# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import contextlib
import datetime
import operator
import re
import string
from collections import Counter, OrderedDict
from collections.abc import Mapping
from copy import deepcopy
from functools import partial
from io import BytesIO
from textwrap import shorten
import numpy as np
from ..defaults import _handle_default
from ..html_templates import _get_html_template
from ..utils import (
_check_fname,
_check_on_missing,
_check_option,
_dt_to_stamp,
_on_missing,
_pl,
_stamp_to_dt,
_validate_type,
check_fname,
fill_doc,
logger,
object_diff,
repr_html,
verbose,
warn,
)
from ._digitization import (
DigPoint,
_dig_kind_ints,
_dig_kind_proper,
_dig_kind_rev,
_format_dig_points,
_get_data_as_dict_from_dig,
_read_dig_fif,
write_dig,
)
from .compensator import get_current_comp
from .constants import FIFF, _ch_unit_mul_named
from .ctf_comp import _read_ctf_comp, write_ctf_comp
from .open import fiff_open
from .pick import (
_DATA_CH_TYPES_SPLIT,
_contains_ch_type,
_picks_to_idx,
channel_type,
get_channel_type_constants,
pick_types,
)
from .proc_history import _read_proc_history, _write_proc_history
from .proj import (
Projection,
_normalize_proj,
_proj_equal,
_read_proj,
_uniquify_projs,
_write_proj,
)
from .tag import (
_ch_coord_dict,
_float_item,
_int_item,
_rename_list,
_update_ch_info_named,
find_tag,
read_tag,
)
from .tree import dir_tree_find
from .write import (
DATE_NONE,
_safe_name_list,
end_block,
start_and_end_file,
start_block,
write_ch_info,
write_coord_trans,
write_dig_points,
write_float,
write_float_matrix,
write_id,
write_int,
write_julian,
write_name_list_sanitized,
write_string,
)
b = bytes # alias
_SCALAR_CH_KEYS = (
"scanno",
"logno",
"kind",
"range",
"cal",
"coil_type",
"unit",
"unit_mul",
"coord_frame",
)
_ALL_CH_KEYS_SET = set(_SCALAR_CH_KEYS + ("loc", "ch_name"))
# XXX we need to require these except when doing simplify_info
_MIN_CH_KEYS_SET = set(("kind", "cal", "unit", "loc", "ch_name"))
def _get_valid_units():
"""Get valid units according to the International System of Units (SI).
The International System of Units (SI, :footcite:`WikipediaSI`) is the
default system for describing units in the Brain Imaging Data Structure
(BIDS). For more information, see the BIDS specification
:footcite:`BIDSdocs` and the appendix "Units" therein.
References
----------
.. footbibliography::
"""
valid_prefix_names = [
"yocto",
"zepto",
"atto",
"femto",
"pico",
"nano",
"micro",
"milli",
"centi",
"deci",
"deca",
"hecto",
"kilo",
"mega",
"giga",
"tera",
"peta",
"exa",
"zetta",
"yotta",
]
valid_prefix_symbols = [
"y",
"z",
"a",
"f",
"p",
"n",
"µ",
"m",
"c",
"d",
"da",
"h",
"k",
"M",
"G",
"T",
"P",
"E",
"Z",
"Y",
]
valid_unit_names = [
"metre",
"kilogram",
"second",
"ampere",
"kelvin",
"mole",
"candela",
"radian",
"steradian",
"hertz",
"newton",
"pascal",
"joule",
"watt",
"coulomb",
"volt",
"farad",
"ohm",
"siemens",
"weber",
"tesla",
"henry",
"degree Celsius",
"lumen",
"lux",
"becquerel",
"gray",
"sievert",
"katal",
]
valid_unit_symbols = [
"m",
"kg",
"s",
"A",
"K",
"mol",
"cd",
"rad",
"sr",
"Hz",
"N",
"Pa",
"J",
"W",
"C",
"V",
"F",
"Ω",
"S",
"Wb",
"T",
"H",
"°C",
"lm",
"lx",
"Bq",
"Gy",
"Sv",
"kat",
]
# Valid units are all possible combinations of either prefix name or prefix
# symbol together with either unit name or unit symbol. E.g., nV for
# nanovolt
valid_units = []
valid_units += [
"".join([prefix, unit])
for prefix in valid_prefix_names
for unit in valid_unit_names
]
valid_units += [
"".join([prefix, unit])
for prefix in valid_prefix_names
for unit in valid_unit_symbols
]
valid_units += [
"".join([prefix, unit])
for prefix in valid_prefix_symbols
for unit in valid_unit_names
]
valid_units += [
"".join([prefix, unit])
for prefix in valid_prefix_symbols
for unit in valid_unit_symbols
]
# units are also valid without a prefix
valid_units += valid_unit_names
valid_units += valid_unit_symbols
# we also accept "n/a" as a unit, which is the default missing value in
# BIDS
valid_units += ["n/a"]
return tuple(valid_units)
@verbose
def _unique_channel_names(ch_names, max_length=None, verbose=None):
"""Ensure unique channel names."""
suffixes = tuple(string.ascii_lowercase)
if max_length is not None:
ch_names[:] = [name[:max_length] for name in ch_names]
unique_ids = np.unique(ch_names, return_index=True)[1]
if len(unique_ids) != len(ch_names):
dups = {ch_names[x] for x in np.setdiff1d(range(len(ch_names)), unique_ids)}
warn(
"Channel names are not unique, found duplicates for: "
f"{dups}. Applying running numbers for duplicates."
)
for ch_stem in dups:
overlaps = np.where(np.array(ch_names) == ch_stem)[0]
# We need an extra character since we append '-'.
# np.ceil(...) is the maximum number of appended digits.
if max_length is not None:
n_keep = max_length - 1 - int(np.ceil(np.log10(len(overlaps))))
else:
n_keep = np.inf
n_keep = min(len(ch_stem), n_keep)
ch_stem = ch_stem[:n_keep]
for idx, ch_idx in enumerate(overlaps):
# try idx first, then loop through lower case chars
for suffix in (idx,) + suffixes:
ch_name = ch_stem + f"-{suffix}"
if ch_name not in ch_names:
break
if ch_name not in ch_names:
ch_names[ch_idx] = ch_name
else:
raise ValueError(
"Adding a single alphanumeric for a "
"duplicate resulted in another "
f"duplicate name {ch_name}"
)
return ch_names
# %% Mixin classes
class MontageMixin:
"""Mixin for Montage getting and setting."""
@fill_doc
def get_montage(self):
"""Get a DigMontage from instance.
Returns
-------
montage : None | DigMontage
A copy of the channel positions, if available, otherwise ``None``.
"""
from ..channels.montage import make_dig_montage
from ..transforms import _frame_to_str
info = self if isinstance(self, Info) else self.info
if info["dig"] is None:
return None
# obtain coord_frame, and landmark coords
# (nasion, lpa, rpa, hsp, hpi) from DigPoints
montage_bunch = _get_data_as_dict_from_dig(info["dig"])
coord_frame = _frame_to_str.get(montage_bunch.coord_frame)
# get the channel names and chs data structure
ch_names, chs = info["ch_names"], info["chs"]
picks = pick_types(
info,
meg=False,
eeg=True,
seeg=True,
ecog=True,
dbs=True,
fnirs=True,
exclude=[],
)
# channel positions from dig do not match ch_names one to one,
# so use loc[:3] instead
ch_pos = {ch_names[ii]: chs[ii]["loc"][:3] for ii in picks}
# fNIRS uses multiple channels for the same sensors, we use
# a private function to format these for dig montage.
fnirs_picks = pick_types(info, fnirs=True, exclude=[])
if len(ch_pos) == len(fnirs_picks):
ch_pos = _get_fnirs_ch_pos(info)
elif len(fnirs_picks) > 0:
raise ValueError(
"MNE does not support getting the montage "
"for a mix of fNIRS and other data types. "
"Please raise a GitHub issue if you "
"require this feature."
)
# create montage
montage = make_dig_montage(
ch_pos=ch_pos,
coord_frame=coord_frame,
nasion=montage_bunch.nasion,
lpa=montage_bunch.lpa,
rpa=montage_bunch.rpa,
hsp=montage_bunch.hsp,
hpi=montage_bunch.hpi,
)
return montage
@verbose
def set_montage(
self,
montage,
match_case=True,
match_alias=False,
on_missing="raise",
verbose=None,
):
"""Set %(montage_types)s channel positions and digitization points.
Parameters
----------
%(montage)s
%(match_case)s
%(match_alias)s
%(on_missing_montage)s
%(verbose)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
The instance, modified in-place.
See Also
--------
mne.channels.make_standard_montage
mne.channels.make_dig_montage
mne.channels.read_custom_montage
Notes
-----
.. warning::
Only %(montage_types)s channels can have their positions set using
a montage. Other channel types (e.g., MEG channels) should have
their positions defined properly using their data reading
functions.
.. warning::
Applying a montage will only set locations of channels that exist
at the time it is applied. This means when
:ref:`re-referencing <tut-set-eeg-ref>`
make sure to apply the montage only after calling
:func:`mne.add_reference_channels`
"""
# How to set up a montage to old named fif file (walk through example)
# https://gist.github.com/massich/f6a9f4799f1fbeb8f5e8f8bc7b07d3df
from ..channels.montage import _set_montage
info = self if isinstance(self, Info) else self.info
_set_montage(info, montage, match_case, match_alias, on_missing)
return self
channel_type_constants = get_channel_type_constants(include_defaults=True)
_human2fiff = {
k: v.get("kind", FIFF.FIFFV_COIL_NONE) for k, v in channel_type_constants.items()
}
_human2unit = {
k: v.get("unit", FIFF.FIFF_UNIT_NONE) for k, v in channel_type_constants.items()
}
_unit2human = {
FIFF.FIFF_UNIT_V: "V",
FIFF.FIFF_UNIT_T: "T",
FIFF.FIFF_UNIT_T_M: "T/m",
FIFF.FIFF_UNIT_MOL: "M",
FIFF.FIFF_UNIT_NONE: "NA",
FIFF.FIFF_UNIT_CEL: "C",
FIFF.FIFF_UNIT_S: "S",
FIFF.FIFF_UNIT_PX: "px",
}
def _check_set(ch, projs, ch_type):
"""Ensure type change is compatible with projectors."""
new_kind = _human2fiff[ch_type]
if ch["kind"] != new_kind:
for proj in projs:
if ch["ch_name"] in proj["data"]["col_names"]:
raise RuntimeError(
f"Cannot change channel type for channel {ch['ch_name']} in "
f'projector "{proj["desc"]}"'
)
ch["kind"] = new_kind
class SetChannelsMixin(MontageMixin):
"""Mixin class for Raw, Evoked, Epochs."""
def _get_channel_positions(self, picks=None):
"""Get channel locations from info.
Parameters
----------
picks : str | list | slice | None
None gets good data indices.
Notes
-----
.. versionadded:: 0.9.0
"""
info = self if isinstance(self, Info) else self.info
picks = _picks_to_idx(info, picks)
chs = info["chs"]
pos = np.array([chs[k]["loc"][:3] for k in picks])
n_zero = np.sum(np.sum(np.abs(pos), axis=1) == 0)
if n_zero > 1: # XXX some systems have origin (0, 0, 0)
raise ValueError(
f"Could not extract channel positions for {n_zero} channels"
)
return pos
def _set_channel_positions(self, pos, names):
"""Update channel locations in info.
Parameters
----------
pos : array-like | np.ndarray, shape (n_points, 3)
The channel positions to be set.
names : list of str
The names of the channels to be set.
Notes
-----
.. versionadded:: 0.9.0
"""
info = self if isinstance(self, Info) else self.info
if len(pos) != len(names):
raise ValueError(
"Number of channel positions not equal to the number of names given."
)
pos = np.asarray(pos, dtype=np.float64)
if pos.shape[-1] != 3 or pos.ndim != 2:
msg = (
f"Channel positions must have the shape (n_points, 3) not {pos.shape}."
)
raise ValueError(msg)
for name, p in zip(names, pos):
if name in self.ch_names:
idx = self.ch_names.index(name)
info["chs"][idx]["loc"][:3] = p
else:
msg = f"{name} was not found in the info. Cannot be updated."
raise ValueError(msg)
@verbose
def set_channel_types(self, mapping, *, on_unit_change="warn", verbose=None):
"""Specify the sensor types of channels.
Parameters
----------
mapping : dict
A dictionary mapping channel names to sensor types, e.g.,
``{'EEG061': 'eog'}``.
on_unit_change : ``'raise'`` | ``'warn'`` | ``'ignore'``
What to do if the measurement unit of a channel is changed
automatically to match the new sensor type.
.. versionadded:: 1.4
%(verbose)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
The instance (modified in place).
.. versionchanged:: 0.20
Return the instance.
Notes
-----
The following :term:`sensor types` are accepted:
bio, chpi, csd, dbs, dipole, ecg, ecog, eeg, emg, eog, exci,
eyegaze, fnirs_cw_amplitude, fnirs_fd_ac_amplitude, fnirs_fd_phase,
fnirs_od, gof, gsr, hbo, hbr, ias, misc, pupil, ref_meg, resp,
seeg, stim, syst, temperature.
When working with eye-tracking data, see
:func:`mne.preprocessing.eyetracking.set_channel_types_eyetrack`.
.. versionadded:: 0.9.0
"""
info = self if isinstance(self, Info) else self.info
ch_names = info["ch_names"]
# first check and assemble clean mappings of index and name
unit_changes = dict()
for ch_name, ch_type in mapping.items():
if ch_name not in ch_names:
raise ValueError(
f"This channel name ({ch_name}) doesn't exist in info."
)
c_ind = ch_names.index(ch_name)
if ch_type not in _human2fiff:
raise ValueError(
f"This function cannot change to this channel type: {ch_type}. "
"Accepted channel types are "
f"{', '.join(sorted(_human2unit.keys()))}."
)
# Set sensor type
_check_set(info["chs"][c_ind], info["projs"], ch_type)
unit_old = info["chs"][c_ind]["unit"]
unit_new = _human2unit[ch_type]
if unit_old not in _unit2human:
raise ValueError(
f"Channel '{ch_name}' has unknown unit ({unit_old}). Please fix the"
" measurement info of your data."
