"""Utility functions for plotting M/EEG data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import difflib
import math
import os
import sys
import tempfile
import traceback
import webbrowser
from collections import defaultdict
from contextlib import contextmanager
from datetime import datetime
from functools import partial
import numpy as np
from decorator import decorator
from scipy.signal import argrelmax
from .._fiff.constants import FIFF
from .._fiff.meas_info import Info
from .._fiff.open import show_fiff
from .._fiff.pick import (
_DATA_CH_TYPES_ORDER_DEFAULT,
_DATA_CH_TYPES_SPLIT,
_VALID_CHANNEL_TYPES,
_contains_ch_type,
_pick_data_channels,
_picks_by_type,
channel_indices_by_type,
channel_type,
pick_channels,
pick_channels_cov,
pick_info,
)
from .._fiff.proj import Projection, setup_proj
from ..defaults import _handle_default
from ..fixes import _median_complex
from ..rank import compute_rank
from ..transforms import apply_trans
from ..utils import (
_auto_weakref,
_check_ch_locs,
_check_decim,
_check_option,
_check_sphere,
_ensure_int,
_pl,
_to_rgb,
_validate_type,
fill_doc,
get_config,
logger,
verbose,
warn,
)
from ..utils.misc import _identity_function
from .ui_events import ChannelsSelect, ColormapRange, publish, subscribe
_channel_type_prettyprint = {
"eeg": "EEG channel",
"grad": "Gradiometer",
"mag": "Magnetometer",
"seeg": "sEEG channel",
"dbs": "DBS channel",
"eog": "EOG channel",
"ecg": "ECG sensor",
"emg": "EMG sensor",
"ecog": "ECoG channel",
"misc": "miscellaneous sensor",
}
@decorator
def safe_event(fun, *args, **kwargs):
"""Protect against Qt exiting on event-handling errors."""
try:
return fun(*args, **kwargs)
except Exception:
traceback.print_exc(file=sys.stderr)
def _setup_vmin_vmax(data, vmin, vmax, norm=False):
"""Handle vmin and vmax parameters for visualizing topomaps.
For the normal use-case (when `vmin` and `vmax` are None), the parameter
`norm` drives the computation. When norm=False, data is supposed to come
from a mag and the output tuple (vmin, vmax) is symmetric range
(-x, x) where x is the max(abs(data)). When norm=True (a.k.a. data is the
L2 norm of a gradiometer pair) the output tuple corresponds to (0, x).
Otherwise, vmin and vmax are callables that drive the operation.
"""
should_warn = False
if vmax is None and vmin is None:
vmax = np.abs(data).max()
vmin = 0.0 if norm else -vmax
if vmin == 0 and np.min(data) < 0:
should_warn = True
else:
if callable(vmin):
vmin = vmin(data)
elif vmin is None:
vmin = 0.0 if norm else np.min(data)
if vmin == 0 and np.min(data) < 0:
should_warn = True
if callable(vmax):
vmax = vmax(data)
elif vmax is None:
vmax = np.max(data)
if should_warn:
warn_msg = (
"_setup_vmin_vmax output a (min={vmin}, max={vmax})"
" range whereas the minimum of data is {data_min}"
)
warn_val = {"vmin": vmin, "vmax": vmax, "data_min": np.min(data)}
warn(warn_msg.format(**warn_val), UserWarning)
return vmin, vmax
def plt_show(show=True, fig=None, **kwargs):
"""Show a figure while suppressing warnings.
Parameters
----------
show : bool
Show the figure.
fig : instance of Figure | None
If non-None, use fig.show().
**kwargs : dict
Extra arguments for :func:`matplotlib.pyplot.show`.
"""
import matplotlib.pyplot as plt
from matplotlib import get_backend
if hasattr(fig, "mne") and hasattr(fig.mne, "backend"):
backend = fig.mne.backend
# TODO: This is a hack to deal with the fact that the
# with plt.ion():
# BACKEND = get_backend()
# an the top of _mpl_figure detects QtAgg during testing even though
# we've set the backend to Agg.
if backend != "agg":
gotten_backend = get_backend()
if gotten_backend == "agg":
backend = "agg"
else:
backend = get_backend()
if show and backend != "agg":
logger.debug(f"Showing plot for backend {repr(backend)}")
(fig or plt).show(**kwargs)
def _show_browser(show=True, block=True, fig=None, **kwargs):
"""Show the browser considering different backends.
Parameters
----------
show : bool
Show the figure.
block : bool
If to block execution on showing.
fig : instance of Figure | None
Needs to be passed for Qt backend,
optional for matplotlib.
**kwargs : dict
Extra arguments for :func:`matplotlib.pyplot.show`.
"""
from ._figure import get_browser_backend
_validate_type(block, bool, "block")
backend = get_browser_backend()
if os.getenv("_MNE_BROWSER_NO_BLOCK", "false").lower() == "true":
block = False
if backend == "matplotlib":
plt_show(show, block=block, **kwargs)
else:
from qtpy.QtCore import Qt
from qtpy.QtWidgets import QApplication
from .backends._utils import _qt_app_exec
if fig is not None and os.getenv("_MNE_BROWSER_BACK", "").lower() == "true":
fig.setWindowFlags(fig.windowFlags() | Qt.WindowStaysOnBottomHint)
if show:
fig.show()
# If block=False, a Qt-Event-Loop has to be started
# somewhere else in the calling code.
if block:
_qt_app_exec(QApplication.instance())
def _check_delayed_ssp(container):
"""Handle interactive SSP selection."""
if container.proj is True or all(p["active"] for p in container.info["projs"]):
raise RuntimeError(
"Projs are already applied. Please initialize"
" the data with proj set to False."
)
elif len(container.info["projs"]) < 1:
raise RuntimeError("No projs found in evoked.")
def _validate_if_list_of_axes(axes, obligatory_len=None, name="axes"):
"""Validate whether input is a list/array of axes."""
from matplotlib.axes import Axes
_validate_type(axes, (list, tuple, np.ndarray), name)
if isinstance(axes, np.ndarray) and axes.ndim > 1:
raise ValueError(
f"if {name} is a numpy array, it must be one-dimensional, but "
f"the received numpy array has {axes.ndim} dimensions. Try using "
"ravel or flatten method of the array."
)
wrong_idx = np.where([not isinstance(x, Axes) for x in axes])[0]
if len(wrong_idx):
raise TypeError(
f"{name} must be an array-like of matplotlib axes objects, but "
f"{name}[{wrong_idx[0]}] is of type {type(axes[wrong_idx[0]])}"
)
if obligatory_len is not None:
obligatory_len = _ensure_int(
obligatory_len, "obligatory_len", extra="if not None"
)
if len(axes) != obligatory_len:
raise ValueError(
f"{name} must be an array-like of length {obligatory_len}, "
f"but the length is {len(axes)}"
)
def mne_analyze_colormap(limits=(5, 10, 15), format="vtk"): # noqa: A002
"""Return a colormap similar to that used by mne_analyze.
Parameters
----------
limits : array-like of length 3 or 6
Bounds for the colormap, which will be mirrored across zero if length
3, or completely specified (and potentially asymmetric) if length 6.
format : str
Type of colormap to return. If 'matplotlib', will return a
matplotlib.colors.LinearSegmentedColormap. If 'vtk', will
return an RGBA array of shape (256, 4).
Returns
-------
cmap : instance of colormap | array
A teal->blue->gray->red->yellow colormap. See docstring of the 'format'
argument for further details.
Notes
-----
For this will return a colormap that will display correctly for data
that are scaled by the plotting function to span [-fmax, fmax].
""" # noqa: E501
# Ensure limits is an array
limits = np.asarray(limits, dtype="float")
if len(limits) != 3 and len(limits) != 6:
raise ValueError("limits must have 3 or 6 elements")
if len(limits) == 3 and any(limits < 0.0):
raise ValueError("if 3 elements, limits must all be non-negative")
if any(np.diff(limits) <= 0):
raise ValueError("limits must be monotonically increasing")
if format == "matplotlib":
from matplotlib import colors
if len(limits) == 3:
limits = (np.concatenate((-np.flipud(limits), limits)) + limits[-1]) / (
2 * limits[-1]
)
else:
limits = (limits - np.min(limits)) / np.max(limits - np.min(limits))
cdict = {
"red": (
(limits[0], 0.0, 0.0),
(limits[1], 0.0, 0.0),
(limits[2], 0.5, 0.5),
(limits[3], 0.5, 0.5),
(limits[4], 1.0, 1.0),
(limits[5], 1.0, 1.0),
),
"green": (
(limits[0], 1.0, 1.0),
(limits[1], 0.0, 0.0),
(limits[2], 0.5, 0.5),
(limits[3], 0.5, 0.5),
(limits[4], 0.0, 0.0),
(limits[5], 1.0, 1.0),
),
"blue": (
(limits[0], 1.0, 1.0),
(limits[1], 1.0, 1.0),
(limits[2], 0.5, 0.5),
(limits[3], 0.5, 0.5),
(limits[4], 0.0, 0.0),
(limits[5], 0.0, 0.0),
),
"alpha": (
(limits[0], 1.0, 1.0),
(limits[1], 1.0, 1.0),
(limits[2], 0.0, 0.0),
(limits[3], 0.0, 0.0),
(limits[4], 1.0, 1.0),
(limits[5], 1.0, 1.0),
),
}
return colors.LinearSegmentedColormap("mne_analyze", cdict)
elif format in ("vtk", "mayavi"):
if len(limits) == 3:
limits = np.concatenate((-np.flipud(limits), [0], limits)) / limits[-1]
else:
limits = np.concatenate((limits[:3], [0], limits[3:]))
limits /= np.max(np.abs(limits))
r = np.array([0, 0, 0, 0, 1, 1, 1])
g = np.array([1, 0, 0, 0, 0, 0, 1])
b = np.array([1, 1, 1, 0, 0, 0, 0])
a = np.array([1, 1, 0, 0, 0, 1, 1])
xp = (np.arange(256) - 128) / 128.0
colormap = np.r_[[np.interp(xp, limits, 255 * c) for c in [r, g, b, a]]].T
return colormap
else:
# Use this instead of check_option because we have a hidden option
raise ValueError(f"format must be either matplotlib or vtk, got {repr(format)}")
@contextmanager
def _events_off(obj):
obj.eventson = False
try:
yield
finally:
obj.eventson = True
def _toggle_proj(event, params, all_=False):
"""Perform operations when proj boxes clicked."""
