[074d3d]: / examples / visualization / ssp_projs_sensitivity_map.py

Download this file

54 lines (39 with data), 1.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
"""
.. _ex-ssp-proj:
==================================
Sensitivity map of SSP projections
==================================
This example shows the sources that have a forward field
similar to the first SSP vector correcting for ECG.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# %%
import matplotlib.pyplot as plt
from mne import read_forward_solution, read_proj, sensitivity_map
from mne.datasets import sample
print(__doc__)
data_path = sample.data_path()
subjects_dir = data_path / "subjects"
meg_path = data_path / "MEG" / "sample"
fname = meg_path / "sample_audvis-meg-eeg-oct-6-fwd.fif"
ecg_fname = meg_path / "sample_audvis_ecg-proj.fif"
fwd = read_forward_solution(fname)
projs = read_proj(ecg_fname)
# take only one projection per channel type
projs = projs[::2]
# Compute sensitivity map
ssp_ecg_map = sensitivity_map(fwd, ch_type="grad", projs=projs, mode="angle")
# %%
# Show sensitivity map
plt.hist(ssp_ecg_map.data.ravel())
plt.show()
args = dict(
clim=dict(kind="value", lims=(0.2, 0.6, 1.0)),
smoothing_steps=7,
hemi="rh",
subjects_dir=subjects_dir,
)
ssp_ecg_map.plot(subject="sample", time_label="ECG SSP sensitivity", **args)