)
if unit_old != _human2unit[ch_type]:
this_change = (_unit2human[unit_old], _unit2human[unit_new])
if this_change not in unit_changes:
unit_changes[this_change] = list()
unit_changes[this_change].append(ch_name)
# reset unit multiplication factor since the unit has now changed
info["chs"][c_ind]["unit_mul"] = _ch_unit_mul_named[0]
info["chs"][c_ind]["unit"] = _human2unit[ch_type]
if ch_type in ["eeg", "seeg", "ecog", "dbs"]:
coil_type = FIFF.FIFFV_COIL_EEG
elif ch_type == "hbo":
coil_type = FIFF.FIFFV_COIL_FNIRS_HBO
elif ch_type == "hbr":
coil_type = FIFF.FIFFV_COIL_FNIRS_HBR
elif ch_type == "fnirs_cw_amplitude":
coil_type = FIFF.FIFFV_COIL_FNIRS_CW_AMPLITUDE
elif ch_type == "fnirs_fd_ac_amplitude":
coil_type = FIFF.FIFFV_COIL_FNIRS_FD_AC_AMPLITUDE
elif ch_type == "fnirs_fd_phase":
coil_type = FIFF.FIFFV_COIL_FNIRS_FD_PHASE
elif ch_type == "fnirs_od":
coil_type = FIFF.FIFFV_COIL_FNIRS_OD
elif ch_type == "eyetrack_pos":
coil_type = FIFF.FIFFV_COIL_EYETRACK_POS
elif ch_type == "eyetrack_pupil":
coil_type = FIFF.FIFFV_COIL_EYETRACK_PUPIL
else:
coil_type = FIFF.FIFFV_COIL_NONE
info["chs"][c_ind]["coil_type"] = coil_type
msg = "The unit for channel(s) {0} has changed from {1} to {2}."
for this_change, names in unit_changes.items():
_on_missing(
on_missing=on_unit_change,
msg=msg.format(", ".join(sorted(names)), *this_change),
name="on_unit_change",
)
return self
@verbose
def rename_channels(self, mapping, allow_duplicates=False, *, verbose=None):
"""Rename channels.
Parameters
----------
%(mapping_rename_channels_duplicates)s
%(verbose)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
The instance (modified in place).
.. versionchanged:: 0.20
Return the instance.
Notes
-----
.. versionadded:: 0.9.0
"""
from ..channels.channels import rename_channels
from ..io import BaseRaw
info = self if isinstance(self, Info) else self.info
ch_names_orig = list(info["ch_names"])
rename_channels(info, mapping, allow_duplicates)
# Update self._orig_units for Raw
if isinstance(self, BaseRaw):
# whatever mapping was provided, now we can just use a dict
mapping = dict(zip(ch_names_orig, info["ch_names"]))
for old_name, new_name in mapping.items():
if old_name in self._orig_units:
self._orig_units[new_name] = self._orig_units.pop(old_name)
ch_names = self.annotations.ch_names
for ci, ch in enumerate(ch_names):
ch_names[ci] = tuple(mapping.get(name, name) for name in ch)
return self
@verbose
def plot_sensors(
self,
kind="topomap",
ch_type=None,
title=None,
show_names=False,
ch_groups=None,
to_sphere=True,
axes=None,
block=False,
show=True,
sphere=None,
*,
verbose=None,
):
"""Plot sensor positions.
Parameters
----------
kind : str
Whether to plot the sensors as 3d, topomap or as an interactive
sensor selection dialog. Available options 'topomap', '3d',
'select'. If 'select', a set of channels can be selected
interactively by using lasso selector or clicking while holding
control key. The selected channels are returned along with the
figure instance. Defaults to 'topomap'.
ch_type : None | str
The channel type to plot. Available options ``'mag'``, ``'grad'``,
``'eeg'``, ``'seeg'``, ``'dbs'``, ``'ecog'``, ``'all'``. If ``'all'``, all
the available mag, grad, eeg, seeg, dbs, and ecog channels are plotted. If
None (default), then channels are chosen in the order given above.
title : str | None
Title for the figure. If None (default), equals to ``'Sensor
positions (%%s)' %% ch_type``.
show_names : bool | array of str
Whether to display all channel names. If an array, only the channel
names in the array are shown. Defaults to False.
ch_groups : 'position' | array of shape (n_ch_groups, n_picks) | None
Channel groups for coloring the sensors. If None (default), default
coloring scheme is used. If 'position', the sensors are divided
into 8 regions. See ``order`` kwarg of :func:`mne.viz.plot_raw`. If
array, the channels are divided by picks given in the array.
.. versionadded:: 0.13.0
to_sphere : bool
Whether to project the 3d locations to a sphere. When False, the
sensor array appears similar as to looking downwards straight above
the subject's head. Has no effect when kind='3d'. Defaults to True.
.. versionadded:: 0.14.0
axes : instance of Axes | instance of Axes3D | None
Axes to draw the sensors to. If ``kind='3d'``, axes must be an
instance of Axes3D. If None (default), a new axes will be created.
.. versionadded:: 0.13.0
block : bool
Whether to halt program execution until the figure is closed.
Defaults to False.
.. versionadded:: 0.13.0
show : bool
Show figure if True. Defaults to True.
%(sphere_topomap_auto)s
%(verbose)s
Returns
-------
fig : instance of Figure
Figure containing the sensor topography.
selection : list
A list of selected channels. Only returned if ``kind=='select'``.
See Also
--------
mne.viz.plot_layout
Notes
-----
This function plots the sensor locations from the info structure using
matplotlib. For drawing the sensors using PyVista see
:func:`mne.viz.plot_alignment`.
.. versionadded:: 0.12.0
"""
from ..viz.utils import plot_sensors
return plot_sensors(
self if isinstance(self, Info) else self.info,
kind=kind,
ch_type=ch_type,
title=title,
show_names=show_names,
ch_groups=ch_groups,
to_sphere=to_sphere,
axes=axes,
block=block,
show=show,
sphere=sphere,
verbose=verbose,
)
@verbose
def anonymize(self, daysback=None, keep_his=False, verbose=None):
"""Anonymize measurement information in place.
Parameters
----------
%(daysback_anonymize_info)s
%(keep_his_anonymize_info)s
%(verbose)s
Returns
-------
inst : instance of Raw | Epochs | Evoked
The modified instance.
Notes
-----
%(anonymize_info_notes)s
.. versionadded:: 0.13.0
"""
info = self if isinstance(self, Info) else self.info
anonymize_info(info, daysback=daysback, keep_his=keep_his, verbose=verbose)
self.set_meas_date(info["meas_date"]) # unify annot update
return self
def set_meas_date(self, meas_date):
"""Set the measurement start date.
Parameters
----------
meas_date : datetime | float | tuple | None
The new measurement date.
If datetime object, it must be timezone-aware and in UTC.
A tuple of (seconds, microseconds) or float (alias for
``(meas_date, 0)``) can also be passed and a datetime
object will be automatically created. If None, will remove
the time reference.
Returns
-------
inst : instance of Raw | Epochs | Evoked
The modified raw instance. Operates in place.
See Also
--------
mne.io.Raw.anonymize
Notes
-----
If you want to remove all time references in the file, call
:func:`mne.io.anonymize_info(inst.info) <mne.io.anonymize_info>`
after calling ``inst.set_meas_date(None)``.
.. versionadded:: 0.20
"""
from ..annotations import _handle_meas_date
info = self if isinstance(self, Info) else self.info
meas_date = _handle_meas_date(meas_date)
with info._unlock():
info["meas_date"] = meas_date
# clear file_id and meas_id if needed
if meas_date is None:
for key in ("file_id", "meas_id"):
value = info.get(key)
if value is not None:
assert "msecs" not in value
value["secs"] = DATE_NONE[0]
value["usecs"] = DATE_NONE[1]
# The following copy is needed for a test CTF dataset
# otherwise value['machid'][:] = 0 would suffice
_tmp = value["machid"].copy()
_tmp[:] = 0
value["machid"] = _tmp
if hasattr(self, "annotations"):
self.annotations._orig_time = meas_date
return self
class ContainsMixin:
"""Mixin class for Raw, Evoked, Epochs and Info."""
def __contains__(self, ch_type):
"""Check channel type membership.
Parameters
----------
ch_type : str
Channel type to check for. Can be e.g. ``'meg'``, ``'eeg'``,
``'stim'``, etc.
Returns
-------
in : bool
Whether or not the instance contains the given channel type.
Examples
--------
Channel type membership can be tested as::
>>> 'meg' in inst # doctest: +SKIP
True
>>> 'seeg' in inst # doctest: +SKIP
False
"""
# this method is not supported by Info object. An Info object inherits from a
# dictionary and the 'key' in Info call is present all across MNE codebase, e.g.
# to check for the presence of a key:
# >>> 'bads' in info
if ch_type == "meg":
has_ch_type = _contains_ch_type(self.info, "mag") or _contains_ch_type(
self.info, "grad"
)
else:
has_ch_type = _contains_ch_type(self.info, ch_type)
return has_ch_type
@property
def compensation_grade(self):
"""The current gradient compensation grade."""
info = self if isinstance(self, Info) else self.info
return get_current_comp(info)
@fill_doc
def get_channel_types(self, picks=None, unique=False, only_data_chs=False):
"""Get a list of channel type for each channel.
Parameters
----------
%(picks_all)s
unique : bool
Whether to return only unique channel types. Default is ``False``.
only_data_chs : bool
Whether to ignore non-data channels. Default is ``False``.
Returns
-------
channel_types : list
The channel types.
"""
info = self if isinstance(self, Info) else self.info
none = "data" if only_data_chs else "all"
picks = _picks_to_idx(info, picks, none, (), allow_empty=False)
ch_types = [channel_type(info, pick) for pick in picks]
if only_data_chs:
ch_types = [
ch_type for ch_type in ch_types if ch_type in _DATA_CH_TYPES_SPLIT
]
if unique:
# set does not preserve order but dict does, so let's just use it
ch_types = list({k: k for k in ch_types}.keys())
return ch_types
# %% ValidatedDict class
class ValidatedDict(dict):
_attributes = {} # subclasses should set this to validated attributes
def __init__(self, *args, **kwargs):
self._unlocked = True
super().__init__(*args, **kwargs)
self._unlocked = False
def __getstate__(self):
"""Get state (for pickling)."""
return {"_unlocked": self._unlocked}
def __setstate__(self, state):
"""Set state (for pickling)."""
self._unlocked = state["_unlocked"]
def __setitem__(self, key, val):
"""Attribute setter."""
# During unpickling, the _unlocked attribute has not been set, so
# let __setstate__ do it later and act unlocked now
unlocked = getattr(self, "_unlocked", True)
if key in self._attributes:
if isinstance(self._attributes[key], str):
if not unlocked:
raise RuntimeError(self._attributes[key])
else:
val = self._attributes[key](
val, info=self
) # attribute checker function
else:
class_name = self.__class__.__name__
extra = ""
if "temp" in self._attributes:
var_name = _camel_to_snake(class_name)
extra = (
f"You can set {var_name}['temp'] to store temporary objects in "
f"{class_name} instances, but these will not survive an I/O "
"round-trip."
)
raise RuntimeError(
f"{class_name} does not support directly setting the key {repr(key)}. "
+ extra
)
super().__setitem__(key, val)
def update(self, other=None, **kwargs):
"""Update method using __setitem__()."""
iterable = other.items() if isinstance(other, Mapping) else other
if other is not None:
for key, val in iterable:
self[key] = val
for key, val in kwargs.items():
self[key] = val
def copy(self):
"""Copy the instance.
Returns
-------
info : instance of Info
The copied info.
"""
return deepcopy(self)
def __repr__(self):
"""Return a string representation."""
mapping = ", ".join(f"{key}: {val}" for key, val in self.items())
return f"<{_camel_to_snake(self.__class__.__name__)} | {mapping}>"
# %% Subject info
def _check_types(x, *, info, name, types, cast=None):
_validate_type(x, types, name)
if cast is not None and x is not None:
x = cast(x)
return x
class SubjectInfo(ValidatedDict):
_attributes = {
"id": partial(_check_types, name='subject_info["id"]', types=int),
"his_id": partial(_check_types, name='subject_info["his_id"]', types=str),
"last_name": partial(_check_types, name='subject_info["last_name"]', types=str),
"first_name": partial(
_check_types, name='subject_info["first_name"]', types=str
),
"middle_name": partial(
_check_types, name='subject_info["middle_name"]', types=str
),
"birthday": partial(
_check_types, name='subject_info["birthday"]', types=(datetime.date, None)
),
"sex": partial(_check_types, name='subject_info["sex"]', types=int),
"hand": partial(_check_types, name='subject_info["hand"]', types=int),
"weight": partial(
_check_types, name='subject_info["weight"]', types="numeric", cast=float
),
"height": partial(
_check_types, name='subject_info["height"]', types="numeric", cast=float
),
}
def __init__(self, initial):
_validate_type(initial, dict, "subject_info")
super().__init__()
for key, val in initial.items():
self[key] = val
class HeliumInfo(ValidatedDict):
_attributes = {
"he_level_raw": partial(
_check_types,
name='helium_info["he_level_raw"]',
types="numeric",
cast=float,
),
"helium_level": partial(
_check_types,
name='helium_info["helium_level"]',
types="numeric",
cast=float,
),
"orig_file_guid": partial(
_check_types, name='helium_info["orig_file_guid"]', types=str
),
"meas_date": partial(
_check_types,
name='helium_info["meas_date"]',
types=(datetime.datetime, None),
),
}
def __init__(self, initial):
_validate_type(initial, dict, "helium_info")
super().__init__()
for key, val in initial.items():
self[key] = val
# %% Info class and helpers
def _format_trans(obj, key):
from ..transforms import Transform
try:
t = obj[key]
except KeyError:
pass
else:
if t is not None:
obj[key] = Transform(t["from"], t["to"], t["trans"])
def _check_ch_keys(ch, ci, name='info["chs"]', check_min=True):
ch_keys = set(ch)
bad = sorted(ch_keys.difference(_ALL_CH_KEYS_SET))
if bad:
raise KeyError(f"key{_pl(bad)} errantly present for {name}[{ci}]: {bad}")
if check_min:
bad = sorted(_MIN_CH_KEYS_SET.difference(ch_keys))
if bad:
raise KeyError(
f"key{_pl(bad)} missing for {name}[{ci}]: {bad}",
)
def _check_bads_info_compat(bads, info):
_validate_type(bads, list, "bads")
if not len(bads):
return # e.g. in empty_info
for bi, bad in enumerate(bads):
_validate_type(bad, str, f"bads[{bi}]")
if "ch_names" not in info: # somewhere in init, or deepcopy, or _empty_info, etc.
return
missing = [bad for bad in bads if bad not in info["ch_names"]]
if len(missing) > 0:
raise ValueError(f"bad channel(s) {missing} marked do not exist in info")
class MNEBadsList(list):
"""Subclass of bads that checks inplace operations."""
def __init__(self, *, bads, info):
_check_bads_info_compat(bads, info)
self._mne_info = info
super().__init__(bads)
def extend(self, iterable):
if not isinstance(iterable, list):
iterable = list(iterable)
# can happen during pickling
try:
info = self._mne_info
except AttributeError:
pass # can happen during pickling
else:
_check_bads_info_compat(iterable, info)
return super().extend(iterable)
def append(self, x):
return self.extend([x])
def __iadd__(self, x):
self.extend(x)
return self
# As options are added here, test_meas_info.py:test_info_bad should be updated
def _check_bads(bads, *, info):
return MNEBadsList(bads=bads, info=info)
def _check_dev_head_t(dev_head_t, *, info):
from ..transforms import Transform, _ensure_trans
_validate_type(dev_head_t, (Transform, None), "info['dev_head_t']")
if dev_head_t is not None:
dev_head_t = _ensure_trans(dev_head_t, "meg", "head")
return dev_head_t
# TODO: Add fNIRS convention to loc
class Info(ValidatedDict, SetChannelsMixin, MontageMixin, ContainsMixin):
"""Measurement information.