# read options if possible
if "proj_checks" in params:
bools = list(params["proj_checks"].get_status())
if all_:
new_bools = [not all(bools)] * len(bools)
with _events_off(params["proj_checks"]):
for bi, (old, new) in enumerate(zip(bools, new_bools)):
if old != new:
params["proj_checks"].set_active(bi)
bools[bi] = new
for bi, (b, p) in enumerate(zip(bools, params["projs"])):
# see if they tried to deactivate an active one
if not b and p["active"]:
bools[bi] = True
else:
proj = params.get("apply_proj", True)
bools = [proj] * len(params["projs"])
compute_proj = False
if "proj_bools" not in params:
compute_proj = True
elif not np.array_equal(bools, params["proj_bools"]):
compute_proj = True
# if projectors changed, update plots
if compute_proj is True:
params["plot_update_proj_callback"](params, bools)
def _get_channel_plotting_order(order, ch_types, picks=None):
"""Determine channel plotting order for browse-style Raw/Epochs plots."""
if order is None:
# for backward compat, we swap the first two to keep grad before mag
ch_type_order = list(_DATA_CH_TYPES_ORDER_DEFAULT)
ch_type_order = tuple(["grad", "mag"] + ch_type_order[2:])
order = [
pick_idx
for order_type in ch_type_order
for pick_idx, pick_type in enumerate(ch_types)
if order_type == pick_type
]
elif not isinstance(order, np.ndarray | list | tuple):
raise ValueError(f'order should be array-like; got "{order}" ({type(order)}).')
if picks is not None:
order = [ch for ch in order if ch in picks]
return np.asarray(order, int)
def _make_event_color_dict(event_color, events=None, event_id=None):
"""Make or validate a dict mapping event ids to colors."""
from .misc import _handle_event_colors
if isinstance(event_color, dict): # if event_color is a dict, validate it
event_id = dict() if event_id is None else event_id
event_color = {
_ensure_int(event_id.get(key, key), "event_color key"): value
for key, value in event_color.items()
}
default = event_color.pop(-1, None)
default_factory = None if default is None else lambda: default
new_dict = defaultdict(default_factory)
for key, value in event_color.items():
if key < 1:
raise KeyError(
"event_color keys must be strictly positive, "
f"or -1 (cannot use {key})"
)
new_dict[key] = value
return new_dict
elif event_color is None: # make a dict from color cycle
uniq_events = set() if events is False else np.unique(events[:, 2])
return _handle_event_colors(event_color, uniq_events, event_id)
else: # if event_color is a MPL color-like thing, use it for all events
return defaultdict(lambda: event_color)
def _prepare_trellis(
n_cells,
ncols,
nrows="auto",
title=False,
size=1.3,
sharex=False,
sharey=False,
):
from matplotlib.gridspec import GridSpec
from ._mpl_figure import _figure
if n_cells == 1:
nrows = ncols = 1
elif isinstance(ncols, int) and n_cells <= ncols:
nrows, ncols = 1, n_cells
else:
if ncols == "auto" and nrows == "auto":
nrows = math.floor(math.sqrt(n_cells))
ncols = math.ceil(n_cells / nrows)
elif ncols == "auto":
ncols = math.ceil(n_cells / nrows)
elif nrows == "auto":
nrows = math.ceil(n_cells / ncols)
else:
naxes = ncols * nrows
if naxes < n_cells:
raise ValueError(
f"Cannot plot {n_cells} axes in a {nrows} by {ncols} figure."
)
width = size * ncols
height = (size + max(0, 0.1 * (4 - size))) * nrows + bool(title) * 0.5
fig = _figure(toolbar=False, figsize=(width * 1.5, 0.25 + height * 1.5))
gs = GridSpec(nrows, ncols, figure=fig)
axes = []
for ax_idx in range(n_cells):
subplot_kw = dict()
if ax_idx > 0:
if sharex:
subplot_kw.update(sharex=axes[0])
if sharey:
subplot_kw.update(sharey=axes[0])
axes.append(fig.add_subplot(gs[ax_idx], **subplot_kw))
return fig, axes, ncols, nrows
def _draw_proj_checkbox(event, params, draw_current_state=True):
"""Toggle options (projectors) dialog."""
from matplotlib import widgets
projs = params["projs"]
# turn on options dialog
labels = [p["desc"] for p in projs]
actives = (
[p["active"] for p in projs]
if draw_current_state
else params.get("proj_bools", [params["apply_proj"]] * len(projs))
)
width = max([4.0, max([len(p["desc"]) for p in projs]) / 6.0 + 0.5])
height = (len(projs) + 1) / 6.0 + 1.5
# We manually place everything here so avoid constrained layouts
fig_proj = figure_nobar(figsize=(width, height), layout=None)
_set_window_title(fig_proj, "SSP projection vectors")
offset = 1.0 / 6.0 / height
params["fig_proj"] = fig_proj # necessary for proper toggling
ax_temp = fig_proj.add_axes((0, offset, 1, 0.8 - offset), frameon=False)
ax_temp.set_title('Projectors marked with "X" are active')
# make edges around checkbox areas and change already-applied projectors
# to red
from ._mpl_figure import _OLD_BUTTONS
check_kwargs = dict()
if not _OLD_BUTTONS:
checkcolor = ["#ff0000" if p["active"] else "k" for p in projs]
check_kwargs["check_props"] = dict(facecolor=checkcolor)
check_kwargs["frame_props"] = dict(edgecolor="0.5", linewidth=1)
proj_checks = widgets.CheckButtons(
ax_temp, labels=labels, actives=actives, **check_kwargs
)
if _OLD_BUTTONS:
for rect in proj_checks.rectangles:
rect.set_edgecolor("0.5")
rect.set_linewidth(1.0)
for ii, p in enumerate(projs):
if p["active"]:
for x in proj_checks.lines[ii]:
x.set_color("#ff0000")
# make minimal size
# pass key presses from option dialog over
proj_checks.on_clicked(partial(_toggle_proj, params=params))
params["proj_checks"] = proj_checks
fig_proj.canvas.mpl_connect("key_press_event", _key_press)
# Toggle all
ax_temp = fig_proj.add_axes((0, 0, 1, offset), frameon=False)
proj_all = widgets.Button(ax_temp, "Toggle all")
proj_all.on_clicked(partial(_toggle_proj, params=params, all_=True))
params["proj_all"] = proj_all
# this should work for non-test cases
try:
fig_proj.canvas.draw()
plt_show(fig=fig_proj, warn=False)
except Exception:
pass
def _simplify_float(label):
# Heuristic to turn floats to ints where possible (e.g. -500.0 to -500)
if (
isinstance(label, float)
and np.isfinite(label)
and float(str(label)) != round(label)
):
label = round(label, 2)
return label
def _get_figsize_from_config():
"""Get default / most recent figure size from config."""
figsize = get_config("MNE_BROWSE_RAW_SIZE")
if figsize is not None:
figsize = figsize.split(",")
figsize = tuple([float(s) for s in figsize])
return figsize
@verbose
def compare_fiff(
fname_1,
fname_2,
fname_out=None,
show=True,
indent=" ",
read_limit=np.inf,
max_str=30,
verbose=None,
):
"""Compare the contents of two fiff files using diff and show_fiff.
Parameters
----------
fname_1 : path-like
First file to compare.
fname_2 : path-like
Second file to compare.
fname_out : path-like | None
Filename to store the resulting diff. If None, a temporary
file will be created.
show : bool
If True, show the resulting diff in a new tab in a web browser.
indent : str
How to indent the lines.
read_limit : int
Max number of bytes of data to read from a tag. Can be np.inf
to always read all data (helps test read completion).
max_str : int
Max number of characters of string representation to print for
each tag's data.
%(verbose)s
Returns
-------
fname_out : str
The filename used for storing the diff. Could be useful for
when a temporary file is used.
"""
file_1 = show_fiff(
fname_1, output=list, indent=indent, read_limit=read_limit, max_str=max_str
)
file_2 = show_fiff(
fname_2, output=list, indent=indent, read_limit=read_limit, max_str=max_str
)
diff = difflib.HtmlDiff().make_file(file_1, file_2, fname_1, fname_2)
if fname_out is not None:
f = open(fname_out, "wb")
else:
f = tempfile.NamedTemporaryFile("wb", delete=False, suffix=".html")
fname_out = f.name
with f as fid:
fid.write(diff.encode("utf-8"))
if show is True:
webbrowser.open_new_tab(fname_out)
return fname_out
def figure_nobar(*args, **kwargs):
"""Make matplotlib figure with no toolbar.
Parameters
----------
*args : list
Arguments to pass to :func:`matplotlib.pyplot.figure`.
**kwargs : dict
Keyword arguments to pass to :func:`matplotlib.pyplot.figure`.
Returns
-------
fig : instance of Figure
The figure.
"""
from matplotlib import pyplot as plt
from matplotlib import rcParams
old_val = rcParams["toolbar"]
try:
rcParams["toolbar"] = "none"
if "layout" not in kwargs:
kwargs["layout"] = "constrained"
fig = plt.figure(*args, **kwargs)
# remove button press catchers (for toolbar)
cbs = list(fig.canvas.callbacks.callbacks["key_press_event"].keys())
for key in cbs:
fig.canvas.callbacks.disconnect(key)
finally:
rcParams["toolbar"] = old_val
return fig
def _show_help_fig(col1, col2, fig_help, ax, show):
_set_window_title(fig_help, "Help")
celltext = [
[c1, c2] for c1, c2 in zip(col1.strip().split("\n"), col2.strip().split("\n"))
]
table = ax.table(cellText=celltext, loc="center", cellLoc="left")
table.auto_set_font_size(False)
table.set_fontsize(12)
ax.set_axis_off()
for (row, col), cell in table.get_celld().items():
cell.set_edgecolor(None) # remove cell borders
# right justify, following:
# https://stackoverflow.com/questions/48210749/matplotlib-table-assign-different-text-alignments-to-different-columns?rq=1 # noqa: E501
if col == 0:
cell._loc = "right"
fig_help.canvas.mpl_connect("key_press_event", _key_press)
if show:
# this should work for non-test cases
try:
fig_help.canvas.draw()
plt_show(fig=fig_help, warn=False)
except Exception:
pass
def _key_press(event):
"""Handle key press in dialog."""
import matplotlib.pyplot as plt
if event.key == "escape":
plt.close(event.canvas.figure)
class ClickableImage:
"""Display an image so you can click on it and store x/y positions.
Takes as input an image array (can be any array that works with imshow,
but will work best with images. Displays the image and lets you
click on it. Stores the xy coordinates of each click, so now you can
superimpose something on top of it.
Upon clicking, the x/y coordinate of the cursor will be stored in
self.coords, which is a list of (x, y) tuples.
Parameters
----------
imdata : ndarray
The image that you wish to click on for 2-d points.
**kwargs : dict
Keyword arguments. Passed to ax.imshow.
Notes
-----
.. versionadded:: 0.9.0
"""
def __init__(self, imdata, **kwargs):
"""Display the image for clicking."""
import matplotlib.pyplot as plt
self.coords = []
self.imdata = imdata
self.fig = plt.figure()
self.ax = self.fig.add_subplot(111)
self.ymax = self.imdata.shape[0]
self.xmax = self.imdata.shape[1]
self.im = self.ax.imshow(
imdata, extent=(0, self.xmax, 0, self.ymax), picker=True, **kwargs
)
self.ax.axis("off")
self.fig.canvas.mpl_connect("pick_event", self.onclick)
plt_show(block=True)
def onclick(self, event):
"""Handle Mouse clicks.
Parameters
----------
event : matplotlib.backend_bases.Event
The matplotlib object that we use to get x/y position.
"""
mouseevent = event.mouseevent
self.coords.append((mouseevent.xdata, mouseevent.ydata))
def plot_clicks(self, **kwargs):
"""Plot the x/y positions stored in self.coords.
Parameters
----------
**kwargs : dict
Arguments are passed to imshow in displaying the bg image.
