[k] = False
myinclude = [info["ch_names"][k] for k in range(nchan) if pick[k]]
myinclude += include
if len(myinclude) == 0:
sel = np.array([], int)
else:
sel = pick_channels(info["ch_names"], myinclude, exclude, ordered=False)
return sel
@verbose
def pick_info(info, sel=(), copy=True, verbose=None):
"""Restrict an info structure to a selection of channels.
Parameters
----------
%(info_not_none)s
sel : list of int | None
Indices of channels to include. If None, all channels
are included.
copy : bool
If copy is False, info is modified inplace.
%(verbose)s
Returns
-------
res : dict
Info structure restricted to a selection of channels.
"""
# avoid circular imports
from .meas_info import _bad_chans_comp
info._check_consistency()
info = info.copy() if copy else info
if sel is None:
return info
elif len(sel) == 0:
raise ValueError("No channels match the selection.")
ch_set = set(info["ch_names"][k] for k in sel)
n_unique = len(ch_set)
if n_unique != len(sel):
raise ValueError(
f"Found {n_unique} / {len(sel)} unique names, sel is not unique"
)
# make sure required the compensation channels are present
if len(info.get("comps", [])) > 0:
ch_names = [info["ch_names"][idx] for idx in sel]
_, comps_missing = _bad_chans_comp(info, ch_names)
if len(comps_missing) > 0:
logger.info(
f"Removing {len(info['comps'])} compensators from info because "
"not all compensation channels were picked."
)
with info._unlock():
info["comps"] = []
with info._unlock():
info["chs"] = [info["chs"][k] for k in sel]
info._update_redundant()
info["bads"] = [ch for ch in info["bads"] if ch in info["ch_names"]]
if "comps" in info:
comps = deepcopy(info["comps"])
for c in comps:
row_idx = [
k for k, n in enumerate(c["data"]["row_names"]) if n in info["ch_names"]
]
row_names = [c["data"]["row_names"][i] for i in row_idx]
rowcals = c["rowcals"][row_idx]
c["rowcals"] = rowcals
c["data"]["nrow"] = len(row_names)
c["data"]["row_names"] = row_names
c["data"]["data"] = c["data"]["data"][row_idx]
with info._unlock():
info["comps"] = comps
if info.get("custom_ref_applied", False) and not _electrode_types(info):
with info._unlock():
info["custom_ref_applied"] = FIFF.FIFFV_MNE_CUSTOM_REF_OFF
# remove unused projectors
if info.get("projs", False):
projs = list()
for p in info["projs"]:
if any(ch_name in ch_set for ch_name in p["data"]["col_names"]):
projs.append(p)
if len(projs) != len(info["projs"]):
with info._unlock():
info["projs"] = projs
info._check_consistency()
return info
def _has_kit_refs(info, picks):
"""Determine if KIT ref channels are chosen.
This is currently only used by make_forward_solution, which cannot
run when KIT reference channels are included.
"""
for p in picks:
if info["chs"][p]["coil_type"] == FIFF.FIFFV_COIL_KIT_REF_MAG:
return True
return False
@verbose
def pick_channels_forward(
orig, include=(), exclude=(), ordered=True, copy=True, *, verbose=None
):
"""Pick channels from forward operator.
Parameters
----------
orig : dict
A forward solution.
include : list of str
List of channels to include (if empty, include all available).
Defaults to [].
exclude : list of str | 'bads'
Channels to exclude (if empty, do not exclude any). Defaults to [].
If 'bads', then exclude bad channels in orig.
%(ordered)s
copy : bool
If True (default), make a copy.
.. versionadded:: 0.19
%(verbose)s
Returns
-------
res : dict
Forward solution restricted to selected channels. If include and
exclude are empty it returns orig without copy.