This data structure behaves like a dictionary. It contains all metadata
that is available for a recording. However, its keys are restricted to
those provided by the
`FIF format specification <https://github.com/mne-tools/fiff-constants>`__,
so new entries should not be manually added.
.. note::
This class should not be instantiated directly via
``mne.Info(...)``. Instead, use :func:`mne.create_info` to create
measurement information from scratch.
.. warning::
The only entries that should be manually changed by the user are:
``info['bads']``, ``info['description']``, ``info['device_info']``
``info['dev_head_t']``, ``info['experimenter']``,
``info['helium_info']``, ``info['line_freq']``, ``info['temp']``,
and ``info['subject_info']``.
All other entries should be considered read-only, though they can be
modified by various MNE-Python functions or methods (which have
safeguards to ensure all fields remain in sync).
Parameters
----------
*args : list
Arguments.
**kwargs : dict
Keyword arguments.
Attributes
----------
acq_pars : str | None
MEG system acquisition parameters.
See :class:`mne.AcqParserFIF` for details.
acq_stim : str | None
MEG system stimulus parameters.
bads : list of str
List of bad (noisy/broken) channels, by name. These channels will by
default be ignored by many processing steps.
ch_names : list of str
The names of the channels.
chs : list of dict
A list of channel information dictionaries, one per channel.
See Notes for more information.
command_line : str
Contains the command and arguments used to create the source space
(used for source estimation).
comps : list of dict
CTF software gradient compensation data.
See Notes for more information.
ctf_head_t : Transform | None
The transformation from 4D/CTF head coordinates to Neuromag head
coordinates. This is only present in 4D/CTF data.
custom_ref_applied : int
Whether a custom (=other than an average projector) reference has been
applied to the EEG data. This flag is checked by some algorithms that
require an average reference to be set.
description : str | None
String description of the recording.
dev_ctf_t : Transform | None
The transformation from device coordinates to 4D/CTF head coordinates.
This is only present in 4D/CTF data.
dev_head_t : Transform | None
The device to head transformation.
device_info : dict | None
Information about the acquisition device. See Notes for details.
.. versionadded:: 0.19
dig : list of dict | None
The Polhemus digitization data in head coordinates.
See Notes for more information.
events : list of dict
Event list, sometimes extracted from the stim channels by Neuromag
systems. In general this should not be used and
:func:`mne.find_events` should be used for event processing.
See Notes for more information.
experimenter : str | None
Name of the person that ran the experiment.
file_id : dict | None
The FIF globally unique ID. See Notes for more information.
gantry_angle : float | None
Tilt angle of the gantry in degrees.
helium_info : dict | None
Information about the device helium. See Notes for details.
.. versionadded:: 0.19
highpass : float
Highpass corner frequency in Hertz. Zero indicates a DC recording.
hpi_meas : list of dict
HPI measurements that were taken at the start of the recording
(e.g. coil frequencies).
See Notes for details.
hpi_results : list of dict
Head position indicator (HPI) digitization points and fit information
(e.g., the resulting transform).
See Notes for details.
hpi_subsystem : dict | None
Information about the HPI subsystem that was used (e.g., event
channel used for cHPI measurements).
See Notes for details.
kit_system_id : int
Identifies the KIT system.
line_freq : float | None
Frequency of the power line in Hertz.
lowpass : float
Lowpass corner frequency in Hertz.
It is automatically set to half the sampling rate if there is
otherwise no low-pass applied to the data.
maxshield : bool
True if active shielding (IAS) was active during recording.
meas_date : datetime
The time (UTC) of the recording.
.. versionchanged:: 0.20
This is stored as a :class:`~python:datetime.datetime` object
instead of a tuple of seconds/microseconds.
meas_file : str | None
Raw measurement file (used for source estimation).
meas_id : dict | None
The ID assigned to this measurement by the acquisition system or
during file conversion. Follows the same format as ``file_id``.
mri_file : str | None
File containing the MRI to head transformation (used for source
estimation).
mri_head_t : dict | None
Transformation from MRI to head coordinates (used for source
estimation).
mri_id : dict | None
MRI unique ID (used for source estimation).
nchan : int
Number of channels.
proc_history : list of dict
The MaxFilter processing history.
See Notes for details.
proj_id : int | None
ID number of the project the experiment belongs to.
proj_name : str | None
Name of the project the experiment belongs to.
projs : list of Projection
List of SSP operators that operate on the data.
See :class:`mne.Projection` for details.
sfreq : float
Sampling frequency in Hertz.
subject_info : dict | None
Information about the subject.
See Notes for details.
temp : object | None
Can be used to store temporary objects in an Info instance. It will not
survive an I/O roundtrip.
.. versionadded:: 0.24
utc_offset : str
"UTC offset of related meas_date (sHH:MM).
.. versionadded:: 0.19
working_dir : str
Working directory used when the source space was created (used for
source estimation).
xplotter_layout : str
Layout of the Xplotter (Neuromag system only).
See Also
--------
mne.create_info
mne.pick_info
Notes
-----
The following parameters have a nested structure.
* ``chs`` list of dict:
cal : float
The calibration factor to bring the channels to physical
units. Used in product with ``range`` to scale the data read
from disk.
ch_name : str
The channel name.
coil_type : int
Coil type, e.g. ``FIFFV_COIL_MEG``.
coord_frame : int
The coordinate frame used, e.g. ``FIFFV_COORD_HEAD``.
kind : int
The kind of channel, e.g. ``FIFFV_EEG_CH``.
loc : array, shape (12,)
Channel location information. The first three elements ``[:3]`` always store
the nominal channel position. The remaining 9 elements store different
information based on the channel type:
MEG
Remaining 9 elements ``[3:]``, contain the EX, EY, and EZ normal
triplets (columns) of the coil rotation/orientation matrix.
EEG
Elements ``[3:6]`` contain the reference channel position.
Eyetrack
Element ``[3]`` contains information about which eye was tracked
(-1 for left, 1 for right), and element ``[4]`` contains information
about the the axis of coordinate data (-1 for x-coordinate data, 1 for
y-coordinate data).
Dipole
Elements ``[3:6]`` contain dipole orientation information.
logno : int
Logical channel number, conventions in the usage of this
number vary.
range : float
The hardware-oriented part of the calibration factor.
This should be only applied to the continuous raw data.
Used in product with ``cal`` to scale data read from disk.
scanno : int
Scanning order number, starting from 1.
unit : int
The unit to use, e.g. ``FIFF_UNIT_T_M``.
unit_mul : int
Unit multipliers, most commonly ``FIFF_UNITM_NONE``.
* ``comps`` list of dict:
ctfkind : int
CTF compensation grade.
colcals : ndarray
Column calibrations.
mat : dict
A named matrix dictionary (with entries "data", "col_names", etc.)
containing the compensation matrix.
rowcals : ndarray
Row calibrations.
save_calibrated : bool
Were the compensation data saved in calibrated form.
* ``device_info`` dict:
type : str
Device type.
model : str
Device model.
serial : str
Device serial.
site : str
Device site.
* ``dig`` list of dict:
kind : int
The kind of channel,
e.g. ``FIFFV_POINT_EEG``, ``FIFFV_POINT_CARDINAL``.
r : array, shape (3,)
3D position in m. and coord_frame.
ident : int
Number specifying the identity of the point.
e.g. ``FIFFV_POINT_NASION`` if kind is ``FIFFV_POINT_CARDINAL``, or
42 if kind is ``FIFFV_POINT_EEG``.
coord_frame : int
The coordinate frame used, e.g. ``FIFFV_COORD_HEAD``.
* ``events`` list of dict:
channels : list of int
Channel indices for the events.
list : ndarray, shape (n_events * 3,)
Events in triplets as number of samples, before, after.
* ``file_id`` dict:
version : int
FIF format version, i.e. ``FIFFC_VERSION``.
machid : ndarray, shape (2,)
Unique machine ID, usually derived from the MAC address.
secs : int
Time in seconds.
usecs : int
Time in microseconds.
* ``helium_info`` dict:
he_level_raw : float
Helium level (%) before position correction.
helium_level : float
Helium level (%) after position correction.
orig_file_guid : str
Original file GUID.
meas_date : datetime.datetime
The helium level meas date.
.. versionchanged:: 1.8
This is stored as a :class:`~python:datetime.datetime` object
instead of a tuple of seconds/microseconds.
* ``hpi_meas`` list of dict:
creator : str
Program that did the measurement.
sfreq : float
Sample rate.
nchan : int
Number of channels used.
nave : int
Number of averages used.
ncoil : int
Number of coils used.
first_samp : int
First sample used.
last_samp : int
Last sample used.
hpi_coils : list of dict
Coils, containing:
number: int
Coil number
epoch : ndarray
Buffer containing one epoch and channel.
slopes : ndarray, shape (n_channels,)
HPI data.
corr_coeff : ndarray, shape (n_channels,)
HPI curve fit correlations.
coil_freq : float
HPI coil excitation frequency
* ``hpi_results`` list of dict:
dig_points : list
Digitization points (see ``dig`` definition) for the HPI coils.
order : ndarray, shape (ncoil,)
The determined digitization order.
used : ndarray, shape (nused,)
The indices of the used coils.
moments : ndarray, shape (ncoil, 3)
The coil moments.
goodness : ndarray, shape (ncoil,)
The goodness of fits.
good_limit : float
The goodness of fit limit.
dist_limit : float
The distance limit.
accept : int
Whether or not the fit was accepted.
coord_trans : instance of Transform
The resulting MEG<->head transformation.
* ``hpi_subsystem`` dict:
ncoil : int
The number of coils.
event_channel : str
The event channel used to encode cHPI status (e.g., STI201).
hpi_coils : list of ndarray
List of length ``ncoil``, each 4-element ndarray contains the
event bits used on the event channel to indicate cHPI status
(using the first element of these arrays is typically
sufficient).
* ``mri_id`` dict:
version : int
FIF format version, i.e. ``FIFFC_VERSION``.
machid : ndarray, shape (2,)
Unique machine ID, usually derived from the MAC address.
secs : int
Time in seconds.
usecs : int
Time in microseconds.
* ``proc_history`` list of dict:
block_id : dict
See ``id`` above.
date : ndarray, shape (2,)
2-element tuple of seconds and microseconds.
experimenter : str
Name of the person who ran the program.
creator : str
Program that did the processing.
max_info : dict
Maxwel filtering info, can contain:
sss_info : dict
SSS processing information.
max_st
tSSS processing information.
sss_ctc : dict
Cross-talk processing information.
sss_cal : dict
Fine-calibration information.
smartshield : dict
MaxShield information. This dictionary is (always?) empty,
but its presence implies that MaxShield was used during
acquisition.
* ``subject_info`` dict:
id : int
Integer subject identifier.
his_id : str
String subject identifier.
last_name : str
Last name.
first_name : str
First name.
middle_name : str
Middle name.
birthday : datetime.date
The subject birthday.
.. versionchanged:: 1.8
This is stored as a :class:`~python:datetime.date` object
instead of a tuple of seconds/microseconds.
sex : int
Subject sex (0=unknown, 1=male, 2=female).
hand : int
Handedness (1=right, 2=left, 3=ambidextrous).
weight : float
Weight in kilograms.
height : float
Height in meters.
