"""
=======================================
Reduce EOG artifacts through regression
=======================================
Reduce artifacts by regressing the EOG channels onto the rest of the channels
and then subtracting the EOG signal.
This is a quick example to show the most basic application of the technique.
See the :ref:`tutorial <tut-artifact-regression>` for a more thorough
explanation that demonstrates more advanced approaches.
"""
# Author: Marijn van Vliet <w.m.vanvliet@gmail.com>
#
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
# %%
# Import packages and load data
# -----------------------------
#
# We begin as always by importing the necessary Python modules and loading some
# data, in this case the :ref:`MNE sample dataset <sample-dataset>`.
from matplotlib import pyplot as plt
import mne
from mne.datasets import sample
from mne.preprocessing import EOGRegression
print(__doc__)
data_path = sample.data_path()
raw_fname = data_path / "MEG" / "sample" / "sample_audvis_filt-0-40_raw.fif"
# Read raw data
raw = mne.io.read_raw_fif(raw_fname, preload=True)
events = mne.find_events(raw, "STI 014")
# Highpass filter to eliminate slow drifts
raw.filter(0.3, None, picks="all")
# %%
# Perform regression and remove EOG
# ---------------------------------
# Fit the regression model
weights = EOGRegression().fit(raw)
raw_clean = weights.apply(raw, copy=True)
# Show the filter weights in a topomap
weights.plot()
# %%
# Before/after comparison
# -----------------------
# Let's compare the signal before and after cleaning with EOG regression. This
# is best visualized by extracting epochs and plotting the evoked potential.
tmin, tmax = -0.1, 0.5
event_id = {"visual/left": 3, "visual/right": 4}
evoked_before = mne.Epochs(
raw, events, event_id, tmin, tmax, baseline=(tmin, 0)
).average()
evoked_after = mne.Epochs(
raw_clean, events, event_id, tmin, tmax, baseline=(tmin, 0)
).average()
# Create epochs after EOG correction
epochs_after = mne.Epochs(raw_clean, events, event_id, tmin, tmax, baseline=(tmin, 0))
evoked_after = epochs_after.average()
fig, ax = plt.subplots(
nrows=3, ncols=2, figsize=(10, 7), sharex=True, sharey="row", layout="constrained"
)
evoked_before.plot(axes=ax[:, 0], spatial_colors=True)
evoked_after.plot(axes=ax[:, 1], spatial_colors=True)
fig.suptitle("Before --> After")