[7f9fb8]: / mne / viz / utils.py

Download this file

2860 lines (2510 with data), 97.9 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
"""Utility functions for plotting M/EEG data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import difflib
import math
import os
import sys
import tempfile
import traceback
import webbrowser
from collections import defaultdict
from contextlib import contextmanager
from datetime import datetime
from functools import partial
import numpy as np
from decorator import decorator
from scipy.signal import argrelmax
from .._fiff.constants import FIFF
from .._fiff.meas_info import Info
from .._fiff.open import show_fiff
from .._fiff.pick import (
_DATA_CH_TYPES_ORDER_DEFAULT,
_DATA_CH_TYPES_SPLIT,
_VALID_CHANNEL_TYPES,
_contains_ch_type,
_pick_data_channels,
_picks_by_type,
channel_indices_by_type,
channel_type,
pick_channels,
pick_channels_cov,
pick_info,
)
from .._fiff.proj import Projection, setup_proj
from ..defaults import _handle_default
from ..fixes import _median_complex
from ..rank import compute_rank
from ..transforms import apply_trans
from ..utils import (
_auto_weakref,
_check_ch_locs,
_check_decim,
_check_option,
_check_sphere,
_ensure_int,
_pl,
_to_rgb,
_validate_type,
fill_doc,
get_config,
logger,
verbose,
warn,
)
from ..utils.misc import _identity_function
from .ui_events import ChannelsSelect, ColormapRange, publish, subscribe
_channel_type_prettyprint = {
"eeg": "EEG channel",
"grad": "Gradiometer",
"mag": "Magnetometer",
"seeg": "sEEG channel",
"dbs": "DBS channel",
"eog": "EOG channel",
"ecg": "ECG sensor",
"emg": "EMG sensor",
"ecog": "ECoG channel",
"misc": "miscellaneous sensor",
}
@decorator
def safe_event(fun, *args, **kwargs):
"""Protect against Qt exiting on event-handling errors."""
try:
return fun(*args, **kwargs)
except Exception:
traceback.print_exc(file=sys.stderr)
def _setup_vmin_vmax(data, vmin, vmax, norm=False):
"""Handle vmin and vmax parameters for visualizing topomaps.
For the normal use-case (when `vmin` and `vmax` are None), the parameter
`norm` drives the computation. When norm=False, data is supposed to come
from a mag and the output tuple (vmin, vmax) is symmetric range
(-x, x) where x is the max(abs(data)). When norm=True (a.k.a. data is the
L2 norm of a gradiometer pair) the output tuple corresponds to (0, x).
Otherwise, vmin and vmax are callables that drive the operation.
"""
should_warn = False
if vmax is None and vmin is None:
vmax = np.abs(data).max()
vmin = 0.0 if norm else -vmax
if vmin == 0 and np.min(data) < 0:
should_warn = True
else:
if callable(vmin):
vmin = vmin(data)
elif vmin is None:
vmin = 0.0 if norm else np.min(data)
if vmin == 0 and np.min(data) < 0:
should_warn = True
if callable(vmax):
vmax = vmax(data)
elif vmax is None:
vmax = np.max(data)
if should_warn:
warn_msg = (
"_setup_vmin_vmax output a (min={vmin}, max={vmax})"
" range whereas the minimum of data is {data_min}"
)
warn_val = {"vmin": vmin, "vmax": vmax, "data_min": np.min(data)}
warn(warn_msg.format(**warn_val), UserWarning)
return vmin, vmax
def plt_show(show=True, fig=None, **kwargs):
"""Show a figure while suppressing warnings.
Parameters
----------
show : bool
Show the figure.
fig : instance of Figure | None
If non-None, use fig.show().
**kwargs : dict
Extra arguments for :func:`matplotlib.pyplot.show`.
"""
import matplotlib.pyplot as plt
from matplotlib import get_backend
if hasattr(fig, "mne") and hasattr(fig.mne, "backend"):
backend = fig.mne.backend
# TODO: This is a hack to deal with the fact that the
# with plt.ion():
# BACKEND = get_backend()
# an the top of _mpl_figure detects QtAgg during testing even though
# we've set the backend to Agg.
if backend != "agg":
gotten_backend = get_backend()
if gotten_backend == "agg":
backend = "agg"
else:
backend = get_backend()
if show and backend != "agg":
logger.debug(f"Showing plot for backend {repr(backend)}")
(fig or plt).show(**kwargs)
def _show_browser(show=True, block=True, fig=None, **kwargs):
"""Show the browser considering different backends.
Parameters
----------
show : bool
Show the figure.
block : bool
If to block execution on showing.
fig : instance of Figure | None
Needs to be passed for Qt backend,
optional for matplotlib.
**kwargs : dict
Extra arguments for :func:`matplotlib.pyplot.show`.
"""
from ._figure import get_browser_backend
_validate_type(block, bool, "block")
backend = get_browser_backend()
if os.getenv("_MNE_BROWSER_NO_BLOCK", "false").lower() == "true":
block = False
if backend == "matplotlib":
plt_show(show, block=block, **kwargs)
else:
from qtpy.QtCore import Qt
from qtpy.QtWidgets import QApplication
from .backends._utils import _qt_app_exec
if fig is not None and os.getenv("_MNE_BROWSER_BACK", "").lower() == "true":
fig.setWindowFlags(fig.windowFlags() | Qt.WindowStaysOnBottomHint)
if show:
fig.show()
# If block=False, a Qt-Event-Loop has to be started
# somewhere else in the calling code.
if block:
_qt_app_exec(QApplication.instance())
def _check_delayed_ssp(container):
"""Handle interactive SSP selection."""
if container.proj is True or all(p["active"] for p in container.info["projs"]):
raise RuntimeError(
"Projs are already applied. Please initialize"
" the data with proj set to False."
)
elif len(container.info["projs"]) < 1:
raise RuntimeError("No projs found in evoked.")
def _validate_if_list_of_axes(axes, obligatory_len=None, name="axes"):
"""Validate whether input is a list/array of axes."""
from matplotlib.axes import Axes
_validate_type(axes, (list, tuple, np.ndarray), name)
if isinstance(axes, np.ndarray) and axes.ndim > 1:
raise ValueError(
f"if {name} is a numpy array, it must be one-dimensional, but "
f"the received numpy array has {axes.ndim} dimensions. Try using "
"ravel or flatten method of the array."
)
wrong_idx = np.where([not isinstance(x, Axes) for x in axes])[0]
if len(wrong_idx):
raise TypeError(
f"{name} must be an array-like of matplotlib axes objects, but "
f"{name}[{wrong_idx[0]}] is of type {type(axes[wrong_idx[0]])}"
)
if obligatory_len is not None:
obligatory_len = _ensure_int(
obligatory_len, "obligatory_len", extra="if not None"
)
if len(axes) != obligatory_len:
raise ValueError(
f"{name} must be an array-like of length {obligatory_len}, "
f"but the length is {len(axes)}"
)
def mne_analyze_colormap(limits=(5, 10, 15), format="vtk"): # noqa: A002
"""Return a colormap similar to that used by mne_analyze.
Parameters
----------
limits : array-like of length 3 or 6
Bounds for the colormap, which will be mirrored across zero if length
3, or completely specified (and potentially asymmetric) if length 6.
format : str
Type of colormap to return. If 'matplotlib', will return a
matplotlib.colors.LinearSegmentedColormap. If 'vtk', will
return an RGBA array of shape (256, 4).
Returns
-------
cmap : instance of colormap | array
A teal->blue->gray->red->yellow colormap. See docstring of the 'format'
argument for further details.
Notes
-----
For this will return a colormap that will display correctly for data
that are scaled by the plotting function to span [-fmax, fmax].
""" # noqa: E501
# Ensure limits is an array
limits = np.asarray(limits, dtype="float")
if len(limits) != 3 and len(limits) != 6:
raise ValueError("limits must have 3 or 6 elements")
if len(limits) == 3 and any(limits < 0.0):
raise ValueError("if 3 elements, limits must all be non-negative")
if any(np.diff(limits) <= 0):
raise ValueError("limits must be monotonically increasing")
if format == "matplotlib":
from matplotlib import colors
if len(limits) == 3:
limits = (np.concatenate((-np.flipud(limits), limits)) + limits[-1]) / (
2 * limits[-1]
)
else:
limits = (limits - np.min(limits)) / np.max(limits - np.min(limits))
cdict = {
"red": (
(limits[0], 0.0, 0.0),
(limits[1], 0.0, 0.0),
(limits[2], 0.5, 0.5),
(limits[3], 0.5, 0.5),
(limits[4], 1.0, 1.0),
(limits[5], 1.0, 1.0),
),
"green": (
(limits[0], 1.0, 1.0),
(limits[1], 0.0, 0.0),
(limits[2], 0.5, 0.5),
(limits[3], 0.5, 0.5),
(limits[4], 0.0, 0.0),
(limits[5], 1.0, 1.0),
),
"blue": (
(limits[0], 1.0, 1.0),
(limits[1], 1.0, 1.0),
(limits[2], 0.5, 0.5),
(limits[3], 0.5, 0.5),
(limits[4], 0.0, 0.0),
(limits[5], 0.0, 0.0),
),
"alpha": (
(limits[0], 1.0, 1.0),
(limits[1], 1.0, 1.0),
(limits[2], 0.0, 0.0),
(limits[3], 0.0, 0.0),
(limits[4], 1.0, 1.0),
(limits[5], 1.0, 1.0),
),
}
return colors.LinearSegmentedColormap("mne_analyze", cdict)
elif format in ("vtk", "mayavi"):
if len(limits) == 3:
limits = np.concatenate((-np.flipud(limits), [0], limits)) / limits[-1]
else:
limits = np.concatenate((limits[:3], [0], limits[3:]))
limits /= np.max(np.abs(limits))
r = np.array([0, 0, 0, 0, 1, 1, 1])
g = np.array([1, 0, 0, 0, 0, 0, 1])
b = np.array([1, 1, 1, 0, 0, 0, 0])
a = np.array([1, 1, 0, 0, 0, 1, 1])
xp = (np.arange(256) - 128) / 128.0
colormap = np.r_[[np.interp(xp, limits, 255 * c) for c in [r, g, b, a]]].T
return colormap
else:
# Use this instead of check_option because we have a hidden option
raise ValueError(f"format must be either matplotlib or vtk, got {repr(format)}")
@contextmanager
def _events_off(obj):
obj.eventson = False
try:
yield
finally:
obj.eventson = True
def _toggle_proj(event, params, all_=False):
"""Perform operations when proj boxes clicked."""