"""
_attributes = {
"acq_pars": "acq_pars cannot be set directly. "
"See mne.AcqParserFIF() for details.",
"acq_stim": "acq_stim cannot be set directly.",
"bads": _check_bads,
"ch_names": "ch_names cannot be set directly. "
"Please use methods inst.add_channels(), "
"inst.drop_channels(), inst.pick(), "
"inst.rename_channels(), inst.reorder_channels() "
"and inst.set_channel_types() instead.",
"chs": "chs cannot be set directly. "
"Please use methods inst.add_channels(), "
"inst.drop_channels(), inst.pick(), "
"inst.rename_channels(), inst.reorder_channels() "
"and inst.set_channel_types() instead.",
"command_line": "command_line cannot be set directly.",
"comps": "comps cannot be set directly. "
"Please use method Raw.apply_gradient_compensation() "
"instead.",
"ctf_head_t": "ctf_head_t cannot be set directly.",
"custom_ref_applied": "custom_ref_applied cannot be set directly. "
"Please use method inst.set_eeg_reference() "
"instead.",
"description": partial(_check_types, name="description", types=(str, None)),
"dev_ctf_t": "dev_ctf_t cannot be set directly.",
"dev_head_t": _check_dev_head_t,
"device_info": partial(_check_types, name="device_info", types=(dict, None)),
"dig": "dig cannot be set directly. "
"Please use method inst.set_montage() instead.",
"events": "events cannot be set directly.",
"experimenter": partial(_check_types, name="experimenter", types=(str, None)),
"file_id": "file_id cannot be set directly.",
"gantry_angle": "gantry_angle cannot be set directly.",
"helium_info": partial(
_check_types, name="helium_info", types=(dict, None), cast=HeliumInfo
),
"highpass": "highpass cannot be set directly. "
"Please use method inst.filter() instead.",
"hpi_meas": "hpi_meas can not be set directly.",
"hpi_results": "hpi_results cannot be set directly.",
"hpi_subsystem": "hpi_subsystem cannot be set directly.",
"kit_system_id": "kit_system_id cannot be set directly.",
"line_freq": partial(
_check_types, name="line_freq", types=("numeric", None), cast=float
),
"lowpass": "lowpass cannot be set directly. "
"Please use method inst.filter() instead.",
"maxshield": "maxshield cannot be set directly.",
"meas_date": "meas_date cannot be set directly. "
"Please use method inst.set_meas_date() instead.",
"meas_file": "meas_file cannot be set directly.",
"meas_id": "meas_id cannot be set directly.",
"mri_file": "mri_file cannot be set directly.",
"mri_head_t": "mri_head_t cannot be set directly.",
"mri_id": "mri_id cannot be set directly.",
"nchan": "nchan cannot be set directly. "
"Please use methods inst.add_channels(), "
"inst.drop_channels(), and inst.pick() instead.",
"proc_history": "proc_history cannot be set directly.",
"proj_id": "proj_id cannot be set directly.",
"proj_name": "proj_name cannot be set directly.",
"projs": "projs cannot be set directly. "
"Please use methods inst.add_proj() and inst.del_proj() "
"instead.",
"sfreq": "sfreq cannot be set directly. "
"Please use method inst.resample() instead.",
"subject_info": partial(
_check_types, name="subject_info", types=(dict, None), cast=SubjectInfo
),
"temp": lambda x, info=None: x,
"utc_offset": "utc_offset cannot be set directly.",
"working_dir": "working_dir cannot be set directly.",
"xplotter_layout": "xplotter_layout cannot be set directly.",
}
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._unlocked = True
# Deal with h5io writing things as dict
if "bads" in self:
self["bads"] = MNEBadsList(bads=self["bads"], info=self)
for key in ("dev_head_t", "ctf_head_t", "dev_ctf_t"):
_format_trans(self, key)
for res in self.get("hpi_results", []):
_format_trans(res, "coord_trans")
if self.get("dig", None) is not None and len(self["dig"]):
if isinstance(self["dig"], dict): # needs to be unpacked
self["dig"] = _dict_unpack(self["dig"], _DIG_CAST)
if not isinstance(self["dig"][0], DigPoint):
self["dig"] = _format_dig_points(self["dig"])
if isinstance(self.get("chs", None), dict):
self["chs"]["ch_name"] = [
str(x) for x in np.char.decode(self["chs"]["ch_name"], encoding="utf8")
]
self["chs"] = _dict_unpack(self["chs"], _CH_CAST)
for pi, proj in enumerate(self.get("projs", [])):
if not isinstance(proj, Projection):
self["projs"][pi] = Projection(**proj)
# Old files could have meas_date as tuple instead of datetime
try:
meas_date = self["meas_date"]
except KeyError:
pass
else:
self["meas_date"] = _ensure_meas_date_none_or_dt(meas_date)
self._unlocked = False
# with validation and casting
for key in ("helium_info", "subject_info"):
if key in self:
self[key] = self[key]
def __setstate__(self, state):
"""Set state (for pickling)."""
super().__setstate__(state)
self["bads"] = MNEBadsList(bads=self["bads"], info=self)
@contextlib.contextmanager
def _unlock(self, *, update_redundant=False, check_after=False):
"""Context manager unlocking access to attributes."""
# needed for nested _unlock()
state = self._unlocked if hasattr(self, "_unlocked") else False
self._unlocked = True
try:
yield
except Exception:
raise
else:
if update_redundant:
self._update_redundant()
if check_after:
self._check_consistency()
finally:
self._unlocked = state
def normalize_proj(self):
"""(Re-)Normalize projection vectors after subselection.
Applying projection after sub-selecting a set of channels that
were originally used to compute the original projection vectors
can be dangerous (e.g., if few channels remain, most power was
in channels that are no longer picked, etc.). By default, mne
will emit a warning when this is done.
This function will re-normalize projectors to use only the
remaining channels, thus avoiding that warning. Only use this
function if you're confident that the projection vectors still
adequately capture the original signal of interest.
"""
_normalize_proj(self)
def __repr__(self):
"""Summarize info instead of printing all."""
from ..io.kit.constants import KIT_SYSNAMES
from ..transforms import Transform, _coord_frame_name
MAX_WIDTH = 68
strs = ["<Info | %s non-empty values"]
non_empty = 0
titles = _handle_default("titles")
for k, v in self.items():
if k == "ch_names":
if v:
entr = shorten(", ".join(v), MAX_WIDTH, placeholder=" ...")
else:
entr = "[]" # always show
non_empty -= 1 # don't count as non-empty
elif k == "bads":
if v:
entr = f"{len(v)} items ("
entr += ", ".join(v)
entr = shorten(entr, MAX_WIDTH, placeholder=" ...") + ")"
else:
entr = "[]" # always show
non_empty -= 1 # don't count as non-empty
elif k == "projs":
if v:
entr = ", ".join(
p["desc"] + ": o" + ("n" if p["active"] else "ff") for p in v
)
entr = shorten(entr, MAX_WIDTH, placeholder=" ...")
else:
entr = "[]" # always show projs
non_empty -= 1 # don't count as non-empty
elif k == "meas_date":
if v is None:
entr = "unspecified"
else:
entr = v.strftime("%Y-%m-%d %H:%M:%S %Z")
elif k == "kit_system_id" and v is not None:
entr = f"{v} ({KIT_SYSNAMES.get(v, 'unknown')})"
elif k == "dig" and v is not None:
counts = Counter(d["kind"] for d in v)
counts = [
f"{counts[ii]} {_dig_kind_proper[_dig_kind_rev[ii]]}"
for ii in _dig_kind_ints
if ii in counts
]
counts = f" ({', '.join(counts)})" if len(counts) else ""
entr = f"{len(v)} item{_pl(v)}{counts}"
elif isinstance(v, Transform):
# show entry only for non-identity transform
if not np.allclose(v["trans"], np.eye(v["trans"].shape[0])):
frame1 = _coord_frame_name(v["from"])
frame2 = _coord_frame_name(v["to"])
entr = f"{frame1} -> {frame2} transform"
else:
entr = ""
elif k in ["sfreq", "lowpass", "highpass"]:
entr = f"{v:.1f} Hz"
elif isinstance(v, str):
entr = shorten(v, MAX_WIDTH, placeholder=" ...")
elif k == "chs":
# TODO someday we should refactor with _repr_html_ with
# bad vs good
ch_types = [channel_type(self, idx) for idx in range(len(v))]
ch_counts = Counter(ch_types)
entr = ", ".join(
f"{count} {titles.get(ch_type, ch_type.upper())}"
for ch_type, count in ch_counts.items()
)
elif k == "custom_ref_applied":
entr = str(bool(v))
if not v:
non_empty -= 1 # don't count if 0
elif isinstance(v, ValidatedDict):
entr = repr(v)
else:
try:
this_len = len(v)
except TypeError:
entr = f"{v}" if v is not None else ""
else:
if this_len > 0:
entr = f"{this_len} item{_pl(this_len)} ({type(v).__name__})"
else:
entr = ""
if entr != "":
non_empty += 1
strs.append(f"{k}: {entr}")
st = "\n ".join(sorted(strs))
st += "\n>"
st %= non_empty
return st
def __deepcopy__(self, memodict):
"""Make a deepcopy."""
result = Info.__new__(Info)
result._unlocked = True
for k, v in self.items():
# chs is roughly half the time but most are immutable
if k == "chs":
# dict shallow copy is fast, so use it then overwrite
result[k] = list()
for ch in v:
ch = ch.copy() # shallow
ch["loc"] = ch["loc"].copy()
result[k].append(ch)
elif k == "ch_names":
# we know it's list of str, shallow okay and saves ~100 µs
result[k] = v.copy()
elif k == "hpi_meas":
hms = list()
for hm in v:
hm = hm.copy()
# the only mutable thing here is some entries in coils
hm["hpi_coils"] = [coil.copy() for coil in hm["hpi_coils"]]
# There is a *tiny* risk here that someone could write
# raw.info['hpi_meas'][0]['hpi_coils'][1]['epoch'] = ...
# and assume that info.copy() will make an actual copy,
# but copying these entries has a 2x slowdown penalty so
# probably not worth it for such a deep corner case:
# for coil in hpi_coils:
# for key in ('epoch', 'slopes', 'corr_coeff'):
# coil[key] = coil[key].copy()
hms.append(hm)
result[k] = hms
else:
result[k] = deepcopy(v, memodict)
result._unlocked = False
return result
def _check_consistency(self, prepend_error=""):
"""Do some self-consistency checks and datatype tweaks."""
meas_date = self.get("meas_date")
if meas_date is not None:
if (
not isinstance(self["meas_date"], datetime.datetime)
or self["meas_date"].tzinfo is None
or self["meas_date"].tzinfo is not datetime.timezone.utc
):
raise RuntimeError(
f'{prepend_error}info["meas_date"] must be a datetime object in UTC'
f" or None, got {repr(self['meas_date'])!r}"
)
chs = [ch["ch_name"] for ch in self["chs"]]
if (
len(self["ch_names"]) != len(chs)
or any(ch_1 != ch_2 for ch_1, ch_2 in zip(self["ch_names"], chs))
or self["nchan"] != len(chs)
):
raise RuntimeError(
f"{prepend_error}info channel name inconsistency detected, please "
"notify MNE-Python developers"
)
# make sure we have the proper datatypes
with self._unlock():
for key in ("sfreq", "highpass", "lowpass"):
if self.get(key) is not None:
self[key] = float(self[key])
for pi, proj in enumerate(self.get("projs", [])):
_validate_type(proj, Projection, f'info["projs"][{pi}]')
for key in ("kind", "active", "desc", "data", "explained_var"):
if key not in proj:
raise RuntimeError(f"Projection incomplete, missing {key}")
# Ensure info['chs'] has immutable entries (copies much faster)
for ci, ch in enumerate(self["chs"]):
_check_ch_keys(ch, ci)
ch_name = ch["ch_name"]
_validate_type(ch_name, str, f'info["chs"][{ci}]["ch_name"]')
for key in _SCALAR_CH_KEYS:
val = ch.get(key, 1)
_validate_type(val, "numeric", f'info["chs"][{ci}][{key}]')
loc = ch["loc"]
if not (isinstance(loc, np.ndarray) and loc.shape == (12,)):
raise TypeError(
f'Bad info: info["chs"][{ci}]["loc"] must be ndarray with '
f"12 elements, got {repr(loc)}"
)
# make sure channel names are unique
with self._unlock():
self["ch_names"] = _unique_channel_names(self["ch_names"])
for idx, ch_name in enumerate(self["ch_names"]):
self["chs"][idx]["ch_name"] = ch_name
def _update_redundant(self):
"""Update the redundant entries."""
with self._unlock():
self["ch_names"] = [ch["ch_name"] for ch in self["chs"]]
self["nchan"] = len(self["chs"])
@property
def ch_names(self):
try:
ch_names = self["ch_names"]
except KeyError:
ch_names = []
return ch_names
@repr_html
def _repr_html_(self):
"""Summarize info for HTML representation."""
info_template = _get_html_template("repr", "info.html.jinja")
return info_template.render(info=self)
@verbose
def save(self, fname, *, overwrite=False, verbose=None):
"""Write measurement info in fif file.
Parameters
----------
fname : path-like
The name of the file. Should end by ``'-info.fif'``.
%(overwrite)s
.. versionadded:: 1.10
%(verbose)s
See Also
--------
mne.io.write_info
"""
write_info(fname, self, overwrite=overwrite)
def _simplify_info(info, *, keep=()):
"""Return a simplified info structure to speed up picking."""
chs = [
{key: ch[key] for key in ("ch_name", "kind", "unit", "coil_type", "loc", "cal")}
for ch in info["chs"]
]
keys = ("bads", "comps", "projs", "custom_ref_applied") + keep
sub_info = Info((key, info[key]) for key in keys if key in info)
with sub_info._unlock():
sub_info["chs"] = chs
sub_info._update_redundant()
return sub_info
@verbose
def read_fiducials(fname, *, verbose=None):
"""Read fiducials from a fiff file.
Parameters
----------
fname : path-like
The filename to read.
%(verbose)s
Returns
-------
pts : list of dict
List of digitizer points (each point in a dict).
coord_frame : int
The coordinate frame of the points (one of
``mne.io.constants.FIFF.FIFFV_COORD_...``).
"""
fname = _check_fname(fname=fname, overwrite="read", must_exist=True)
fid, tree, _ = fiff_open(fname)
with fid:
pts = _read_dig_fif(fid, tree)
return pts, pts[0]["coord_frame"]
@verbose
def write_fiducials(
fname, pts, coord_frame="unknown", *, overwrite=False, verbose=None
):
"""Write fiducials to a fiff file.
Parameters
----------
fname : path-like
Destination file name.
pts : iterator of dict
Iterator through digitizer points. Each point is a dictionary with
the keys 'kind', 'ident' and 'r'.
coord_frame : str | int
The coordinate frame of the points. If a string, must be one of
``'meg'``, ``'mri'``, ``'mri_voxel'``, ``'head'``,
``'mri_tal'``, ``'ras'``, ``'fs_tal'``, ``'ctf_head'``,
``'ctf_meg'``, and ``'unknown'``
If an integer, must be one of the constants defined as
``mne.io.constants.FIFF.FIFFV_COORD_...``.
%(overwrite)s
.. versionadded:: 1.0
%(verbose)s
"""
write_dig(fname, pts, coord_frame, overwrite=overwrite)
@verbose
def read_info(fname, verbose=None):
"""Read measurement info from a file.
Parameters
----------
fname : path-like
File name.
%(verbose)s
Returns
-------
%(info_not_none)s
"""
check_fname(fname, "Info", (".fif", ".fif.gz"))
fname = _check_fname(fname, must_exist=True, overwrite="read")
f, tree, _ = fiff_open(fname)
with f as fid:
info = read_meas_info(fid, tree)[0]
return info
def read_bad_channels(fid, node):
"""Read bad channels.
Parameters
----------
fid : file
The file descriptor.
node : dict
The node of the FIF tree that contains info on the bad channels.
Returns
-------
bads : list
A list of bad channel's names.
"""
return _read_bad_channels(fid, node)
def _read_bad_channels(fid, node, ch_names_mapping):
ch_names_mapping = {} if ch_names_mapping is None else ch_names_mapping
nodes = dir_tree_find(node, FIFF.FIFFB_MNE_BAD_CHANNELS)
bads = []
if len(nodes) > 0:
for node in nodes:
tag = find_tag(fid, node, FIFF.FIFF_MNE_CH_NAME_LIST)
if tag is not None and tag.data is not None:
bads = _safe_name_list(tag.data, "read", "bads")
bads[:] = _rename_list(bads, ch_names_mapping)
return bads
def _write_bad_channels(fid, bads, ch_names_mapping):
if bads is not None and len(bads) > 0:
ch_names_mapping = {} if ch_names_mapping is None else ch_names_mapping
bads = _rename_list(bads, ch_names_mapping)
start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
write_name_list_sanitized(fid, FIFF.FIFF_MNE_CH_NAME_LIST, bads, "bads")
end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS)
@verbose
def read_meas_info(fid, tree, clean_bads=False, verbose=None):
"""Read the measurement info.