"""
orig["info"]._check_consistency()
if len(include) == 0 and len(exclude) == 0:
return orig.copy() if copy else orig
exclude = _check_excludes_includes(exclude, info=orig["info"], allow_bads=True)
# Allow for possibility of channel ordering in forward solution being
# different from that of the M/EEG file it is based on.
sel_sol = pick_channels(
orig["sol"]["row_names"], include=include, exclude=exclude, ordered=ordered
)
sel_info = pick_channels(
orig["info"]["ch_names"], include=include, exclude=exclude, ordered=ordered
)
fwd = deepcopy(orig) if copy else orig
# Check that forward solution and original data file agree on #channels
if len(sel_sol) != len(sel_info):
raise ValueError(
"Forward solution and functional data appear to "
"have different channel names, please check."
)
# Do we have something?
nuse = len(sel_sol)
if nuse == 0:
raise ValueError("Nothing remains after picking")
logger.info(f" {nuse:d} out of {fwd['nchan']} channels remain after picking")
# Pick the correct rows of the forward operator using sel_sol
fwd["sol"]["data"] = fwd["sol"]["data"][sel_sol, :]
fwd["_orig_sol"] = fwd["_orig_sol"][sel_sol, :]
fwd["sol"]["nrow"] = nuse
ch_names = [fwd["sol"]["row_names"][k] for k in sel_sol]
fwd["nchan"] = nuse
fwd["sol"]["row_names"] = ch_names
# Pick the appropriate channel names from the info-dict using sel_info
with fwd["info"]._unlock():
fwd["info"]["chs"] = [fwd["info"]["chs"][k] for k in sel_info]
fwd["info"]._update_redundant()
fwd["info"]["bads"] = [b for b in fwd["info"]["bads"] if b in ch_names]
if fwd["sol_grad"] is not None:
fwd["sol_grad"]["data"] = fwd["sol_grad"]["data"][sel_sol, :]
fwd["_orig_sol_grad"] = fwd["_orig_sol_grad"][sel_sol, :]
fwd["sol_grad"]["nrow"] = nuse
fwd["sol_grad"]["row_names"] = [
fwd["sol_grad"]["row_names"][k] for k in sel_sol
]
return fwd
def pick_types_forward(
orig,
meg=False,
eeg=False,
ref_meg=True,
seeg=False,
ecog=False,
dbs=False,
include=(),
exclude=(),
):
"""Pick by channel type and names from a forward operator.
Parameters
----------
orig : dict
A forward solution.
meg : bool | str
If True include MEG channels. If string it can be 'mag', 'grad',
'planar1' or 'planar2' to select only magnetometers, all gradiometers,
or a specific type of gradiometer.
eeg : bool
If True include EEG channels.
ref_meg : bool
If True include CTF / 4D reference channels.
seeg : bool
If True include stereotactic EEG channels.
ecog : bool
If True include electrocorticography channels.
dbs : bool
If True include deep brain stimulation channels.
include : list of str
List of additional channels to include. If empty do not include any.
exclude : list of str | str
List of channels to exclude. If empty do not exclude any (default).
If 'bads', exclude channels in orig['info']['bads'].
Returns
-------
res : dict
Forward solution restricted to selected channel types.
"""
info = orig["info"]
sel = pick_types(
info,
meg,
eeg,
ref_meg=ref_meg,
seeg=seeg,
ecog=ecog,
dbs=dbs,
include=include,
exclude=exclude,
)
if len(sel) == 0:
raise ValueError("No valid channels found")
include_ch_names = [info["ch_names"][k] for k in sel]
return pick_channels_forward(orig, include_ch_names)
@fill_doc
def channel_indices_by_type(info, picks=None):
"""Get indices of channels by type.
Parameters
----------
%(info_not_none)s
%(picks_all)s
Returns
-------
idx_by_type : dict
A dictionary that maps each channel type to a (possibly empty) list of
channel indices.