# read options if possible
if "proj_checks" in params:
bools = list(params["proj_checks"].get_status())
if all_:
new_bools = [not all(bools)] * len(bools)
with _events_off(params["proj_checks"]):
for bi, (old, new) in enumerate(zip(bools, new_bools)):
if old != new:
params["proj_checks"].set_active(bi)
bools[bi] = new
for bi, (b, p) in enumerate(zip(bools, params["projs"])):
# see if they tried to deactivate an active one
if not b and p["active"]:
bools[bi] = True
else:
proj = params.get("apply_proj", True)
bools = [proj] * len(params["projs"])
compute_proj = False
if "proj_bools" not in params:
compute_proj = True
elif not np.array_equal(bools, params["proj_bools"]):
compute_proj = True
# if projectors changed, update plots
if compute_proj is True:
params["plot_update_proj_callback"](params, bools)
def _get_channel_plotting_order(order, ch_types, picks=None):
"""Determine channel plotting order for browse-style Raw/Epochs plots."""
if order is None:
# for backward compat, we swap the first two to keep grad before mag
ch_type_order = list(_DATA_CH_TYPES_ORDER_DEFAULT)
ch_type_order = tuple(["grad", "mag"] + ch_type_order[2:])
order = [
pick_idx
for order_type in ch_type_order
for pick_idx, pick_type in enumerate(ch_types)
if order_type == pick_type
]
elif not isinstance(order, np.ndarray | list | tuple):
raise ValueError(f'order should be array-like; got "{order}" ({type(order)}).')
if picks is not None:
order = [ch for ch in order if ch in picks]
return np.asarray(order, int)
def _make_event_color_dict(event_color, events=None, event_id=None):
"""Make or validate a dict mapping event ids to colors."""
from .misc import _handle_event_colors
if isinstance(event_color, dict): # if event_color is a dict, validate it
event_id = dict() if event_id is None else event_id
event_color = {
_ensure_int(event_id.get(key, key), "event_color key"): value
for key, value in event_color.items()
}
default = event_color.pop(-1, None)
default_factory = None if default is None else lambda: default
new_dict = defaultdict(default_factory)
for key, value in event_color.items():
if key < 1:
raise KeyError(
"event_color keys must be strictly positive, "
f"or -1 (cannot use {key})"
)
new_dict[key] = value
return new_dict
elif event_color is None: # make a dict from color cycle
uniq_events = set() if events is False else np.unique(events[:, 2])
return _handle_event_colors(event_color, uniq_events, event_id)
else: # if event_color is a MPL color-like thing, use it for all events
return defaultdict(lambda: event_color)
def _prepare_trellis(
n_cells,
ncols,
nrows="auto",
title=False,
size=1.3,
sharex=False,
sharey=False,
):
from matplotlib.gridspec import GridSpec
from ._mpl_figure import _figure
if n_cells == 1:
nrows = ncols = 1
elif isinstance(ncols, int) and n_cells <= ncols:
nrows, ncols = 1, n_cells
else:
if ncols == "auto" and nrows == "auto":
nrows = math.floor(math.sqrt(n_cells))
ncols = math.ceil(n_cells / nrows)
elif ncols == "auto":
ncols = math.ceil(n_cells / nrows)
elif nrows == "auto":
nrows = math.ceil(n_cells / ncols)
else:
naxes = ncols * nrows
if naxes < n_cells:
raise ValueError(
f"Cannot plot {n_cells} axes in a {nrows} by {ncols} figure."
)
width = size * ncols
height = (size + max(0, 0.1 * (4 - size))) * nrows + bool(title) * 0.5
fig = _figure(toolbar=False, figsize=(width * 1.5, 0.25 + height * 1.5))
gs = GridSpec(nrows, ncols, figure=fig)
axes = []
for ax_idx in range(n_cells):
subplot_kw = dict()
if ax_idx > 0:
if sharex:
subplot_kw.update(sharex=axes[0])
if sharey:
subplot_kw.update(sharey=axes[0])
axes.append(fig.add_subplot(gs[ax_idx], **subplot_kw))
return fig, axes, ncols, nrows
def _draw_proj_checkbox(event, params, draw_current_state=True):
"""Toggle options (projectors) dialog."""
from matplotlib import widgets
projs = params["projs"]
# turn on options dialog
labels = [p["desc"] for p in projs]
actives = (
[p["active"] for p in projs]
if draw_current_state
else params.get("proj_bools", [params["apply_proj"]] * len(projs))
)
width = max([4.0, max([len(p["desc"]) for p in projs]) / 6.0 + 0.5])
height = (len(projs) + 1) / 6.0 + 1.5
# We manually place everything here so avoid constrained layouts
fig_proj = figure_nobar(figsize=(width, height), layout=None)
_set_window_title(fig_proj, "SSP projection vectors")
offset = 1.0 / 6.0 / height
params["fig_proj"] = fig_proj # necessary for proper toggling
ax_temp = fig_proj.add_axes((0, offset, 1, 0.8 - offset), frameon=False)
ax_temp.set_title('Projectors marked with "X" are active')
# make edges around checkbox areas and change already-applied projectors
# to red
from ._mpl_figure import _OLD_BUTTONS
check_kwargs = dict()
if not _OLD_BUTTONS:
checkcolor = ["#ff0000" if p["active"] else "k" for p in projs]
check_kwargs["check_props"] = dict(facecolor=checkcolor)
check_kwargs["frame_props"] = dict(edgecolor="0.5", linewidth=1)
proj_checks = widgets.CheckButtons(
ax_temp, labels=labels, actives=actives, **check_kwargs
)
if _OLD_BUTTONS:
for rect in proj_checks.rectangles:
rect.set_edgecolor("0.5")
rect.set_linewidth(1.0)
for ii, p in enumerate(projs):
if p["active"]:
for x in proj_checks.lines[ii]:
x.set_color("#ff0000")
# make minimal size
# pass key presses from option dialog over
proj_checks.on_clicked(partial(_toggle_proj, params=params))
params["proj_checks"] = proj_checks
fig_proj.canvas.mpl_connect("key_press_event", _key_press)
# Toggle all
ax_temp = fig_proj.add_axes((0, 0, 1, offset), frameon=False)
proj_all = widgets.Button(ax_temp, "Toggle all")
proj_all.on_clicked(partial(_toggle_proj, params=params, all_=True))
params["proj_all"] = proj_all
# this should work for non-test cases
try:
fig_proj.canvas.draw()
plt_show(fig=fig_proj, warn=False)
except Exception:
pass
def _simplify_float(label):
# Heuristic to turn floats to ints where possible (e.g. -500.0 to -500)
if (
isinstance(label, float)
and np.isfinite(label)
and float(str(label)) != round(label)
):
label = round(label, 2)
return label
def _get_figsize_from_config():
"""Get default / most recent figure size from config."""
figsize = get_config("MNE_BROWSE_RAW_SIZE")
if figsize is not None:
figsize = figsize.split(",")
figsize = tuple([float(s) for s in figsize])
return figsize
@verbose
def compare_fiff(
fname_1,
fname_2,
fname_out=None,
show=True,
indent=" ",
read_limit=np.inf,
max_str=30,
verbose=None,
):
"""Compare the contents of two fiff files using diff and show_fiff.
Parameters
----------
fname_1 : path-like
First file to compare.
fname_2 : path-like
Second file to compare.
fname_out : path-like | None
Filename to store the resulting diff. If None, a temporary
file will be created.
show : bool
If True, show the resulting diff in a new tab in a web browser.
indent : str
How to indent the lines.
read_limit : int
Max number of bytes of data to read from a tag. Can be np.inf
to always read all data (helps test read completion).
max_str : int
Max number of characters of string representation to print for
each tag's data.
%(verbose)s
Returns
-------
fname_out : str
The filename used for storing the diff. Could be useful for
when a temporary file is used.
"""
file_1 = show_fiff(
fname_1, output=list, indent=indent, read_limit=read_limit, max_str=max_str
)
file_2 = show_fiff(
fname_2, output=list, indent=indent, read_limit=read_limit, max_str=max_str
)
diff = difflib.HtmlDiff().make_file(file_1, file_2, fname_1, fname_2)
if fname_out is not None:
f = open(fname_out, "wb")
else:
f = tempfile.NamedTemporaryFile("wb", delete=False, suffix=".html")
fname_out = f.name
with f as fid:
fid.write(diff.encode("utf-8"))
if show is True:
webbrowser.open_new_tab(fname_out)
return fname_out
def figure_nobar(*args, **kwargs):
"""Make matplotlib figure with no toolbar.
Parameters
----------
*args : list
Arguments to pass to :func:`matplotlib.pyplot.figure`.
**kwargs : dict
Keyword arguments to pass to :func:`matplotlib.pyplot.figure`.
Returns
-------
fig : instance of Figure
The figure.
"""
from matplotlib import pyplot as plt
from matplotlib import rcParams
old_val = rcParams["toolbar"]
try:
rcParams["toolbar"] = "none"
if "layout" not in kwargs:
kwargs["layout"] = "constrained"
fig = plt.figure(*args, **kwargs)
# remove button press catchers (for toolbar)
cbs = list(fig.canvas.callbacks.callbacks["key_press_event"].keys())
for key in cbs:
fig.canvas.callbacks.disconnect(key)
finally:
rcParams["toolbar"] = old_val
return fig
def _show_help_fig(col1, col2, fig_help, ax, show):
_set_window_title(fig_help, "Help")
celltext = [
[c1, c2] for c1, c2 in zip(col1.strip().split("\n"), col2.strip().split("\n"))
]
table = ax.table(cellText=celltext, loc="center", cellLoc="left")
table.auto_set_font_size(False)
table.set_fontsize(12)
ax.set_axis_off()
for (row, col), cell in table.get_celld().items():
cell.set_edgecolor(None) # remove cell borders
# right justify, following:
# https://stackoverflow.com/questions/48210749/matplotlib-table-assign-different-text-alignments-to-different-columns?rq=1 # noqa: E501
if col == 0:
cell._loc = "right"
fig_help.canvas.mpl_connect("key_press_event", _key_press)
if show:
# this should work for non-test cases
try:
fig_help.canvas.draw()
plt_show(fig=fig_help, warn=False)
except Exception:
pass
def _key_press(event):
"""Handle key press in dialog."""
import matplotlib.pyplot as plt
if event.key == "escape":
plt.close(event.canvas.figure)
class ClickableImage:
"""Display an image so you can click on it and store x/y positions.
Takes as input an image array (can be any array that works with imshow,
but will work best with images. Displays the image and lets you
click on it. Stores the xy coordinates of each click, so now you can
superimpose something on top of it.
Upon clicking, the x/y coordinate of the cursor will be stored in
self.coords, which is a list of (x, y) tuples.
Parameters
----------
imdata : ndarray
The image that you wish to click on for 2-d points.
**kwargs : dict
Keyword arguments. Passed to ax.imshow.
Notes
-----
.. versionadded:: 0.9.0
"""
def __init__(self, imdata, **kwargs):
"""Display the image for clicking."""
import matplotlib.pyplot as plt
self.coords = []
self.imdata = imdata
self.fig = plt.figure()
self.ax = self.fig.add_subplot(111)
self.ymax = self.imdata.shape[0]
self.xmax = self.imdata.shape[1]
self.im = self.ax.imshow(
imdata, extent=(0, self.xmax, 0, self.ymax), picker=True, **kwargs
)
self.ax.axis("off")
self.fig.canvas.mpl_connect("pick_event", self.onclick)
plt_show(block=True)
def onclick(self, event):
"""Handle Mouse clicks.
Parameters
----------
event : matplotlib.backend_bases.Event
The matplotlib object that we use to get x/y position.
"""
mouseevent = event.mouseevent
self.coords.append((mouseevent.xdata, mouseevent.ydata))
def plot_clicks(self, **kwargs):
"""Plot the x/y positions stored in self.coords.