"""
import matplotlib.pyplot as plt
if len(self.coords) == 0:
raise ValueError(
"No coordinates found, make sure you click "
"on the image that is first shown."
)
f, ax = plt.subplots()
ax.imshow(self.imdata, extent=(0, self.xmax, 0, self.ymax), **kwargs)
xlim, ylim = [ax.get_xlim(), ax.get_ylim()]
xcoords, ycoords = zip(*self.coords)
ax.scatter(xcoords, ycoords, c="#ff0000")
ann_text = np.arange(len(self.coords)).astype(str)
for txt, coord in zip(ann_text, self.coords):
ax.annotate(txt, coord, fontsize=20, color="#ff0000")
ax.set_xlim(xlim)
ax.set_ylim(ylim)
plt_show()
def to_layout(self, **kwargs):
"""Turn coordinates into an MNE Layout object.
Normalizes by the image you used to generate clicks
Parameters
----------
**kwargs : dict
Arguments are passed to generate_2d_layout.
Returns
-------
layout : instance of Layout
The layout.
"""
from ..channels.layout import generate_2d_layout
coords = np.array(self.coords)
lt = generate_2d_layout(coords, bg_image=self.imdata, **kwargs)
return lt
def _fake_click(fig, ax, point, xform="ax", button=1, kind="press", key=None):
"""Fake a click at a relative point within axes."""
from matplotlib import backend_bases
if xform == "ax":
x, y = ax.transAxes.transform_point(point)
elif xform == "data":
x, y = ax.transData.transform_point(point)
else:
assert xform == "pix"
x, y = point
if kind in ("press", "release"):
kind = f"button_{kind}_event"
else:
assert kind == "motion"
kind = "motion_notify_event"
button = None
logger.debug(f"Faking {kind} @ ({x}, {y}) with button={button} and key={key}")
fig.canvas.callbacks.process(
kind,
backend_bases.MouseEvent(
name=kind, canvas=fig.canvas, x=x, y=y, button=button, key=key
),
)
def _fake_keypress(fig, key, kind="press"):
from matplotlib import backend_bases
fig.canvas.callbacks.process(
f"key_{kind}_event",
backend_bases.KeyEvent(name=f"key_{kind}_event", canvas=fig.canvas, key=key),
)
def _fake_scroll(fig, x, y, step):
from matplotlib import backend_bases
button = "up" if step >= 0 else "down"
fig.canvas.callbacks.process(
"scroll_event",
backend_bases.MouseEvent(
name="scroll_event", canvas=fig.canvas, x=x, y=y, step=step, button=button
),
)
def add_background_image(fig, im, set_ratios=None):
"""Add a background image to a plot.
Adds the image specified in ``im`` to the
figure ``fig``. This is generally meant to
be done with topo plots, though it could work
for any plot.
.. note:: This modifies the figure and/or axes in place.
Parameters
----------
fig : Figure
The figure you wish to add a bg image to.
im : array, shape (M, N, {3, 4})
A background image for the figure. This must be a valid input to
`matplotlib.pyplot.imshow`. Defaults to None.
set_ratios : None | str
Set the aspect ratio of any axes in fig
to the value in set_ratios. Defaults to None,
which does nothing to axes.
Returns
-------
ax_im : instance of Axes
Axes created corresponding to the image you added.
Notes
-----
.. versionadded:: 0.9.0
"""
if im is None:
# Don't do anything and return nothing
return None
if set_ratios is not None:
for ax in fig.axes:
ax.set_aspect(set_ratios)
ax_im = fig.add_axes([0, 0, 1, 1], label="background")
ax_im.imshow(im, aspect="auto")
ax_im.set_zorder(-1)
return ax_im
def _find_peaks(evoked, npeaks):
"""Find peaks from evoked data.
Returns ``npeaks`` biggest peaks as a list of time points.
"""
gfp = evoked.data.std(axis=0)
order = len(evoked.times) // 30
if order < 1:
order = 1
peaks = argrelmax(gfp, order=order, axis=0)[0]
if len(peaks) > npeaks:
max_indices = np.argsort(gfp[peaks])[-npeaks:]
peaks = np.sort(peaks[max_indices])
times = evoked.times[peaks]
if len(times) == 0:
times = [evoked.times[gfp.argmax()]]
return times
def _process_times(inst, use_times, n_peaks=None, few=False):
"""Return a list of times for topomaps."""
if isinstance(use_times, str):
if use_times == "interactive":
use_times, n_peaks = "peaks", 1
if use_times == "peaks":
if n_peaks is None:
n_peaks = min(3 if few else 7, len(inst.times))
use_times = _find_peaks(inst, n_peaks)
elif use_times == "auto":
if n_peaks is None:
n_peaks = min(5 if few else 10, len(use_times))
use_times = np.linspace(inst.times[0], inst.times[-1], n_peaks)
else:
raise ValueError(
"Got an unrecognized method for `times`. Only "
"'peaks', 'auto' and 'interactive' are supported "
"(or directly passing numbers)."
)
elif np.isscalar(use_times):
use_times = [use_times]
use_times = np.array(use_times, float)
if use_times.ndim != 1:
raise ValueError(f"times must be 1D, got {use_times.ndim} dimensions")
if len(use_times) > 25:
warn("More than 25 topomaps plots requested. This might take a while.")
return use_times
@verbose
def plot_sensors(
info,
kind="topomap",
ch_type=None,
title=None,
show_names=False,
ch_groups=None,
to_sphere=True,
axes=None,
block=False,
show=True,
sphere=None,
pointsize=None,
linewidth=2,
*,
cmap=None,
verbose=None,
):
"""Plot sensors positions.
Parameters
----------
%(info_not_none)s
kind : str
Whether to plot the sensors as 3d, topomap or as an interactive
sensor selection dialog. Available options ``'topomap'``, ``'3d'``,
``'select'``. If ``'select'``, a set of channels can be selected
interactively by using lasso selector or clicking while holding the control
key. The selected channels are returned along with the figure instance.
Defaults to ``'topomap'``.
ch_type : None | str
The channel type to plot. Available options ``'mag'``, ``'grad'``,
``'eeg'``, ``'seeg'``, ``'dbs'``, ``'ecog'``, ``'all'``. If ``'all'``,
all the available mag, grad, eeg, seeg, dbs and ecog channels are
plotted. If None (default), then channels are chosen in the order given
above.
title : str | None
Title for the figure. If None (default), equals to
``'Sensor positions (%%s)' %% ch_type``.
show_names : bool | array of str
Whether to display all channel names. If an array, only the channel
names in the array are shown. Defaults to False.
ch_groups : 'position' | list of list | None
Channel groups for coloring the sensors. If None (default), default
coloring scheme is used. If 'position', the sensors are divided
into 8 regions. See ``order`` kwarg of :func:`mne.viz.plot_raw`. If
array, the channels are divided by picks given in the array. Also
accepts a list of lists to allow channel groups of the same or
different sizes.
.. versionadded:: 0.13.0
to_sphere : bool
Whether to project the 3d locations to a sphere. When False, the
sensor array appears similar as to looking downwards straight above the
subject's head. Has no effect when ``kind='3d'``. Defaults to True.
.. versionadded:: 0.14.0
%(axes_montage)s
.. versionadded:: 0.13.0
block : bool
Whether to halt program execution until the figure is closed. Defaults
to False.
.. versionadded:: 0.13.0
show : bool
Show figure if True. Defaults to True.
%(sphere_topomap_auto)s
pointsize : float | None
The size of the points. If None (default), will bet set to ``75`` if
``kind='3d'``, or ``25`` otherwise.
linewidth : float
The width of the outline. If ``0``, the outline will not be drawn.
cmap : str | instance of matplotlib.colors.Colormap | None
Colormap for coloring ch_groups. Has effect only when ``ch_groups``
is list of list. If None, set to ``matplotlib.rcParams["image.cmap"]``.
Defaults to None.
%(verbose)s
Returns
-------
fig : instance of Figure
Figure containing the sensor topography.
selection : list
A list of selected channels. Only returned if ``kind=='select'``.
See Also
--------
mne.viz.plot_layout
Notes
-----
This function plots the sensor locations from the info structure using
matplotlib. For drawing the sensors using PyVista see
:func:`mne.viz.plot_alignment`.
.. versionadded:: 0.12.0
"""
from .evoked import _rgb
_check_option("kind", kind, ["topomap", "3d", "select"])
if axes is not None:
from matplotlib.axes import Axes
from mpl_toolkits.mplot3d.axes3d import Axes3D
if kind == "3d":
_validate_type(axes, Axes3D, "axes", extra="when 'kind' is '3d'")
elif kind in ("topomap", "select"):
_validate_type(
axes, Axes, "axes", extra="when 'kind' is 'topomap' or 'select'"
)
if isinstance(axes, Axes3D):
raise TypeError(
"axes must be an instance of Axes when 'kind' is "
f"'topomap' or 'select', got {type(axes)} instead."
)
_validate_type(info, Info, "info")
ch_indices = channel_indices_by_type(info)
allowed_types = _DATA_CH_TYPES_SPLIT
if ch_type is None:
for this_type in allowed_types:
if _contains_ch_type(info, this_type):
ch_type = this_type
break
picks = ch_indices[ch_type]
elif ch_type == "all":
picks = list()
for this_type in allowed_types:
picks += ch_indices[this_type]
elif ch_type in allowed_types:
picks = ch_indices[ch_type]
else:
raise ValueError(f"ch_type must be one of {allowed_types} not {ch_type}!")
if len(picks) == 0:
raise ValueError(f"Could not find any channels of type {ch_type}.")
if not _check_ch_locs(info=info, picks=picks):
raise RuntimeError("No valid channel positions found")
dev_head_t = info["dev_head_t"]
chs = [info["chs"][pick] for pick in picks]
pos = np.empty((len(chs), 3))
for ci, ch in enumerate(chs):
pos[ci] = ch["loc"][:3]
if ch["coord_frame"] == FIFF.FIFFV_COORD_DEVICE:
if dev_head_t is None:
warn(
"dev_head_t is None, transforming MEG sensors to head "
"coordinate frame using identity transform"
)
dev_head_t = np.eye(4)
pos[ci] = apply_trans(dev_head_t, pos[ci])
del dev_head_t
ch_names = np.array([ch["ch_name"] for ch in chs])
bads = [idx for idx, name in enumerate(ch_names) if name in info["bads"]]
_validate_type(ch_groups, (list, np.ndarray, str, None), "ch_groups")
if ch_groups is None:
def_colors = _handle_default("color")
colors = [
"red" if i in bads else def_colors[channel_type(info, pick)]
for i, pick in enumerate(picks)
]
else:
if isinstance(ch_groups, str):
_check_option(
"ch_groups", ch_groups, ["position", "selection"], extra="when str"
)
# Avoid circular import
from ..channels import (
_EEG_SELECTIONS,
_SELECTIONS,
_divide_to_regions,
read_vectorview_selection,
)
if ch_groups == "position":
ch_groups = _divide_to_regions(info, add_stim=False)
ch_groups = list(ch_groups.values())
else:
ch_groups, color_vals = list(), list()
for selection in _SELECTIONS + _EEG_SELECTIONS:
channels = pick_channels(
info["ch_names"],
read_vectorview_selection(selection, info=info),
ordered=False,
)
ch_groups.append(channels)
color_vals = np.ones((len(ch_groups), 4))
for idx, ch_group in enumerate(ch_groups):
color_picks = [
np.where(picks == ch)[0][0] for ch in ch_group if ch in picks
]
if len(color_picks) == 0:
continue
x, y, z = pos[color_picks].T
color = np.mean(_rgb(x, y, z), axis=0)
color_vals[idx, :3] = color # mean of spatial color
else: # array-like
cmap = _get_cmap(cmap)
colors = np.linspace(0, 1, len(ch_groups))
color_vals = [cmap(colors[i]) for i in range(len(ch_groups))]
colors = np.zeros((len(picks), 4))
for pick_idx, pick in enumerate(picks):
for ind, value in enumerate(ch_groups):
if pick in value:
colors[pick_idx] = color_vals[ind]
break
title = f"Sensor positions ({ch_type})" if title is None else title
fig = _plot_sensors_2d(
pos,
info,
picks,
colors,
bads,
ch_names,
title,
show_names,
axes,
show,
kind,
block,
to_sphere,
sphere,
pointsize=pointsize,
linewidth=linewidth,
)
if kind == "select":
return fig, fig.lasso.selection
return fig
def _onpick_sensor(event, fig, ax, pos, ch_names, show_names):
"""Pick a channel in plot_sensors."""