Parameters
----------
fid : file
Open file descriptor.
tree : tree
FIF tree structure.
clean_bads : bool
If True, clean info['bads'] before running consistency check.
Should only be needed for old files where we did not check bads
before saving.
%(verbose)s
Returns
-------
%(info_not_none)s
meas : dict
Node in tree that contains the info.
"""
from ..transforms import Transform, invert_transform
# Find the desired blocks
meas = dir_tree_find(tree, FIFF.FIFFB_MEAS)
if len(meas) == 0:
raise ValueError("Could not find measurement data")
if len(meas) > 1:
raise ValueError("Cannot read more that 1 measurement data")
meas = meas[0]
meas_info = dir_tree_find(meas, FIFF.FIFFB_MEAS_INFO)
if len(meas_info) == 0:
raise ValueError("Could not find measurement info")
if len(meas_info) > 1:
raise ValueError("Cannot read more that 1 measurement info")
meas_info = meas_info[0]
# Read measurement info
dev_head_t = None
ctf_head_t = None
dev_ctf_t = None
meas_date = None
utc_offset = None
highpass = None
lowpass = None
nchan = None
sfreq = None
chs = []
experimenter = None
description = None
proj_id = None
proj_name = None
line_freq = None
gantry_angle = None
custom_ref_applied = FIFF.FIFFV_MNE_CUSTOM_REF_OFF
xplotter_layout = None
kit_system_id = None
for k in range(meas_info["nent"]):
kind = meas_info["directory"][k].kind
pos = meas_info["directory"][k].pos
if kind == FIFF.FIFF_NCHAN:
tag = read_tag(fid, pos)
nchan = int(tag.data.item())
elif kind == FIFF.FIFF_SFREQ:
tag = read_tag(fid, pos)
sfreq = float(tag.data.item())
elif kind == FIFF.FIFF_CH_INFO:
tag = read_tag(fid, pos)
chs.append(tag.data)
elif kind == FIFF.FIFF_LOWPASS:
tag = read_tag(fid, pos)
if not np.isnan(tag.data.item()):
lowpass = float(tag.data.item())
elif kind == FIFF.FIFF_HIGHPASS:
tag = read_tag(fid, pos)
if not np.isnan(tag.data):
highpass = float(tag.data.item())
elif kind == FIFF.FIFF_MEAS_DATE:
tag = read_tag(fid, pos)
meas_date = tuple(tag.data)
if len(meas_date) == 1: # can happen from old C conversions
meas_date = (meas_date[0], 0)
elif kind == FIFF.FIFF_UTC_OFFSET:
tag = read_tag(fid, pos)
utc_offset = str(tag.data)
elif kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, pos)
cand = tag.data
if (
cand["from"] == FIFF.FIFFV_COORD_DEVICE
and cand["to"] == FIFF.FIFFV_COORD_HEAD
):
dev_head_t = cand
elif (
cand["from"] == FIFF.FIFFV_COORD_HEAD
and cand["to"] == FIFF.FIFFV_COORD_DEVICE
):
# this reversal can happen with BabyMEG data
dev_head_t = invert_transform(cand)
elif (
cand["from"] == FIFF.FIFFV_MNE_COORD_CTF_HEAD
and cand["to"] == FIFF.FIFFV_COORD_HEAD
):
ctf_head_t = cand
elif (
cand["from"] == FIFF.FIFFV_MNE_COORD_CTF_DEVICE
and cand["to"] == FIFF.FIFFV_MNE_COORD_CTF_HEAD
):
dev_ctf_t = cand
elif kind == FIFF.FIFF_EXPERIMENTER:
tag = read_tag(fid, pos)
experimenter = tag.data
elif kind == FIFF.FIFF_DESCRIPTION:
tag = read_tag(fid, pos)
description = tag.data
elif kind == FIFF.FIFF_PROJ_ID:
tag = read_tag(fid, pos)
proj_id = tag.data
elif kind == FIFF.FIFF_PROJ_NAME:
tag = read_tag(fid, pos)
proj_name = tag.data
elif kind == FIFF.FIFF_LINE_FREQ:
tag = read_tag(fid, pos)
line_freq = float(tag.data.item())
elif kind == FIFF.FIFF_GANTRY_ANGLE:
tag = read_tag(fid, pos)
gantry_angle = float(tag.data.item())
elif kind in [FIFF.FIFF_MNE_CUSTOM_REF, 236]: # 236 used before v0.11
tag = read_tag(fid, pos)
custom_ref_applied = int(tag.data.item())
elif kind == FIFF.FIFF_XPLOTTER_LAYOUT:
tag = read_tag(fid, pos)
xplotter_layout = str(tag.data)
elif kind == FIFF.FIFF_MNE_KIT_SYSTEM_ID:
tag = read_tag(fid, pos)
kit_system_id = int(tag.data.item())
ch_names_mapping = _read_extended_ch_info(chs, meas_info, fid)
# Check that we have everything we need
if nchan is None:
raise ValueError("Number of channels is not defined")
if sfreq is None:
raise ValueError("Sampling frequency is not defined")
if len(chs) == 0:
raise ValueError("Channel information not defined")
if len(chs) != nchan:
raise ValueError("Incorrect number of channel definitions found")
if dev_head_t is None or ctf_head_t is None:
hpi_result = dir_tree_find(meas_info, FIFF.FIFFB_HPI_RESULT)
if len(hpi_result) == 1:
hpi_result = hpi_result[0]
for k in range(hpi_result["nent"]):
kind = hpi_result["directory"][k].kind
pos = hpi_result["directory"][k].pos
if kind == FIFF.FIFF_COORD_TRANS:
tag = read_tag(fid, pos)
cand = tag.data
if (
cand["from"] == FIFF.FIFFV_COORD_DEVICE
and cand["to"] == FIFF.FIFFV_COORD_HEAD
and dev_head_t is None
):
dev_head_t = cand
elif (
cand["from"] == FIFF.FIFFV_MNE_COORD_CTF_HEAD
and cand["to"] == FIFF.FIFFV_COORD_HEAD
and ctf_head_t is None
):
ctf_head_t = cand
# Locate the Polhemus data
dig = _read_dig_fif(fid, meas_info)
# Locate the acquisition information
acqpars = dir_tree_find(meas_info, FIFF.FIFFB_DACQ_PARS)
acq_pars = None
acq_stim = None
if len(acqpars) == 1:
acqpars = acqpars[0]
for k in range(acqpars["nent"]):
kind = acqpars["directory"][k].kind
pos = acqpars["directory"][k].pos
if kind == FIFF.FIFF_DACQ_PARS:
tag = read_tag(fid, pos)
acq_pars = tag.data
elif kind == FIFF.FIFF_DACQ_STIM:
tag = read_tag(fid, pos)
acq_stim = tag.data
# Load the SSP data
projs = _read_proj(fid, meas_info, ch_names_mapping=ch_names_mapping)
# Load the CTF compensation data
comps = _read_ctf_comp(fid, meas_info, chs, ch_names_mapping=ch_names_mapping)
# Load the bad channel list
bads = _read_bad_channels(fid, meas_info, ch_names_mapping=ch_names_mapping)
#
# Put the data together
#
info = Info(file_id=tree["id"])
info._unlocked = True
# Locate events list
events = dir_tree_find(meas_info, FIFF.FIFFB_EVENTS)
evs = list()
for event in events:
ev = dict()
for k in range(event["nent"]):
kind = event["directory"][k].kind
pos = event["directory"][k].pos
if kind == FIFF.FIFF_EVENT_CHANNELS:
ev["channels"] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_EVENT_LIST:
ev["list"] = read_tag(fid, pos).data
evs.append(ev)
info["events"] = evs
# Locate HPI result
hpi_results = dir_tree_find(meas_info, FIFF.FIFFB_HPI_RESULT)
hrs = list()
for hpi_result in hpi_results:
hr = dict()
hr["dig_points"] = []
for k in range(hpi_result["nent"]):
kind = hpi_result["directory"][k].kind
pos = hpi_result["directory"][k].pos
if kind == FIFF.FIFF_DIG_POINT:
hr["dig_points"].append(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_HPI_DIGITIZATION_ORDER:
hr["order"] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_COILS_USED:
hr["used"] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_COIL_MOMENTS:
hr["moments"] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_FIT_GOODNESS:
hr["goodness"] = read_tag(fid, pos).data
elif kind == FIFF.FIFF_HPI_FIT_GOOD_LIMIT:
hr["good_limit"] = float(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_HPI_FIT_DIST_LIMIT:
hr["dist_limit"] = float(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_HPI_FIT_ACCEPT:
hr["accept"] = int(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_COORD_TRANS:
hr["coord_trans"] = read_tag(fid, pos).data
hrs.append(hr)
info["hpi_results"] = hrs
# Locate HPI Measurement
hpi_meass = dir_tree_find(meas_info, FIFF.FIFFB_HPI_MEAS)
hms = list()
for hpi_meas in hpi_meass:
hm = dict()
for k in range(hpi_meas["nent"]):
kind = hpi_meas["directory"][k].kind
pos = hpi_meas["directory"][k].pos
if kind == FIFF.FIFF_CREATOR:
hm["creator"] = str(read_tag(fid, pos).data)
elif kind == FIFF.FIFF_SFREQ:
hm["sfreq"] = float(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_NCHAN:
hm["nchan"] = int(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_NAVE:
hm["nave"] = int(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_HPI_NCOIL:
hm["ncoil"] = int(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_FIRST_SAMPLE:
hm["first_samp"] = int(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_LAST_SAMPLE:
hm["last_samp"] = int(read_tag(fid, pos).data.item())
hpi_coils = dir_tree_find(hpi_meas, FIFF.FIFFB_HPI_COIL)
hcs = []
for hpi_coil in hpi_coils:
hc = dict()
for k in range(hpi_coil["nent"]):
kind = hpi_coil["directory"][k].kind
pos = hpi_coil["directory"][k].pos
if kind == FIFF.FIFF_HPI_COIL_NO:
hc["number"] = int(read_tag(fid, pos).data.item())
elif kind == FIFF.FIFF_EPOCH:
hc["epoch"] = read_tag(fid, pos).data
hc["epoch"].flags.writeable = False
elif kind == FIFF.FIFF_HPI_SLOPES:
hc["slopes"] = read_tag(fid, pos).data
hc["slopes"].flags.writeable = False
elif kind == FIFF.FIFF_HPI_CORR_COEFF:
hc["corr_coeff"] = read_tag(fid, pos).data
hc["corr_coeff"].flags.writeable = False
elif kind == FIFF.FIFF_HPI_COIL_FREQ:
hc["coil_freq"] = float(read_tag(fid, pos).data.item())
hcs.append(hc)
hm["hpi_coils"] = hcs
hms.append(hm)
info["hpi_meas"] = hms
del hms
subject_info = dir_tree_find(meas_info, FIFF.FIFFB_SUBJECT)
si = None
if len(subject_info) == 1:
subject_info = subject_info[0]
si = dict()
for k in range(subject_info["nent"]):
kind = subject_info["directory"][k].kind
pos = subject_info["directory"][k].pos
if kind == FIFF.FIFF_SUBJ_ID:
tag = read_tag(fid, pos)
si["id"] = int(tag.data.item())
elif kind == FIFF.FIFF_SUBJ_HIS_ID:
tag = read_tag(fid, pos)
si["his_id"] = str(tag.data)
elif kind == FIFF.FIFF_SUBJ_LAST_NAME:
tag = read_tag(fid, pos)
si["last_name"] = str(tag.data)
elif kind == FIFF.FIFF_SUBJ_FIRST_NAME:
tag = read_tag(fid, pos)
si["first_name"] = str(tag.data)
elif kind == FIFF.FIFF_SUBJ_MIDDLE_NAME:
tag = read_tag(fid, pos)
si["middle_name"] = str(tag.data)
elif kind == FIFF.FIFF_SUBJ_BIRTH_DAY:
try:
tag = read_tag(fid, pos)
except OverflowError:
warn(
"Encountered an error while trying to read the "
"birthday from the input data. No birthday will be "
"set. Please check the integrity of the birthday "
"information in the input data."