Parameters
----------
**kwargs : dict
Arguments are passed to imshow in displaying the bg image.
"""
import matplotlib.pyplot as plt
if len(self.coords) == 0:
raise ValueError(
"No coordinates found, make sure you click "
"on the image that is first shown."
)
f, ax = plt.subplots()
ax.imshow(self.imdata, extent=(0, self.xmax, 0, self.ymax), **kwargs)
xlim, ylim = [ax.get_xlim(), ax.get_ylim()]
xcoords, ycoords = zip(*self.coords)
ax.scatter(xcoords, ycoords, c="#ff0000")
ann_text = np.arange(len(self.coords)).astype(str)
for txt, coord in zip(ann_text, self.coords):
ax.annotate(txt, coord, fontsize=20, color="#ff0000")
ax.set_xlim(xlim)
ax.set_ylim(ylim)
plt_show()
def to_layout(self, **kwargs):
"""Turn coordinates into an MNE Layout object.
Normalizes by the image you used to generate clicks
Parameters
----------
**kwargs : dict
Arguments are passed to generate_2d_layout.
Returns
-------
layout : instance of Layout
The layout.
"""
from ..channels.layout import generate_2d_layout
coords = np.array(self.coords)
lt = generate_2d_layout(coords, bg_image=self.imdata, **kwargs)
return lt
def _fake_click(fig, ax, point, xform="ax", button=1, kind="press", key=None):
"""Fake a click at a relative point within axes."""
from matplotlib import backend_bases
if xform == "ax":
x, y = ax.transAxes.transform_point(point)
elif xform == "data":
x, y = ax.transData.transform_point(point)
else:
assert xform == "pix"
x, y = point
if kind in ("press", "release"):
kind = f"button_{kind}_event"
else:
assert kind == "motion"
kind = "motion_notify_event"
button = None
logger.debug(f"Faking {kind} @ ({x}, {y}) with button={button} and key={key}")
fig.canvas.callbacks.process(
kind,
backend_bases.MouseEvent(
name=kind, canvas=fig.canvas, x=x, y=y, button=button, key=key
),
)
def _fake_keypress(fig, key, kind="press"):
from matplotlib import backend_bases
fig.canvas.callbacks.process(
f"key_{kind}_event",
backend_bases.KeyEvent(name=f"key_{kind}_event", canvas=fig.canvas, key=key),
)
def _fake_scroll(fig, x, y, step):
from matplotlib import backend_bases
button = "up" if step >= 0 else "down"
fig.canvas.callbacks.process(
"scroll_event",
backend_bases.MouseEvent(
name="scroll_event", canvas=fig.canvas, x=x, y=y, step=step, button=button
),
)
def add_background_image(fig, im, set_ratios=None):
"""Add a background image to a plot.
Adds the image specified in ``im`` to the
figure ``fig``. This is generally meant to
be done with topo plots, though it could work
for any plot.
.. note:: This modifies the figure and/or axes in place.
Parameters
----------
fig : Figure
The figure you wish to add a bg image to.
im : array, shape (M, N, {3, 4})
A background image for the figure. This must be a valid input to
`matplotlib.pyplot.imshow`. Defaults to None.
set_ratios : None | str
Set the aspect ratio of any axes in fig
to the value in set_ratios. Defaults to None,
which does nothing to axes.
Returns
-------
ax_im : instance of Axes
Axes created corresponding to the image you added.
Notes
-----
.. versionadded:: 0.9.0
"""
if im is None:
# Don't do anything and return nothing
return None
if set_ratios is not None:
for ax in fig.axes:
ax.set_aspect(set_ratios)
ax_im = fig.add_axes([0, 0, 1, 1], label="background")
ax_im.imshow(im, aspect="auto")
ax_im.set_zorder(-1)
return ax_im
def _find_peaks(evoked, npeaks):
"""Find peaks from evoked data.
Returns ``npeaks`` biggest peaks as a list of time points.
"""
gfp = evoked.data.std(axis=0)
order = len(evoked.times) // 30
if order < 1:
order = 1
peaks = argrelmax(gfp, order=order, axis=0)[0]
if len(peaks) > npeaks:
max_indices = np.argsort(gfp[peaks])[-npeaks:]
peaks = np.sort(peaks[max_indices])
times = evoked.times[peaks]
if len(times) == 0:
times = [evoked.times[gfp.argmax()]]
return times
def _process_times(inst, use_times, n_peaks=None, few=False):
"""Return a list of times for topomaps."""
if isinstance(use_times, str):
if use_times == "interactive":
use_times, n_peaks = "peaks", 1
if use_times == "peaks":
if n_peaks is None:
n_peaks = min(3 if few else 7, len(inst.times))
use_times = _find_peaks(inst, n_peaks)
elif use_times == "auto":
if n_peaks is None:
n_peaks = min(5 if few else 10, len(use_times))
use_times = np.linspace(inst.times[0], inst.times[-1], n_peaks)
else:
raise ValueError(
"Got an unrecognized method for `times`. Only "
"'peaks', 'auto' and 'interactive' are supported "
"(or directly passing numbers)."
)
elif np.isscalar(use_times):
use_times = [use_times]
use_times = np.array(use_times, float)
if use_times.ndim != 1:
raise ValueError(f"times must be 1D, got {use_times.ndim} dimensions")
if len(use_times) > 25:
warn("More than 25 topomaps plots requested. This might take a while.")
return use_times
@verbose
def plot_sensors(
info,
kind="topomap",
ch_type=None,
title=None,
show_names=False,
ch_groups=None,
to_sphere=True,
axes=None,
block=False,
show=True,
sphere=None,
pointsize=None,
linewidth=2,
*,
cmap=None,
verbose=None,
):
"""Plot sensors positions.
Parameters
----------
%(info_not_none)s
kind : str
Whether to plot the sensors as 3d, topomap or as an interactive
sensor selection dialog. Available options ``'topomap'``, ``'3d'``,
``'select'``. If ``'select'``, a set of channels can be selected
interactively by using lasso selector or clicking while holding the control
key. The selected channels are returned along with the figure instance.
Defaults to ``'topomap'``.
ch_type : None | str
The channel type to plot. Available options ``'mag'``, ``'grad'``,
``'eeg'``, ``'seeg'``, ``'dbs'``, ``'ecog'``, ``'all'``. If ``'all'``,
all the available mag, grad, eeg, seeg, dbs and ecog channels are
plotted. If None (default), then channels are chosen in the order given
above.
title : str | None
Title for the figure. If None (default), equals to
``'Sensor positions (%%s)' %% ch_type``.
show_names : bool | array of str
Whether to display all channel names. If an array, only the channel
names in the array are shown. Defaults to False.
ch_groups : 'position' | list of list | None
Channel groups for coloring the sensors. If None (default), default
coloring scheme is used. If 'position', the sensors are divided
into 8 regions. See ``order`` kwarg of :func:`mne.viz.plot_raw`. If
array, the channels are divided by picks given in the array. Also
accepts a list of lists to allow channel groups of the same or
different sizes.
.. versionadded:: 0.13.0
to_sphere : bool
Whether to project the 3d locations to a sphere. When False, the
sensor array appears similar as to looking downwards straight above the
subject's head. Has no effect when ``kind='3d'``. Defaults to True.
.. versionadded:: 0.14.0
%(axes_montage)s
.. versionadded:: 0.13.0
block : bool
Whether to halt program execution until the figure is closed. Defaults
to False.
.. versionadded:: 0.13.0
show : bool
Show figure if True. Defaults to True.
%(sphere_topomap_auto)s
pointsize : float | None
The size of the points. If None (default), will bet set to ``75`` if
``kind='3d'``, or ``25`` otherwise.
linewidth : float
The width of the outline. If ``0``, the outline will not be drawn.
cmap : str | instance of matplotlib.colors.Colormap | None
Colormap for coloring ch_groups. Has effect only when ``ch_groups``
is list of list. If None, set to ``matplotlib.rcParams["image.cmap"]``.
Defaults to None.
%(verbose)s
Returns
-------
fig : instance of Figure
Figure containing the sensor topography.
selection : list
A list of selected channels. Only returned if ``kind=='select'``.
See Also
--------
mne.viz.plot_layout
Notes
-----
This function plots the sensor locations from the info structure using
matplotlib. For drawing the sensors using PyVista see
:func:`mne.viz.plot_alignment`.
.. versionadded:: 0.12.0
"""
from .evoked import _rgb
_check_option("kind", kind, ["topomap", "3d", "select"])
if axes is not None:
from matplotlib.axes import Axes
from mpl_toolkits.mplot3d.axes3d import Axes3D
if kind == "3d":
_validate_type(axes, Axes3D, "axes", extra="when 'kind' is '3d'")
elif kind in ("topomap", "select"):
_validate_type(
axes, Axes, "axes", extra="when 'kind' is 'topomap' or 'select'"
)
if isinstance(axes, Axes3D):
raise TypeError(
"axes must be an instance of Axes when 'kind' is "
f"'topomap' or 'select', got {type(axes)} instead."
)
_validate_type(info, Info, "info")
ch_indices = channel_indices_by_type(info)
allowed_types = _DATA_CH_TYPES_SPLIT
if ch_type is None:
for this_type in allowed_types:
if _contains_ch_type(info, this_type):
ch_type = this_type
break
picks = ch_indices[ch_type]
elif ch_type == "all":
picks = list()
for this_type in allowed_types:
picks += ch_indices[this_type]
elif ch_type in allowed_types:
picks = ch_indices[ch_type]
else:
raise ValueError(f"ch_type must be one of {allowed_types} not {ch_type}!")
if len(picks) == 0:
raise ValueError(f"Could not find any channels of type {ch_type}.")