"""
idx_by_type = {
key: list()
for key in _PICK_TYPES_KEYS
if key not in ("meg", "fnirs", "eyetrack")
}
idx_by_type.update(
mag=list(),
grad=list(),
hbo=list(),
hbr=list(),
fnirs_cw_amplitude=list(),
fnirs_fd_ac_amplitude=list(),
fnirs_fd_phase=list(),
fnirs_od=list(),
eyegaze=list(),
pupil=list(),
)
picks = _picks_to_idx(info, picks, none="all", exclude=(), allow_empty=True)
for k in picks:
ch_type = channel_type(info, k)
for key in idx_by_type.keys():
if ch_type == key:
idx_by_type[key].append(k)
return idx_by_type
@verbose
def pick_channels_cov(
orig, include=(), exclude="bads", ordered=True, copy=True, *, verbose=None
):
"""Pick channels from covariance matrix.
Parameters
----------
orig : Covariance
A covariance.
include : list of str, (optional)
List of channels to include (if empty, include all available).
exclude : list of str, (optional) | 'bads'
Channels to exclude (if empty, do not exclude any). Defaults to 'bads'.
%(ordered)s
copy : bool
If True (the default), return a copy of the covariance matrix with the
modified channels. If False, channels are modified in-place.
.. versionadded:: 0.20.0
%(verbose)s
Returns
-------
res : dict
Covariance solution restricted to selected channels.
"""
if copy:
orig = orig.copy()
# A little peculiarity of the cov objects is that these two fields
# should not be copied over when None.
if "method" in orig and orig["method"] is None:
del orig["method"]
if "loglik" in orig and orig["loglik"] is None:
del orig["loglik"]
exclude = orig["bads"] if exclude == "bads" else exclude
sel = pick_channels(
orig["names"], include=include, exclude=exclude, ordered=ordered
)
data = orig["data"][sel][:, sel] if not orig["diag"] else orig["data"][sel]
names = [orig["names"][k] for k in sel]
bads = [name for name in orig["bads"] if name in orig["names"]]
orig["data"] = data
orig["names"] = names
orig["bads"] = bads
orig["dim"] = len(data)
return orig
def _mag_grad_dependent(info):
"""Determine of mag and grad should be dealt with jointly."""
# right now just uses SSS, could be computed / checked from cov
# but probably overkill
return any(
ph.get("max_info", {}).get("sss_info", {}).get("in_order", 0)
for ph in info.get("proc_history", [])
)
@fill_doc
def _contains_ch_type(info, ch_type):
"""Check whether a certain channel type is in an info object.
Parameters
----------
%(info_not_none)s
ch_type : str
the channel type to be checked for
Returns
-------
has_ch_type : bool
Whether the channel type is present or not.
"""
_validate_type(ch_type, "str", "ch_type")
meg_extras = list(_MEG_CH_TYPES_SPLIT)
fnirs_extras = list(_FNIRS_CH_TYPES_SPLIT)
et_extras = list(_EYETRACK_CH_TYPES_SPLIT)
valid_channel_types = sorted(
[key for key in _PICK_TYPES_KEYS if key != "meg"]
+ meg_extras
+ fnirs_extras
+ et_extras
)
_check_option("ch_type", ch_type, valid_channel_types)
if info is None:
raise ValueError(
f'Cannot check for channels of type "{ch_type}" because info is None'
)
return any(ch_type == channel_type(info, ii) for ii in range(info["nchan"]))
@fill_doc
def _picks_by_type(info, meg_combined=False, ref_meg=False, exclude="bads"):
"""Get data channel indices as separate list of tuples.
Parameters
----------
%(info_not_none)s
meg_combined : bool | 'auto'
Whether to return combined picks for grad and mag.
Can be 'auto' to choose based on Maxwell filtering status.
ref_meg : bool
If True include CTF / 4D reference channels
exclude : list of str | str
List of channels to exclude. If 'bads' (default), exclude channels
in info['bads'].
Returns
-------
picks_list : list of tuples
The list of tuples of picks and the type string.