)
continue
si["birthday"] = tag.data
elif kind == FIFF.FIFF_SUBJ_SEX:
tag = read_tag(fid, pos)
si["sex"] = int(tag.data.item())
elif kind == FIFF.FIFF_SUBJ_HAND:
tag = read_tag(fid, pos)
si["hand"] = int(tag.data.item())
elif kind == FIFF.FIFF_SUBJ_WEIGHT:
tag = read_tag(fid, pos)
si["weight"] = float(tag.data.item())
elif kind == FIFF.FIFF_SUBJ_HEIGHT:
tag = read_tag(fid, pos)
si["height"] = float(tag.data.item())
info["subject_info"] = si
del si
device_info = dir_tree_find(meas_info, FIFF.FIFFB_DEVICE)
di = None
if len(device_info) == 1:
device_info = device_info[0]
di = dict()
for k in range(device_info["nent"]):
kind = device_info["directory"][k].kind
pos = device_info["directory"][k].pos
if kind == FIFF.FIFF_DEVICE_TYPE:
tag = read_tag(fid, pos)
di["type"] = str(tag.data)
elif kind == FIFF.FIFF_DEVICE_MODEL:
tag = read_tag(fid, pos)
di["model"] = str(tag.data)
elif kind == FIFF.FIFF_DEVICE_SERIAL:
tag = read_tag(fid, pos)
di["serial"] = str(tag.data)
elif kind == FIFF.FIFF_DEVICE_SITE:
tag = read_tag(fid, pos)
di["site"] = str(tag.data)
info["device_info"] = di
del di
helium_info = dir_tree_find(meas_info, FIFF.FIFFB_HELIUM)
hi = None
if len(helium_info) == 1:
helium_info = helium_info[0]
hi = dict()
for k in range(helium_info["nent"]):
kind = helium_info["directory"][k].kind
pos = helium_info["directory"][k].pos
if kind == FIFF.FIFF_HE_LEVEL_RAW:
tag = read_tag(fid, pos)
hi["he_level_raw"] = float(tag.data.item())
elif kind == FIFF.FIFF_HELIUM_LEVEL:
tag = read_tag(fid, pos)
hi["helium_level"] = float(tag.data.item())
elif kind == FIFF.FIFF_ORIG_FILE_GUID:
tag = read_tag(fid, pos)
hi["orig_file_guid"] = str(tag.data)
elif kind == FIFF.FIFF_MEAS_DATE:
tag = read_tag(fid, pos)
hi["meas_date"] = _ensure_meas_date_none_or_dt(
tuple(int(t) for t in tag.data),
)
if "meas_date" not in hi:
hi["meas_date"] = None
info["helium_info"] = hi
del hi
hpi_subsystem = dir_tree_find(meas_info, FIFF.FIFFB_HPI_SUBSYSTEM)
hs = None
if len(hpi_subsystem) == 1:
hpi_subsystem = hpi_subsystem[0]
hs = dict()
for k in range(hpi_subsystem["nent"]):
kind = hpi_subsystem["directory"][k].kind
pos = hpi_subsystem["directory"][k].pos
if kind == FIFF.FIFF_HPI_NCOIL:
tag = read_tag(fid, pos)
hs["ncoil"] = int(tag.data.item())
elif kind == FIFF.FIFF_EVENT_CHANNEL:
tag = read_tag(fid, pos)
hs["event_channel"] = str(tag.data)
hpi_coils = dir_tree_find(hpi_subsystem, FIFF.FIFFB_HPI_COIL)
hc = []
for coil in hpi_coils:
this_coil = dict()
for j in range(coil["nent"]):
kind = coil["directory"][j].kind
pos = coil["directory"][j].pos
if kind == FIFF.FIFF_EVENT_BITS:
tag = read_tag(fid, pos)
this_coil["event_bits"] = np.array(tag.data)
hc.append(this_coil)
hs["hpi_coils"] = hc
info["hpi_subsystem"] = hs
# Read processing history
info["proc_history"] = _read_proc_history(fid, tree)
# Make the most appropriate selection for the measurement id
if meas_info["parent_id"] is None:
if meas_info["id"] is None:
if meas["id"] is None:
if meas["parent_id"] is None:
info["meas_id"] = info["file_id"]
else:
info["meas_id"] = meas["parent_id"]
else:
info["meas_id"] = meas["id"]
else:
info["meas_id"] = meas_info["id"]
else:
info["meas_id"] = meas_info["parent_id"]
info["experimenter"] = experimenter
info["description"] = description
info["proj_id"] = proj_id
info["proj_name"] = proj_name
if meas_date is None:
meas_date = (info["meas_id"]["secs"], info["meas_id"]["usecs"])
info["meas_date"] = _ensure_meas_date_none_or_dt(meas_date)
info["utc_offset"] = utc_offset
info["sfreq"] = sfreq
info["highpass"] = highpass if highpass is not None else 0.0
info["lowpass"] = lowpass if lowpass is not None else info["sfreq"] / 2.0
info["line_freq"] = line_freq
info["gantry_angle"] = gantry_angle
# Add the channel information and make a list of channel names
# for convenience
info["chs"] = chs
#
# Add the coordinate transformations
#
info["dev_head_t"] = dev_head_t
info["ctf_head_t"] = ctf_head_t
info["dev_ctf_t"] = dev_ctf_t
if dev_head_t is not None and ctf_head_t is not None and dev_ctf_t is None:
head_ctf_trans = np.linalg.inv(ctf_head_t["trans"])
dev_ctf_trans = np.dot(head_ctf_trans, info["dev_head_t"]["trans"])
info["dev_ctf_t"] = Transform("meg", "ctf_head", dev_ctf_trans)
# All kinds of auxliary stuff
info["dig"] = _format_dig_points(dig)
info["bads"] = bads
info._update_redundant()
if clean_bads:
info["bads"] = [b for b in bads if b in info["ch_names"]]
info["projs"] = projs
info["comps"] = comps
info["acq_pars"] = acq_pars
info["acq_stim"] = acq_stim
info["custom_ref_applied"] = custom_ref_applied
info["xplotter_layout"] = xplotter_layout
info["kit_system_id"] = kit_system_id
info._check_consistency()
info._unlocked = False
return info, meas
def _read_extended_ch_info(chs, parent, fid):
ch_infos = dir_tree_find(parent, FIFF.FIFFB_CH_INFO)
if len(ch_infos) == 0:
return
_check_option("length of channel infos", len(ch_infos), [len(chs)])
logger.info(" Reading extended channel information")
# Here we assume that ``remap`` is in the same order as the channels
# themselves, which is hopefully safe enough.
ch_names_mapping = dict()
for new, ch in zip(ch_infos, chs):
for k in range(new["nent"]):
kind = new["directory"][k].kind
try:
key, cast = _CH_READ_MAP[kind]
except KeyError:
# This shouldn't happen if we're up to date with the FIFF
# spec
warn(f"Discarding extra channel information kind {kind}")
continue
assert key in ch
data = read_tag(fid, new["directory"][k].pos).data
if data is not None:
data = cast(data)
if key == "ch_name":
ch_names_mapping[ch[key]] = data
ch[key] = data
_update_ch_info_named(ch)
# we need to return ch_names_mapping so that we can also rename the
# bad channels
return ch_names_mapping
def _rename_comps(comps, ch_names_mapping):
if not (comps and ch_names_mapping):
return
for comp in comps:
data = comp["data"]
for key in ("row_names", "col_names"):
data[key][:] = _rename_list(data[key], ch_names_mapping)
def _ensure_meas_date_none_or_dt(meas_date):
if meas_date is None or np.array_equal(meas_date, DATE_NONE):
meas_date = None
elif not isinstance(meas_date, datetime.datetime):
meas_date = _stamp_to_dt(meas_date)
return meas_date
def _check_dates(info, prepend_error=""):
"""Check dates before writing as fif files.
It's needed because of the limited integer precision
of the fix standard.
"""
for key in ("file_id", "meas_id"):
value = info.get(key)
if value is not None:
assert "msecs" not in value
for key_2 in ("secs", "usecs"):
if (
value[key_2] < np.iinfo(">i4").min
or value[key_2] > np.iinfo(">i4").max
):
raise RuntimeError(
f"{prepend_error}info[{key}][{key_2}] must be between "
f'"{np.iinfo(">i4").min!r}" and "{np.iinfo(">i4").max!r}", got '
f'"{value[key_2]!r}"'
)
meas_date = info.get("meas_date")
if meas_date is None:
return
meas_date_stamp = _dt_to_stamp(meas_date)
if (
meas_date_stamp[0] < np.iinfo(">i4").min
or meas_date_stamp[0] > np.iinfo(">i4").max
):
raise RuntimeError(
f'{prepend_error}info["meas_date"] seconds must be between '
f'"{(np.iinfo(">i4").min, 0)!r}" and "{(np.iinfo(">i4").max, 0)!r}", got '
f'"{meas_date_stamp[0]!r}"'
)
@fill_doc
def write_meas_info(fid, info, data_type=None, reset_range=True):
"""Write measurement info into a file id (from a fif file).
Parameters
----------
fid : file
Open file descriptor.
%(info_not_none)s
data_type : int
The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for
raw data.
reset_range : bool
If True, info['chs'][k]['range'] will be set to unity.
Notes
-----
Tags are written in a particular order for compatibility with maxfilter.
"""
info._check_consistency()
_check_dates(info)
# Measurement info
start_block(fid, FIFF.FIFFB_MEAS_INFO)
# Add measurement id
if info["meas_id"] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info["meas_id"])
for event in info["events"]:
start_block(fid, FIFF.FIFFB_EVENTS)
if event.get("channels") is not None:
write_int(fid, FIFF.FIFF_EVENT_CHANNELS, event["channels"])
if event.get("list") is not None:
write_int(fid, FIFF.FIFF_EVENT_LIST, event["list"])
end_block(fid, FIFF.FIFFB_EVENTS)
# HPI Result
for hpi_result in info["hpi_results"]:
start_block(fid, FIFF.FIFFB_HPI_RESULT)
write_dig_points(fid, hpi_result["dig_points"])
if "order" in hpi_result:
write_int(fid, FIFF.FIFF_HPI_DIGITIZATION_ORDER, hpi_result["order"])
if "used" in hpi_result:
write_int(fid, FIFF.FIFF_HPI_COILS_USED, hpi_result["used"])
if "moments" in hpi_result:
write_float_matrix(fid, FIFF.FIFF_HPI_COIL_MOMENTS, hpi_result["moments"])
if "goodness" in hpi_result:
write_float(fid, FIFF.FIFF_HPI_FIT_GOODNESS, hpi_result["goodness"])
if "good_limit" in hpi_result:
write_float(fid, FIFF.FIFF_HPI_FIT_GOOD_LIMIT, hpi_result["good_limit"])
if "dist_limit" in hpi_result:
write_float(fid, FIFF.FIFF_HPI_FIT_DIST_LIMIT, hpi_result["dist_limit"])
if "accept" in hpi_result:
write_int(fid, FIFF.FIFF_HPI_FIT_ACCEPT, hpi_result["accept"])
if "coord_trans" in hpi_result:
write_coord_trans(fid, hpi_result["coord_trans"])
end_block(fid, FIFF.FIFFB_HPI_RESULT)
# HPI Measurement
for hpi_meas in info["hpi_meas"]:
start_block(fid, FIFF.FIFFB_HPI_MEAS)
if hpi_meas.get("creator") is not None:
write_string(fid, FIFF.FIFF_CREATOR, hpi_meas["creator"])
if hpi_meas.get("sfreq") is not None:
write_float(fid, FIFF.FIFF_SFREQ, hpi_meas["sfreq"])
if hpi_meas.get("nchan") is not None:
write_int(fid, FIFF.FIFF_NCHAN, hpi_meas["nchan"])
if hpi_meas.get("nave") is not None:
write_int(fid, FIFF.FIFF_NAVE, hpi_meas["nave"])
if hpi_meas.get("ncoil") is not None:
write_int(fid, FIFF.FIFF_HPI_NCOIL, hpi_meas["ncoil"])
if hpi_meas.get("first_samp") is not None:
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, hpi_meas["first_samp"])
if hpi_meas.get("last_samp") is not None:
write_int(fid, FIFF.FIFF_LAST_SAMPLE, hpi_meas["last_samp"])
for hpi_coil in hpi_meas["hpi_coils"]:
start_block(fid, FIFF.FIFFB_HPI_COIL)
if hpi_coil.get("number") is not None:
write_int(fid, FIFF.FIFF_HPI_COIL_NO, hpi_coil["number"])
if hpi_coil.get("epoch") is not None:
write_float_matrix(fid, FIFF.FIFF_EPOCH, hpi_coil["epoch"])
if hpi_coil.get("slopes") is not None:
write_float(fid, FIFF.FIFF_HPI_SLOPES, hpi_coil["slopes"])
if hpi_coil.get("corr_coeff") is not None:
write_float(fid, FIFF.FIFF_HPI_CORR_COEFF, hpi_coil["corr_coeff"])
if hpi_coil.get("coil_freq") is not None:
write_float(fid, FIFF.FIFF_HPI_COIL_FREQ, hpi_coil["coil_freq"])
end_block(fid, FIFF.FIFFB_HPI_COIL)
end_block(fid, FIFF.FIFFB_HPI_MEAS)
# Polhemus data
write_dig_points(fid, info["dig"], block=True)
# megacq parameters
if info["acq_pars"] is not None or info["acq_stim"] is not None:
start_block(fid, FIFF.FIFFB_DACQ_PARS)
if info["acq_pars"] is not None:
write_string(fid, FIFF.FIFF_DACQ_PARS, info["acq_pars"])
if info["acq_stim"] is not None:
write_string(fid, FIFF.FIFF_DACQ_STIM, info["acq_stim"])
end_block(fid, FIFF.FIFFB_DACQ_PARS)
# Coordinate transformations if the HPI result block was not there
if info["dev_head_t"] is not None:
write_coord_trans(fid, info["dev_head_t"])
if info["ctf_head_t"] is not None:
write_coord_trans(fid, info["ctf_head_t"])
if info["dev_ctf_t"] is not None:
write_coord_trans(fid, info["dev_ctf_t"])
# Projectors
ch_names_mapping = _make_ch_names_mapping(info["chs"])
_write_proj(fid, info["projs"], ch_names_mapping=ch_names_mapping)
# Bad channels
_write_bad_channels(fid, info["bads"], ch_names_mapping=ch_names_mapping)
# General
if info.get("experimenter") is not None:
write_string(fid, FIFF.FIFF_EXPERIMENTER, info["experimenter"])
if info.get("description") is not None:
write_string(fid, FIFF.FIFF_DESCRIPTION, info["description"])
if info.get("proj_id") is not None:
write_int(fid, FIFF.FIFF_PROJ_ID, info["proj_id"])
if info.get("proj_name") is not None:
write_string(fid, FIFF.FIFF_PROJ_NAME, info["proj_name"])
if info.get("meas_date") is not None:
write_int(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(info["meas_date"]))
if info.get("utc_offset") is not None:
write_string(fid, FIFF.FIFF_UTC_OFFSET, info["utc_offset"])
write_int(fid, FIFF.FIFF_NCHAN, info["nchan"])
write_float(fid, FIFF.FIFF_SFREQ, info["sfreq"])
if info["lowpass"] is not None:
write_float(fid, FIFF.FIFF_LOWPASS, info["lowpass"])
if info["highpass"] is not None:
write_float(fid, FIFF.FIFF_HIGHPASS, info["highpass"])
if info.get("line_freq") is not None:
write_float(fid, FIFF.FIFF_LINE_FREQ, info["line_freq"])
if info.get("gantry_angle") is not None:
write_float(fid, FIFF.FIFF_GANTRY_ANGLE, info["gantry_angle"])
if data_type is not None:
write_int(fid, FIFF.FIFF_DATA_PACK, data_type)
if info.get("custom_ref_applied"):
write_int(fid, FIFF.FIFF_MNE_CUSTOM_REF, info["custom_ref_applied"])
if info.get("xplotter_layout"):
write_string(fid, FIFF.FIFF_XPLOTTER_LAYOUT, info["xplotter_layout"])
# Channel information
_write_ch_infos(fid, info["chs"], reset_range, ch_names_mapping)
# Subject information
if info.get("subject_info") is not None:
start_block(fid, FIFF.FIFFB_SUBJECT)
si = info["subject_info"]
if si.get("id") is not None:
write_int(fid, FIFF.FIFF_SUBJ_ID, si["id"])
if si.get("his_id") is not None:
write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, si["his_id"])
if si.get("last_name") is not None:
write_string(fid, FIFF.FIFF_SUBJ_LAST_NAME, si["last_name"])
if si.get("first_name") is not None:
write_string(fid, FIFF.FIFF_SUBJ_FIRST_NAME, si["first_name"])
if si.get("middle_name") is not None:
write_string(fid, FIFF.FIFF_SUBJ_MIDDLE_NAME, si["middle_name"])
if si.get("birthday") is not None:
write_julian(fid, FIFF.FIFF_SUBJ_BIRTH_DAY, si["birthday"])
if si.get("sex") is not None:
write_int(fid, FIFF.FIFF_SUBJ_SEX, si["sex"])
if si.get("hand") is not None:
write_int(fid, FIFF.FIFF_SUBJ_HAND, si["hand"])
if si.get("weight") is not None:
write_float(fid, FIFF.FIFF_SUBJ_WEIGHT, si["weight"])
if si.get("height") is not None:
write_float(fid, FIFF.FIFF_SUBJ_HEIGHT, si["height"])
end_block(fid, FIFF.FIFFB_SUBJECT)
del si
if info.get("device_info") is not None:
start_block(fid, FIFF.FIFFB_DEVICE)
di = info["device_info"]
if di.get("type") is not None:
write_string(fid, FIFF.FIFF_DEVICE_TYPE, di["type"])
for key in ("model", "serial", "site"):
if di.get(key) is not None:
write_string(fid, getattr(FIFF, "FIFF_DEVICE_" + key.upper()), di[key])
end_block(fid, FIFF.FIFFB_DEVICE)
del di
if info.get("helium_info") is not None:
start_block(fid, FIFF.FIFFB_HELIUM)
hi = info["helium_info"]
if hi.get("he_level_raw") is not None:
write_float(fid, FIFF.FIFF_HE_LEVEL_RAW, hi["he_level_raw"])
if hi.get("helium_level") is not None:
write_float(fid, FIFF.FIFF_HELIUM_LEVEL, hi["helium_level"])
if hi.get("orig_file_guid") is not None:
write_string(fid, FIFF.FIFF_ORIG_FILE_GUID, hi["orig_file_guid"])
if hi["meas_date"] is not None:
write_int(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(hi["meas_date"]))
end_block(fid, FIFF.FIFFB_HELIUM)
del hi
if info.get("hpi_subsystem") is not None:
hs = info["hpi_subsystem"]
start_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM)
if hs.get("ncoil") is not None:
write_int(fid, FIFF.FIFF_HPI_NCOIL, hs["ncoil"])
if hs.get("event_channel") is not None:
write_string(fid, FIFF.FIFF_EVENT_CHANNEL, hs["event_channel"])
if hs.get("hpi_coils") is not None:
for coil in hs["hpi_coils"]:
start_block(fid, FIFF.FIFFB_HPI_COIL)
if coil.get("event_bits") is not None:
write_int(fid, FIFF.FIFF_EVENT_BITS, coil["event_bits"])
end_block(fid, FIFF.FIFFB_HPI_COIL)
end_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM)
del hs
# CTF compensation info
comps = info["comps"]
if ch_names_mapping:
comps = deepcopy(comps)
_rename_comps(comps, ch_names_mapping)
write_ctf_comp(fid, comps)
# KIT system ID
if info.get("kit_system_id") is not None:
write_int(fid, FIFF.FIFF_MNE_KIT_SYSTEM_ID, info["kit_system_id"])
end_block(fid, FIFF.FIFFB_MEAS_INFO)
# Processing history
_write_proc_history(fid, info)
@verbose
def write_info(
fname, info, *, data_type=None, reset_range=True, overwrite=False, verbose=None
):
"""Write measurement info in fif file.