if event.mouseevent.inaxes != ax:
return
if fig.lasso is not None and event.mouseevent.key in ["control", "ctrl+shift"]:
# Add the sensor to the selection instead of showing its name.
for ind in event.ind:
fig.lasso.select_one(ind)
return
if show_names:
return # channel names already visible
ind = event.ind[0] # Just take the first sensor.
ch_name = ch_names[ind]
this_pos = pos[ind]
# XXX: Bug in matplotlib won't allow setting the position of existing
# text item, so we create a new one.
ax.texts[0].remove()
if len(this_pos) == 3:
ax.text(this_pos[0], this_pos[1], this_pos[2], ch_name)
else:
ax.text(this_pos[0], this_pos[1], ch_name)
fig.canvas.draw()
def _close_event(event=None, fig=None):
"""Listen for sensor plotter close event."""
if getattr(fig, "lasso", None) is not None:
fig.lasso.disconnect()
def _plot_sensors_2d(
pos,
info,
picks,
colors,
bads,
ch_names,
title,
show_names,
ax,
show,
kind,
block,
to_sphere,
sphere,
pointsize=None,
linewidth=2,
):
"""Plot sensors."""
import matplotlib.pyplot as plt
from matplotlib import rcParams
from mpl_toolkits.mplot3d import Axes3D # noqa: F401 analysis:ignore
from .topomap import _draw_outlines, _get_pos_outlines
ch_names = [str(ch_name) for ch_name in ch_names]
sphere = _check_sphere(sphere, info)
edgecolors = np.repeat(rcParams["axes.edgecolor"], len(colors))
edgecolors[bads] = "red"
axes_was_none = ax is None
if axes_was_none:
subplot_kw = dict()
if kind == "3d":
subplot_kw.update(projection="3d")
fig, ax = plt.subplots(
1,
figsize=(max(rcParams["figure.figsize"]),) * 2,
subplot_kw=subplot_kw,
layout="constrained",
)
else:
fig = ax.get_figure()
if kind == "3d":
pointsize = 75 if pointsize is None else pointsize
ax.text(0, 0, 0, "", zorder=1)
ax.scatter(
pos[:, 0],
pos[:, 1],
pos[:, 2],
picker=True,
c=colors,
s=pointsize,
edgecolor=edgecolors,
linewidth=linewidth,
)
ax.azim = 90
ax.elev = 0
ax.xaxis.set_label_text("x (m)")
ax.yaxis.set_label_text("y (m)")
ax.zaxis.set_label_text("z (m)")
else: # kind in 'select', 'topomap'
pointsize = 25 if pointsize is None else pointsize
ax.text(0, 0, "", zorder=1)
pos, outlines = _get_pos_outlines(info, picks, sphere, to_sphere=to_sphere)
_draw_outlines(ax, outlines)
pts = ax.scatter(
pos[:, 0],
pos[:, 1],
picker=True,
clip_on=False,
c=colors,
edgecolors=edgecolors,
s=pointsize,
lw=linewidth,
)
if kind == "select":
fig.lasso = SelectFromCollection(ax, pts, names=ch_names)
def on_select():
publish(fig, ChannelsSelect(ch_names=fig.lasso.selection))
def on_channels_select(event):
selection_inds = np.flatnonzero(np.isin(ch_names, event.ch_names))
fig.lasso.select_many(selection_inds)
fig.lasso.callbacks.append(on_select)
subscribe(fig, "channels_select", on_channels_select)
else:
fig.lasso = None
# Equal aspect for 3D looks bad, so only use for 2D
ax.set(aspect="equal")
ax.axis("off") # remove border around figure
del sphere
connect_picker = True
if show_names:
if isinstance(show_names, list | np.ndarray): # only given channels
indices = [list(ch_names).index(name) for name in show_names]
else: # all channels
indices = range(len(pos))
for idx in indices:
this_pos = pos[idx]
if kind == "3d":
ax.text(this_pos[0], this_pos[1], this_pos[2], ch_names[idx])
else:
ax.text(
this_pos[0] + 0.0025,
this_pos[1],
ch_names[idx],
ha="left",
va="center",
)
connect_picker = kind == "select"
# make sure no names go off the edge of the canvas
xmin, ymin, xmax, ymax = fig.get_window_extent().bounds
if connect_picker:
picker = partial(
_onpick_sensor,
fig=fig,
ax=ax,
pos=pos,
ch_names=ch_names,
show_names=show_names,
)
fig.canvas.mpl_connect("pick_event", picker)
if axes_was_none:
_set_window_title(fig, title)
closed = partial(_close_event, fig=fig)
fig.canvas.mpl_connect("close_event", closed)
plt_show(show, block=block)
return fig
def _compute_scalings(scalings, inst, remove_dc=False, duration=10):
"""Compute scalings for each channel type automatically.
Parameters
----------
scalings : dict
The scalings for each channel type. If any values are
'auto', this will automatically compute a reasonable
scaling for that channel type. Any values that aren't
'auto' will not be changed.
inst : instance of Raw or Epochs
The data for which you want to compute scalings. If data
is not preloaded, this will read a subset of times / epochs
up to 100mb in size in order to compute scalings.
remove_dc : bool
Whether to remove the mean (DC) before calculating the scalings. If
True, the mean will be computed and subtracted for short epochs in
order to compensate not only for global mean offset, but also for slow
drifts in the signals.
duration : float
If remove_dc is True, the mean will be computed and subtracted on
segments of length ``duration`` seconds.
Returns
-------
scalings : dict
A scalings dictionary with updated values
"""
from ..epochs import BaseEpochs
from ..io import BaseRaw
scalings = _handle_default("scalings_plot_raw", scalings)
if not isinstance(inst, BaseRaw | BaseEpochs):
raise ValueError("Must supply either Raw or Epochs")
for key, value in scalings.items():
if not (isinstance(value, str) and value == "auto"):
try:
scalings[key] = float(value)
except Exception:
raise ValueError(
f'scalings must be "auto" or float, got '
f"scalings[{key!r}]={value!r} which could not be "
f"converted to float"
)
# If there are no "auto" scalings, we can return early!
if all(
[scalings[ch_type] != "auto" for ch_type in inst.get_channel_types(unique=True)]
):
return scalings
ch_types = channel_indices_by_type(inst.info)
ch_types = {i_type: i_ixs for i_type, i_ixs in ch_types.items() if len(i_ixs) != 0}
if inst.preload is False:
if isinstance(inst, BaseRaw):
# Load a window of data from the center up to 100mb in size
n_times = 1e8 // (len(inst.ch_names) * 8)
n_times = np.clip(n_times, 1, inst.n_times)
n_secs = n_times / float(inst.info["sfreq"])
time_middle = np.mean(inst.times)
tmin = np.clip(time_middle - n_secs / 2.0, inst.times.min(), None)
tmax = np.clip(time_middle + n_secs / 2.0, None, inst.times.max())
smin, smax = (int(round(x * inst.info["sfreq"])) for x in (tmin, tmax))
data = inst._read_segment(smin, smax)
elif isinstance(inst, BaseEpochs):
# Load a random subset of epochs up to 100mb in size
n_epochs = 1e8 // (len(inst.ch_names) * len(inst.times) * 8)
n_epochs = int(np.clip(n_epochs, 1, len(inst)))
ixs_epochs = np.random.choice(range(len(inst)), n_epochs, False)
inst = inst.copy()[ixs_epochs].load_data()
else:
data = inst._data
if isinstance(inst, BaseEpochs):
data = inst._data.swapaxes(0, 1).reshape([len(inst.ch_names), -1])
# Iterate through ch types and update scaling if ' auto'
for key, value in scalings.items():
if key not in ch_types or value != "auto":
continue
this_data = data[ch_types[key]]
if remove_dc and (this_data.shape[1] / inst.info["sfreq"] >= duration):
length = int(duration * inst.info["sfreq"]) # segment length
# truncate data so that we can divide into segments of equal length
this_data = this_data[:, : this_data.shape[1] // length * length]
shape = this_data.shape # original shape
this_data = this_data.T.reshape(-1, length, shape[0]) # segment
this_data -= np.nanmean(this_data, 0) # subtract segment means
this_data = this_data.T.reshape(shape) # reshape into original
this_data = this_data.ravel()
this_data = this_data[np.isfinite(this_data)]
if this_data.size:
iqr = np.diff(np.percentile(this_data, [25, 75]))[0]
else:
iqr = 1.0
scalings[key] = iqr
return scalings
def _setup_cmap(cmap, n_axes=1, norm=False):
"""Set color map interactivity."""
if cmap == "interactive":
cmap = ("Reds" if norm else "RdBu_r", True)
elif not isinstance(cmap, tuple):
if cmap is None:
cmap = "Reds" if norm else "RdBu_r"
cmap = (cmap, False if n_axes > 2 else True)
return cmap
def _prepare_joint_axes(n_maps, figsize=None):
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
fig = plt.figure(figsize=figsize, layout="constrained")
gs = GridSpec(2, n_maps, height_ratios=[1, 2], figure=fig)
map_ax = [fig.add_subplot(gs[0, x]) for x in range(n_maps)] # first row
main_ax = fig.add_subplot(gs[1, :]) # second row
return fig, main_ax, map_ax
class DraggableColorbar:
"""Enable interactive colorbar.