"""
_validate_type(ref_meg, bool, "ref_meg")
exclude = _check_info_exclude(info, exclude)
if meg_combined == "auto":
meg_combined = _mag_grad_dependent(info)
picks_list = {ch_type: list() for ch_type in _DATA_CH_TYPES_SPLIT}
for k in range(info["nchan"]):
if info["chs"][k]["ch_name"] not in exclude:
this_type = channel_type(info, k)
try:
picks_list[this_type].append(k)
except KeyError:
# This annoyance is due to differences in pick_types
# and channel_type behavior
if this_type == "ref_meg":
ch = info["chs"][k]
if _triage_meg_pick(ch, ref_meg):
if ch["unit"] == FIFF.FIFF_UNIT_T:
picks_list["mag"].append(k)
elif ch["unit"] == FIFF.FIFF_UNIT_T_M:
picks_list["grad"].append(k)
else:
pass # not a data channel type
picks_list = [
(ch_type, np.array(picks_list[ch_type], int))
for ch_type in _DATA_CH_TYPES_SPLIT
]
assert _DATA_CH_TYPES_SPLIT[:2] == ("mag", "grad")
if meg_combined and len(picks_list[0][1]) and len(picks_list[1][1]):
picks_list.insert(
0,
(
"meg",
np.unique(np.concatenate([picks_list.pop(0)[1], picks_list.pop(0)[1]])),
),
)
picks_list = [p for p in picks_list if len(p[1])]
return picks_list
def _check_excludes_includes(chs, info=None, allow_bads=False):
"""Ensure that inputs to exclude/include are list-like or "bads".
Parameters
----------
chs : any input, should be list, tuple, set, str
The channels passed to include or exclude.
allow_bads : bool
Allow the user to supply "bads" as a string for auto exclusion.
Returns
-------
chs : list
Channels to be excluded/excluded. If allow_bads, and chs=="bads",
this will be the bad channels found in 'info'.
"""
from .meas_info import Info
if not isinstance(chs, list | tuple | set | np.ndarray):
if allow_bads is True:
if not isinstance(info, Info):
raise ValueError("Supply an info object if allow_bads is true")
elif chs != "bads":
raise ValueError('If chs is a string, it must be "bads"')
else:
chs = info["bads"]
else:
raise ValueError(
'include/exclude must be list, tuple, ndarray, or "bads". You provided '
f"type {type(chs)}."
)
return chs
_PICK_TYPES_DATA_DICT = dict(
meg=True,
eeg=True,
csd=True,
stim=False,
eog=False,
ecg=False,
emg=False,
misc=False,
resp=False,
chpi=False,
exci=False,
ias=False,
syst=False,
seeg=True,
dipole=False,
gof=False,
bio=False,
ecog=True,
fnirs=True,
dbs=True,
temperature=False,
gsr=False,
eyetrack=True,
)
_PICK_TYPES_KEYS = tuple(list(_PICK_TYPES_DATA_DICT) + ["ref_meg"])
_MEG_CH_TYPES_SPLIT = ("mag", "grad", "planar1", "planar2")
_FNIRS_CH_TYPES_SPLIT = (
"hbo",
"hbr",
"fnirs_cw_amplitude",
"fnirs_fd_ac_amplitude",
"fnirs_fd_phase",
"fnirs_od",
)
_EYETRACK_CH_TYPES_SPLIT = ("eyegaze", "pupil")
_DATA_CH_TYPES_ORDER_DEFAULT = (
(
"mag",
"grad",
"eeg",
"csd",
"eog",
"ecg",
"resp",
"emg",
"ref_meg",
"misc",
"stim",
"chpi",
"exci",
"ias",
"syst",
"seeg",
"bio",
"ecog",
"dbs",
"temperature",
"gsr",
"gof",
"dipole",
)
+ _FNIRS_CH_TYPES_SPLIT
+ _EYETRACK_CH_TYPES_SPLIT
+ ("whitened",)
)