Parameters
----------
fname : path-like
The name of the file. Should end by ``-info.fif``.
%(info_not_none)s
data_type : int
The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT),
5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for
raw data.
reset_range : bool
If True, info['chs'][k]['range'] will be set to unity.
%(overwrite)s
%(verbose)s
"""
with start_and_end_file(fname, overwrite=overwrite) as fid:
start_block(fid, FIFF.FIFFB_MEAS)
write_meas_info(fid, info, data_type, reset_range)
end_block(fid, FIFF.FIFFB_MEAS)
@verbose
def _merge_info_values(infos, key, verbose=None):
"""Merge things together.
Fork for {'dict', 'list', 'array', 'other'}
and consider cases where one or all are of the same type.
Does special things for "projs", "bads", and "meas_date".
"""
values = [d[key] for d in infos]
msg = (
f"Don't know how to merge '{key}'. Make sure values are compatible, got types:"
f"\n {[type(v) for v in values]}"
)
def _flatten(lists):
return [item for sublist in lists for item in sublist]
def _check_isinstance(values, kind, func):
return func([isinstance(v, kind) for v in values])
def _where_isinstance(values, kind):
"""Get indices of instances."""
return np.where([isinstance(v, type) for v in values])[0]
# list
if _check_isinstance(values, list, all):
lists = (d[key] for d in infos)
if key == "projs":
return _uniquify_projs(_flatten(lists))
elif key == "bads":
return sorted(set(_flatten(lists)))
else:
return _flatten(lists)
elif _check_isinstance(values, list, any):
idx = _where_isinstance(values, list)
if len(idx) == 1:
return values[int(idx)]
elif len(idx) > 1:
lists = (d[key] for d in infos if isinstance(d[key], list))
return _flatten(lists)
# dict
elif _check_isinstance(values, dict, all):
is_qual = all(object_diff(values[0], v) == "" for v in values[1:])
if is_qual:
return values[0]
else:
RuntimeError(msg)
elif _check_isinstance(values, dict, any):
idx = _where_isinstance(values, dict)
if len(idx) == 1:
return values[int(idx)]
elif len(idx) > 1:
raise RuntimeError(msg)
# ndarray
elif _check_isinstance(values, np.ndarray, all) or _check_isinstance(
values, tuple, all
):
is_qual = all(np.array_equal(values[0], x) for x in values[1:])
if is_qual:
return values[0]
elif key == "meas_date":
logger.info(f"Found multiple entries for {key}. Setting value to `None`")
return None
else:
raise RuntimeError(msg)
elif _check_isinstance(values, (np.ndarray, tuple), any):
idx = _where_isinstance(values, np.ndarray)
if len(idx) == 1:
return values[int(idx)]
elif len(idx) > 1:
raise RuntimeError(msg)
# other
else:
unique_values = set(values)
if len(unique_values) == 1:
return list(values)[0]
elif isinstance(list(unique_values)[0], BytesIO):
logger.info("Found multiple StringIO instances. Setting value to `None`")
return None
elif isinstance(list(unique_values)[0], str):
logger.info("Found multiple filenames. Setting value to `None`")
return None
else:
raise RuntimeError(msg)
@verbose
def _merge_info(infos, force_update_to_first=False, verbose=None):
"""Merge multiple measurement info dictionaries.
- Fields that are present in only one info object will be used in the
merged info.
- Fields that are present in multiple info objects and are the same
will be used in the merged info.
- Fields that are present in multiple info objects and are different
will result in a None value in the merged info.
- Channels will be concatenated. If multiple info objects contain
channels with the same name, an exception is raised.
Parameters
----------
infos | list of instance of Info
Info objects to merge into one info object.
force_update_to_first : bool
If True, force the fields for objects in `info` will be updated
to match those in the first item. Use at your own risk, as this
may overwrite important metadata.
%(verbose)s
Returns
-------
info : instance of Info
The merged info object.
"""
for info in infos:
info._check_consistency()
if force_update_to_first is True:
infos = deepcopy(infos)
_force_update_info(infos[0], infos[1:])
info = Info()
info._unlocked = True
info["chs"] = []
for this_info in infos:
info["chs"].extend(this_info["chs"])
info._update_redundant()
duplicates = {ch for ch in info["ch_names"] if info["ch_names"].count(ch) > 1}
if len(duplicates) > 0:
msg = (
"The following channels are present in more than one input "
f"measurement info objects: {list(duplicates)}"
)
raise ValueError(msg)
transforms = ["ctf_head_t", "dev_head_t", "dev_ctf_t"]
for trans_name in transforms:
trans = [i[trans_name] for i in infos if i[trans_name]]
if len(trans) == 0:
info[trans_name] = None
elif len(trans) == 1:
info[trans_name] = trans[0]
elif all(
np.all(trans[0]["trans"] == x["trans"])
and trans[0]["from"] == x["from"]
and trans[0]["to"] == x["to"]
for x in trans[1:]
):
info[trans_name] = trans[0]
else:
msg = f"Measurement infos provide mutually inconsistent {trans_name}"
raise ValueError(msg)
# KIT system-IDs
kit_sys_ids = [i["kit_system_id"] for i in infos if i["kit_system_id"]]
if len(kit_sys_ids) == 0:
info["kit_system_id"] = None
elif len(set(kit_sys_ids)) == 1:
info["kit_system_id"] = kit_sys_ids[0]
else:
raise ValueError("Trying to merge channels from different KIT systems")
# hpi infos and digitization data:
fields = ["hpi_results", "hpi_meas", "dig"]
for k in fields:
values = [i[k] for i in infos if i[k]]
if len(values) == 0:
info[k] = []
elif len(values) == 1:
info[k] = values[0]
elif all(object_diff(values[0], v) == "" for v in values[1:]):
info[k] = values[0]
else:
msg = f"Measurement infos are inconsistent for {k}"
raise ValueError(msg)
# other fields
other_fields = [
"acq_pars",
"acq_stim",
"bads",
"comps",
"custom_ref_applied",
"description",
"experimenter",
"file_id",
"highpass",
"utc_offset",
"hpi_subsystem",
"events",
"device_info",
"helium_info",
"line_freq",
"lowpass",
"meas_id",
"proj_id",
"proj_name",
"projs",
"sfreq",
"gantry_angle",
"subject_info",
"sfreq",
"xplotter_layout",
"proc_history",
]
for k in other_fields:
info[k] = _merge_info_values(infos, k)
info["meas_date"] = infos[0]["meas_date"]
info._unlocked = False
return info
@verbose
def create_info(ch_names, sfreq, ch_types="misc", verbose=None):
"""Create a basic Info instance suitable for use with create_raw.
Parameters
----------
ch_names : list of str | int
Channel names. If an int, a list of channel names will be created
from ``range(ch_names)``.
sfreq : float
Sample rate of the data.
ch_types : list of str | str
Channel types, default is ``'misc'`` which is a
:term:`non-data channel <non-data channels>`.
Currently supported fields are 'bio', 'chpi', 'csd', 'dbs', 'dipole',
'ecg', 'ecog', 'eeg', 'emg', 'eog', 'exci', 'eyegaze',
'fnirs_cw_amplitude', 'fnirs_fd_ac_amplitude', 'fnirs_fd_phase',
'fnirs_od', 'gof', 'gsr', 'hbo', 'hbr', 'ias', 'misc', 'pupil',
'ref_meg', 'resp', 'seeg', 'stim', 'syst', 'temperature' (see also
:term:`sensor types`).
If str, then all channels are assumed to be of the same type.
%(verbose)s
Returns
-------
%(info_not_none)s
Notes
-----
The info dictionary will be sparsely populated to enable functionality
within the rest of the package. Advanced functionality such as source
localization can only be obtained through substantial, proper
modifications of the info structure (not recommended).
Note that the MEG device-to-head transform ``info['dev_head_t']`` will
be initialized to the identity transform.
Proper units of measure:
* V: eeg, eog, seeg, dbs, emg, ecg, bio, ecog, resp, fnirs_fd_ac_amplitude,
fnirs_cw_amplitude, fnirs_od
* T: mag, chpi, ref_meg
* T/m: grad
* M: hbo, hbr
* rad: fnirs_fd_phase
* Am: dipole
* S: gsr
* C: temperature
* V/m²: csd
* GOF: gof
* AU: misc, stim, eyegaze, pupil
"""
try:
ch_names = operator.index(ch_names) # int-like
except TypeError:
pass
else:
ch_names = list(np.arange(ch_names).astype(str))
_validate_type(ch_names, (list, tuple), "ch_names", ("list, tuple, or int"))
sfreq = float(sfreq)
if sfreq <= 0:
raise ValueError("sfreq must be positive")
nchan = len(ch_names)
if isinstance(ch_types, str):
ch_types = [ch_types] * nchan
ch_types = np.atleast_1d(np.array(ch_types, np.str_))
if ch_types.ndim != 1 or len(ch_types) != nchan:
raise ValueError(
f"ch_types and ch_names must be the same length ({len(ch_types)} != "
f"{nchan}) for ch_types={ch_types}"
)
info = _empty_info(sfreq)
ch_types_dict = get_channel_type_constants(include_defaults=True)
for ci, (ch_name, ch_type) in enumerate(zip(ch_names, ch_types)):
_validate_type(ch_name, "str", "each entry in ch_names")
_validate_type(ch_type, "str", "each entry in ch_types")
if ch_type not in ch_types_dict:
raise KeyError(f"kind must be one of {list(ch_types_dict)}, not {ch_type}")
this_ch_dict = ch_types_dict[ch_type]
kind = this_ch_dict["kind"]
# handle chpi, where kind is a *list* of FIFF constants:
kind = kind[0] if isinstance(kind, list | tuple) else kind
# mirror what tag.py does here
coord_frame = _ch_coord_dict.get(kind, FIFF.FIFFV_COORD_UNKNOWN)
coil_type = this_ch_dict.get("coil_type", FIFF.FIFFV_COIL_NONE)
unit = this_ch_dict.get("unit", FIFF.FIFF_UNIT_NONE)
chan_info = dict(
loc=np.full(12, np.nan),
unit_mul=FIFF.FIFF_UNITM_NONE,
range=1.0,
cal=1.0,
kind=kind,
coil_type=coil_type,
unit=unit,
coord_frame=coord_frame,
ch_name=str(ch_name),
scanno=ci + 1,
logno=ci + 1,
)
info["chs"].append(chan_info)
info._update_redundant()
info._check_consistency()
info._unlocked = False
return info
RAW_INFO_FIELDS = (
"acq_pars",
"acq_stim",
"bads",
"ch_names",
"chs",
"comps",
"ctf_head_t",
"custom_ref_applied",
"description",
"dev_ctf_t",
"dev_head_t",
"dig",
"experimenter",
"events",
"utc_offset",
"device_info",
"file_id",
"highpass",
"hpi_meas",
"hpi_results",
"helium_info",
"hpi_subsystem",
"kit_system_id",
"line_freq",
"lowpass",
"meas_date",
"meas_id",
"nchan",
"proj_id",
"proj_name",
"projs",
"sfreq",
"subject_info",
"xplotter_layout",
"proc_history",
"gantry_angle",
)
def _empty_info(sfreq):
"""Create an empty info dictionary."""
from ..transforms import Transform
_none_keys = (
"acq_pars",
"acq_stim",
"ctf_head_t",
"description",
"dev_ctf_t",
"dig",
"experimenter",
"utc_offset",
"device_info",
"file_id",
"highpass",
"hpi_subsystem",
"kit_system_id",
"helium_info",
"line_freq",
"lowpass",
"meas_date",
"meas_id",
"proj_id",
"proj_name",
"subject_info",
"xplotter_layout",
"gantry_angle",
)
_list_keys = (
"bads",
"chs",
"comps",
"events",
"hpi_meas",
"hpi_results",
"projs",
"proc_history",
)
info = Info()
info._unlocked = True
for k in _none_keys:
info[k] = None
for k in _list_keys:
info[k] = list()
info["custom_ref_applied"] = FIFF.FIFFV_MNE_CUSTOM_REF_OFF
info["highpass"] = 0.0
info["sfreq"] = float(sfreq)
info["lowpass"] = info["sfreq"] / 2.0
info["dev_head_t"] = Transform("meg", "head")
info._update_redundant()
info._check_consistency()
return info
def _force_update_info(info_base, info_target):
"""Update target info objects with values from info base.