See http://www.ster.kuleuven.be/~pieterd/python/html/plotting/interactive_colorbar.html
""" # noqa: E501
def __init__(self, cbar, mappable, kind, ch_type):
import matplotlib.pyplot as plt
self.cbar = cbar
self.mappable = mappable
self.kind = kind
self.ch_type = ch_type
self.fig = self.cbar.ax.figure
self.press = None
self.cycle = sorted(
[i for i in dir(plt.cm) if hasattr(getattr(plt.cm, i), "N")]
)
self.cycle += [mappable.get_cmap().name]
self.index = self.cycle.index(mappable.get_cmap().name)
self.lims = (self.cbar.norm.vmin, self.cbar.norm.vmax)
self.connect()
@_auto_weakref
def _on_colormap_range(event):
return self._on_colormap_range(event)
subscribe(self.fig, "colormap_range", _on_colormap_range)
def connect(self):
"""Connect to all the events we need."""
self.cidpress = self.cbar.ax.figure.canvas.mpl_connect(
"button_press_event", self.on_press
)
self.cidrelease = self.cbar.ax.figure.canvas.mpl_connect(
"button_release_event", self.on_release
)
self.cidmotion = self.cbar.ax.figure.canvas.mpl_connect(
"motion_notify_event", self.on_motion
)
self.keypress = self.cbar.ax.figure.canvas.mpl_connect(
"key_press_event", self.key_press
)
self.scroll = self.cbar.ax.figure.canvas.mpl_connect(
"scroll_event", self.on_scroll
)
def on_press(self, event):
"""Handle button press."""
if event.inaxes != self.cbar.ax:
return
self.press = event.y
def key_press(self, event):
"""Handle key press."""
scale = self.cbar.norm.vmax - self.cbar.norm.vmin
perc = 0.03
if event.key == "down":
self.index += 1
elif event.key == "up":
self.index -= 1
elif event.key == " ": # space key resets scale
self.cbar.norm.vmin = self.lims[0]
self.cbar.norm.vmax = self.lims[1]
elif event.key == "+":
self.cbar.norm.vmin -= (perc * scale) * -1
self.cbar.norm.vmax += (perc * scale) * -1
elif event.key == "-":
self.cbar.norm.vmin -= (perc * scale) * 1
self.cbar.norm.vmax += (perc * scale) * 1
elif event.key == "pageup":
self.cbar.norm.vmin -= (perc * scale) * 1
self.cbar.norm.vmax -= (perc * scale) * 1
elif event.key == "pagedown":
self.cbar.norm.vmin -= (perc * scale) * -1
self.cbar.norm.vmax -= (perc * scale) * -1
else:
return
if self.index < 0:
self.index = len(self.cycle) - 1
elif self.index >= len(self.cycle):
self.index = 0
cmap = self.cycle[self.index]
self.cbar.mappable.set_cmap(cmap)
self.cbar.ax.figure.draw_without_rendering()
self.mappable.set_cmap(cmap)
self._publish()
def on_motion(self, event):
"""Handle mouse movements."""
if self.press is None:
return
if event.inaxes != self.cbar.ax:
return
yprev = self.press
dy = event.y - yprev
self.press = event.y
scale = self.cbar.norm.vmax - self.cbar.norm.vmin
perc = 0.03
if event.button == 1:
self.cbar.norm.vmin -= (perc * scale) * np.sign(dy)
self.cbar.norm.vmax -= (perc * scale) * np.sign(dy)
elif event.button == 3:
self.cbar.norm.vmin -= (perc * scale) * np.sign(dy)
self.cbar.norm.vmax += (perc * scale) * np.sign(dy)
self._publish()
def on_release(self, event):
"""Handle release."""
self.press = None
self._update()
def on_scroll(self, event):
"""Handle scroll."""
scale = 1.1 if event.step < 0 else 1.0 / 1.1
self.cbar.norm.vmin *= scale
self.cbar.norm.vmax *= scale
self._publish()
def _on_colormap_range(self, event):
if event.kind != self.kind or event.ch_type != self.ch_type:
return
if event.fmin is not None:
self.cbar.norm.vmin = event.fmin
if event.fmax is not None:
self.cbar.norm.vmax = event.fmax
if event.cmap is not None:
self.cbar.mappable.set_cmap(event.cmap)
self.mappable.set_cmap(event.cmap)
self._update()
def _publish(self):
publish(
self.fig,
ColormapRange(
kind=self.kind,
ch_type=self.ch_type,
fmin=self.cbar.norm.vmin,
fmax=self.cbar.norm.vmax,
cmap=self.mappable.get_cmap(),
),
)
def _update(self):
from matplotlib.ticker import AutoLocator
self.cbar.set_ticks(AutoLocator())
self.cbar.update_ticks()
self.cbar.ax.figure.draw_without_rendering()
self.mappable.set_norm(self.cbar.norm)
self.cbar.ax.figure.canvas.draw()
class SelectFromCollection:
"""Select objects from a matplotlib collection using ``LassoSelector``.
The names of the selected objects are saved in the ``selection`` attribute.
This tool highlights selected objects by fading other objects out (i.e.,
reducing their alpha values).
Holding down the Control key will add to the current selection, and holding down
Control+Shift will remove from the current selection.
Parameters
----------
ax : instance of Axes
Axes to interact with.
collection : instance of matplotlib collection
Collection you want to select from.
names : list of str
The names of the object. The selection is returned as a subset of these names.
alpha_selected : float
Alpha for selected objects (0=tranparant, 1=opaque).
alpha_nonselected : float
Alpha for non-selected objects (0=tranparant, 1=opaque).
linewidth_selected : float
Linewidth for the borders of selected objects.
linewidth_nonselected : float
Linewidth for the borders of non-selected objects.
Notes
-----
This tool selects collection objects which bounding boxes intersect with a lasso
path. Calls all callbacks in self.callbacks when selection is ready.
"""
def __init__(
self,
ax,
collection,
*,
names,
alpha_selected=1,
alpha_nonselected=0.5,
linewidth_selected=1,
linewidth_nonselected=0.5,
verbose=None,
):
from matplotlib.widgets import LassoSelector
self.fig = ax.figure
self.canvas = ax.figure.canvas
self.collection = collection
self.names = names
self.alpha_selected = alpha_selected
self.alpha_nonselected = alpha_nonselected
self.linewidth_selected = linewidth_selected
self.linewidth_nonselected = linewidth_nonselected
from matplotlib.collections import PolyCollection
from matplotlib.path import Path
if isinstance(collection, PolyCollection):
self.paths = collection.get_paths()
else:
self.paths = [Path([point]) for point in collection.get_offsets()]
self.Npts = len(self.paths)
if self.Npts != len(names):
raise ValueError(
f"Number of names ({len(names)}) does not match the number of objects "
f"in the collection ({self.Npts})."
)
# Ensure that we have colors for each object.
self.fc = collection.get_facecolors()
self.ec = collection.get_edgecolors()
if len(self.fc) == 0:
raise ValueError("Collection must have a facecolor")
elif len(self.fc) == 1:
self.fc = np.tile(self.fc, self.Npts).reshape(self.Npts, -1)
if len(self.ec) == 0:
self.ec = np.zeros((self.Npts, 4)) # all black
elif len(self.ec) == 1:
self.ec = np.tile(self.ec, self.Npts).reshape(self.Npts, -1)
self.lw = np.full(self.Npts, float(self.linewidth_nonselected))
# Initialize the lasso selector
self.lasso = LassoSelector(
ax, onselect=self.on_select, props=dict(color="red", linewidth=0.5)
)
self.selection = list()
self.selection_inds = np.array([], dtype="int")
self.callbacks = list()
# Deselect everything in the beginning.
self.style_objects()
# For backwards compatibility
@property
def ch_names(self):
return self.names
def notify(self):
"""Notify listeners that a selection has been made."""
logger.info(f"Selected channels: {self.selection}")
for callback in self.callbacks:
callback()
def on_select(self, verts):
"""Select a subset from the collection."""
from matplotlib.path import Path
# Don't respond to single clicks without extra keys being hold down.
# Figures like plot_evoked_topo want to do something else with them.
if len(verts) <= 3 and self.canvas._key not in ["control", "ctrl+shift"]:
return
path = Path(verts)
inds = np.nonzero([path.intersects_path(p) for p in self.paths])[0]
if self.canvas._key == "control": # Appending selection.
self.selection_inds = np.union1d(self.selection_inds, inds).astype("int")
elif self.canvas._key == "ctrl+shift":
self.selection_inds = np.setdiff1d(self.selection_inds, inds).astype("int")
else:
self.selection_inds = inds
self.selection = [self.names[i] for i in self.selection_inds]
self.style_objects()
self.notify()
def select_one(self, ind):
"""Select or deselect one sensor."""
if self.canvas._key == "control":
self.selection_inds = np.union1d(self.selection_inds, [ind])
elif self.canvas._key == "ctrl+shift":
self.selection_inds = np.setdiff1d(self.selection_inds, [ind])
else:
return # don't notify()
self.selection = [self.names[i] for i in self.selection_inds]
self.style_objects()
self.notify()
def select_many(self, inds):
"""Select many sensors using indices (for predefined selections)."""
self.selection_inds = inds
self.selection = [self.names[i] for i in self.selection_inds]
self.style_objects()
def style_objects(self):
"""Style selected sensors as "active"."""
# reset
self.fc[:, -1] = self.alpha_nonselected
self.ec[:, -1] = self.alpha_nonselected / 2
self.lw[:] = self.linewidth_nonselected
# style sensors at `inds`
self.fc[self.selection_inds, -1] = self.alpha_selected
self.ec[self.selection_inds, -1] = self.alpha_selected
self.lw[self.selection_inds] = self.linewidth_selected
self.collection.set_facecolors(self.fc)
self.collection.set_edgecolors(self.ec)
self.collection.set_linewidths(self.lw)
self.canvas.draw_idle()
def disconnect(self):
"""Disconnect the lasso selector."""
self.lasso.disconnect_events()
self.fc[:, -1] = self.alpha_selected
self.ec[:, -1] = self.alpha_selected
self.collection.set_facecolors(self.fc)
self.collection.set_edgecolors(self.ec)
self.canvas.draw_idle()
def _get_color_list(*, remove=None):
"""Get the current color list from matplotlib rcParams.
Parameters
----------
remove : tuple of str | None
Has no influence on the function if None. Can be a list of colors to
remove from the list if within 1/255 of the color.
Returns
-------
colors : list
"""
from matplotlib import rcParams
from matplotlib.colors import to_rgba_array
color_cycle = rcParams.get("axes.prop_cycle")
colors = color_cycle.by_key()["color"]
colors_cast = to_rgba_array(colors)[:, :3]
atol = 1.5 / 255.0
for rem in to_rgba_array(remove or [])[:, :3]:
matches = np.where(np.isclose(colors_cast, rem, atol=atol).all(-1))[0][::-1]
for idx in matches:
logger.debug(f"Removing from color cycle: {colors[idx]}")
colors.pop(idx)
return colors
def _merge_annotations(start, stop, description, annotations, current=()):
"""Handle drawn annotations."""
ends = annotations.onset + annotations.duration
idx = np.intersect1d(
np.where(ends >= start)[0], np.where(annotations.onset <= stop)[0]
)
idx = np.intersect1d(idx, np.where(annotations.description == description)[0])
new_idx = np.setdiff1d(idx, current) # don't include modified annotation
end = max(
np.append((annotations.onset[new_idx] + annotations.duration[new_idx]), stop)
)
onset = min(np.append(annotations.onset[new_idx], start))
duration = end - onset
annotations.delete(idx)
annotations.append(onset, duration, description)
class DraggableLine:
"""Custom matplotlib line for moving around by drag and drop.