if not _check_ch_locs(info=info, picks=picks):
raise RuntimeError("No valid channel positions found")
dev_head_t = info["dev_head_t"]
chs = [info["chs"][pick] for pick in picks]
pos = np.empty((len(chs), 3))
for ci, ch in enumerate(chs):
pos[ci] = ch["loc"][:3]
if ch["coord_frame"] == FIFF.FIFFV_COORD_DEVICE:
if dev_head_t is None:
warn(
"dev_head_t is None, transforming MEG sensors to head "
"coordinate frame using identity transform"
)
dev_head_t = np.eye(4)
pos[ci] = apply_trans(dev_head_t, pos[ci])
del dev_head_t
ch_names = np.array([ch["ch_name"] for ch in chs])
bads = [idx for idx, name in enumerate(ch_names) if name in info["bads"]]
_validate_type(ch_groups, (list, np.ndarray, str, None), "ch_groups")
if ch_groups is None:
def_colors = _handle_default("color")
colors = [
"red" if i in bads else def_colors[channel_type(info, pick)]
for i, pick in enumerate(picks)
]
else:
if isinstance(ch_groups, str):
_check_option(
"ch_groups", ch_groups, ["position", "selection"], extra="when str"
)
# Avoid circular import
from ..channels import (
_EEG_SELECTIONS,
_SELECTIONS,
_divide_to_regions,
read_vectorview_selection,
)
if ch_groups == "position":
ch_groups = _divide_to_regions(info, add_stim=False)
ch_groups = list(ch_groups.values())
else:
ch_groups, color_vals = list(), list()
for selection in _SELECTIONS + _EEG_SELECTIONS:
channels = pick_channels(
info["ch_names"],
read_vectorview_selection(selection, info=info),
ordered=False,
)
ch_groups.append(channels)
color_vals = np.ones((len(ch_groups), 4))
for idx, ch_group in enumerate(ch_groups):
color_picks = [
np.where(picks == ch)[0][0] for ch in ch_group if ch in picks
]
if len(color_picks) == 0:
continue
x, y, z = pos[color_picks].T
color = np.mean(_rgb(x, y, z), axis=0)
color_vals[idx, :3] = color # mean of spatial color
else: # array-like
cmap = _get_cmap(cmap)
colors = np.linspace(0, 1, len(ch_groups))
color_vals = [cmap(colors[i]) for i in range(len(ch_groups))]
colors = np.zeros((len(picks), 4))
for pick_idx, pick in enumerate(picks):
for ind, value in enumerate(ch_groups):
if pick in value:
colors[pick_idx] = color_vals[ind]
break
title = f"Sensor positions ({ch_type})" if title is None else title
fig = _plot_sensors_2d(
pos,
info,
picks,
colors,
bads,
ch_names,
title,
show_names,
axes,
show,
kind,
block,
to_sphere,
sphere,
pointsize=pointsize,
linewidth=linewidth,
)
if kind == "select":
return fig, fig.lasso.selection
return fig
def _onpick_sensor(event, fig, ax, pos, ch_names, show_names):
"""Pick a channel in plot_sensors."""
if event.mouseevent.inaxes != ax:
return
if fig.lasso is not None and event.mouseevent.key in ["control", "ctrl+shift"]:
# Add the sensor to the selection instead of showing its name.
for ind in event.ind:
fig.lasso.select_one(ind)
return
if show_names:
return # channel names already visible
ind = event.ind[0] # Just take the first sensor.
ch_name = ch_names[ind]
this_pos = pos[ind]
# XXX: Bug in matplotlib won't allow setting the position of existing
# text item, so we create a new one.
ax.texts[0].remove()
if len(this_pos) == 3:
ax.text(this_pos[0], this_pos[1], this_pos[2], ch_name)
else:
ax.text(this_pos[0], this_pos[1], ch_name)
fig.canvas.draw()
def _close_event(event=None, fig=None):
"""Listen for sensor plotter close event."""
if getattr(fig, "lasso", None) is not None:
fig.lasso.disconnect()
def _plot_sensors_2d(
pos,
info,
picks,
colors,
bads,
ch_names,
title,
show_names,
ax,
show,
kind,
block,
to_sphere,
sphere,
pointsize=None,
linewidth=2,
):
"""Plot sensors."""
import matplotlib.pyplot as plt
from matplotlib import rcParams
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 analysis:ignore
from .topomap import _draw_outlines, _get_pos_outlines
ch_names = [str(ch_name) for ch_name in ch_names]
sphere = _check_sphere(sphere, info)
edgecolors = np.repeat(rcParams["axes.edgecolor"], len(colors))
edgecolors[bads] = "red"
axes_was_none = ax is None
if axes_was_none:
subplot_kw = dict()
if kind == "3d":
subplot_kw.update(projection="3d")
fig, ax = plt.subplots(
1,
figsize=(max(rcParams["figure.figsize"]),) * 2,
subplot_kw=subplot_kw,
layout="constrained",
)
else:
fig = ax.get_figure()
if kind == "3d":
pointsize = 75 if pointsize is None else pointsize
ax.text(0, 0, 0, "", zorder=1)
ax.scatter(
pos[:, 0],
pos[:, 1],
pos[:, 2],
picker=True,
c=colors,
s=pointsize,
edgecolor=edgecolors,
linewidth=linewidth,
)
ax.azim = 90
ax.elev = 0
ax.xaxis.set_label_text("x (m)")
ax.yaxis.set_label_text("y (m)")
ax.zaxis.set_label_text("z (m)")
else: # kind in 'select', 'topomap'
pointsize = 25 if pointsize is None else pointsize
ax.text(0, 0, "", zorder=1)
pos, outlines = _get_pos_outlines(info, picks, sphere, to_sphere=to_sphere)
_draw_outlines(ax, outlines)
pts = ax.scatter(
pos[:, 0],
pos[:, 1],
picker=True,
clip_on=False,
c=colors,
edgecolors=edgecolors,
s=pointsize,
lw=linewidth,
)
if kind == "select":
fig.lasso = SelectFromCollection(ax, pts, names=ch_names)
def on_select():
publish(fig, ChannelsSelect(ch_names=fig.lasso.selection))
def on_channels_select(event):
selection_inds = np.flatnonzero(np.isin(ch_names, event.ch_names))
fig.lasso.select_many(selection_inds)
fig.lasso.callbacks.append(on_select)
subscribe(fig, "channels_select", on_channels_select)
else:
fig.lasso = None
# Equal aspect for 3D looks bad, so only use for 2D
ax.set(aspect="equal")
ax.axis("off") # remove border around figure
del sphere
connect_picker = True
if show_names:
if isinstance(show_names, list | np.ndarray): # only given channels
indices = [list(ch_names).index(name) for name in show_names]
else: # all channels
indices = range(len(pos))
for idx in indices:
this_pos = pos[idx]
if kind == "3d":
ax.text(this_pos[0], this_pos[1], this_pos[2], ch_names[idx])
else:
ax.text(
this_pos[0] + 0.0025,
this_pos[1],
ch_names[idx],
ha="left",
va="center",
)
connect_picker = kind == "select"
# make sure no names go off the edge of the canvas
xmin, ymin, xmax, ymax = fig.get_window_extent().bounds
if connect_picker:
picker = partial(
_onpick_sensor,
fig=fig,
ax=ax,
pos=pos,
ch_names=ch_names,
show_names=show_names,
)
fig.canvas.mpl_connect("pick_event", picker)
if axes_was_none:
_set_window_title(fig, title)
closed = partial(_close_event, fig=fig)
fig.canvas.mpl_connect("close_event", closed)
plt_show(show, block=block)
return fig
def _compute_scalings(scalings, inst, remove_dc=False, duration=10):
"""Compute scalings for each channel type automatically.
Parameters
----------
scalings : dict
The scalings for each channel type. If any values are
'auto', this will automatically compute a reasonable
scaling for that channel type. Any values that aren't
'auto' will not be changed.
inst : instance of Raw or Epochs
The data for which you want to compute scalings. If data
is not preloaded, this will read a subset of times / epochs
up to 100mb in size in order to compute scalings.
remove_dc : bool
Whether to remove the mean (DC) before calculating the scalings. If
True, the mean will be computed and subtracted for short epochs in
order to compensate not only for global mean offset, but also for slow
drifts in the signals.
duration : float
If remove_dc is True, the mean will be computed and subtracted on
segments of length ``duration`` seconds.
Returns
-------
scalings : dict
A scalings dictionary with updated values
"""
from ..epochs import BaseEpochs
from ..io import BaseRaw
scalings = _handle_default("scalings_plot_raw", scalings)
if not isinstance(inst, BaseRaw | BaseEpochs):
raise ValueError("Must supply either Raw or Epochs")
for key, value in scalings.items():
if not (isinstance(value, str) and value == "auto"):
try:
scalings[key] = float(value)
except Exception:
raise ValueError(
f'scalings must be "auto" or float, got '
f"scalings[{key!r}]={value!r} which could not be "
f"converted to float"
)
# If there are no "auto" scalings, we can return early!
if all(
[scalings[ch_type] != "auto" for ch_type in inst.get_channel_types(unique=True)]
):
return scalings
ch_types = channel_indices_by_type(inst.info)
ch_types = {i_type: i_ixs for i_type, i_ixs in ch_types.items() if len(i_ixs) != 0}
if inst.preload is False:
if isinstance(inst, BaseRaw):
# Load a window of data from the center up to 100mb in size
n_times = 1e8 // (len(inst.ch_names) * 8)
n_times = np.clip(n_times, 1, inst.n_times)
n_secs = n_times / float(inst.info["sfreq"])
time_middle = np.mean(inst.times)
tmin = np.clip(time_middle - n_secs / 2.0, inst.times.min(), None)
tmax = np.clip(time_middle + n_secs / 2.0, None, inst.times.max())
smin, smax = (int(round(x * inst.info["sfreq"])) for x in (tmin, tmax))
data = inst._read_segment(smin, smax)
elif isinstance(inst, BaseEpochs):
# Load a random subset of epochs up to 100mb in size
n_epochs = 1e8 // (len(inst.ch_names) * len(inst.times) * 8)
n_epochs = int(np.clip(n_epochs, 1, len(inst)))
ixs_epochs = np.random.choice(range(len(inst)), n_epochs, False)
inst = inst.copy()[ixs_epochs].load_data()
else:
data = inst._data
if isinstance(inst, BaseEpochs):
data = inst._data.swapaxes(0, 1).reshape([len(inst.ch_names), -1])
# Iterate through ch types and update scaling if ' auto'
for key, value in scalings.items():
if key not in ch_types or value != "auto":
continue
this_data = data[ch_types[key]]
if remove_dc and (this_data.shape[1] / inst.info["sfreq"] >= duration):
length = int(duration * inst.info["sfreq"]) # segment length
# truncate data so that we can divide into segments of equal length
this_data = this_data[:, : this_data.shape[1] // length * length]
shape = this_data.shape # original shape
this_data = this_data.T.reshape(-1, length, shape[0]) # segment
this_data -= np.nanmean(this_data, 0) # subtract segment means
this_data = this_data.T.reshape(shape) # reshape into original
this_data = this_data.ravel()
this_data = this_data[np.isfinite(this_data)]
if this_data.size:
iqr = np.diff(np.percentile(this_data, [25, 75]))[0]
else:
iqr = 1.0
scalings[key] = iqr
return scalings
def _setup_cmap(cmap, n_axes=1, norm=False):
"""Set color map interactivity."""
if cmap == "interactive":
cmap = ("Reds" if norm else "RdBu_r", True)
elif not isinstance(cmap, tuple):
if cmap is None:
cmap = "Reds" if norm else "RdBu_r"
cmap = (cmap, False if n_axes > 2 else True)
return cmap
def _prepare_joint_axes(n_maps, figsize=None):
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
fig = plt.figure(figsize=figsize, layout="constrained")
gs = GridSpec(2, n_maps, height_ratios=[1, 2], figure=fig)
map_ax = [fig.add_subplot(gs[0, x]) for x in range(n_maps)] # first row
main_ax = fig.add_subplot(gs[1, :]) # second row
return fig, main_ax, map_ax
class DraggableColorbar:
"""Enable interactive colorbar.