Note that values in info_target will be overwritten by those in info_base.
This will overwrite all fields except for: 'chs', 'ch_names', 'nchan'.
Parameters
----------
info_base : mne.Info
The Info object you want to use for overwriting values
in target Info objects.
info_target : mne.Info | list of mne.Info
The Info object(s) you wish to overwrite using info_base. These objects
will be modified in-place.
"""
exclude_keys = ["chs", "ch_names", "nchan", "bads"]
info_target = np.atleast_1d(info_target).ravel()
all_infos = np.hstack([info_base, info_target])
for ii in all_infos:
if not isinstance(ii, Info):
raise ValueError(f"Inputs must be of type Info. Found type {type(ii)}")
for key, val in info_base.items():
if key in exclude_keys:
continue
for i_targ in info_target:
with i_targ._unlock():
i_targ[key] = val
def _add_timedelta_to_stamp(meas_date_stamp, delta_t):
"""Add a timedelta to a meas_date tuple."""
if meas_date_stamp is not None:
meas_date_stamp = _dt_to_stamp(_stamp_to_dt(meas_date_stamp) + delta_t)
return meas_date_stamp
@verbose
def anonymize_info(info, daysback=None, keep_his=False, verbose=None):
"""Anonymize measurement information in place.
.. warning:: If ``info`` is part of an object like
:class:`raw.info <mne.io.Raw>`, you should directly use
the method :meth:`raw.anonymize() <mne.io.Raw.anonymize>`
to ensure that all parts of the data are anonymized and
stay synchronized (e.g.,
:class:`raw.annotations <mne.Annotations>`).
Parameters
----------
%(info_not_none)s
%(daysback_anonymize_info)s
%(keep_his_anonymize_info)s
%(verbose)s
Returns
-------
info : instance of Info
The anonymized measurement information.
Notes
-----
%(anonymize_info_notes)s
"""
_validate_type(info, "info", "self")
default_anon_dos = datetime.datetime(
2000, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc
)
default_str = "mne_anonymize"
default_subject_id = 0
default_sex = 0
default_desc = "Anonymized using a time shift to preserve age at acquisition"
none_meas_date = info["meas_date"] is None
if none_meas_date:
if daysback is not None:
warn(
'Input info has "meas_date" set to None. '
"Removing all information from time/date structures, "
"*NOT* performing any time shifts!"
)
else:
# compute timeshift delta
if daysback is None:
delta_t = info["meas_date"] - default_anon_dos
else:
delta_t = datetime.timedelta(days=daysback)
with info._unlock():
info["meas_date"] = info["meas_date"] - delta_t
# file_id and meas_id
for key in ("file_id", "meas_id"):
value = info.get(key)
if value is not None:
assert "msecs" not in value
if none_meas_date or ((value["secs"], value["usecs"]) == DATE_NONE):
# Don't try to shift backwards in time when no measurement
# date is available or when file_id is already a place holder
tmp = DATE_NONE
else:
tmp = _add_timedelta_to_stamp((value["secs"], value["usecs"]), -delta_t)
value["secs"] = tmp[0]
value["usecs"] = tmp[1]
# The following copy is needed for a test CTF dataset
# otherwise value['machid'][:] = 0 would suffice
_tmp = value["machid"].copy()
_tmp[:] = 0
value["machid"] = _tmp
# subject info
subject_info = info.get("subject_info")
if subject_info is not None:
if subject_info.get("id") is not None:
subject_info["id"] = default_subject_id
if keep_his:
logger.info(
"Not fully anonymizing info - keeping his_id, sex, and hand info"
)
else:
if subject_info.get("his_id") is not None:
subject_info["his_id"] = str(default_subject_id)
if subject_info.get("sex") is not None:
subject_info["sex"] = default_sex
if subject_info.get("hand") is not None:
del subject_info["hand"] # there's no "unknown" setting
for key in ("last_name", "first_name", "middle_name"):
if subject_info.get(key) is not None:
subject_info[key] = default_str
# anonymize the subject birthday
if none_meas_date:
subject_info.pop("birthday", None)
elif subject_info.get("birthday") is not None:
subject_info["birthday"] = subject_info["birthday"] - delta_t
for key in ("weight", "height"):
if subject_info.get(key) is not None:
subject_info[key] = 0
info["experimenter"] = default_str
info["description"] = default_desc
with info._unlock():
if info["proj_id"] is not None:
info["proj_id"] = np.zeros_like(info["proj_id"])
if info["proj_name"] is not None:
info["proj_name"] = default_str
if info["utc_offset"] is not None:
info["utc_offset"] = None
proc_hist = info.get("proc_history")
if proc_hist is not None:
for record in proc_hist:
record["block_id"]["machid"][:] = 0
record["experimenter"] = default_str
if none_meas_date:
record["block_id"]["secs"] = DATE_NONE[0]
record["block_id"]["usecs"] = DATE_NONE[1]
record["date"] = DATE_NONE
else:
this_t0 = (record["block_id"]["secs"], record["block_id"]["usecs"])
this_t1 = _add_timedelta_to_stamp(this_t0, -delta_t)
record["block_id"]["secs"] = this_t1[0]
record["block_id"]["usecs"] = this_t1[1]
record["date"] = _add_timedelta_to_stamp(record["date"], -delta_t)
hi = info.get("helium_info")
if hi is not None:
if hi.get("orig_file_guid") is not None:
hi["orig_file_guid"] = default_str
if none_meas_date and hi.get("meas_date") is not None:
hi["meas_date"] = _ensure_meas_date_none_or_dt(DATE_NONE)
elif hi.get("meas_date") is not None:
hi["meas_date"] = hi["meas_date"] - delta_t
di = info.get("device_info")
if di is not None:
for k in ("serial", "site"):
if di.get(k) is not None:
di[k] = default_str
err_mesg = (
"anonymize_info generated an inconsistent info object. Underlying Error:\n"
)
info._check_consistency(prepend_error=err_mesg)
err_mesg = (
"anonymize_info generated an inconsistent info object. "
"daysback parameter was too large. "
"Underlying Error:\n"
)
_check_dates(info, prepend_error=err_mesg)
return info
@fill_doc
def _bad_chans_comp(info, ch_names):
"""Check if channel names are consistent with current compensation status.
Parameters
----------
%(info_not_none)s
ch_names : list of str
The channel names to check.
Returns
-------
status : bool
True if compensation is *currently* in use but some compensation
channels are not included in picks
False if compensation is *currently* not being used
or if compensation is being used and all compensation channels
in info and included in picks.
missing_ch_names: array-like of str, shape (n_missing,)
The names of compensation channels not included in picks.
Returns [] if no channels are missing.
"""
if "comps" not in info:
# should this be thought of as a bug?
return False, []
# only include compensation channels that would affect selected channels
ch_names_s = set(ch_names)
comp_names = []
for comp in info["comps"]:
if len(ch_names_s.intersection(comp["data"]["row_names"])) > 0:
comp_names.extend(comp["data"]["col_names"])
comp_names = sorted(set(comp_names))
missing_ch_names = sorted(set(comp_names).difference(ch_names))
if get_current_comp(info) != 0 and len(missing_ch_names) > 0:
return True, missing_ch_names
return False, missing_ch_names
_DIG_CAST = dict(kind=int, ident=int, r=lambda x: x, coord_frame=int)
# key -> const, cast, write
_CH_INFO_MAP = OrderedDict(
scanno=(FIFF.FIFF_CH_SCAN_NO, _int_item, write_int),
logno=(FIFF.FIFF_CH_LOGICAL_NO, _int_item, write_int),
kind=(FIFF.FIFF_CH_KIND, _int_item, write_int),
range=(FIFF.FIFF_CH_RANGE, _float_item, write_float),
cal=(FIFF.FIFF_CH_CAL, _float_item, write_float),
coil_type=(FIFF.FIFF_CH_COIL_TYPE, _int_item, write_int),
loc=(FIFF.FIFF_CH_LOC, lambda x: x, write_float),
unit=(FIFF.FIFF_CH_UNIT, _int_item, write_int),
unit_mul=(FIFF.FIFF_CH_UNIT_MUL, _int_item, write_int),
ch_name=(FIFF.FIFF_CH_DACQ_NAME, str, write_string),
coord_frame=(FIFF.FIFF_CH_COORD_FRAME, _int_item, write_int),
)
# key -> cast
_CH_CAST = OrderedDict((key, val[1]) for key, val in _CH_INFO_MAP.items())
# const -> key, cast
_CH_READ_MAP = OrderedDict((val[0], (key, val[1])) for key, val in _CH_INFO_MAP.items())
@contextlib.contextmanager
def _writing_info_hdf5(info):
# Make info writing faster by packing chs and dig into numpy arrays
orig_dig = info.get("dig", None)
orig_chs = info["chs"]
with info._unlock():
try:
if orig_dig is not None and len(orig_dig) > 0:
info["dig"] = _dict_pack(info["dig"], _DIG_CAST)
info["chs"] = _dict_pack(info["chs"], _CH_CAST)
info["chs"]["ch_name"] = np.char.encode(
info["chs"]["ch_name"], encoding="utf8"
)
yield
finally:
if orig_dig is not None:
info["dig"] = orig_dig
info["chs"] = orig_chs
def _dict_pack(obj, casts):
# pack a list of dict into dict of array
return {key: np.array([o[key] for o in obj]) for key in casts}
def _dict_unpack(obj, casts):
# unpack a dict of array into a list of dict
n = len(obj[list(casts)[0]])
return [{key: cast(obj[key][ii]) for key, cast in casts.items()} for ii in range(n)]
def _make_ch_names_mapping(chs):
orig_ch_names = [c["ch_name"] for c in chs]
ch_names = orig_ch_names.copy()
_unique_channel_names(ch_names, max_length=15, verbose="error")
ch_names_mapping = dict()
if orig_ch_names != ch_names:
ch_names_mapping.update(zip(orig_ch_names, ch_names))
return ch_names_mapping
def _write_ch_infos(fid, chs, reset_range, ch_names_mapping):
ch_names_mapping = dict() if ch_names_mapping is None else ch_names_mapping
for k, c in enumerate(chs):
# Scan numbers may have been messed up
c = c.copy()
c["ch_name"] = ch_names_mapping.get(c["ch_name"], c["ch_name"])
assert len(c["ch_name"]) <= 15
c["scanno"] = k + 1
# for float/double, the "range" param is unnecessary
if reset_range:
c["range"] = 1.0
write_ch_info(fid, c)
# only write new-style channel information if necessary
if len(ch_names_mapping):
logger.info(
" Writing channel names to FIF truncated to 15 characters with remapping"
)
for ch in chs:
start_block(fid, FIFF.FIFFB_CH_INFO)
assert set(ch) == set(_CH_INFO_MAP)
for key, (const, _, write) in _CH_INFO_MAP.items():
write(fid, const, ch[key])
end_block(fid, FIFF.FIFFB_CH_INFO)
def _ensure_infos_match(info1, info2, name, *, on_mismatch="raise"):
"""Check if infos match.
Parameters
----------
info1, info2 : instance of Info
The infos to compare.
name : str
The name of the object appearing in the error message of the comparison
fails.
on_mismatch : 'raise' | 'warn' | 'ignore'
What to do in case of a mismatch of ``dev_head_t`` between ``info1``
and ``info2``.
"""
_check_on_missing(on_missing=on_mismatch, name="on_mismatch")
info1._check_consistency()
info2._check_consistency()
if info1["nchan"] != info2["nchan"]:
raise ValueError(f"{name}.info['nchan'] must match")
if set(info1["bads"]) != set(info2["bads"]):
raise ValueError(f"{name}.info['bads'] must match")
if info1["sfreq"] != info2["sfreq"]:
raise ValueError(f"{name}.info['sfreq'] must match")
if set(info1["ch_names"]) != set(info2["ch_names"]):
raise ValueError(f"{name}.info['ch_names'] must match")
if info1["ch_names"] != info2["ch_names"]:
msg = (
f"{name}.info['ch_names']: Channel order must match. Use "
'"mne.match_channel_orders()" to sort channels.'
)
raise ValueError(msg)
if len(info2["projs"]) != len(info1["projs"]):
raise ValueError(f"SSP projectors in {name} must be the same")
if any(not _proj_equal(p1, p2) for p1, p2 in zip(info2["projs"], info1["projs"])):
raise ValueError(f"SSP projectors in {name} must be the same")
if (info1["dev_head_t"] is None) ^ (info2["dev_head_t"] is None) or (
info1["dev_head_t"] is not None
and not np.allclose(
info1["dev_head_t"]["trans"],
info2["dev_head_t"]["trans"],
rtol=1e-6,
equal_nan=True,
)
):
msg = (
f"{name}.info['dev_head_t'] differs. The "
f"instances probably come from different runs, and "
f"are therefore associated with different head "
f"positions. Manually change info['dev_head_t'] to "
f"avoid this message but beware that this means the "
f"MEG sensors will not be properly spatially aligned. "
f"See mne.preprocessing.maxwell_filter to realign the "
f"runs to a common head position."
)
_on_missing(on_missing=on_mismatch, msg=msg, name="on_mismatch")
def _get_fnirs_ch_pos(info):
"""Return positions of each fNIRS optode.
fNIRS uses two types of optodes, sources and detectors.
There can be multiple connections between each source
and detector at different wavelengths. This function
returns the location of each source and detector.
"""
from ..preprocessing.nirs import _fnirs_optode_names, _optode_position
srcs, dets = _fnirs_optode_names(info)
ch_pos = {}
for optode in [*srcs, *dets]:
ch_pos[optode] = _optode_position(info, optode)
return ch_pos
def _camel_to_snake(s):
return re.sub(r"(?<!^)(?=[A-Z])", "_", s).lower()