Parameters
----------
line : instance of matplotlib Line2D
Line to add interactivity to.
callback : function
Callback to call when line is released.
"""
def __init__(self, line, modify_callback, drag_callback):
self.line = line
self.press = None
self.x0 = line.get_xdata()[0]
self.modify_callback = modify_callback
self.drag_callback = drag_callback
self.cidpress = self.line.figure.canvas.mpl_connect(
"button_press_event", self.on_press
)
self.cidrelease = self.line.figure.canvas.mpl_connect(
"button_release_event", self.on_release
)
self.cidmotion = self.line.figure.canvas.mpl_connect(
"motion_notify_event", self.on_motion
)
def set_x(self, x):
"""Repoisition the line."""
self.line.set_xdata([x, x])
self.x0 = x
def on_press(self, event):
"""Store button press if on top of the line."""
if event.inaxes != self.line.axes or not self.line.contains(event)[0]:
return
x0 = self.line.get_xdata()
y0 = self.line.get_ydata()
self.press = x0, y0, event.xdata, event.ydata
def on_motion(self, event):
"""Move the line on drag."""
if self.press is None:
return
if event.inaxes != self.line.axes:
return
x0, y0, xpress, ypress = self.press
dx = event.xdata - xpress
self.line.set_xdata(x0 + dx)
self.drag_callback((x0 + dx)[0])
self.line.figure.canvas.draw()
def on_release(self, event):
"""Handle release."""
if event.inaxes != self.line.axes or self.press is None:
return
self.press = None
self.line.figure.canvas.draw()
self.modify_callback(self.x0, event.xdata)
self.x0 = event.xdata
def remove(self):
"""Remove the line."""
self.line.figure.canvas.mpl_disconnect(self.cidpress)
self.line.figure.canvas.mpl_disconnect(self.cidrelease)
self.line.figure.canvas.mpl_disconnect(self.cidmotion)
self.line.remove()
def _setup_ax_spines(
axes,
vlines,
xmin,
xmax,
ymin,
ymax,
invert_y=False,
unit=None,
truncate_xaxis=True,
truncate_yaxis=True,
skip_axlabel=False,
hline=True,
time_unit="s",
):
# don't show zero line if it coincides with x-axis (even if hline=True)
if hline and ymin != 0.0:
axes.spines["top"].set_position("zero")
else:
axes.spines["top"].set_visible(False)
# the axes can become very small with topo plotting. This prevents the
# x-axis from shrinking to length zero if truncate_xaxis=True, by adding
# new ticks that are nice round numbers close to (but less extreme than)
# xmin and xmax
vlines = [] if vlines is None else vlines
xticks = _trim_ticks(axes.get_xticks(), round(xmin, 2), round(xmax, 2))
xticks = np.array(sorted(set([x for x in xticks] + vlines)))
if len(xticks) < 2:
def log_fix(tval):
exp = np.log10(np.abs(tval))
return np.sign(tval) * 10 ** (np.fix(exp) - (exp < 0))
xlims = np.array([xmin, xmax])
temp_ticks = log_fix(xlims)
closer_idx = np.argmin(np.abs(xlims - temp_ticks))
further_idx = np.argmax(np.abs(xlims - temp_ticks))
start_stop = [temp_ticks[closer_idx], xlims[further_idx]]
step = np.sign(np.diff(start_stop)).item() * np.max(np.abs(temp_ticks))
tts = np.arange(*start_stop, step)
xticks = np.array(sorted(xticks + [tts[0], tts[-1]]))
axes.set_xticks(xticks)
# y-axis is simpler
yticks = _trim_ticks(axes.get_yticks(), ymin, ymax)
axes.set_yticks(yticks)
# truncation case 1: truncate both
if truncate_xaxis and truncate_yaxis:
axes.spines["bottom"].set_bounds(*xticks[[0, -1]])
axes.spines["left"].set_bounds(*yticks[[0, -1]])
# case 2: truncate only x (only right side; connect to y at left)
elif truncate_xaxis:
xbounds = np.array(axes.get_xlim())
xbounds[1] = axes.get_xticks()[-1]
axes.spines["bottom"].set_bounds(*xbounds)
# case 3: truncate only y (only top; connect to x at bottom)
elif truncate_yaxis:
ybounds = np.array(axes.get_ylim())
if invert_y:
ybounds[0] = axes.get_yticks()[0]
else:
ybounds[1] = axes.get_yticks()[-1]
axes.spines["left"].set_bounds(*ybounds)
# handle axis labels
if skip_axlabel:
axes.set_yticklabels([""] * len(yticks))
axes.set_xticklabels([""] * len(xticks))
else:
if unit is not None:
axes.set_ylabel(unit, rotation=90)
axes.set_xlabel(f"Time ({time_unit})")
# plot vertical lines
if vlines:
_ymin, _ymax = axes.get_ylim()
axes.vlines(
vlines, _ymax, _ymin, linestyles="--", colors="k", linewidth=1.0, zorder=1
)
# invert?
if invert_y:
axes.invert_yaxis()
# changes we always make:
axes.tick_params(direction="out")
axes.tick_params(right=False)
axes.spines["right"].set_visible(False)
axes.spines["left"].set_zorder(0)
def _handle_decim(info, decim, lowpass):
"""Handle decim parameter for plotters."""
if isinstance(decim, str) and decim == "auto":
lp = info["sfreq"] if info["lowpass"] is None else info["lowpass"]
lp = min(lp, info["sfreq"] if lowpass is None else lowpass)
with info._unlock():
info["lowpass"] = lp
decim = max(int(info["sfreq"] / (lp * 3) + 1e-6), 1)
decim = _ensure_int(decim, "decim", must_be='an int or "auto"')
if decim <= 0:
raise ValueError(f'decim must be "auto" or a positive integer, got {decim}')
decim = _check_decim(info, decim, 0)[0]
data_picks = _pick_data_channels(info, exclude=())
return decim, data_picks
def _setup_plot_projector(info, noise_cov, proj=True, use_noise_cov=True, nave=1):
from ..cov import compute_whitener
projector = np.eye(len(info["ch_names"]))
whitened_ch_names = []
if noise_cov is not None and use_noise_cov:
# any channels in noise_cov['bads'] but not in info['bads'] get
# set to nan, which means that they are not plotted.
data_picks = _pick_data_channels(info, with_ref_meg=False, exclude=())
data_names = {info["ch_names"][pick] for pick in data_picks}
# these can be toggled by the user
bad_names = set(info["bads"])
# these can't in standard pipelines be enabled (we always take the
# union), so pretend they're not in cov at all
cov_names = (set(noise_cov["names"]) & set(info["ch_names"])) - set(
noise_cov["bads"]
)
# Actually compute the whitener only using the difference
whiten_names = cov_names - bad_names
whiten_picks = pick_channels(info["ch_names"], whiten_names, ordered=True)
whiten_info = pick_info(info, whiten_picks)
rank = _triage_rank_sss(whiten_info, [noise_cov])[1][0]
whitener, whitened_ch_names = compute_whitener(
noise_cov, whiten_info, rank=rank, verbose=False
)
whitener *= np.sqrt(nave) # proper scaling for Evoked data
assert set(whitened_ch_names) == whiten_names
projector[whiten_picks, whiten_picks[:, np.newaxis]] = whitener
# Now we need to change the set of "whitened" channels to include
# all data channel names so that they are properly italicized.
whitened_ch_names = data_names
# We would need to set "bad_picks" to identity to show the traces
# (but in gray), but here we don't need to because "projector"
# starts out as identity. So all that is left to do is take any
# *good* data channels that are not in the noise cov to be NaN
nan_names = data_names - (bad_names | cov_names)
# XXX conditional necessary because of annoying behavior of
# pick_channels where an empty list means "all"!
if len(nan_names) > 0:
nan_picks = pick_channels(info["ch_names"], nan_names)
projector[nan_picks] = np.nan
elif proj:
projector, _ = setup_proj(info, add_eeg_ref=False, verbose=False)
return projector, whitened_ch_names
def _check_sss(info):
"""Check SSS history in info."""
ch_used = [ch for ch in _DATA_CH_TYPES_SPLIT if _contains_ch_type(info, ch)]
has_meg = "mag" in ch_used and "grad" in ch_used
has_sss = (
has_meg
and len(info["proc_history"]) > 0
and info["proc_history"][0].get("max_info") is not None
)
return ch_used, has_meg, has_sss
def _triage_rank_sss(info, covs, rank=None, scalings=None):
rank = dict() if rank is None else rank
scalings = _handle_default("scalings_cov_rank", scalings)
# Only look at good channels
picks = _pick_data_channels(info, with_ref_meg=False, exclude="bads")
info = pick_info(info, picks)
ch_used, has_meg, has_sss = _check_sss(info)
if has_sss:
if "mag" in rank or "grad" in rank:
raise ValueError(
'When using SSS, pass "meg" to set the rank '
'(separate rank values for "mag" or "grad" are '
"meaningless)."
)
elif "meg" in rank:
raise ValueError(
"When not using SSS, pass separate rank values "
'for "mag" and "grad" (do not use "meg").'
)
picks_list = _picks_by_type(info, meg_combined=has_sss)
if has_sss:
# reduce ch_used to combined mag grad
ch_used = list(zip(*picks_list))[0]
# order pick list by ch_used (required for compat with plot_evoked)
picks_list = [x for x, y in sorted(zip(picks_list, ch_used))]
n_ch_used = len(ch_used)
# make sure we use the same rank estimates for GFP and whitening
picks_list2 = [k for k in picks_list]
# add meg picks if needed.
if has_meg:
# append ("meg", picks_meg)
picks_list2 += _picks_by_type(info, meg_combined=True)
rank_list = [] # rank dict for each cov
for cov in covs:
# We need to add the covariance projectors, compute the projector,
# and apply it, just like we will do in prepare_noise_cov, otherwise
# we risk the rank estimates being incorrect (i.e., if the projectors
# do not match).
info_proj = info.copy()
with info_proj._unlock():
info_proj["projs"] += cov["projs"]
this_rank = {}
# assemble rank dict for this cov, such that we have meg
for ch_type, this_picks in picks_list2:
# if we have already estimates / values for mag/grad but not
# a value for meg, combine grad and mag.
if "mag" in this_rank and "grad" in this_rank and "meg" not in rank:
this_rank["meg"] = this_rank["mag"] + this_rank["grad"]
# and we're done here
break
if rank.get(ch_type) is None:
ch_names = [info["ch_names"][pick] for pick in this_picks]
this_C = pick_channels_cov(cov, ch_names, ordered=False)
this_estimated_rank = compute_rank(
this_C, scalings=scalings, info=info_proj
)[ch_type]
this_rank[ch_type] = this_estimated_rank
elif rank.get(ch_type) is not None:
this_rank[ch_type] = rank[ch_type]
rank_list.append(this_rank)
return n_ch_used, rank_list, picks_list, has_sss
def _check_cov(noise_cov, info):
"""Check the noise_cov for whitening and issue an SSS warning."""