See http://www.ster.kuleuven.be/~pieterd/python/html/plotting/interactive_colorbar.html
""" # noqa: E501
def __init__(self, cbar, mappable, kind, ch_type):
import matplotlib.pyplot as plt
self.cbar = cbar
self.mappable = mappable
self.kind = kind
self.ch_type = ch_type
self.fig = self.cbar.ax.figure
self.press = None
self.cycle = sorted(
[i for i in dir(plt.cm) if hasattr(getattr(plt.cm, i), "N")]
)
self.cycle += [mappable.get_cmap().name]
self.index = self.cycle.index(mappable.get_cmap().name)
self.lims = (self.cbar.norm.vmin, self.cbar.norm.vmax)
self.connect()
@_auto_weakref
def _on_colormap_range(event):
return self._on_colormap_range(event)
subscribe(self.fig, "colormap_range", _on_colormap_range)
def connect(self):
"""Connect to all the events we need."""
self.cidpress = self.cbar.ax.figure.canvas.mpl_connect(
"button_press_event", self.on_press
)
self.cidrelease = self.cbar.ax.figure.canvas.mpl_connect(
"button_release_event", self.on_release
)
self.cidmotion = self.cbar.ax.figure.canvas.mpl_connect(
"motion_notify_event", self.on_motion
)
self.keypress = self.cbar.ax.figure.canvas.mpl_connect(
"key_press_event", self.key_press
)
self.scroll = self.cbar.ax.figure.canvas.mpl_connect(
"scroll_event", self.on_scroll
)
def on_press(self, event):
"""Handle button press."""
if event.inaxes != self.cbar.ax:
return
self.press = event.y
def key_press(self, event):
"""Handle key press."""
scale = self.cbar.norm.vmax - self.cbar.norm.vmin
perc = 0.03
if event.key == "down":
self.index += 1
elif event.key == "up":
self.index -= 1
elif event.key == " ": # space key resets scale
self.cbar.norm.vmin = self.lims[0]
self.cbar.norm.vmax = self.lims[1]
elif event.key == "+":
self.cbar.norm.vmin -= (perc * scale) * -1
self.cbar.norm.vmax += (perc * scale) * -1
elif event.key == "-":
self.cbar.norm.vmin -= (perc * scale) * 1
self.cbar.norm.vmax += (perc * scale) * 1
elif event.key == "pageup":
self.cbar.norm.vmin -= (perc * scale) * 1
self.cbar.norm.vmax -= (perc * scale) * 1
elif event.key == "pagedown":
self.cbar.norm.vmin -= (perc * scale) * -1
self.cbar.norm.vmax -= (perc * scale) * -1
else:
return
if self.index < 0:
self.index = len(self.cycle) - 1
elif self.index >= len(self.cycle):
self.index = 0
cmap = self.cycle[self.index]
self.cbar.mappable.set_cmap(cmap)
self.cbar.ax.figure.draw_without_rendering()
self.mappable.set_cmap(cmap)
self._publish()
def on_motion(self, event):
"""Handle mouse movements."""
if self.press is None:
return
if event.inaxes != self.cbar.ax:
return
yprev = self.press
dy = event.y - yprev
self.press = event.y
scale = self.cbar.norm.vmax - self.cbar.norm.vmin
perc = 0.03
if event.button == 1:
self.cbar.norm.vmin -= (perc * scale) * np.sign(dy)
self.cbar.norm.vmax -= (perc * scale) * np.sign(dy)
elif event.button == 3:
self.cbar.norm.vmin -= (perc * scale) * np.sign(dy)
self.cbar.norm.vmax += (perc * scale) * np.sign(dy)
self._publish()
def on_release(self, event):
"""Handle release."""
self.press = None
self._update()
def on_scroll(self, event):
"""Handle scroll."""
scale = 1.1 if event.step < 0 else 1.0 / 1.1
self.cbar.norm.vmin *= scale
self.cbar.norm.vmax *= scale
self._publish()
def _on_colormap_range(self, event):
if event.kind != self.kind or event.ch_type != self.ch_type:
return
if event.fmin is not None:
self.cbar.norm.vmin = event.fmin
if event.fmax is not None:
self.cbar.norm.vmax = event.fmax
if event.cmap is not None:
self.cbar.mappable.set_cmap(event.cmap)
self.mappable.set_cmap(event.cmap)
self._update()
def _publish(self):
publish(
self.fig,
ColormapRange(
kind=self.kind,
ch_type=self.ch_type,
fmin=self.cbar.norm.vmin,
fmax=self.cbar.norm.vmax,
cmap=self.mappable.get_cmap(),
),
)
def _update(self):
from matplotlib.ticker import AutoLocator
self.cbar.set_ticks(AutoLocator())
self.cbar.update_ticks()
self.cbar.ax.figure.draw_without_rendering()
self.mappable.set_norm(self.cbar.norm)
self.cbar.ax.figure.canvas.draw()
class SelectFromCollection:
"""Select objects from a matplotlib collection using ``LassoSelector``.
The names of the selected objects are saved in the ``selection`` attribute.
This tool highlights selected objects by fading other objects out (i.e.,
reducing their alpha values).
Holding down the Control key will add to the current selection, and holding down
Control+Shift will remove from the current selection.
Parameters
----------
ax : instance of Axes
Axes to interact with.
collection : instance of matplotlib collection
Collection you want to select from.
names : list of str
The names of the object. The selection is returned as a subset of these names.
alpha_selected : float
Alpha for selected objects (0=tranparant, 1=opaque).
alpha_nonselected : float
Alpha for non-selected objects (0=tranparant, 1=opaque).
linewidth_selected : float
Linewidth for the borders of selected objects.
linewidth_nonselected : float
Linewidth for the borders of non-selected objects.
Notes
-----
This tool selects collection objects which bounding boxes intersect with a lasso
path. Calls all callbacks in self.callbacks when selection is ready.
"""
def __init__(
self,
ax,
collection,
*,
names,
alpha_selected=1,
alpha_nonselected=0.5,
linewidth_selected=1,
linewidth_nonselected=0.5,
verbose=None,
):
from matplotlib.widgets import LassoSelector
self.fig = ax.figure
self.canvas = ax.figure.canvas
self.collection = collection
self.names = names
self.alpha_selected = alpha_selected
self.alpha_nonselected = alpha_nonselected
self.linewidth_selected = linewidth_selected
self.linewidth_nonselected = linewidth_nonselected
from matplotlib.collections import PolyCollection
from matplotlib.path import Path
if isinstance(collection, PolyCollection):
self.paths = collection.get_paths()
else:
self.paths = [Path([point]) for point in collection.get_offsets()]
self.Npts = len(self.paths)
if self.Npts != len(names):
raise ValueError(
f"Number of names ({len(names)}) does not match the number of objects "
f"in the collection ({self.Npts})."
)
# Ensure that we have colors for each object.
self.fc = collection.get_facecolors()
self.ec = collection.get_edgecolors()
if len(self.fc) == 0:
raise ValueError("Collection must have a facecolor")
elif len(self.fc) == 1:
self.fc = np.tile(self.fc, self.Npts).reshape(self.Npts, -1)
if len(self.ec) == 0:
self.ec = np.zeros((self.Npts, 4)) # all black
elif len(self.ec) == 1:
self.ec = np.tile(self.ec, self.Npts).reshape(self.Npts, -1)
self.lw = np.full(self.Npts, float(self.linewidth_nonselected))
# Initialize the lasso selector
self.lasso = LassoSelector(
ax, onselect=self.on_select, props=dict(color="red", linewidth=0.5)
)
self.selection = list()
self.selection_inds = np.array([], dtype="int")
self.callbacks = list()
# Deselect everything in the beginning.
self.style_objects()
# For backwards compatibility
@property
def ch_names(self):
return self.names
def notify(self):
"""Notify listeners that a selection has been made."""
logger.info(f"Selected channels: {self.selection}")
for callback in self.callbacks:
callback()
def on_select(self, verts):
"""Select a subset from the collection."""
from matplotlib.path import Path
# Don't respond to single clicks without extra keys being hold down.
# Figures like plot_evoked_topo want to do something else with them.
if len(verts) <= 3 and self.canvas._key not in ["control", "ctrl+shift"]:
return
path = Path(verts)
inds = np.nonzero([path.intersects_path(p) for p in self.paths])[0]
if self.canvas._key == "control": # Appending selection.
self.selection_inds = np.union1d(self.selection_inds, inds).astype("int")
elif self.canvas._key == "ctrl+shift":
self.selection_inds = np.setdiff1d(self.selection_inds, inds).astype("int")
else:
self.selection_inds = inds
self.selection = [self.names[i] for i in self.selection_inds]
self.style_objects()
self.notify()
def select_one(self, ind):
"""Select or deselect one sensor."""
if self.canvas._key == "control":
self.selection_inds = np.union1d(self.selection_inds, [ind])
elif self.canvas._key == "ctrl+shift":
self.selection_inds = np.setdiff1d(self.selection_inds, [ind])
else:
return # don't notify()
self.selection = [self.names[i] for i in self.selection_inds]
self.style_objects()
self.notify()
def select_many(self, inds):
"""Select many sensors using indices (for predefined selections)."""
self.selection_inds = inds
self.selection = [self.names[i] for i in self.selection_inds]
self.style_objects()
def style_objects(self):
"""Style selected sensors as "active"."""
# reset
self.fc[:, -1] = self.alpha_nonselected
self.ec[:, -1] = self.alpha_nonselected / 2
self.lw[:] = self.linewidth_nonselected
# style sensors at `inds`
self.fc[self.selection_inds, -1] = self.alpha_selected
self.ec[self.selection_inds, -1] = self.alpha_selected
self.lw[self.selection_inds] = self.linewidth_selected
self.collection.set_facecolors(self.fc)
self.collection.set_edgecolors(self.ec)
self.collection.set_linewidths(self.lw)
self.canvas.draw_idle()
def disconnect(self):
"""Disconnect the lasso selector."""
self.lasso.disconnect_events()
self.fc[:, -1] = self.alpha_selected
self.ec[:, -1] = self.alpha_selected
self.collection.set_facecolors(self.fc)
self.collection.set_edgecolors(self.ec)
self.canvas.draw_idle()
def _get_color_list(*, remove=None):
"""Get the current color list from matplotlib rcParams.
Parameters
----------
remove : tuple of str | None
Has no influence on the function if None. Can be a list of colors to
remove from the list if within 1/255 of the color.
Returns
-------
colors : list
"""
from matplotlib import rcParams
from matplotlib.colors import to_rgba_array
color_cycle = rcParams.get("axes.prop_cycle")
colors = color_cycle.by_key()["color"]
colors_cast = to_rgba_array(colors)[:, :3]
atol = 1.5 / 255.0
for rem in to_rgba_array(remove or [])[:, :3]:
matches = np.where(np.isclose(colors_cast, rem, atol=atol).all(-1))[0][::-1]
for idx in matches:
logger.debug(f"Removing from color cycle: {colors[idx]}")
colors.pop(idx)
return colors
def _merge_annotations(start, stop, description, annotations, current=()):
"""Handle drawn annotations."""
ends = annotations.onset + annotations.duration
idx = np.intersect1d(
np.where(ends >= start)[0], np.where(annotations.onset <= stop)[0]
)
idx = np.intersect1d(idx, np.where(annotations.description == description)[0])
new_idx = np.setdiff1d(idx, current) # don't include modified annotation
end = max(
np.append((annotations.onset[new_idx] + annotations.duration[new_idx]), stop)
)
onset = min(np.append(annotations.onset[new_idx], start))
duration = end - onset
annotations.delete(idx)
annotations.append(onset, duration, description)
class DraggableLine:
"""Custom matplotlib line for moving around by drag and drop.