# Valid data types, ordered for consistency, used in viz/evoked.
_VALID_CHANNEL_TYPES = (
(
"eeg",
"grad",
"mag",
"seeg",
"eog",
"ecg",
"resp",
"emg",
"dipole",
"gof",
"bio",
"ecog",
"dbs",
)
+ _FNIRS_CH_TYPES_SPLIT
+ _EYETRACK_CH_TYPES_SPLIT
+ ("misc", "csd")
)
_DATA_CH_TYPES_SPLIT = (
"mag",
"grad",
"eeg",
"csd",
"seeg",
"ecog",
"dbs",
) + _FNIRS_CH_TYPES_SPLIT
# Electrode types (e.g., can be average-referenced together or separately)
_ELECTRODE_CH_TYPES = ("eeg", "ecog", "seeg", "dbs")
def _electrode_types(info, *, exclude="bads"):
return [
ch_type
for ch_type in _ELECTRODE_CH_TYPES
if len(pick_types(info, exclude=exclude, **{ch_type: True}))
]
def _pick_data_channels(info, exclude="bads", with_ref_meg=True, with_aux=False):
"""Pick only data channels."""
kwargs = _PICK_TYPES_DATA_DICT
if with_aux:
kwargs = kwargs.copy()
kwargs.update(eog=True, ecg=True, emg=True, bio=True)
return pick_types(info, ref_meg=with_ref_meg, exclude=exclude, **kwargs)
def _pick_data_or_ica(info, exclude=()):
"""Pick only data or ICA channels."""
if any(ch_name.startswith("ICA") for ch_name in info["ch_names"]):
picks = pick_types(info, exclude=exclude, misc=True)
else:
picks = _pick_data_channels(info, exclude=exclude, with_ref_meg=True)
return picks
def _picks_to_idx(
info,
picks,
none="data",
exclude="bads",
allow_empty=False,
with_ref_meg=True,
return_kind=False,
picks_on="channels",
):
"""Convert and check pick validity.
Parameters
----------
picks_on : str
'channels' (default) for error messages about selection of channels.
'components' for error messages about selection of components.
"""
from .meas_info import Info
picked_ch_type_or_generic = False
#
# None -> all, data, or data_or_ica (ndarray of int)
#
if isinstance(info, Info):
n_chan = info["nchan"]
else:
info = _ensure_int(info, "info", "an int or Info")
n_chan = info
assert n_chan >= 0
orig_picks = picks
# We do some extra_repr gymnastics to avoid calling repr(orig_picks) too
# soon as it can be a performance bottleneck (repr on ndarray is slow)
extra_repr = ""
if picks is None:
if isinstance(info, int): # special wrapper for no real info
picks = np.arange(n_chan)
extra_repr = ", treated as range({n_chan})"
else:
picks = none # let _picks_str_to_idx handle it
extra_repr = f'None, treated as "{none}"'
#
# slice
#
if isinstance(picks, slice):
picks = np.arange(n_chan)[picks]
#
# -> ndarray of int (and make a copy)
#
picks = np.atleast_1d(picks) # this works even for picks == 'something'
picks = np.array([], dtype=int) if len(picks) == 0 else picks
if picks.ndim != 1:
raise ValueError(f"picks must be 1D, got {picks.ndim}D")
if picks.dtype.char in ("S", "U"):
picks = _picks_str_to_idx(
info,
picks,
exclude,
with_ref_meg,
return_kind,
extra_repr,
allow_empty,
orig_picks,
)
if return_kind:
picked_ch_type_or_generic = picks[1]
picks = picks[0]
if picks.dtype.kind not in ["i", "u"]:
extra_ch = " or list of str (names)" if picks_on == "channels" else ""
msg = (
f"picks must be a list of int (indices){extra_ch}. "
f"The provided data type {picks.dtype} is invalid."
)
raise TypeError(msg)
del extra_repr
picks = picks.astype(int)
#
# ensure we have (optionally non-empty) ndarray of valid int
#
if len(picks) == 0 and not allow_empty:
raise ValueError(
f"No appropriate {picks_on} found for the given picks ({orig_picks!r})"
)
if (picks < -n_chan).any():
raise IndexError(f"All picks must be >= {-n_chan}, got {repr(orig_picks)}")
if (picks >= n_chan).any():
raise IndexError(
f"All picks must be < n_{picks_on} ({n_chan}), got {repr(orig_picks)}"
)
picks %= n_chan # ensure positive
if return_kind:
return picks, picked_ch_type_or_generic
return picks
def _picks_str_to_idx(
info, picks, exclude, with_ref_meg, return_kind, extra_repr, allow_empty, orig_picks
):
"""Turn a list of str into ndarray of int."""