from ..cov import _ensure_cov
if noise_cov is None:
return None
noise_cov = _ensure_cov(noise_cov, name="noise_cov", verbose=False)
if _check_sss(info)[2]: # has_sss
warn(
"Data have been processed with SSS, which changes the relative "
"scaling of magnetometers and gradiometers when viewing data "
"whitened by a noise covariance"
)
return noise_cov
def _set_title_multiple_electrodes(
title, combine, ch_names, max_chans=6, all_=False, ch_type=None
):
"""Prepare a title string for multiple electrodes."""
if title is None:
title = ", ".join(ch_names[:max_chans])
ch_type = _channel_type_prettyprint.get(ch_type, ch_type)
if ch_type is None:
ch_type = "sensor"
ch_type = f"{ch_type}{_pl(ch_names)}"
if hasattr(combine, "func"): # functools.partial
combine = combine.func
if callable(combine):
combine = getattr(combine, "__name__", str(combine))
if not isinstance(combine, str):
combine = "Combination"
# mean → Mean, but avoid RMS → Rms and GFP → Gfp
if combine[0].islower():
combine = combine.capitalize()
if all_:
title = f"{combine} of {len(ch_names)} {ch_type}"
elif len(ch_names) > max_chans and combine != "gfp":
logger.info(f"More than {max_chans} channels, truncating title ...")
title += f", ...\n({combine} of {len(ch_names)} {ch_type})"
return title
def _check_time_unit(time_unit, times):
if not isinstance(time_unit, str):
raise TypeError(f"time_unit must be str, got {type(time_unit)}")
if time_unit == "s":
pass
elif time_unit == "ms":
times = 1e3 * times
else:
raise ValueError(f"time_unit must be 's' or 'ms', got {time_unit!r}")
return time_unit, times
def _plot_masked_image(
ax,
data,
times,
mask=None,
yvals=None,
cmap="RdBu_r",
vmin=None,
vmax=None,
ylim=None,
mask_style="both",
mask_alpha=0.25,
mask_cmap="Greys",
yscale="linear",
cnorm=None,
):
"""Plot a potentially masked (evoked, TFR, ...) 2D image."""
from matplotlib import ticker
from matplotlib.colors import Normalize
if mask_style is None and mask is not None:
mask_style = "both" # default
draw_mask = mask_style in {"both", "mask"}
draw_contour = mask_style in {"both", "contour"}
if cmap is None:
mask_cmap = cmap
if cnorm is None:
cnorm = Normalize(vmin=vmin, vmax=vmax)
# mask param check and preparation
if draw_mask is None:
if mask is not None:
draw_mask = True
else:
draw_mask = False
if draw_contour is None:
if mask is not None:
draw_contour = True
else:
draw_contour = False
if mask is None:
if draw_mask:
warn("`mask` is None, not masking the plot ...")
draw_mask = False
if draw_contour:
warn("`mask` is None, not adding contour to the plot ...")
draw_contour = False
if draw_mask:
if mask.shape != data.shape:
raise ValueError(
"The mask must have the same shape as the data, "
f"i.e., {data.shape}, not {mask.shape}"
)
if draw_contour and yscale == "log":
warn("Cannot draw contours with linear yscale yet ...")
if yvals is None: # for e.g. Evoked images
yvals = np.arange(data.shape[0])
# else, if TFR plot, yvals will be freqs
# test yscale
if yscale == "log" and not yvals[0] > 0:
raise ValueError(
"Using log scale for frequency axis requires all your"
" frequencies to be positive (you cannot include"
" the DC component (0 Hz) in the TFR)."
)
if len(yvals) < 2 or yvals[0] == 0:
yscale = "linear"
elif yscale != "linear":
ratio = yvals[1:] / yvals[:-1]
if yscale == "auto":
if yvals[0] > 0 and np.allclose(ratio, ratio[0]):
yscale = "log"
else:
yscale = "linear"
if yscale == "log": # pcolormesh for log scale
# compute bounds between time samples
(time_lims,) = centers_to_edges(times)
log_yvals = np.concatenate(
[[yvals[0] / ratio[0]], yvals, [yvals[-1] * ratio[0]]]
)
yval_lims = np.sqrt(log_yvals[:-1] * log_yvals[1:])
# construct a time-yvaluency bounds grid
time_mesh, yval_mesh = np.meshgrid(time_lims, yval_lims)
if mask is not None:
ax.pcolormesh(
time_mesh, yval_mesh, data, cmap=mask_cmap, norm=cnorm, alpha=mask_alpha
)
im = ax.pcolormesh(
time_mesh,
yval_mesh,
np.ma.masked_where(~mask, data),
cmap=cmap,
norm=cnorm,
alpha=1,
)
else:
im = ax.pcolormesh(time_mesh, yval_mesh, data, cmap=cmap, norm=cnorm)
if ylim is None:
ylim = yval_lims[[0, -1]]
if yscale == "log":
ax.set_yscale("log")
ax.get_yaxis().set_major_formatter(ticker.ScalarFormatter())
ax.yaxis.set_minor_formatter(ticker.NullFormatter())
# get rid of minor ticks
ax.yaxis.set_minor_locator(ticker.NullLocator())
tick_vals = yvals[
np.unique(np.linspace(0, len(yvals) - 1, 12).round().astype("int"))
]
ax.set_yticks(tick_vals)
else:
# imshow for linear because the y ticks are nicer
# and the masked areas look better
dt = np.median(np.diff(times)) / 2.0 if len(times) > 1 else 0.1
dy = np.median(np.diff(yvals)) / 2.0 if len(yvals) > 1 else 0.5
extent = [times[0] - dt, times[-1] + dt, yvals[0] - dy, yvals[-1] + dy]
im_args = dict(
interpolation="nearest", origin="lower", extent=extent, aspect="auto"
)
if draw_mask:
ax.imshow(data, alpha=mask_alpha, cmap=mask_cmap, norm=cnorm, **im_args)
im = ax.imshow(
np.ma.masked_where(~mask, data), cmap=cmap, norm=cnorm, **im_args
)
else:
ax.imshow(data, cmap=cmap, norm=cnorm, **im_args) # see #6481
im = ax.imshow(data, cmap=cmap, norm=cnorm, **im_args)
if draw_contour and np.unique(mask).size == 2:
big_mask = np.kron(mask, np.ones((10, 10)))
ax.contour(
big_mask,
colors=["k"],
extent=extent,
linewidths=[0.75],
corner_mask=False,
antialiased=False,
levels=[0.5],
)
time_lims = [extent[0], extent[1]]
if ylim is None:
ylim = [extent[2], extent[3]]
ax.set_xlim(time_lims[0], time_lims[-1])
ax.set_ylim(ylim)
if (draw_mask or draw_contour) and mask is not None:
if mask.all():
t_end = ", all points masked)"
else:
fraction = 1 - (np.float64(mask.sum()) / np.float64(mask.size))
t_end = f", {fraction * 100:0.3g}% of points masked)"
else:
t_end = ")"
return im, t_end
@fill_doc
def _make_combine_callable(
combine,
*,
axis=1,
valid=("mean", "median", "std", "gfp"),
ch_type=None,
keepdims=False,
):
"""Convert None or string values of ``combine`` into callables.
Params
------
combine : None | str | callable
If callable, the callable must accept one positional input (a numpy array) and
return an array with one fewer dimensions (the missing dimension's position is
given by ``axis``).
axis : int
Axis of data array across which to combine. May vary depending on data
context; e.g., if data are time-domain sensor traces or TFRs, continuous
or epoched, etc.
valid : tuple
Valid string values for built-in combine methods
(may vary for, e.g., combining TFRs versus time-domain signals).
ch_type : str
Channel type. Affects whether "gfp" is allowed as a synonym for "rms".
keepdims : bool
Whether to retain the singleton dimension after collapsing across it.
"""
kwargs = dict(axis=axis, keepdims=keepdims)
if combine is None:
combine = _identity_function if keepdims else partial(np.squeeze, axis=axis)
elif isinstance(combine, str):
combine_dict = {
key: partial(getattr(np, key), **kwargs)
for key in valid
if getattr(np, key, None) is not None
}
# marginal median that is safe for complex values:
if "median" in valid:
combine_dict["median"] = partial(_median_complex, axis=axis)
# RMS and GFP; if GFP requested for MEG channels, will use RMS anyway
def _rms(data):
return np.sqrt((data**2).mean(**kwargs))
def _gfp(data):
return data.std(axis=axis, ddof=0)
# make them play nice with _set_title_multiple_electrodes()
_rms.__name__ = "RMS"
_gfp.__name__ = "GFP"
if "rms" in valid:
combine_dict["rms"] = _rms
if "gfp" in valid and ch_type == "eeg":
combine_dict["gfp"] = _gfp
elif "gfp" in valid:
combine_dict["gfp"] = _rms
try:
combine = combine_dict[combine]
except KeyError:
raise ValueError(
f'"combine" must be None, a callable, or one of "{", ".join(valid)}"; '
f"got {combine}"
)
return combine
def _convert_psds(
psds, dB, estimate, scaling, unit, ch_names=None, first_dim="channel"
):
"""Convert PSDs to dB (if necessary) and appropriate units."""
_check_option("first_dim", first_dim, ["channel", "epoch"])
where = np.where(psds.min(1) <= 0)[0]
if len(where) > 0:
# Construct a helpful error message, depending on whether the first dimension of
# `psds` corresponds to channels or epochs.
if dB:
bad_value = "Infinite"
else:
bad_value = "Zero"
if first_dim == "channel":
bads = ", ".join(ch_names[ii] for ii in where)
else:
bads = ", ".join(str(ii) for ii in where)
msg = f"{bad_value} value in PSD for {first_dim}{_pl(where)} {bads}."
if first_dim == "channel":
msg += "\nThese channels might be dead."