Parameters
----------
line : instance of matplotlib Line2D
Line to add interactivity to.
callback : function
Callback to call when line is released.
"""
def __init__(self, line, modify_callback, drag_callback):
self.line = line
self.press = None
self.x0 = line.get_xdata()[0]
self.modify_callback = modify_callback
self.drag_callback = drag_callback
self.cidpress = self.line.figure.canvas.mpl_connect(
"button_press_event", self.on_press
)
self.cidrelease = self.line.figure.canvas.mpl_connect(
"button_release_event", self.on_release
)
self.cidmotion = self.line.figure.canvas.mpl_connect(
"motion_notify_event", self.on_motion
)
def set_x(self, x):
"""Repoisition the line."""
self.line.set_xdata([x, x])
self.x0 = x
def on_press(self, event):
"""Store button press if on top of the line."""
if event.inaxes != self.line.axes or not self.line.contains(event)[0]:
return
x0 = self.line.get_xdata()
y0 = self.line.get_ydata()
self.press = x0, y0, event.xdata, event.ydata
def on_motion(self, event):
"""Move the line on drag."""
if self.press is None:
return
if event.inaxes != self.line.axes:
return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
self.line.set_xdata(x0 + dx)
self.drag_callback((x0 + dx)[0])
self.line.figure.canvas.draw()
def on_release(self, event):
"""Handle release."""
if event.inaxes != self.line.axes or self.press is None:
return
self.press = None
self.line.figure.canvas.draw()
self.modify_callback(self.x0, event.xdata)
self.x0 = event.xdata
def remove(self):
"""Remove the line."""
self.line.figure.canvas.mpl_disconnect(self.cidpress)
self.line.figure.canvas.mpl_disconnect(self.cidrelease)
self.line.figure.canvas.mpl_disconnect(self.cidmotion)
self.line.remove()
def _setup_ax_spines(
axes,
vlines,
xmin,
xmax,
ymin,
ymax,
invert_y=False,
unit=None,
truncate_xaxis=True,
truncate_yaxis=True,
skip_axlabel=False,
hline=True,
time_unit="s",
):
# don't show zero line if it coincides with x-axis (even if hline=True)
if hline and ymin != 0.0:
axes.spines["top"].set_position("zero")
else:
axes.spines["top"].set_visible(False)
# the axes can become very small with topo plotting. This prevents the
# x-axis from shrinking to length zero if truncate_xaxis=True, by adding
# new ticks that are nice round numbers close to (but less extreme than)
# xmin and xmax
vlines = [] if vlines is None else vlines
xticks = _trim_ticks(axes.get_xticks(), round(xmin, 2), round(xmax, 2))
xticks = np.array(sorted(set([x for x in xticks] + vlines)))
if len(xticks) < 2:
def log_fix(tval):
exp = np.log10(np.abs(tval))
return np.sign(tval) * 10 ** (np.fix(exp) - (exp < 0))
xlims = np.array([xmin, xmax])
temp_ticks = log_fix(xlims)
closer_idx = np.argmin(np.abs(xlims - temp_ticks))
further_idx = np.argmax(np.abs(xlims - temp_ticks))
start_stop = [temp_ticks[closer_idx], xlims[further_idx]]
step = np.sign(np.diff(start_stop)).item() * np.max(np.abs(temp_ticks))
tts = np.arange(*start_stop, step)
xticks = np.array(sorted(xticks + [tts[0], tts[-1]]))
axes.set_xticks(xticks)
# y-axis is simpler
yticks = _trim_ticks(axes.get_yticks(), ymin, ymax)
axes.set_yticks(yticks)
# truncation case 1: truncate both
if truncate_xaxis and truncate_yaxis:
axes.spines["bottom"].set_bounds(*xticks[[0, -1]])
axes.spines["left"].set_bounds(*yticks[[0, -1]])
# case 2: truncate only x (only right side; connect to y at left)
elif truncate_xaxis:
xbounds = np.array(axes.get_xlim())
xbounds[1] = axes.get_xticks()[-1]
axes.spines["bottom"].set_bounds(*xbounds)
# case 3: truncate only y (only top; connect to x at bottom)
elif truncate_yaxis:
ybounds = np.array(axes.get_ylim())
if invert_y:
ybounds[0] = axes.get_yticks()[0]
else:
ybounds[1] = axes.get_yticks()[-1]
axes.spines["left"].set_bounds(*ybounds)
# handle axis labels
if skip_axlabel:
axes.set_yticklabels([""] * len(yticks))
axes.set_xticklabels([""] * len(xticks))
else:
if unit is not None:
axes.set_ylabel(unit, rotation=90)
axes.set_xlabel(f"Time ({time_unit})")
# plot vertical lines
if vlines:
_ymin, _ymax = axes.get_ylim()
axes.vlines(
vlines, _ymax, _ymin, linestyles="--", colors="k", linewidth=1.0, zorder=1
)
# invert?
if invert_y:
axes.invert_yaxis()
# changes we always make:
axes.tick_params(direction="out")
axes.tick_params(right=False)
axes.spines["right"].set_visible(False)
axes.spines["left"].set_zorder(0)
def _handle_decim(info, decim, lowpass):
"""Handle decim parameter for plotters."""
if isinstance(decim, str) and decim == "auto":
lp = info["sfreq"] if info["lowpass"] is None else info["lowpass"]
lp = min(lp, info["sfreq"] if lowpass is None else lowpass)
with info._unlock():
info["lowpass"] = lp
decim = max(int(info["sfreq"] / (lp * 3) + 1e-6), 1)
decim = _ensure_int(decim, "decim", must_be='an int or "auto"')
if decim <= 0:
raise ValueError(f'decim must be "auto" or a positive integer, got {decim}')
decim = _check_decim(info, decim, 0)[0]
data_picks = _pick_data_channels(info, exclude=())
return decim, data_picks
def _setup_plot_projector(info, noise_cov, proj=True, use_noise_cov=True, nave=1):
from ..cov import compute_whitener
projector = np.eye(len(info["ch_names"]))
whitened_ch_names = []
if noise_cov is not None and use_noise_cov:
# any channels in noise_cov['bads'] but not in info['bads'] get
# set to nan, which means that they are not plotted.
data_picks = _pick_data_channels(info, with_ref_meg=False, exclude=())
data_names = {info["ch_names"][pick] for pick in data_picks}
# these can be toggled by the user
bad_names = set(info["bads"])
# these can't in standard pipelines be enabled (we always take the
# union), so pretend they're not in cov at all
cov_names = (set(noise_cov["names"]) & set(info["ch_names"])) - set(
noise_cov["bads"]
)
# Actually compute the whitener only using the difference
whiten_names = cov_names - bad_names
whiten_picks = pick_channels(info["ch_names"], whiten_names, ordered=True)
whiten_info = pick_info(info, whiten_picks)
rank = _triage_rank_sss(whiten_info, [noise_cov])[1][0]
whitener, whitened_ch_names = compute_whitener(
noise_cov, whiten_info, rank=rank, verbose=False
)
whitener *= np.sqrt(nave) # proper scaling for Evoked data
assert set(whitened_ch_names) == whiten_names
projector[whiten_picks, whiten_picks[:, np.newaxis]] = whitener
# Now we need to change the set of "whitened" channels to include
# all data channel names so that they are properly italicized.
whitened_ch_names = data_names
# We would need to set "bad_picks" to identity to show the traces
# (but in gray), but here we don't need to because "projector"
# starts out as identity. So all that is left to do is take any
# *good* data channels that are not in the noise cov to be NaN
nan_names = data_names - (bad_names | cov_names)
# XXX conditional necessary because of annoying behavior of
# pick_channels where an empty list means "all"!
if len(nan_names) > 0:
nan_picks = pick_channels(info["ch_names"], nan_names)
projector[nan_picks] = np.nan
elif proj:
projector, _ = setup_proj(info, add_eeg_ref=False, verbose=False)
return projector, whitened_ch_names
def _check_sss(info):
"""Check SSS history in info."""
ch_used = [ch for ch in _DATA_CH_TYPES_SPLIT if _contains_ch_type(info, ch)]
has_meg = "mag" in ch_used and "grad" in ch_used
has_sss = (
has_meg
and len(info["proc_history"]) > 0
and info["proc_history"][0].get("max_info") is not None
)
return ch_used, has_meg, has_sss
def _triage_rank_sss(info, covs, rank=None, scalings=None):
rank = dict() if rank is None else rank
scalings = _handle_default("scalings_cov_rank", scalings)
# Only look at good channels
picks = _pick_data_channels(info, with_ref_meg=False, exclude="bads")
info = pick_info(info, picks)
ch_used, has_meg, has_sss = _check_sss(info)
if has_sss:
if "mag" in rank or "grad" in rank:
raise ValueError(
'When using SSS, pass "meg" to set the rank '
'(separate rank values for "mag" or "grad" are '
"meaningless)."
)
elif "meg" in rank:
raise ValueError(
"When not using SSS, pass separate rank values "
'for "mag" and "grad" (do not use "meg").'
)
picks_list = _picks_by_type(info, meg_combined=has_sss)
if has_sss:
# reduce ch_used to combined mag grad
ch_used = list(zip(*picks_list))[0]
# order pick list by ch_used (required for compat with plot_evoked)
picks_list = [x for x, y in sorted(zip(picks_list, ch_used))]
n_ch_used = len(ch_used)
# make sure we use the same rank estimates for GFP and whitening
picks_list2 = [k for k in picks_list]
# add meg picks if needed.
if has_meg:
# append ("meg", picks_meg)
picks_list2 += _picks_by_type(info, meg_combined=True)
rank_list = [] # rank dict for each cov
for cov in covs:
# We need to add the covariance projectors, compute the projector,
# and apply it, just like we will do in prepare_noise_cov, otherwise
# we risk the rank estimates being incorrect (i.e., if the projectors
# do not match).
info_proj = info.copy()
with info_proj._unlock():
info_proj["projs"] += cov["projs"]
this_rank = {}
# assemble rank dict for this cov, such that we have meg
for ch_type, this_picks in picks_list2:
# if we have already estimates / values for mag/grad but not
# a value for meg, combine grad and mag.
if "mag" in this_rank and "grad" in this_rank and "meg" not in rank:
this_rank["meg"] = this_rank["mag"] + this_rank["grad"]
# and we're done here
break
if rank.get(ch_type) is None:
ch_names = [info["ch_names"][pick] for pick in this_picks]
this_C = pick_channels_cov(cov, ch_names, ordered=False)
this_estimated_rank = compute_rank(
this_C, scalings=scalings, info=info_proj
)[ch_type]
this_rank[ch_type] = this_estimated_rank
elif rank.get(ch_type) is not None:
this_rank[ch_type] = rank[ch_type]
rank_list.append(this_rank)
return n_ch_used, rank_list, picks_list, has_sss
def _check_cov(noise_cov, info):
"""Check the noise_cov for whitening and issue an SSS warning."""