# special case for _picks_to_idx w/no info: shouldn't really happen
if isinstance(info, int):
raise ValueError(
"picks as str can only be used when measurement info is available"
)
#
# first: check our special cases
#
picks_generic = list()
if len(picks) == 1:
if picks[0] in ("all", "data", "data_or_ica"):
if picks[0] == "all":
use_exclude = info["bads"] if exclude == "bads" else exclude
picks_generic = pick_channels(
info["ch_names"], info["ch_names"], exclude=use_exclude
)
elif picks[0] == "data":
picks_generic = _pick_data_channels(
info, exclude=exclude, with_ref_meg=with_ref_meg
)
elif picks[0] == "data_or_ica":
picks_generic = _pick_data_or_ica(info, exclude=exclude)
if len(picks_generic) == 0 and orig_picks is None and not allow_empty:
raise ValueError(
f"picks ({repr(orig_picks) + extra_repr}) yielded no channels, "
"consider passing picks explicitly"
)
#
# second: match all to channel names
#
bad_names = []
picks_name = list()
for pick in picks:
try:
picks_name.append(info["ch_names"].index(pick))
except ValueError:
bad_names.append(pick)
#
# third: match all to types
#
bad_type = None
picks_type = list()
kwargs = dict(meg=False)
meg, fnirs, eyetrack = set(), set(), set()
for pick in picks:
if pick in _PICK_TYPES_KEYS:
kwargs[pick] = True
elif pick in _MEG_CH_TYPES_SPLIT:
meg |= {pick}
elif pick in _FNIRS_CH_TYPES_SPLIT:
fnirs |= {pick}
elif pick in _EYETRACK_CH_TYPES_SPLIT:
eyetrack |= {pick}
else:
bad_type = pick
break
else:
# bad_type is None but this could still be empty
bad_type = list(picks)
# triage MEG, FNIRS, and eyetrack, which are complicated due to non-bool entries
extra_picks = set()
if "ref_meg" not in picks and not with_ref_meg:
kwargs["ref_meg"] = False
if len(meg) > 0 and not kwargs.get("meg", False):
# easiest just to iterate
for use_meg in meg:
extra_picks |= set(
pick_types(info, meg=use_meg, ref_meg=False, exclude=exclude)
)
if len(fnirs) and not kwargs.get("fnirs", False):
idx = 0 if len(fnirs) == 1 else slice(None)
kwargs["fnirs"] = list(fnirs)[idx]
if len(eyetrack) and not kwargs.get("eyetrack", False):
idx = 0 if len(eyetrack) == 1 else slice(None)
kwargs["eyetrack"] = list(eyetrack)[idx] # slice(None) is equivalent to all
picks_type = pick_types(info, exclude=exclude, **kwargs)
if len(extra_picks) > 0:
picks_type = sorted(set(picks_type) | set(extra_picks))
#
# finally: ensure we have exactly one usable list
#
all_picks = (picks_generic, picks_name, picks_type)
any_found = [len(p) > 0 for p in all_picks]
if sum(any_found) == 0:
if not allow_empty:
raise ValueError(
f"picks ({repr(orig_picks) + extra_repr}) could not be interpreted as "
f'channel names (no channel "{bad_names}"), channel types (no type'
f' "{bad_type}" present), or a generic type (just "all" or "data")'
)
picks = np.array([], int)
elif sum(any_found) > 1:
raise RuntimeError(
"Some channel names are ambiguously equivalent to "
"channel types, cannot use string-based "
"picks for these"
)
else:
picks = np.array(all_picks[np.where(any_found)[0][0]])
picked_ch_type_or_generic = not len(picks_name)
if len(bad_names) > 0 and not picked_ch_type_or_generic:
raise ValueError(
f"Channel(s) {bad_names} could not be picked, because "
"they are not present in the info instance."
)
if return_kind:
return picks, picked_ch_type_or_generic
return picks