warn(msg, UserWarning)
_check_option("estimate", estimate, ("power", "amplitude"))
if estimate == "amplitude":
np.sqrt(psds, out=psds)
psds *= scaling
ylabel = rf"$\mathrm{{{unit}/\sqrt{{Hz}}}}$"
coef = 20
else:
psds *= scaling * scaling
if "/" in unit:
unit = f"({unit})"
ylabel = rf"$\mathrm{{{unit}²/Hz}}$"
coef = 10
if dB:
np.log10(np.maximum(psds, np.finfo(float).tiny), out=psds)
psds *= coef
ylabel = r"$\mathrm{dB}\ $" + ylabel
ylabel = "Power (" + ylabel if estimate == "power" else "Amplitude (" + ylabel
ylabel += ")"
return ylabel
def _plot_psd(
inst,
fig,
freqs,
psd_list,
picks_list,
titles_list,
units_list,
scalings_list,
ax_list,
make_label,
color,
area_mode,
area_alpha,
dB,
estimate,
average,
spatial_colors,
xscale,
line_alpha,
sphere,
xlabels_list,
):
# helper function for Spectrum.plot()
from matplotlib.ticker import ScalarFormatter
from ..stats import _ci
from .evoked import _plot_lines
for key, ls in zip(["lowpass", "highpass", "line_freq"], ["--", "--", "-."]):
if inst.info[key] is not None:
for ax in ax_list:
ax.axvline(
inst.info[key],
color="k",
linestyle=ls,
alpha=0.25,
linewidth=2,
zorder=2,
)
if line_alpha is None:
line_alpha = 1.0 if average else 0.75
line_alpha = float(line_alpha)
ylabels = list()
for ii, (psd, picks, title, ax, scalings, units) in enumerate(
zip(psd_list, picks_list, titles_list, ax_list, scalings_list, units_list)
):
ylabel = _convert_psds(
psd, dB, estimate, scalings, units, [inst.ch_names[pi] for pi in picks]
)
ylabels.append(ylabel)
del ylabel
if average:
# mean across channels
psd_mean = np.mean(psd, axis=0)
if area_mode in ("sd", "std"):
# std across channels
psd_std = np.std(psd, axis=0)
hyp_limits = (psd_mean - psd_std, psd_mean + psd_std)
elif area_mode == "range":
hyp_limits = (np.min(psd, axis=0), np.max(psd, axis=0))
elif area_mode is None:
hyp_limits = None
else: # area_mode is float
hyp_limits = _ci(psd, ci=area_mode)
ax.plot(freqs, psd_mean, color=color, alpha=line_alpha, linewidth=0.5)
if hyp_limits is not None:
ax.fill_between(
freqs,
hyp_limits[0],
y2=hyp_limits[1],
facecolor=color,
alpha=area_alpha,
)
if not average:
picks = np.concatenate(picks_list)
info = pick_info(inst.info, sel=picks, copy=True)
bad_ch_idx = [info["ch_names"].index(ch) for ch in info["bads"]]
types = np.array(info.get_channel_types())
ch_types_used = list()
for this_type in _VALID_CHANNEL_TYPES:
if this_type in types:
ch_types_used.append(this_type)
assert len(ch_types_used) == len(ax_list)
unit = ""
units = {t: yl for t, yl in zip(ch_types_used, ylabels)}
titles = {c: t for c, t in zip(ch_types_used, titles_list)}
# here we overwrite `picks` because of how _plot_lines works;
# we already have the data, ch_types, etc in sync.
psd_array = np.concatenate(psd_list)
picks = np.arange(len(psd_array))
if not spatial_colors:
spatial_colors = color
_plot_lines(
psd_array,
info,
picks,
fig,
ax_list,
spatial_colors,
unit,
units=units,
scalings=None,
hline=None,
gfp=False,
types=types,
zorder="std",
xlim=(freqs[0], freqs[-1]),
ylim=None,
times=freqs,
bad_ch_idx=bad_ch_idx,
titles=titles,
ch_types_used=ch_types_used,
selectable=True,
psd=True,
line_alpha=line_alpha,
nave=None,
time_unit="ms",
sphere=sphere,
highlight=None,
)
for ii, (ax, xlabel) in enumerate(zip(ax_list, xlabels_list)):
ax.grid(True, linestyle=":")
if xscale == "log":
ax.set(xscale="log")
ax.set(xlim=[freqs[1] if freqs[0] == 0 else freqs[0], freqs[-1]])
ax.get_xaxis().set_major_formatter(ScalarFormatter())
else: # xscale == 'linear'
ax.set(xlim=(freqs[0], freqs[-1]))
if make_label:
ax.set(ylabel=ylabels[ii], title=titles_list[ii])
if xlabel:
ax.set_xlabel("Frequency (Hz)")
if make_label:
fig.align_ylabels(axs=ax_list)
return fig
def _format_units_psd(unit, latex=False, power=True, dB=False):
"""Format PSD measurement units nicely."""
unit = f"({unit})" if "/" in unit else unit
if power:
denom = "Hz"
exp = r"^{2}" if latex else "²"
else:
denom = r"\sqrt{Hz}" if latex else "√(Hz)"
exp = ""
pre, post = (r"$\mathrm{", r"}$") if latex else ("", "")
db = " (dB)" if dB else ""
return f"{pre}{unit}{exp}/{denom}{post}{db}"
def _prepare_sensor_names(names, show_names):
"""Apply callable to sensor names (if provided)."""
if callable(show_names):
names = [show_names(name) for name in names]
elif not show_names:
names = None
return names
def _trim_ticks(ticks, _min, _max):
"""Remove ticks that are more extreme than the given limits."""
if np.isclose(_min, _max):
keep_idx = 0 # ensure we always keep at least one tick
else:
keep_idx = np.where(np.logical_and(ticks >= _min, ticks <= _max))
return np.atleast_1d(ticks[keep_idx])
def _set_window_title(fig, title):
if fig.canvas.manager is not None:
fig.canvas.manager.set_window_title(title)
def _shorten_path_from_middle(fpath, max_len=60, replacement="..."):
"""Truncate a path from the middle by omitting complete path elements."""
from os.path import sep
if len(fpath) > max_len:
pathlist = fpath.split(sep)
# indices starting from middle, alternating sides, omitting final elem:
# range(8) → 3, 4, 2, 5, 1, 6; range(7) → 2, 3, 1, 4, 0, 5
ixs_to_trunc = list(
zip(
range(len(pathlist) // 2 - 1, -1, -1),
range(len(pathlist) // 2, len(pathlist) - 1),
)
)
ixs_to_trunc = np.array(ixs_to_trunc).flatten()
for ix in ixs_to_trunc:
pathlist[ix] = replacement
truncs = (np.array(pathlist) == replacement).nonzero()[0]
newpath = sep.join(pathlist[: truncs[0]] + pathlist[truncs[-1] :])
if len(newpath) < max_len:
break
return newpath
return fpath
def centers_to_edges(*arrays):
"""Convert center points to edges.
Parameters
----------
*arrays : list of ndarray
Each input array should be 1D monotonically increasing,
and will be cast to float.
Returns
-------
arrays : list of ndarray
Given each input of shape (N,), the output will have shape (N+1,).
Examples
--------
>>> x = [0., 0.1, 0.2, 0.3]
>>> y = [20, 30, 40]
>>> centers_to_edges(x, y) # doctest: +SKIP
[array([-0.05, 0.05, 0.15, 0.25, 0.35]), array([15., 25., 35., 45.])]
"""
out = list()
for ai, arr in enumerate(arrays):
arr = np.asarray(arr, dtype=float)
_check_option(f"arrays[{ai}].ndim", arr.ndim, (1,))
if len(arr) > 1:
arr_diff = np.diff(arr) / 2.0
else:
arr_diff = [abs(arr[0]) * 0.001] if arr[0] != 0 else [0.001]
out.append(
np.concatenate(
[[arr[0] - arr_diff[0]], arr[:-1] + arr_diff, [arr[-1] + arr_diff[-1]]]
)
)
return out
def _figure_agg(**kwargs):
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.figure import Figure
fig = Figure(**kwargs)
FigureCanvasAgg(fig)
return fig
def _ndarray_to_fig(img, dpi=100):
"""Convert to MPL figure, adapted from matplotlib.image.imsave."""
figsize = np.array(img.shape[:2][::-1]) / dpi
fig = _figure_agg(dpi=dpi, figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1], frame_on=False)
ax.imshow(img)
return fig
def _save_ndarray_img(fname, img):
"""Save an image to disk."""
from PIL import Image
Image.fromarray(img).save(fname)
def concatenate_images(images, axis=0, bgcolor="black", centered=True, n_channels=3):
"""Concatenate a list of images.
Parameters
----------
images : list of ndarray
The list of images to concatenate.
axis : 0 or 1
The images are concatenated horizontally if 0 and vertically otherwise.
The default orientation is horizontal.
bgcolor : str | list
The color of the background. The name of the color is accepted
(e.g 'red') or a list of RGB values between 0 and 1. Defaults to
'black'.
centered : bool
If True, the images are centered. Defaults to True.
n_channels : int
Number of color channels. Can be 3 or 4. The default value is 3.
Returns
-------
img : ndarray
The concatenated image.
"""
n_channels = _ensure_int(n_channels, "n_channels")
axis = _ensure_int(axis)
_check_option("axis", axis, (0, 1))
_check_option("n_channels", n_channels, (3, 4))
alpha = True if n_channels == 4 else False
bgcolor = _to_rgb(bgcolor, name="bgcolor", alpha=alpha)
bgcolor = np.asarray(bgcolor) * 255
funcs = [np.sum, np.max]
ret_shape = np.asarray(
[
funcs[axis]([image.shape[0] for image in images]),
funcs[1 - axis]([image.shape[1] for image in images]),
]
)
ret = np.zeros((ret_shape[0], ret_shape[1], n_channels), dtype=np.uint8)
ret[:, :, :] = bgcolor
ptr = np.array([0, 0])
sec = np.array([0 == axis, 1 == axis]).astype(int)
for image in images:
shape = image.shape[:-1]
dec = ptr.copy()
dec += ((ret_shape - shape) // 2) * (1 - sec) if centered else 0
ret[dec[0] : dec[0] + shape[0], dec[1] : dec[1] + shape[1], :] = image
ptr += shape * sec
return ret
def _generate_default_filename(ext=".png"):
now = datetime.now()
dt_string = now.strftime("_%Y-%m-%d_%H-%M-%S")
return "MNE" + dt_string + ext
def _handle_precompute(precompute):
_validate_type(precompute, (bool, str, None), "precompute")
if precompute is None:
precompute = get_config("MNE_BROWSER_PRECOMPUTE", "auto").lower()
_check_option(
"MNE_BROWSER_PRECOMPUTE",
precompute,
("true", "false", "auto"),
extra="when precompute=None is used",
)
precompute = dict(true=True, false=False, auto="auto")[precompute]
return precompute
def _set_3d_axes_equal(ax):
"""Make axes of 3D plot have equal scale on all dimensions.
This way spheres appear as actual spheres, cubes as cubes, etc.
Parameters
----------
ax: matplotlib.axes.Axes
A matplotlib 3d axis to use.
"""
ranges = tuple(
np.abs(np.diff(getattr(ax, f"get_{d}lim")())).item() for d in ("x", "y", "z")
)
ax.set_box_aspect(ranges)
def _check_type_projs(projs):
_validate_type(projs, (list, tuple, Projection), "projs")
if isinstance(projs, Projection):
projs = [projs]
for pi, p in enumerate(projs):
_validate_type(p, Projection, f"projs[{pi}]")
return projs
def _get_cmap(colormap, lut=None):
from matplotlib import colors, rcParams
try:
from matplotlib import colormaps
except Exception:
from matplotlib.cm import get_cmap
else:
def get_cmap(cmap):
return colormaps[cmap]
if colormap is None:
colormap = rcParams["image.cmap"]
if isinstance(colormap, str) and colormap in ("mne", "mne_analyze"):
colormap = mne_analyze_colormap([0, 1, 2], format="matplotlib")
elif not isinstance(colormap, colors.Colormap):
colormap = get_cmap(colormap)
if lut is not None:
colormap = colormap.resampled(lut)
return colormap
def _get_plot_ch_type(inst, ch_type, allow_ref_meg=False):
"""Choose a single channel type (usually for plotting).
Usually used in plotting to plot a single datatype, e.g. look for mags,
then grads, then ... to plot.
"""
if ch_type is None:
allowed_types = list(_DATA_CH_TYPES_SPLIT)
allowed_types += ["ref_meg"] if allow_ref_meg else []
has_types = inst.get_channel_types(unique=True)
for type_ in allowed_types:
if type_ in has_types:
ch_type = type_
break
else:
raise RuntimeError(
f"No plottable channel types found. Allowed types are: {allowed_types}"
)
return ch_type