from ..cov import _ensure_cov
if noise_cov is None:
return None
noise_cov = _ensure_cov(noise_cov, name="noise_cov", verbose=False)
if _check_sss(info)[2]: # has_sss
warn(
"Data have been processed with SSS, which changes the relative "
"scaling of magnetometers and gradiometers when viewing data "
"whitened by a noise covariance"
)
return noise_cov
def _set_title_multiple_electrodes(
title, combine, ch_names, max_chans=6, all_=False, ch_type=None
):
"""Prepare a title string for multiple electrodes."""
if title is None:
title = ", ".join(ch_names[:max_chans])
ch_type = _channel_type_prettyprint.get(ch_type, ch_type)
if ch_type is None:
ch_type = "sensor"
ch_type = f"{ch_type}{_pl(ch_names)}"
if hasattr(combine, "func"): # functools.partial
combine = combine.func
if callable(combine):
combine = getattr(combine, "__name__", str(combine))
if not isinstance(combine, str):
combine = "Combination"
# mean → Mean, but avoid RMS → Rms and GFP → Gfp
if combine[0].islower():
combine = combine.capitalize()
if all_:
title = f"{combine} of {len(ch_names)} {ch_type}"
elif len(ch_names) > max_chans and combine != "gfp":
logger.info(f"More than {max_chans} channels, truncating title ...")
title += f", ...\n({combine} of {len(ch_names)} {ch_type})"
return title
def _check_time_unit(time_unit, times):
if not isinstance(time_unit, str):
raise TypeError(f"time_unit must be str, got {type(time_unit)}")
if time_unit == "s":
pass
elif time_unit == "ms":
times = 1e3 * times
else:
raise ValueError(f"time_unit must be 's' or 'ms', got {time_unit!r}")
return time_unit, times
def _plot_masked_image(
ax,
data,
times,
mask=None,
yvals=None,
cmap="RdBu_r",
vmin=None,
vmax=None,
ylim=None,
mask_style="both",
mask_alpha=0.25,
mask_cmap="Greys",
yscale="linear",
cnorm=None,
):
"""Plot a potentially masked (evoked, TFR, ...) 2D image."""
from matplotlib import ticker
from matplotlib.colors import Normalize
if mask_style is None and mask is not None:
mask_style = "both" # default
draw_mask = mask_style in {"both", "mask"}
draw_contour = mask_style in {"both", "contour"}
if cmap is None:
mask_cmap = cmap
if cnorm is None:
cnorm = Normalize(vmin=vmin, vmax=vmax)
# mask param check and preparation
if draw_mask is None:
if mask is not None:
draw_mask = True
else:
draw_mask = False
if draw_contour is None:
if mask is not None:
draw_contour = True
else:
draw_contour = False
if mask is None:
if draw_mask:
warn("`mask` is None, not masking the plot ...")
draw_mask = False
if draw_contour:
warn("`mask` is None, not adding contour to the plot ...")
draw_contour = False
if draw_mask:
if mask.shape != data.shape:
raise ValueError(
"The mask must have the same shape as the data, "
f"i.e., {data.shape}, not {mask.shape}"
)
if draw_contour and yscale == "log":
warn("Cannot draw contours with linear yscale yet ...")
if yvals is None: # for e.g. Evoked images
yvals = np.arange(data.shape[0])
# else, if TFR plot, yvals will be freqs
# test yscale
if yscale == "log" and not yvals[0] > 0:
raise ValueError(
"Using log scale for frequency axis requires all your"
" frequencies to be positive (you cannot include"
" the DC component (0 Hz) in the TFR)."
)
if len(yvals) < 2 or yvals[0] == 0:
yscale = "linear"
elif yscale != "linear":
ratio = yvals[1:] / yvals[:-1]
if yscale == "auto":
if yvals[0] > 0 and np.allclose(ratio, ratio[0]):
yscale = "log"
else:
yscale = "linear"
if yscale == "log": # pcolormesh for log scale
# compute bounds between time samples
(time_lims,) = centers_to_edges(times)
log_yvals = np.concatenate(
[[yvals[0] / ratio[0]], yvals, [yvals[-1] * ratio[0]]]
)
yval_lims = np.sqrt(log_yvals[:-1] * log_yvals[1:])
# construct a time-yvaluency bounds grid
time_mesh, yval_mesh = np.meshgrid(time_lims, yval_lims)
if mask is not None:
ax.pcolormesh(
time_mesh, yval_mesh, data, cmap=mask_cmap, norm=cnorm, alpha=mask_alpha
)
im = ax.pcolormesh(
time_mesh,
yval_mesh,
np.ma.masked_where(~mask, data),
cmap=cmap,
norm=cnorm,
alpha=1,
)
else:
im = ax.pcolormesh(time_mesh, yval_mesh, data, cmap=cmap, norm=cnorm)
if ylim is None:
ylim = yval_lims[[0, -1]]
if yscale == "log":
ax.set_yscale("log")
ax.get_yaxis().set_major_formatter(ticker.ScalarFormatter())
ax.yaxis.set_minor_formatter(ticker.NullFormatter())
# get rid of minor ticks
ax.yaxis.set_minor_locator(ticker.NullLocator())
tick_vals = yvals[
np.unique(np.linspace(0, len(yvals) - 1, 12).round().astype("int"))
]
ax.set_yticks(tick_vals)
else:
# imshow for linear because the y ticks are nicer
# and the masked areas look better
dt = np.median(np.diff(times)) / 2.0 if len(times) > 1 else 0.1
dy = np.median(np.diff(yvals)) / 2.0 if len(yvals) > 1 else 0.5
extent = [times[0] - dt, times[-1] + dt, yvals[0] - dy, yvals[-1] + dy]
im_args = dict(
interpolation="nearest", origin="lower", extent=extent, aspect="auto"
)
if draw_mask:
ax.imshow(data, alpha=mask_alpha, cmap=mask_cmap, norm=cnorm, **im_args)
im = ax.imshow(
np.ma.masked_where(~mask, data), cmap=cmap, norm=cnorm, **im_args
)
else:
ax.imshow(data, cmap=cmap, norm=cnorm, **im_args) # see #6481
im = ax.imshow(data, cmap=cmap, norm=cnorm, **im_args)
if draw_contour and np.unique(mask).size == 2:
big_mask = np.kron(mask, np.ones((10, 10)))
ax.contour(
big_mask,
colors=["k"],
extent=extent,
linewidths=[0.75],
corner_mask=False,
antialiased=False,
levels=[0.5],
)
time_lims = [extent[0], extent[1]]
if ylim is None:
ylim = [extent[2], extent[3]]
ax.set_xlim(time_lims[0], time_lims[-1])
ax.set_ylim(ylim)
if (draw_mask or draw_contour) and mask is not None:
if mask.all():
t_end = ", all points masked)"
else:
fraction = 1 - (np.float64(mask.sum()) / np.float64(mask.size))
t_end = f", {fraction * 100:0.3g}% of points masked)"
else:
t_end = ")"
return im, t_end
@fill_doc
def _make_combine_callable(
combine,
*,
axis=1,
valid=("mean", "median", "std", "gfp"),
ch_type=None,
keepdims=False,
):
"""Convert None or string values of ``combine`` into callables.
Params
------
combine : None | str | callable
If callable, the callable must accept one positional input (a numpy array) and
return an array with one fewer dimensions (the missing dimension's position is
given by ``axis``).
axis : int
Axis of data array across which to combine. May vary depending on data
context; e.g., if data are time-domain sensor traces or TFRs, continuous
or epoched, etc.
valid : tuple
Valid string values for built-in combine methods
(may vary for, e.g., combining TFRs versus time-domain signals).
ch_type : str
Channel type. Affects whether "gfp" is allowed as a synonym for "rms".
keepdims : bool
Whether to retain the singleton dimension after collapsing across it.
"""
kwargs = dict(axis=axis, keepdims=keepdims)
if combine is None:
combine = _identity_function if keepdims else partial(np.squeeze, axis=axis)
elif isinstance(combine, str):
combine_dict = {
key: partial(getattr(np, key), **kwargs)
for key in valid
if getattr(np, key, None) is not None
}
# marginal median that is safe for complex values:
if "median" in valid:
combine_dict["median"] = partial(_median_complex, axis=axis)
# RMS and GFP; if GFP requested for MEG channels, will use RMS anyway
def _rms(data):
return np.sqrt((data**2).mean(**kwargs))
def _gfp(data):
return data.std(axis=axis, ddof=0)
# make them play nice with _set_title_multiple_electrodes()
_rms.__name__ = "RMS"
_gfp.__name__ = "GFP"
if "rms" in valid:
combine_dict["rms"] = _rms
if "gfp" in valid and ch_type == "eeg":
combine_dict["gfp"] = _gfp
elif "gfp" in valid:
combine_dict["gfp"] = _rms
try:
combine = combine_dict[combine]
except KeyError:
raise ValueError(
f'"combine" must be None, a callable, or one of "{", ".join(valid)}"; '
f"got {combine}"
)
return combine
def _convert_psds(
psds, dB, estimate, scaling, unit, ch_names=None, first_dim="channel"
):
"""Convert PSDs to dB (if necessary) and appropriate units."""
_check_option("first_dim", first_dim, ["channel", "epoch"])
where = np.where(psds.min(1) <= 0)[0]
if len(where) > 0:
# Construct a helpful error message, depending on whether the first dimension of
# `psds` corresponds to channels or epochs.
if dB:
bad_value = "Infinite"
else:
bad_value = "Zero"
if first_dim == "channel":
bads = ", ".join(ch_names[ii] for ii in where)
else:
bads = ", ".join(str(ii) for ii in where)
msg = f"{bad_value} value in PSD for {first_dim}{_pl(where)} {bads}."
if first_dim == "channel":
msg += "\nThese channels might be dead."
warn(msg, UserWarning)
_check_option("estimate", estimate, ("power", "amplitude"))
if estimate == "amplitude":
np.sqrt(psds, out=psds)
psds *= scaling
ylabel = rf"$\mathrm{{{unit}/\sqrt{{Hz}}}}$"
coef = 20
else:
psds *= scaling * scaling
if "/" in unit:
unit = f"({unit})"
ylabel = rf"$\mathrm{{{unit}²/Hz}}$"
coef = 10
if dB:
np.log10(np.maximum(psds, np.finfo(float).tiny), out=psds)
psds *= coef
ylabel = r"$\mathrm{dB}\ $" + ylabel
ylabel = "Power (" + ylabel if estimate == "power" else "Amplitude (" + ylabel
ylabel += ")"
return ylabel
def _plot_psd(
inst,
fig,
freqs,
psd_list,
picks_list,
titles_list,
units_list,
scalings_list,
ax_list,
make_label,
color,
area_mode,
area_alpha,
dB,
estimate,
average,
spatial_colors,
xscale,
line_alpha,
sphere,
xlabels_list,
):
# helper function for Spectrum.plot()
from matplotlib.ticker import ScalarFormatter
from ..stats import _ci
from .evoked import _plot_lines
for key, ls in zip(["lowpass", "highpass", "line_freq"], ["--", "--", "-."]):
if inst.info[key] is not None:
for ax in ax_list:
ax.axvline(
inst.info[key],
color="k",
linestyle=ls,
alpha=0.25,
linewidth=2,
zorder=2,
)
if line_alpha is None:
line_alpha = 1.0 if average else 0.75
line_alpha = float(line_alpha)
ylabels = list()
for ii, (psd, picks, title, ax, scalings, units) in enumerate(
zip(psd_list, picks_list, titles_list, ax_list, scalings_list, units_list)
):
ylabel = _convert_psds(
psd, dB, estimate, scalings, units, [inst.ch_names[pi] for pi in picks]
)
ylabels.append(ylabel)
del ylabel
if average:
# mean across channels
psd_mean = np.mean(psd, axis=0)
if area_mode in ("sd", "std"):
# std across channels
psd_std = np.std(psd, axis=0)
hyp_limits = (psd_mean - psd_std, psd_mean + psd_std)
elif area_mode == "range":
hyp_limits = (np.min(psd, axis=0), np.max(psd, axis=0))
elif area_mode is None:
hyp_limits = None
else: # area_mode is float
hyp_limits = _ci(psd, ci=area_mode)
ax.plot(freqs, psd_mean, color=color, alpha=line_alpha, linewidth=0.5)
if hyp_limits is not None:
ax.fill_between(
freqs,
hyp_limits[0],
y2=hyp_limits[1],
facecolor=color,
alpha=area_alpha,
)
if not average:
picks = np.concatenate(picks_list)
info = pick_info(inst.info, sel=picks, copy=True)
bad_ch_idx = [info["ch_names"].index(ch) for ch in info["bads"]]
types = np.array(info.get_channel_types())
ch_types_used = list()
for this_type in _VALID_CHANNEL_TYPES:
if this_type in types:
ch_types_used.append(this_type)
assert len(ch_types_used) == len(ax_list)
unit = ""
units = {t: yl for t, yl in zip(ch_types_used, ylabels)}
titles = {c: t for c, t in zip(ch_types_used, titles_list)}
# here we overwrite `picks` because of how _plot_lines works;
# we already have the data, ch_types, etc in sync.
psd_array = np.concatenate(psd_list)
picks = np.arange(len(psd_array))
if not spatial_colors:
spatial_colors = color
_plot_lines(
psd_array,
info,
picks,
fig,
ax_list,
spatial_colors,
unit,
units=units,
scalings=None,
hline=None,
gfp=False,
types=types,
zorder="std",
xlim=(freqs[0], freqs[-1]),
ylim=None,
times=freqs,
bad_ch_idx=bad_ch_idx,
titles=titles,
ch_types_used=ch_types_used,
selectable=True,
psd=True,
line_alpha=line_alpha,
nave=None,
time_unit="ms",
sphere=sphere,
highlight=None,
)
for ii, (ax, xlabel) in enumerate(zip(ax_list, xlabels_list)):
ax.grid(True, linestyle=":")
if xscale == "log":
ax.set(xscale="log")
ax.set(xlim=[freqs[1] if freqs[0] == 0 else freqs[0], freqs[-1]])
ax.get_xaxis().set_major_formatter(ScalarFormatter())
else: # xscale == 'linear'
ax.set(xlim=(freqs[0], freqs[-1]))
if make_label:
ax.set(ylabel=ylabels[ii], title=titles_list[ii])
if xlabel:
ax.set_xlabel("Frequency (Hz)")
if make_label:
fig.align_ylabels(axs=ax_list)
return fig
def _format_units_psd(unit, latex=False, power=True, dB=False):
"""Format PSD measurement units nicely."""
unit = f"({unit})" if "/" in unit else unit
if power:
denom = "Hz"
exp = r"^{2}" if latex else "²"
else:
denom = r"\sqrt{Hz}" if latex else "√(Hz)"
exp = ""
pre, post = (r"$\mathrm{", r"}$") if latex else ("", "")
db = " (dB)" if dB else ""
return f"{pre}{unit}{exp}/{denom}{post}{db}"
def _prepare_sensor_names(names, show_names):
"""Apply callable to sensor names (if provided)."""
if callable(show_names):
names = [show_names(name) for name in names]
elif not show_names:
names = None
return names
def _trim_ticks(ticks, _min, _max):
"""Remove ticks that are more extreme than the given limits."""
if np.isclose(_min, _max):
keep_idx = 0 # ensure we always keep at least one tick
else:
keep_idx = np.where(np.logical_and(ticks >= _min, ticks <= _max))
return np.atleast_1d(ticks[keep_idx])
def _set_window_title(fig, title):
if fig.canvas.manager is not None:
fig.canvas.manager.set_window_title(title)
def _shorten_path_from_middle(fpath, max_len=60, replacement="..."):
"""Truncate a path from the middle by omitting complete path elements."""
from os.path import sep
if len(fpath) > max_len:
pathlist = fpath.split(sep)
# indices starting from middle, alternating sides, omitting final elem:
# range(8) → 3, 4, 2, 5, 1, 6; range(7) → 2, 3, 1, 4, 0, 5
ixs_to_trunc = list(
zip(
range(len(pathlist) // 2 - 1, -1, -1),
range(len(pathlist) // 2, len(pathlist) - 1),
)
)
ixs_to_trunc = np.array(ixs_to_trunc).flatten()
for ix in ixs_to_trunc:
pathlist[ix] = replacement
truncs = (np.array(pathlist) == replacement).nonzero()[0]
newpath = sep.join(pathlist[: truncs[0]] + pathlist[truncs[-1] :])
if len(newpath) < max_len:
break
return newpath
return fpath
def centers_to_edges(*arrays):
"""Convert center points to edges.
Parameters
----------
*arrays : list of ndarray
Each input array should be 1D monotonically increasing,
and will be cast to float.
Returns
-------
arrays : list of ndarray
Given each input of shape (N,), the output will have shape (N+1,).
Examples
--------
>>> x = [0., 0.1, 0.2, 0.3]
>>> y = [20, 30, 40]
>>> centers_to_edges(x, y) # doctest: +SKIP
[array([-0.05, 0.05, 0.15, 0.25, 0.35]), array([15., 25., 35., 45.])]
"""
out = list()
for ai, arr in enumerate(arrays):
arr = np.asarray(arr, dtype=float)
_check_option(f"arrays[{ai}].ndim", arr.ndim, (1,))
if len(arr) > 1:
arr_diff = np.diff(arr) / 2.0
else:
arr_diff = [abs(arr[0]) * 0.001] if arr[0] != 0 else [0.001]
out.append(
np.concatenate(
[[arr[0] - arr_diff[0]], arr[:-1] + arr_diff, [arr[-1] + arr_diff[-1]]]
)
)
return out
def _figure_agg(**kwargs):
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
fig = Figure(**kwargs)
FigureCanvasAgg(fig)
return fig
def _ndarray_to_fig(img, dpi=100):
"""Convert to MPL figure, adapted from matplotlib.image.imsave."""
figsize = np.array(img.shape[:2][::-1]) / dpi
fig = _figure_agg(dpi=dpi, figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1], frame_on=False)
ax.imshow(img)
return fig
def _save_ndarray_img(fname, img):
"""Save an image to disk."""
from PIL import Image
Image.fromarray(img).save(fname)
def concatenate_images(images, axis=0, bgcolor="black", centered=True, n_channels=3):
"""Concatenate a list of images.
Parameters
----------
images : list of ndarray
The list of images to concatenate.
axis : 0 or 1
The images are concatenated horizontally if 0 and vertically otherwise.
The default orientation is horizontal.
bgcolor : str | list
The color of the background. The name of the color is accepted
(e.g 'red') or a list of RGB values between 0 and 1. Defaults to
'black'.
centered : bool
If True, the images are centered. Defaults to True.
n_channels : int
Number of color channels. Can be 3 or 4. The default value is 3.
Returns
-------
img : ndarray
The concatenated image.
"""
n_channels = _ensure_int(n_channels, "n_channels")
axis = _ensure_int(axis)
_check_option("axis", axis, (0, 1))
_check_option("n_channels", n_channels, (3, 4))
alpha = True if n_channels == 4 else False
bgcolor = _to_rgb(bgcolor, name="bgcolor", alpha=alpha)
bgcolor = np.asarray(bgcolor) * 255
funcs = [np.sum, np.max]
ret_shape = np.asarray(
[
funcs[axis]([image.shape[0] for image in images]),
funcs[1 - axis]([image.shape[1] for image in images]),
]
)
ret = np.zeros((ret_shape[0], ret_shape[1], n_channels), dtype=np.uint8)
ret[:, :, :] = bgcolor
ptr = np.array([0, 0])
sec = np.array([0 == axis, 1 == axis]).astype(int)
for image in images:
shape = image.shape[:-1]
dec = ptr.copy()
dec += ((ret_shape - shape) // 2) * (1 - sec) if centered else 0
ret[dec[0] : dec[0] + shape[0], dec[1] : dec[1] + shape[1], :] = image
ptr += shape * sec
return ret
def _generate_default_filename(ext=".png"):
now = datetime.now()
dt_string = now.strftime("_%Y-%m-%d_%H-%M-%S")
return "MNE" + dt_string + ext
def _handle_precompute(precompute):
_validate_type(precompute, (bool, str, None), "precompute")
if precompute is None:
precompute = get_config("MNE_BROWSER_PRECOMPUTE", "auto").lower()
_check_option(
"MNE_BROWSER_PRECOMPUTE",
precompute,
("true", "false", "auto"),
extra="when precompute=None is used",
)
precompute = dict(true=True, false=False, auto="auto")[precompute]
return precompute
def _set_3d_axes_equal(ax):
"""Make axes of 3D plot have equal scale on all dimensions.
This way spheres appear as actual spheres, cubes as cubes, etc.
Parameters
----------
ax: matplotlib.axes.Axes
A matplotlib 3d axis to use.
"""
ranges = tuple(
np.abs(np.diff(getattr(ax, f"get_{d}lim")())).item() for d in ("x", "y", "z")
)
ax.set_box_aspect(ranges)
def _check_type_projs(projs):
_validate_type(projs, (list, tuple, Projection), "projs")
if isinstance(projs, Projection):
projs = [projs]
for pi, p in enumerate(projs):
_validate_type(p, Projection, f"projs[{pi}]")
return projs
def _get_cmap(colormap, lut=None):
from matplotlib import colors, rcParams
try:
from matplotlib import colormaps
except Exception:
from matplotlib.cm import get_cmap
else:
def get_cmap(cmap):
return colormaps[cmap]
if colormap is None:
colormap = rcParams["image.cmap"]
if isinstance(colormap, str) and colormap in ("mne", "mne_analyze"):
colormap = mne_analyze_colormap([0, 1, 2], format="matplotlib")
elif not isinstance(colormap, colors.Colormap):
colormap = get_cmap(colormap)
if lut is not None:
colormap = colormap.resampled(lut)
return colormap
def _get_plot_ch_type(inst, ch_type, allow_ref_meg=False):
"""Choose a single channel type (usually for plotting).
Usually used in plotting to plot a single datatype, e.g. look for mags,
then grads, then ... to plot.
"""
if ch_type is None:
allowed_types = list(_DATA_CH_TYPES_SPLIT)
allowed_types += ["ref_meg"] if allow_ref_meg else []
has_types = inst.get_channel_types(unique=True)
for type_ in allowed_types:
if type_ in has_types:
ch_type = type_
break
else:
raise RuntimeError(
f"No plottable channel types found. Allowed types are: {allowed_types}"
)
return ch_type